| /* Statement Analysis and Transformation for Vectorization |
| Copyright (C) 2003-2013 Free Software Foundation, Inc. |
| Contributed by Dorit Naishlos <dorit@il.ibm.com> |
| and Ira Rosen <irar@il.ibm.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "dumpfile.h" |
| #include "tm.h" |
| #include "ggc.h" |
| #include "tree.h" |
| #include "target.h" |
| #include "basic-block.h" |
| #include "gimple-pretty-print.h" |
| #include "tree-flow.h" |
| #include "cfgloop.h" |
| #include "expr.h" |
| #include "recog.h" /* FIXME: for insn_data */ |
| #include "optabs.h" |
| #include "diagnostic-core.h" |
| #include "tree-vectorizer.h" |
| #include "dumpfile.h" |
| |
| /* For lang_hooks.types.type_for_mode. */ |
| #include "langhooks.h" |
| |
| /* Return the vectorized type for the given statement. */ |
| |
| tree |
| stmt_vectype (struct _stmt_vec_info *stmt_info) |
| { |
| return STMT_VINFO_VECTYPE (stmt_info); |
| } |
| |
| /* Return TRUE iff the given statement is in an inner loop relative to |
| the loop being vectorized. */ |
| bool |
| stmt_in_inner_loop_p (struct _stmt_vec_info *stmt_info) |
| { |
| gimple stmt = STMT_VINFO_STMT (stmt_info); |
| basic_block bb = gimple_bb (stmt); |
| loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); |
| struct loop* loop; |
| |
| if (!loop_vinfo) |
| return false; |
| |
| loop = LOOP_VINFO_LOOP (loop_vinfo); |
| |
| return (bb->loop_father == loop->inner); |
| } |
| |
| /* Record the cost of a statement, either by directly informing the |
| target model or by saving it in a vector for later processing. |
| Return a preliminary estimate of the statement's cost. */ |
| |
| unsigned |
| record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count, |
| enum vect_cost_for_stmt kind, stmt_vec_info stmt_info, |
| int misalign, enum vect_cost_model_location where) |
| { |
| if (body_cost_vec) |
| { |
| tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE; |
| add_stmt_info_to_vec (body_cost_vec, count, kind, |
| stmt_info ? STMT_VINFO_STMT (stmt_info) : NULL, |
| misalign); |
| return (unsigned) |
| (builtin_vectorization_cost (kind, vectype, misalign) * count); |
| |
| } |
| else |
| { |
| loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); |
| bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); |
| void *target_cost_data; |
| |
| if (loop_vinfo) |
| target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo); |
| else |
| target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo); |
| |
| return add_stmt_cost (target_cost_data, count, kind, stmt_info, |
| misalign, where); |
| } |
| } |
| |
| /* Return a variable of type ELEM_TYPE[NELEMS]. */ |
| |
| static tree |
| create_vector_array (tree elem_type, unsigned HOST_WIDE_INT nelems) |
| { |
| return create_tmp_var (build_array_type_nelts (elem_type, nelems), |
| "vect_array"); |
| } |
| |
| /* ARRAY is an array of vectors created by create_vector_array. |
| Return an SSA_NAME for the vector in index N. The reference |
| is part of the vectorization of STMT and the vector is associated |
| with scalar destination SCALAR_DEST. */ |
| |
| static tree |
| read_vector_array (gimple stmt, gimple_stmt_iterator *gsi, tree scalar_dest, |
| tree array, unsigned HOST_WIDE_INT n) |
| { |
| tree vect_type, vect, vect_name, array_ref; |
| gimple new_stmt; |
| |
| gcc_assert (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE); |
| vect_type = TREE_TYPE (TREE_TYPE (array)); |
| vect = vect_create_destination_var (scalar_dest, vect_type); |
| array_ref = build4 (ARRAY_REF, vect_type, array, |
| build_int_cst (size_type_node, n), |
| NULL_TREE, NULL_TREE); |
| |
| new_stmt = gimple_build_assign (vect, array_ref); |
| vect_name = make_ssa_name (vect, new_stmt); |
| gimple_assign_set_lhs (new_stmt, vect_name); |
| vect_finish_stmt_generation (stmt, new_stmt, gsi); |
| |
| return vect_name; |
| } |
| |
| /* ARRAY is an array of vectors created by create_vector_array. |
| Emit code to store SSA_NAME VECT in index N of the array. |
| The store is part of the vectorization of STMT. */ |
| |
| static void |
| write_vector_array (gimple stmt, gimple_stmt_iterator *gsi, tree vect, |
| tree array, unsigned HOST_WIDE_INT n) |
| { |
| tree array_ref; |
| gimple new_stmt; |
| |
| array_ref = build4 (ARRAY_REF, TREE_TYPE (vect), array, |
| build_int_cst (size_type_node, n), |
| NULL_TREE, NULL_TREE); |
| |
| new_stmt = gimple_build_assign (array_ref, vect); |
| vect_finish_stmt_generation (stmt, new_stmt, gsi); |
| } |
| |
| /* PTR is a pointer to an array of type TYPE. Return a representation |
| of *PTR. The memory reference replaces those in FIRST_DR |
| (and its group). */ |
| |
| static tree |
| create_array_ref (tree type, tree ptr, struct data_reference *first_dr) |
| { |
| tree mem_ref, alias_ptr_type; |
| |
| alias_ptr_type = reference_alias_ptr_type (DR_REF (first_dr)); |
| mem_ref = build2 (MEM_REF, type, ptr, build_int_cst (alias_ptr_type, 0)); |
| /* Arrays have the same alignment as their type. */ |
| set_ptr_info_alignment (get_ptr_info (ptr), TYPE_ALIGN_UNIT (type), 0); |
| return mem_ref; |
| } |
| |
| /* Utility functions used by vect_mark_stmts_to_be_vectorized. */ |
| |
| /* Function vect_mark_relevant. |
| |
| Mark STMT as "relevant for vectorization" and add it to WORKLIST. */ |
| |
| static void |
| vect_mark_relevant (vec<gimple> *worklist, gimple stmt, |
| enum vect_relevant relevant, bool live_p, |
| bool used_in_pattern) |
| { |
| stmt_vec_info stmt_info = vinfo_for_stmt (stmt); |
| enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info); |
| bool save_live_p = STMT_VINFO_LIVE_P (stmt_info); |
| gimple pattern_stmt; |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "mark relevant %d, live %d.", relevant, live_p); |
| |
| /* If this stmt is an original stmt in a pattern, we might need to mark its |
| related pattern stmt instead of the original stmt. However, such stmts |
| may have their own uses that are not in any pattern, in such cases the |
| stmt itself should be marked. */ |
| if (STMT_VINFO_IN_PATTERN_P (stmt_info)) |
| { |
| bool found = false; |
| if (!used_in_pattern) |
| { |
| imm_use_iterator imm_iter; |
| use_operand_p use_p; |
| gimple use_stmt; |
| tree lhs; |
| loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); |
| struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); |
| |
| if (is_gimple_assign (stmt)) |
| lhs = gimple_assign_lhs (stmt); |
| else |
| lhs = gimple_call_lhs (stmt); |
| |
| /* This use is out of pattern use, if LHS has other uses that are |
| pattern uses, we should mark the stmt itself, and not the pattern |
| stmt. */ |
| if (TREE_CODE (lhs) == SSA_NAME) |
| FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs) |
| { |
| if (is_gimple_debug (USE_STMT (use_p))) |
| continue; |
| use_stmt = USE_STMT (use_p); |
| |
| if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))) |
| continue; |
| |
| if (vinfo_for_stmt (use_stmt) |
| && STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt))) |
| { |
| found = true; |
| break; |
| } |
| } |
| } |
| |
| if (!found) |
| { |
| /* This is the last stmt in a sequence that was detected as a |
| pattern that can potentially be vectorized. Don't mark the stmt |
| as relevant/live because it's not going to be vectorized. |
| Instead mark the pattern-stmt that replaces it. */ |
| |
| pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info); |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "last stmt in pattern. don't mark" |
| " relevant/live."); |
| stmt_info = vinfo_for_stmt (pattern_stmt); |
| gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt); |
| save_relevant = STMT_VINFO_RELEVANT (stmt_info); |
| save_live_p = STMT_VINFO_LIVE_P (stmt_info); |
| stmt = pattern_stmt; |
| } |
| } |
| |
| STMT_VINFO_LIVE_P (stmt_info) |= live_p; |
| if (relevant > STMT_VINFO_RELEVANT (stmt_info)) |
| STMT_VINFO_RELEVANT (stmt_info) = relevant; |
| |
| if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant |
| && STMT_VINFO_LIVE_P (stmt_info) == save_live_p) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "already marked relevant/live."); |
| return; |
| } |
| |
| worklist->safe_push (stmt); |
| } |
| |
| |
| /* Function vect_stmt_relevant_p. |
| |
| Return true if STMT in loop that is represented by LOOP_VINFO is |
| "relevant for vectorization". |
| |
| A stmt is considered "relevant for vectorization" if: |
| - it has uses outside the loop. |
| - it has vdefs (it alters memory). |
| - control stmts in the loop (except for the exit condition). |
| |
| CHECKME: what other side effects would the vectorizer allow? */ |
| |
| static bool |
| vect_stmt_relevant_p (gimple stmt, loop_vec_info loop_vinfo, |
| enum vect_relevant *relevant, bool *live_p) |
| { |
| struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); |
| ssa_op_iter op_iter; |
| imm_use_iterator imm_iter; |
| use_operand_p use_p; |
| def_operand_p def_p; |
| |
| *relevant = vect_unused_in_scope; |
| *live_p = false; |
| |
| /* cond stmt other than loop exit cond. */ |
| if (is_ctrl_stmt (stmt) |
| && STMT_VINFO_TYPE (vinfo_for_stmt (stmt)) |
| != loop_exit_ctrl_vec_info_type) |
| *relevant = vect_used_in_scope; |
| |
| /* changing memory. */ |
| if (gimple_code (stmt) != GIMPLE_PHI) |
| if (gimple_vdef (stmt)) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vec_stmt_relevant_p: stmt has vdefs."); |
| *relevant = vect_used_in_scope; |
| } |
| |
| /* uses outside the loop. */ |
| FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF) |
| { |
| FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p)) |
| { |
| basic_block bb = gimple_bb (USE_STMT (use_p)); |
| if (!flow_bb_inside_loop_p (loop, bb)) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vec_stmt_relevant_p: used out of loop."); |
| |
| if (is_gimple_debug (USE_STMT (use_p))) |
| continue; |
| |
| /* We expect all such uses to be in the loop exit phis |
| (because of loop closed form) */ |
| gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI); |
| gcc_assert (bb == single_exit (loop)->dest); |
| |
| *live_p = true; |
| } |
| } |
| } |
| |
| return (*live_p || *relevant); |
| } |
| |
| |
| /* Function exist_non_indexing_operands_for_use_p |
| |
| USE is one of the uses attached to STMT. Check if USE is |
| used in STMT for anything other than indexing an array. */ |
| |
| static bool |
| exist_non_indexing_operands_for_use_p (tree use, gimple stmt) |
| { |
| tree operand; |
| stmt_vec_info stmt_info = vinfo_for_stmt (stmt); |
| |
| /* USE corresponds to some operand in STMT. If there is no data |
| reference in STMT, then any operand that corresponds to USE |
| is not indexing an array. */ |
| if (!STMT_VINFO_DATA_REF (stmt_info)) |
| return true; |
| |
| /* STMT has a data_ref. FORNOW this means that its of one of |
| the following forms: |
| -1- ARRAY_REF = var |
| -2- var = ARRAY_REF |
| (This should have been verified in analyze_data_refs). |
| |
| 'var' in the second case corresponds to a def, not a use, |
| so USE cannot correspond to any operands that are not used |
| for array indexing. |
| |
| Therefore, all we need to check is if STMT falls into the |
| first case, and whether var corresponds to USE. */ |
| |
| if (!gimple_assign_copy_p (stmt)) |
| return false; |
| if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME) |
| return false; |
| operand = gimple_assign_rhs1 (stmt); |
| if (TREE_CODE (operand) != SSA_NAME) |
| return false; |
| |
| if (operand == use) |
| return true; |
| |
| return false; |
| } |
| |
| |
| /* |
| Function process_use. |
| |
| Inputs: |
| - a USE in STMT in a loop represented by LOOP_VINFO |
| - LIVE_P, RELEVANT - enum values to be set in the STMT_VINFO of the stmt |
| that defined USE. This is done by calling mark_relevant and passing it |
| the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant). |
| - FORCE is true if exist_non_indexing_operands_for_use_p check shouldn't |
| be performed. |
| |
| Outputs: |
| Generally, LIVE_P and RELEVANT are used to define the liveness and |
| relevance info of the DEF_STMT of this USE: |
| STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p |
| STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant |
| Exceptions: |
| - case 1: If USE is used only for address computations (e.g. array indexing), |
| which does not need to be directly vectorized, then the liveness/relevance |
| of the respective DEF_STMT is left unchanged. |
| - case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we |
| skip DEF_STMT cause it had already been processed. |
| - case 3: If DEF_STMT and STMT are in different nests, then "relevant" will |
| be modified accordingly. |
| |
| Return true if everything is as expected. Return false otherwise. */ |
| |
| static bool |
| process_use (gimple stmt, tree use, loop_vec_info loop_vinfo, bool live_p, |
| enum vect_relevant relevant, vec<gimple> *worklist, |
| bool force) |
| { |
| struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt); |
| stmt_vec_info dstmt_vinfo; |
| basic_block bb, def_bb; |
| tree def; |
| gimple def_stmt; |
| enum vect_def_type dt; |
| |
| /* case 1: we are only interested in uses that need to be vectorized. Uses |
| that are used for address computation are not considered relevant. */ |
| if (!force && !exist_non_indexing_operands_for_use_p (use, stmt)) |
| return true; |
| |
| if (!vect_is_simple_use (use, stmt, loop_vinfo, NULL, &def_stmt, &def, &dt)) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "not vectorized: unsupported use in stmt."); |
| return false; |
| } |
| |
| if (!def_stmt || gimple_nop_p (def_stmt)) |
| return true; |
| |
| def_bb = gimple_bb (def_stmt); |
| if (!flow_bb_inside_loop_p (loop, def_bb)) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, "def_stmt is out of loop."); |
| return true; |
| } |
| |
| /* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT). |
| DEF_STMT must have already been processed, because this should be the |
| only way that STMT, which is a reduction-phi, was put in the worklist, |
| as there should be no other uses for DEF_STMT in the loop. So we just |
| check that everything is as expected, and we are done. */ |
| dstmt_vinfo = vinfo_for_stmt (def_stmt); |
| bb = gimple_bb (stmt); |
| if (gimple_code (stmt) == GIMPLE_PHI |
| && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def |
| && gimple_code (def_stmt) != GIMPLE_PHI |
| && STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def |
| && bb->loop_father == def_bb->loop_father) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "reduc-stmt defining reduc-phi in the same nest."); |
| if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo)) |
| dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo)); |
| gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction); |
| gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo) |
| || STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope); |
| return true; |
| } |
| |
| /* case 3a: outer-loop stmt defining an inner-loop stmt: |
| outer-loop-header-bb: |
| d = def_stmt |
| inner-loop: |
| stmt # use (d) |
| outer-loop-tail-bb: |
| ... */ |
| if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father)) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "outer-loop def-stmt defining inner-loop stmt."); |
| |
| switch (relevant) |
| { |
| case vect_unused_in_scope: |
| relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ? |
| vect_used_in_scope : vect_unused_in_scope; |
| break; |
| |
| case vect_used_in_outer_by_reduction: |
| gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def); |
| relevant = vect_used_by_reduction; |
| break; |
| |
| case vect_used_in_outer: |
| gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def); |
| relevant = vect_used_in_scope; |
| break; |
| |
| case vect_used_in_scope: |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* case 3b: inner-loop stmt defining an outer-loop stmt: |
| outer-loop-header-bb: |
| ... |
| inner-loop: |
| d = def_stmt |
| outer-loop-tail-bb (or outer-loop-exit-bb in double reduction): |
| stmt # use (d) */ |
| else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father)) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "inner-loop def-stmt defining outer-loop stmt."); |
| |
| switch (relevant) |
| { |
| case vect_unused_in_scope: |
| relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def |
| || STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ? |
| vect_used_in_outer_by_reduction : vect_unused_in_scope; |
| break; |
| |
| case vect_used_by_reduction: |
| relevant = vect_used_in_outer_by_reduction; |
| break; |
| |
| case vect_used_in_scope: |
| relevant = vect_used_in_outer; |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| vect_mark_relevant (worklist, def_stmt, relevant, live_p, |
| is_pattern_stmt_p (stmt_vinfo)); |
| return true; |
| } |
| |
| |
| /* Function vect_mark_stmts_to_be_vectorized. |
| |
| Not all stmts in the loop need to be vectorized. For example: |
| |
| for i... |
| for j... |
| 1. T0 = i + j |
| 2. T1 = a[T0] |
| |
| 3. j = j + 1 |
| |
| Stmt 1 and 3 do not need to be vectorized, because loop control and |
| addressing of vectorized data-refs are handled differently. |
| |
| This pass detects such stmts. */ |
| |
| bool |
| vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo) |
| { |
| vec<gimple> worklist; |
| struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); |
| basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo); |
| unsigned int nbbs = loop->num_nodes; |
| gimple_stmt_iterator si; |
| gimple stmt; |
| unsigned int i; |
| stmt_vec_info stmt_vinfo; |
| basic_block bb; |
| gimple phi; |
| bool live_p; |
| enum vect_relevant relevant, tmp_relevant; |
| enum vect_def_type def_type; |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "=== vect_mark_stmts_to_be_vectorized ==="); |
| |
| worklist.create (64); |
| |
| /* 1. Init worklist. */ |
| for (i = 0; i < nbbs; i++) |
| { |
| bb = bbs[i]; |
| for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) |
| { |
| phi = gsi_stmt (si); |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_NOTE, vect_location, "init: phi relevant? "); |
| dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0); |
| } |
| |
| if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p)) |
| vect_mark_relevant (&worklist, phi, relevant, live_p, false); |
| } |
| for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si)) |
| { |
| stmt = gsi_stmt (si); |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_NOTE, vect_location, "init: stmt relevant? "); |
| dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0); |
| } |
| |
| if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p)) |
| vect_mark_relevant (&worklist, stmt, relevant, live_p, false); |
| } |
| } |
| |
| /* 2. Process_worklist */ |
| while (worklist.length () > 0) |
| { |
| use_operand_p use_p; |
| ssa_op_iter iter; |
| |
| stmt = worklist.pop (); |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_NOTE, vect_location, "worklist: examine stmt: "); |
| dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0); |
| } |
| |
| /* Examine the USEs of STMT. For each USE, mark the stmt that defines it |
| (DEF_STMT) as relevant/irrelevant and live/dead according to the |
| liveness and relevance properties of STMT. */ |
| stmt_vinfo = vinfo_for_stmt (stmt); |
| relevant = STMT_VINFO_RELEVANT (stmt_vinfo); |
| live_p = STMT_VINFO_LIVE_P (stmt_vinfo); |
| |
| /* Generally, the liveness and relevance properties of STMT are |
| propagated as is to the DEF_STMTs of its USEs: |
| live_p <-- STMT_VINFO_LIVE_P (STMT_VINFO) |
| relevant <-- STMT_VINFO_RELEVANT (STMT_VINFO) |
| |
| One exception is when STMT has been identified as defining a reduction |
| variable; in this case we set the liveness/relevance as follows: |
| live_p = false |
| relevant = vect_used_by_reduction |
| This is because we distinguish between two kinds of relevant stmts - |
| those that are used by a reduction computation, and those that are |
| (also) used by a regular computation. This allows us later on to |
| identify stmts that are used solely by a reduction, and therefore the |
| order of the results that they produce does not have to be kept. */ |
| |
| def_type = STMT_VINFO_DEF_TYPE (stmt_vinfo); |
| tmp_relevant = relevant; |
| switch (def_type) |
| { |
| case vect_reduction_def: |
| switch (tmp_relevant) |
| { |
| case vect_unused_in_scope: |
| relevant = vect_used_by_reduction; |
| break; |
| |
| case vect_used_by_reduction: |
| if (gimple_code (stmt) == GIMPLE_PHI) |
| break; |
| /* fall through */ |
| |
| default: |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "unsupported use of reduction."); |
| worklist.release (); |
| return false; |
| } |
| |
| live_p = false; |
| break; |
| |
| case vect_nested_cycle: |
| if (tmp_relevant != vect_unused_in_scope |
| && tmp_relevant != vect_used_in_outer_by_reduction |
| && tmp_relevant != vect_used_in_outer) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "unsupported use of nested cycle."); |
| |
| worklist.release (); |
| return false; |
| } |
| |
| live_p = false; |
| break; |
| |
| case vect_double_reduction_def: |
| if (tmp_relevant != vect_unused_in_scope |
| && tmp_relevant != vect_used_by_reduction) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "unsupported use of double reduction."); |
| |
| worklist.release (); |
| return false; |
| } |
| |
| live_p = false; |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (is_pattern_stmt_p (stmt_vinfo)) |
| { |
| /* Pattern statements are not inserted into the code, so |
| FOR_EACH_PHI_OR_STMT_USE optimizes their operands out, and we |
| have to scan the RHS or function arguments instead. */ |
| if (is_gimple_assign (stmt)) |
| { |
| enum tree_code rhs_code = gimple_assign_rhs_code (stmt); |
| tree op = gimple_assign_rhs1 (stmt); |
| |
| i = 1; |
| if (rhs_code == COND_EXPR && COMPARISON_CLASS_P (op)) |
| { |
| if (!process_use (stmt, TREE_OPERAND (op, 0), loop_vinfo, |
| live_p, relevant, &worklist, false) |
| || !process_use (stmt, TREE_OPERAND (op, 1), loop_vinfo, |
| live_p, relevant, &worklist, false)) |
| { |
| worklist.release (); |
| return false; |
| } |
| i = 2; |
| } |
| for (; i < gimple_num_ops (stmt); i++) |
| { |
| op = gimple_op (stmt, i); |
| if (!process_use (stmt, op, loop_vinfo, live_p, relevant, |
| &worklist, false)) |
| { |
| worklist.release (); |
| return false; |
| } |
| } |
| } |
| else if (is_gimple_call (stmt)) |
| { |
| for (i = 0; i < gimple_call_num_args (stmt); i++) |
| { |
| tree arg = gimple_call_arg (stmt, i); |
| if (!process_use (stmt, arg, loop_vinfo, live_p, relevant, |
| &worklist, false)) |
| { |
| worklist.release (); |
| return false; |
| } |
| } |
| } |
| } |
| else |
| FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE) |
| { |
| tree op = USE_FROM_PTR (use_p); |
| if (!process_use (stmt, op, loop_vinfo, live_p, relevant, |
| &worklist, false)) |
| { |
| worklist.release (); |
| return false; |
| } |
| } |
| |
| if (STMT_VINFO_GATHER_P (stmt_vinfo)) |
| { |
| tree off; |
| tree decl = vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL); |
| gcc_assert (decl); |
| if (!process_use (stmt, off, loop_vinfo, live_p, relevant, |
| &worklist, true)) |
| { |
| worklist.release (); |
| return false; |
| } |
| } |
| } /* while worklist */ |
| |
| worklist.release (); |
| return true; |
| } |
| |
| |
| /* Function vect_model_simple_cost. |
| |
| Models cost for simple operations, i.e. those that only emit ncopies of a |
| single op. Right now, this does not account for multiple insns that could |
| be generated for the single vector op. We will handle that shortly. */ |
| |
| void |
| vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies, |
| enum vect_def_type *dt, |
| stmt_vector_for_cost *prologue_cost_vec, |
| stmt_vector_for_cost *body_cost_vec) |
| { |
| int i; |
| int inside_cost = 0, prologue_cost = 0; |
| |
| /* The SLP costs were already calculated during SLP tree build. */ |
| if (PURE_SLP_STMT (stmt_info)) |
| return; |
| |
| /* FORNOW: Assuming maximum 2 args per stmts. */ |
| for (i = 0; i < 2; i++) |
| if (dt[i] == vect_constant_def || dt[i] == vect_external_def) |
| prologue_cost += record_stmt_cost (prologue_cost_vec, 1, vector_stmt, |
| stmt_info, 0, vect_prologue); |
| |
| /* Pass the inside-of-loop statements to the target-specific cost model. */ |
| inside_cost = record_stmt_cost (body_cost_vec, ncopies, vector_stmt, |
| stmt_info, 0, vect_body); |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_model_simple_cost: inside_cost = %d, " |
| "prologue_cost = %d .", inside_cost, prologue_cost); |
| } |
| |
| |
| /* Model cost for type demotion and promotion operations. PWR is normally |
| zero for single-step promotions and demotions. It will be one if |
| two-step promotion/demotion is required, and so on. Each additional |
| step doubles the number of instructions required. */ |
| |
| static void |
| vect_model_promotion_demotion_cost (stmt_vec_info stmt_info, |
| enum vect_def_type *dt, int pwr) |
| { |
| int i, tmp; |
| int inside_cost = 0, prologue_cost = 0; |
| loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); |
| bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); |
| void *target_cost_data; |
| |
| /* The SLP costs were already calculated during SLP tree build. */ |
| if (PURE_SLP_STMT (stmt_info)) |
| return; |
| |
| if (loop_vinfo) |
| target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo); |
| else |
| target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo); |
| |
| for (i = 0; i < pwr + 1; i++) |
| { |
| tmp = (STMT_VINFO_TYPE (stmt_info) == type_promotion_vec_info_type) ? |
| (i + 1) : i; |
| inside_cost += add_stmt_cost (target_cost_data, vect_pow2 (tmp), |
| vec_promote_demote, stmt_info, 0, |
| vect_body); |
| } |
| |
| /* FORNOW: Assuming maximum 2 args per stmts. */ |
| for (i = 0; i < 2; i++) |
| if (dt[i] == vect_constant_def || dt[i] == vect_external_def) |
| prologue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt, |
| stmt_info, 0, vect_prologue); |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_model_promotion_demotion_cost: inside_cost = %d, " |
| "prologue_cost = %d .", inside_cost, prologue_cost); |
| } |
| |
| /* Function vect_cost_group_size |
| |
| For grouped load or store, return the group_size only if it is the first |
| load or store of a group, else return 1. This ensures that group size is |
| only returned once per group. */ |
| |
| static int |
| vect_cost_group_size (stmt_vec_info stmt_info) |
| { |
| gimple first_stmt = GROUP_FIRST_ELEMENT (stmt_info); |
| |
| if (first_stmt == STMT_VINFO_STMT (stmt_info)) |
| return GROUP_SIZE (stmt_info); |
| |
| return 1; |
| } |
| |
| |
| /* Function vect_model_store_cost |
| |
| Models cost for stores. In the case of grouped accesses, one access |
| has the overhead of the grouped access attributed to it. */ |
| |
| void |
| vect_model_store_cost (stmt_vec_info stmt_info, int ncopies, |
| bool store_lanes_p, enum vect_def_type dt, |
| slp_tree slp_node, |
| stmt_vector_for_cost *prologue_cost_vec, |
| stmt_vector_for_cost *body_cost_vec) |
| { |
| int group_size; |
| unsigned int inside_cost = 0, prologue_cost = 0; |
| struct data_reference *first_dr; |
| gimple first_stmt; |
| |
| /* The SLP costs were already calculated during SLP tree build. */ |
| if (PURE_SLP_STMT (stmt_info)) |
| return; |
| |
| if (dt == vect_constant_def || dt == vect_external_def) |
| prologue_cost += record_stmt_cost (prologue_cost_vec, 1, scalar_to_vec, |
| stmt_info, 0, vect_prologue); |
| |
| /* Grouped access? */ |
| if (STMT_VINFO_GROUPED_ACCESS (stmt_info)) |
| { |
| if (slp_node) |
| { |
| first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0]; |
| group_size = 1; |
| } |
| else |
| { |
| first_stmt = GROUP_FIRST_ELEMENT (stmt_info); |
| group_size = vect_cost_group_size (stmt_info); |
| } |
| |
| first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt)); |
| } |
| /* Not a grouped access. */ |
| else |
| { |
| group_size = 1; |
| first_dr = STMT_VINFO_DATA_REF (stmt_info); |
| } |
| |
| /* We assume that the cost of a single store-lanes instruction is |
| equivalent to the cost of GROUP_SIZE separate stores. If a grouped |
| access is instead being provided by a permute-and-store operation, |
| include the cost of the permutes. */ |
| if (!store_lanes_p && group_size > 1) |
| { |
| /* Uses a high and low interleave operation for each needed permute. */ |
| |
| int nstmts = ncopies * exact_log2 (group_size) * group_size; |
| inside_cost = record_stmt_cost (body_cost_vec, nstmts, vec_perm, |
| stmt_info, 0, vect_body); |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_model_store_cost: strided group_size = %d .", |
| group_size); |
| } |
| |
| /* Costs of the stores. */ |
| vect_get_store_cost (first_dr, ncopies, &inside_cost, body_cost_vec); |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_model_store_cost: inside_cost = %d, " |
| "prologue_cost = %d .", inside_cost, prologue_cost); |
| } |
| |
| |
| /* Calculate cost of DR's memory access. */ |
| void |
| vect_get_store_cost (struct data_reference *dr, int ncopies, |
| unsigned int *inside_cost, |
| stmt_vector_for_cost *body_cost_vec) |
| { |
| int alignment_support_scheme = vect_supportable_dr_alignment (dr, false); |
| gimple stmt = DR_STMT (dr); |
| stmt_vec_info stmt_info = vinfo_for_stmt (stmt); |
| |
| switch (alignment_support_scheme) |
| { |
| case dr_aligned: |
| { |
| *inside_cost += record_stmt_cost (body_cost_vec, ncopies, |
| vector_store, stmt_info, 0, |
| vect_body); |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_model_store_cost: aligned."); |
| break; |
| } |
| |
| case dr_unaligned_supported: |
| { |
| /* Here, we assign an additional cost for the unaligned store. */ |
| *inside_cost += record_stmt_cost (body_cost_vec, ncopies, |
| unaligned_store, stmt_info, |
| DR_MISALIGNMENT (dr), vect_body); |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_model_store_cost: unaligned supported by " |
| "hardware."); |
| break; |
| } |
| |
| case dr_unaligned_unsupported: |
| { |
| *inside_cost = VECT_MAX_COST; |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "vect_model_store_cost: unsupported access."); |
| break; |
| } |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| |
| /* Function vect_model_load_cost |
| |
| Models cost for loads. In the case of grouped accesses, the last access |
| has the overhead of the grouped access attributed to it. Since unaligned |
| accesses are supported for loads, we also account for the costs of the |
| access scheme chosen. */ |
| |
| void |
| vect_model_load_cost (stmt_vec_info stmt_info, int ncopies, |
| bool load_lanes_p, slp_tree slp_node, |
| stmt_vector_for_cost *prologue_cost_vec, |
| stmt_vector_for_cost *body_cost_vec) |
| { |
| int group_size; |
| gimple first_stmt; |
| struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr; |
| unsigned int inside_cost = 0, prologue_cost = 0; |
| |
| /* The SLP costs were already calculated during SLP tree build. */ |
| if (PURE_SLP_STMT (stmt_info)) |
| return; |
| |
| /* Grouped accesses? */ |
| first_stmt = GROUP_FIRST_ELEMENT (stmt_info); |
| if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && first_stmt && !slp_node) |
| { |
| group_size = vect_cost_group_size (stmt_info); |
| first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt)); |
| } |
| /* Not a grouped access. */ |
| else |
| { |
| group_size = 1; |
| first_dr = dr; |
| } |
| |
| /* We assume that the cost of a single load-lanes instruction is |
| equivalent to the cost of GROUP_SIZE separate loads. If a grouped |
| access is instead being provided by a load-and-permute operation, |
| include the cost of the permutes. */ |
| if (!load_lanes_p && group_size > 1) |
| { |
| /* Uses an even and odd extract operations for each needed permute. */ |
| int nstmts = ncopies * exact_log2 (group_size) * group_size; |
| inside_cost += record_stmt_cost (body_cost_vec, nstmts, vec_perm, |
| stmt_info, 0, vect_body); |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_model_load_cost: strided group_size = %d .", |
| group_size); |
| } |
| |
| /* The loads themselves. */ |
| if (STMT_VINFO_STRIDE_LOAD_P (stmt_info)) |
| { |
| /* N scalar loads plus gathering them into a vector. */ |
| tree vectype = STMT_VINFO_VECTYPE (stmt_info); |
| inside_cost += record_stmt_cost (body_cost_vec, |
| ncopies * TYPE_VECTOR_SUBPARTS (vectype), |
| scalar_load, stmt_info, 0, vect_body); |
| inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_construct, |
| stmt_info, 0, vect_body); |
| } |
| else |
| vect_get_load_cost (first_dr, ncopies, |
| ((!STMT_VINFO_GROUPED_ACCESS (stmt_info)) |
| || group_size > 1 || slp_node), |
| &inside_cost, &prologue_cost, |
| prologue_cost_vec, body_cost_vec, true); |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_model_load_cost: inside_cost = %d, " |
| "prologue_cost = %d .", inside_cost, prologue_cost); |
| } |
| |
| |
| /* Calculate cost of DR's memory access. */ |
| void |
| vect_get_load_cost (struct data_reference *dr, int ncopies, |
| bool add_realign_cost, unsigned int *inside_cost, |
| unsigned int *prologue_cost, |
| stmt_vector_for_cost *prologue_cost_vec, |
| stmt_vector_for_cost *body_cost_vec, |
| bool record_prologue_costs) |
| { |
| int alignment_support_scheme = vect_supportable_dr_alignment (dr, false); |
| gimple stmt = DR_STMT (dr); |
| stmt_vec_info stmt_info = vinfo_for_stmt (stmt); |
| |
| switch (alignment_support_scheme) |
| { |
| case dr_aligned: |
| { |
| *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load, |
| stmt_info, 0, vect_body); |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_model_load_cost: aligned."); |
| |
| break; |
| } |
| case dr_unaligned_supported: |
| { |
| /* Here, we assign an additional cost for the unaligned load. */ |
| *inside_cost += record_stmt_cost (body_cost_vec, ncopies, |
| unaligned_load, stmt_info, |
| DR_MISALIGNMENT (dr), vect_body); |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_model_load_cost: unaligned supported by " |
| "hardware."); |
| |
| break; |
| } |
| case dr_explicit_realign: |
| { |
| *inside_cost += record_stmt_cost (body_cost_vec, ncopies * 2, |
| vector_load, stmt_info, 0, vect_body); |
| *inside_cost += record_stmt_cost (body_cost_vec, ncopies, |
| vec_perm, stmt_info, 0, vect_body); |
| |
| /* FIXME: If the misalignment remains fixed across the iterations of |
| the containing loop, the following cost should be added to the |
| prologue costs. */ |
| if (targetm.vectorize.builtin_mask_for_load) |
| *inside_cost += record_stmt_cost (body_cost_vec, 1, vector_stmt, |
| stmt_info, 0, vect_body); |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_model_load_cost: explicit realign"); |
| |
| break; |
| } |
| case dr_explicit_realign_optimized: |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_model_load_cost: unaligned software " |
| "pipelined."); |
| |
| /* Unaligned software pipeline has a load of an address, an initial |
| load, and possibly a mask operation to "prime" the loop. However, |
| if this is an access in a group of loads, which provide grouped |
| access, then the above cost should only be considered for one |
| access in the group. Inside the loop, there is a load op |
| and a realignment op. */ |
| |
| if (add_realign_cost && record_prologue_costs) |
| { |
| *prologue_cost += record_stmt_cost (prologue_cost_vec, 2, |
| vector_stmt, stmt_info, |
| 0, vect_prologue); |
| if (targetm.vectorize.builtin_mask_for_load) |
| *prologue_cost += record_stmt_cost (prologue_cost_vec, 1, |
| vector_stmt, stmt_info, |
| 0, vect_prologue); |
| } |
| |
| *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load, |
| stmt_info, 0, vect_body); |
| *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_perm, |
| stmt_info, 0, vect_body); |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_model_load_cost: explicit realign optimized"); |
| |
| break; |
| } |
| |
| case dr_unaligned_unsupported: |
| { |
| *inside_cost = VECT_MAX_COST; |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "vect_model_load_cost: unsupported access."); |
| break; |
| } |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| /* Insert the new stmt NEW_STMT at *GSI or at the appropriate place in |
| the loop preheader for the vectorized stmt STMT. */ |
| |
| static void |
| vect_init_vector_1 (gimple stmt, gimple new_stmt, gimple_stmt_iterator *gsi) |
| { |
| if (gsi) |
| vect_finish_stmt_generation (stmt, new_stmt, gsi); |
| else |
| { |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt); |
| loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo); |
| |
| if (loop_vinfo) |
| { |
| struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo); |
| basic_block new_bb; |
| edge pe; |
| |
| if (nested_in_vect_loop_p (loop, stmt)) |
| loop = loop->inner; |
| |
| pe = loop_preheader_edge (loop); |
| new_bb = gsi_insert_on_edge_immediate (pe, new_stmt); |
| gcc_assert (!new_bb); |
| } |
| else |
| { |
| bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo); |
| basic_block bb; |
| gimple_stmt_iterator gsi_bb_start; |
| |
| gcc_assert (bb_vinfo); |
| bb = BB_VINFO_BB (bb_vinfo); |
| gsi_bb_start = gsi_after_labels (bb); |
| gsi_insert_before (&gsi_bb_start, new_stmt, GSI_SAME_STMT); |
| } |
| } |
| |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "created new init_stmt: "); |
| dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0); |
| } |
| } |
| |
| /* Function vect_init_vector. |
| |
| Insert a new stmt (INIT_STMT) that initializes a new variable of type |
| TYPE with the value VAL. If TYPE is a vector type and VAL does not have |
| vector type a vector with all elements equal to VAL is created first. |
| Place the initialization at BSI if it is not NULL. Otherwise, place the |
| initialization at the loop preheader. |
| Return the DEF of INIT_STMT. |
| It will be used in the vectorization of STMT. */ |
| |
| tree |
| vect_init_vector (gimple stmt, tree val, tree type, gimple_stmt_iterator *gsi) |
| { |
| tree new_var; |
| gimple init_stmt; |
| tree vec_oprnd; |
| tree new_temp; |
| |
| if (TREE_CODE (type) == VECTOR_TYPE |
| && TREE_CODE (TREE_TYPE (val)) != VECTOR_TYPE) |
| { |
| if (!types_compatible_p (TREE_TYPE (type), TREE_TYPE (val))) |
| { |
| if (CONSTANT_CLASS_P (val)) |
| val = fold_unary (VIEW_CONVERT_EXPR, TREE_TYPE (type), val); |
| else |
| { |
| new_temp = make_ssa_name (TREE_TYPE (type), NULL); |
| init_stmt = gimple_build_assign_with_ops (NOP_EXPR, |
| new_temp, val, |
| NULL_TREE); |
| vect_init_vector_1 (stmt, init_stmt, gsi); |
| val = new_temp; |
| } |
| } |
| val = build_vector_from_val (type, val); |
| } |
| |
| new_var = vect_get_new_vect_var (type, vect_simple_var, "cst_"); |
| init_stmt = gimple_build_assign (new_var, val); |
| new_temp = make_ssa_name (new_var, init_stmt); |
| gimple_assign_set_lhs (init_stmt, new_temp); |
| vect_init_vector_1 (stmt, init_stmt, gsi); |
| vec_oprnd = gimple_assign_lhs (init_stmt); |
| return vec_oprnd; |
| } |
| |
| |
| /* Function vect_get_vec_def_for_operand. |
| |
| OP is an operand in STMT. This function returns a (vector) def that will be |
| used in the vectorized stmt for STMT. |
| |
| In the case that OP is an SSA_NAME which is defined in the loop, then |
| STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def. |
| |
| In case OP is an invariant or constant, a new stmt that creates a vector def |
| needs to be introduced. */ |
| |
| tree |
| vect_get_vec_def_for_operand (tree op, gimple stmt, tree *scalar_def) |
| { |
| tree vec_oprnd; |
| gimple vec_stmt; |
| gimple def_stmt; |
| stmt_vec_info def_stmt_info = NULL; |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt); |
| unsigned int nunits; |
| loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo); |
| tree def; |
| enum vect_def_type dt; |
| bool is_simple_use; |
| tree vector_type; |
| |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_get_vec_def_for_operand: "); |
| dump_generic_expr (MSG_NOTE, TDF_SLIM, op); |
| } |
| |
| is_simple_use = vect_is_simple_use (op, stmt, loop_vinfo, NULL, |
| &def_stmt, &def, &dt); |
| gcc_assert (is_simple_use); |
| if (dump_enabled_p ()) |
| { |
| int loc_printed = 0; |
| if (def) |
| { |
| dump_printf_loc (MSG_NOTE, vect_location, "def = "); |
| loc_printed = 1; |
| dump_generic_expr (MSG_NOTE, TDF_SLIM, def); |
| } |
| if (def_stmt) |
| { |
| if (loc_printed) |
| dump_printf (MSG_NOTE, " def_stmt = "); |
| else |
| dump_printf_loc (MSG_NOTE, vect_location, " def_stmt = "); |
| dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0); |
| } |
| } |
| |
| switch (dt) |
| { |
| /* Case 1: operand is a constant. */ |
| case vect_constant_def: |
| { |
| vector_type = get_vectype_for_scalar_type (TREE_TYPE (op)); |
| gcc_assert (vector_type); |
| nunits = TYPE_VECTOR_SUBPARTS (vector_type); |
| |
| if (scalar_def) |
| *scalar_def = op; |
| |
| /* Create 'vect_cst_ = {cst,cst,...,cst}' */ |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "Create vector_cst. nunits = %d", nunits); |
| |
| return vect_init_vector (stmt, op, vector_type, NULL); |
| } |
| |
| /* Case 2: operand is defined outside the loop - loop invariant. */ |
| case vect_external_def: |
| { |
| vector_type = get_vectype_for_scalar_type (TREE_TYPE (def)); |
| gcc_assert (vector_type); |
| |
| if (scalar_def) |
| *scalar_def = def; |
| |
| /* Create 'vec_inv = {inv,inv,..,inv}' */ |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, "Create vector_inv."); |
| |
| return vect_init_vector (stmt, def, vector_type, NULL); |
| } |
| |
| /* Case 3: operand is defined inside the loop. */ |
| case vect_internal_def: |
| { |
| if (scalar_def) |
| *scalar_def = NULL/* FIXME tuples: def_stmt*/; |
| |
| /* Get the def from the vectorized stmt. */ |
| def_stmt_info = vinfo_for_stmt (def_stmt); |
| |
| vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info); |
| /* Get vectorized pattern statement. */ |
| if (!vec_stmt |
| && STMT_VINFO_IN_PATTERN_P (def_stmt_info) |
| && !STMT_VINFO_RELEVANT (def_stmt_info)) |
| vec_stmt = STMT_VINFO_VEC_STMT (vinfo_for_stmt ( |
| STMT_VINFO_RELATED_STMT (def_stmt_info))); |
| gcc_assert (vec_stmt); |
| if (gimple_code (vec_stmt) == GIMPLE_PHI) |
| vec_oprnd = PHI_RESULT (vec_stmt); |
| else if (is_gimple_call (vec_stmt)) |
| vec_oprnd = gimple_call_lhs (vec_stmt); |
| else |
| vec_oprnd = gimple_assign_lhs (vec_stmt); |
| return vec_oprnd; |
| } |
| |
| /* Case 4: operand is defined by a loop header phi - reduction */ |
| case vect_reduction_def: |
| case vect_double_reduction_def: |
| case vect_nested_cycle: |
| { |
| struct loop *loop; |
| |
| gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI); |
| loop = (gimple_bb (def_stmt))->loop_father; |
| |
| /* Get the def before the loop */ |
| op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop)); |
| return get_initial_def_for_reduction (stmt, op, scalar_def); |
| } |
| |
| /* Case 5: operand is defined by loop-header phi - induction. */ |
| case vect_induction_def: |
| { |
| gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI); |
| |
| /* Get the def from the vectorized stmt. */ |
| def_stmt_info = vinfo_for_stmt (def_stmt); |
| vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info); |
| if (gimple_code (vec_stmt) == GIMPLE_PHI) |
| vec_oprnd = PHI_RESULT (vec_stmt); |
| else |
| vec_oprnd = gimple_get_lhs (vec_stmt); |
| return vec_oprnd; |
| } |
| |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| |
| /* Function vect_get_vec_def_for_stmt_copy |
| |
| Return a vector-def for an operand. This function is used when the |
| vectorized stmt to be created (by the caller to this function) is a "copy" |
| created in case the vectorized result cannot fit in one vector, and several |
| copies of the vector-stmt are required. In this case the vector-def is |
| retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field |
| of the stmt that defines VEC_OPRND. |
| DT is the type of the vector def VEC_OPRND. |
| |
| Context: |
| In case the vectorization factor (VF) is bigger than the number |
| of elements that can fit in a vectype (nunits), we have to generate |
| more than one vector stmt to vectorize the scalar stmt. This situation |
| arises when there are multiple data-types operated upon in the loop; the |
| smallest data-type determines the VF, and as a result, when vectorizing |
| stmts operating on wider types we need to create 'VF/nunits' "copies" of the |
| vector stmt (each computing a vector of 'nunits' results, and together |
| computing 'VF' results in each iteration). This function is called when |
| vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in |
| which VF=16 and nunits=4, so the number of copies required is 4): |
| |
| scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT |
| |
| S1: x = load VS1.0: vx.0 = memref0 VS1.1 |
| VS1.1: vx.1 = memref1 VS1.2 |
| VS1.2: vx.2 = memref2 VS1.3 |
| VS1.3: vx.3 = memref3 |
| |
| S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1 |
| VSnew.1: vz1 = vx.1 + ... VSnew.2 |
| VSnew.2: vz2 = vx.2 + ... VSnew.3 |
| VSnew.3: vz3 = vx.3 + ... |
| |
| The vectorization of S1 is explained in vectorizable_load. |
| The vectorization of S2: |
| To create the first vector-stmt out of the 4 copies - VSnew.0 - |
| the function 'vect_get_vec_def_for_operand' is called to |
| get the relevant vector-def for each operand of S2. For operand x it |
| returns the vector-def 'vx.0'. |
| |
| To create the remaining copies of the vector-stmt (VSnew.j), this |
| function is called to get the relevant vector-def for each operand. It is |
| obtained from the respective VS1.j stmt, which is recorded in the |
| STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND. |
| |
| For example, to obtain the vector-def 'vx.1' in order to create the |
| vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'. |
| Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the |
| STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1', |
| and return its def ('vx.1'). |
| Overall, to create the above sequence this function will be called 3 times: |
| vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0); |
| vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1); |
| vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */ |
| |
| tree |
| vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd) |
| { |
| gimple vec_stmt_for_operand; |
| stmt_vec_info def_stmt_info; |
| |
| /* Do nothing; can reuse same def. */ |
| if (dt == vect_external_def || dt == vect_constant_def ) |
| return vec_oprnd; |
| |
| vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd); |
| def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand); |
| gcc_assert (def_stmt_info); |
| vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info); |
| gcc_assert (vec_stmt_for_operand); |
| vec_oprnd = gimple_get_lhs (vec_stmt_for_operand); |
| if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI) |
| vec_oprnd = PHI_RESULT (vec_stmt_for_operand); |
| else |
| vec_oprnd = gimple_get_lhs (vec_stmt_for_operand); |
| return vec_oprnd; |
| } |
| |
| |
| /* Get vectorized definitions for the operands to create a copy of an original |
| stmt. See vect_get_vec_def_for_stmt_copy () for details. */ |
| |
| static void |
| vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt, |
| vec<tree> *vec_oprnds0, |
| vec<tree> *vec_oprnds1) |
| { |
| tree vec_oprnd = vec_oprnds0->pop (); |
| |
| vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd); |
| vec_oprnds0->quick_push (vec_oprnd); |
| |
| if (vec_oprnds1 && vec_oprnds1->length ()) |
| { |
| vec_oprnd = vec_oprnds1->pop (); |
| vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd); |
| vec_oprnds1->quick_push (vec_oprnd); |
| } |
| } |
| |
| |
| /* Get vectorized definitions for OP0 and OP1. |
| REDUC_INDEX is the index of reduction operand in case of reduction, |
| and -1 otherwise. */ |
| |
| void |
| vect_get_vec_defs (tree op0, tree op1, gimple stmt, |
| vec<tree> *vec_oprnds0, |
| vec<tree> *vec_oprnds1, |
| slp_tree slp_node, int reduc_index) |
| { |
| if (slp_node) |
| { |
| int nops = (op1 == NULL_TREE) ? 1 : 2; |
| vec<tree> ops; |
| ops.create (nops); |
| vec<vec<tree> > vec_defs; |
| vec_defs.create (nops); |
| |
| ops.quick_push (op0); |
| if (op1) |
| ops.quick_push (op1); |
| |
| vect_get_slp_defs (ops, slp_node, &vec_defs, reduc_index); |
| |
| *vec_oprnds0 = vec_defs[0]; |
| if (op1) |
| *vec_oprnds1 = vec_defs[1]; |
| |
| ops.release (); |
| vec_defs.release (); |
| } |
| else |
| { |
| tree vec_oprnd; |
| |
| vec_oprnds0->create (1); |
| vec_oprnd = vect_get_vec_def_for_operand (op0, stmt, NULL); |
| vec_oprnds0->quick_push (vec_oprnd); |
| |
| if (op1) |
| { |
| vec_oprnds1->create (1); |
| vec_oprnd = vect_get_vec_def_for_operand (op1, stmt, NULL); |
| vec_oprnds1->quick_push (vec_oprnd); |
| } |
| } |
| } |
| |
| |
| /* Function vect_finish_stmt_generation. |
| |
| Insert a new stmt. */ |
| |
| void |
| vect_finish_stmt_generation (gimple stmt, gimple vec_stmt, |
| gimple_stmt_iterator *gsi) |
| { |
| stmt_vec_info stmt_info = vinfo_for_stmt (stmt); |
| loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); |
| bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); |
| |
| gcc_assert (gimple_code (stmt) != GIMPLE_LABEL); |
| |
| if (!gsi_end_p (*gsi) |
| && gimple_has_mem_ops (vec_stmt)) |
| { |
| gimple at_stmt = gsi_stmt (*gsi); |
| tree vuse = gimple_vuse (at_stmt); |
| if (vuse && TREE_CODE (vuse) == SSA_NAME) |
| { |
| tree vdef = gimple_vdef (at_stmt); |
| gimple_set_vuse (vec_stmt, gimple_vuse (at_stmt)); |
| /* If we have an SSA vuse and insert a store, update virtual |
| SSA form to avoid triggering the renamer. Do so only |
| if we can easily see all uses - which is what almost always |
| happens with the way vectorized stmts are inserted. */ |
| if ((vdef && TREE_CODE (vdef) == SSA_NAME) |
| && ((is_gimple_assign (vec_stmt) |
| && !is_gimple_reg (gimple_assign_lhs (vec_stmt))) |
| || (is_gimple_call (vec_stmt) |
| && !(gimple_call_flags (vec_stmt) |
| & (ECF_CONST|ECF_PURE|ECF_NOVOPS))))) |
| { |
| tree new_vdef = copy_ssa_name (vuse, vec_stmt); |
| gimple_set_vdef (vec_stmt, new_vdef); |
| SET_USE (gimple_vuse_op (at_stmt), new_vdef); |
| } |
| } |
| } |
| gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT); |
| |
| set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, loop_vinfo, |
| bb_vinfo)); |
| |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_NOTE, vect_location, "add new stmt: "); |
| dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vec_stmt, 0); |
| } |
| |
| gimple_set_location (vec_stmt, gimple_location (stmt)); |
| } |
| |
| /* Checks if CALL can be vectorized in type VECTYPE. Returns |
| a function declaration if the target has a vectorized version |
| of the function, or NULL_TREE if the function cannot be vectorized. */ |
| |
| tree |
| vectorizable_function (gimple call, tree vectype_out, tree vectype_in) |
| { |
| tree fndecl = gimple_call_fndecl (call); |
| |
| /* We only handle functions that do not read or clobber memory -- i.e. |
| const or novops ones. */ |
| if (!(gimple_call_flags (call) & (ECF_CONST | ECF_NOVOPS))) |
| return NULL_TREE; |
| |
| if (!fndecl |
| || TREE_CODE (fndecl) != FUNCTION_DECL |
| || !DECL_BUILT_IN (fndecl)) |
| return NULL_TREE; |
| |
| return targetm.vectorize.builtin_vectorized_function (fndecl, vectype_out, |
| vectype_in); |
| } |
| |
| /* Function vectorizable_call. |
| |
| Check if STMT performs a function call that can be vectorized. |
| If VEC_STMT is also passed, vectorize the STMT: create a vectorized |
| stmt to replace it, put it in VEC_STMT, and insert it at BSI. |
| Return FALSE if not a vectorizable STMT, TRUE otherwise. */ |
| |
| static bool |
| vectorizable_call (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt, |
| slp_tree slp_node) |
| { |
| tree vec_dest; |
| tree scalar_dest; |
| tree op, type; |
| tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE; |
| stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info; |
| tree vectype_out, vectype_in; |
| int nunits_in; |
| int nunits_out; |
| loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); |
| bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); |
| tree fndecl, new_temp, def, rhs_type; |
| gimple def_stmt; |
| enum vect_def_type dt[3] |
| = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type}; |
| gimple new_stmt = NULL; |
| int ncopies, j; |
| vec<tree> vargs = vNULL; |
| enum { NARROW, NONE, WIDEN } modifier; |
| size_t i, nargs; |
| tree lhs; |
| |
| if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) |
| return false; |
| |
| if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def) |
| return false; |
| |
| /* Is STMT a vectorizable call? */ |
| if (!is_gimple_call (stmt)) |
| return false; |
| |
| if (TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME) |
| return false; |
| |
| if (stmt_can_throw_internal (stmt)) |
| return false; |
| |
| vectype_out = STMT_VINFO_VECTYPE (stmt_info); |
| |
| /* Process function arguments. */ |
| rhs_type = NULL_TREE; |
| vectype_in = NULL_TREE; |
| nargs = gimple_call_num_args (stmt); |
| |
| /* Bail out if the function has more than three arguments, we do not have |
| interesting builtin functions to vectorize with more than two arguments |
| except for fma. No arguments is also not good. */ |
| if (nargs == 0 || nargs > 3) |
| return false; |
| |
| for (i = 0; i < nargs; i++) |
| { |
| tree opvectype; |
| |
| op = gimple_call_arg (stmt, i); |
| |
| /* We can only handle calls with arguments of the same type. */ |
| if (rhs_type |
| && !types_compatible_p (rhs_type, TREE_TYPE (op))) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "argument types differ."); |
| return false; |
| } |
| if (!rhs_type) |
| rhs_type = TREE_TYPE (op); |
| |
| if (!vect_is_simple_use_1 (op, stmt, loop_vinfo, bb_vinfo, |
| &def_stmt, &def, &dt[i], &opvectype)) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "use not simple."); |
| return false; |
| } |
| |
| if (!vectype_in) |
| vectype_in = opvectype; |
| else if (opvectype |
| && opvectype != vectype_in) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "argument vector types differ."); |
| return false; |
| } |
| } |
| /* If all arguments are external or constant defs use a vector type with |
| the same size as the output vector type. */ |
| if (!vectype_in) |
| vectype_in = get_same_sized_vectype (rhs_type, vectype_out); |
| if (vec_stmt) |
| gcc_assert (vectype_in); |
| if (!vectype_in) |
| { |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "no vectype for scalar type "); |
| dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type); |
| } |
| |
| return false; |
| } |
| |
| /* FORNOW */ |
| nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in); |
| nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out); |
| if (nunits_in == nunits_out / 2) |
| modifier = NARROW; |
| else if (nunits_out == nunits_in) |
| modifier = NONE; |
| else if (nunits_out == nunits_in / 2) |
| modifier = WIDEN; |
| else |
| return false; |
| |
| /* For now, we only vectorize functions if a target specific builtin |
| is available. TODO -- in some cases, it might be profitable to |
| insert the calls for pieces of the vector, in order to be able |
| to vectorize other operations in the loop. */ |
| fndecl = vectorizable_function (stmt, vectype_out, vectype_in); |
| if (fndecl == NULL_TREE) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "function is not vectorizable."); |
| |
| return false; |
| } |
| |
| gcc_assert (!gimple_vuse (stmt)); |
| |
| if (slp_node || PURE_SLP_STMT (stmt_info)) |
| ncopies = 1; |
| else if (modifier == NARROW) |
| ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out; |
| else |
| ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in; |
| |
| /* Sanity check: make sure that at least one copy of the vectorized stmt |
| needs to be generated. */ |
| gcc_assert (ncopies >= 1); |
| |
| if (!vec_stmt) /* transformation not required. */ |
| { |
| STMT_VINFO_TYPE (stmt_info) = call_vec_info_type; |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, "=== vectorizable_call ==="); |
| vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL); |
| return true; |
| } |
| |
| /** Transform. **/ |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, "transform call."); |
| |
| /* Handle def. */ |
| scalar_dest = gimple_call_lhs (stmt); |
| vec_dest = vect_create_destination_var (scalar_dest, vectype_out); |
| |
| prev_stmt_info = NULL; |
| switch (modifier) |
| { |
| case NONE: |
| for (j = 0; j < ncopies; ++j) |
| { |
| /* Build argument list for the vectorized call. */ |
| if (j == 0) |
| vargs.create (nargs); |
| else |
| vargs.truncate (0); |
| |
| if (slp_node) |
| { |
| vec<vec<tree> > vec_defs; |
| vec_defs.create (nargs); |
| vec<tree> vec_oprnds0; |
| |
| for (i = 0; i < nargs; i++) |
| vargs.quick_push (gimple_call_arg (stmt, i)); |
| vect_get_slp_defs (vargs, slp_node, &vec_defs, -1); |
| vec_oprnds0 = vec_defs[0]; |
| |
| /* Arguments are ready. Create the new vector stmt. */ |
| FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_oprnd0) |
| { |
| size_t k; |
| for (k = 0; k < nargs; k++) |
| { |
| vec<tree> vec_oprndsk = vec_defs[k]; |
| vargs[k] = vec_oprndsk[i]; |
| } |
| new_stmt = gimple_build_call_vec (fndecl, vargs); |
| new_temp = make_ssa_name (vec_dest, new_stmt); |
| gimple_call_set_lhs (new_stmt, new_temp); |
| vect_finish_stmt_generation (stmt, new_stmt, gsi); |
| SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); |
| } |
| |
| for (i = 0; i < nargs; i++) |
| { |
| vec<tree> vec_oprndsi = vec_defs[i]; |
| vec_oprndsi.release (); |
| } |
| vec_defs.release (); |
| continue; |
| } |
| |
| for (i = 0; i < nargs; i++) |
| { |
| op = gimple_call_arg (stmt, i); |
| if (j == 0) |
| vec_oprnd0 |
| = vect_get_vec_def_for_operand (op, stmt, NULL); |
| else |
| { |
| vec_oprnd0 = gimple_call_arg (new_stmt, i); |
| vec_oprnd0 |
| = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0); |
| } |
| |
| vargs.quick_push (vec_oprnd0); |
| } |
| |
| new_stmt = gimple_build_call_vec (fndecl, vargs); |
| new_temp = make_ssa_name (vec_dest, new_stmt); |
| gimple_call_set_lhs (new_stmt, new_temp); |
| vect_finish_stmt_generation (stmt, new_stmt, gsi); |
| |
| if (j == 0) |
| STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt; |
| else |
| STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; |
| |
| prev_stmt_info = vinfo_for_stmt (new_stmt); |
| } |
| |
| break; |
| |
| case NARROW: |
| for (j = 0; j < ncopies; ++j) |
| { |
| /* Build argument list for the vectorized call. */ |
| if (j == 0) |
| vargs.create (nargs * 2); |
| else |
| vargs.truncate (0); |
| |
| if (slp_node) |
| { |
| vec<vec<tree> > vec_defs; |
| vec_defs.create (nargs); |
| vec<tree> vec_oprnds0; |
| |
| for (i = 0; i < nargs; i++) |
| vargs.quick_push (gimple_call_arg (stmt, i)); |
| vect_get_slp_defs (vargs, slp_node, &vec_defs, -1); |
| vec_oprnds0 = vec_defs[0]; |
| |
| /* Arguments are ready. Create the new vector stmt. */ |
| for (i = 0; vec_oprnds0.iterate (i, &vec_oprnd0); i += 2) |
| { |
| size_t k; |
| vargs.truncate (0); |
| for (k = 0; k < nargs; k++) |
| { |
| vec<tree> vec_oprndsk = vec_defs[k]; |
| vargs.quick_push (vec_oprndsk[i]); |
| vargs.quick_push (vec_oprndsk[i + 1]); |
| } |
| new_stmt = gimple_build_call_vec (fndecl, vargs); |
| new_temp = make_ssa_name (vec_dest, new_stmt); |
| gimple_call_set_lhs (new_stmt, new_temp); |
| vect_finish_stmt_generation (stmt, new_stmt, gsi); |
| SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); |
| } |
| |
| for (i = 0; i < nargs; i++) |
| { |
| vec<tree> vec_oprndsi = vec_defs[i]; |
| vec_oprndsi.release (); |
| } |
| vec_defs.release (); |
| continue; |
| } |
| |
| for (i = 0; i < nargs; i++) |
| { |
| op = gimple_call_arg (stmt, i); |
| if (j == 0) |
| { |
| vec_oprnd0 |
| = vect_get_vec_def_for_operand (op, stmt, NULL); |
| vec_oprnd1 |
| = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0); |
| } |
| else |
| { |
| vec_oprnd1 = gimple_call_arg (new_stmt, 2*i + 1); |
| vec_oprnd0 |
| = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd1); |
| vec_oprnd1 |
| = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0); |
| } |
| |
| vargs.quick_push (vec_oprnd0); |
| vargs.quick_push (vec_oprnd1); |
| } |
| |
| new_stmt = gimple_build_call_vec (fndecl, vargs); |
| new_temp = make_ssa_name (vec_dest, new_stmt); |
| gimple_call_set_lhs (new_stmt, new_temp); |
| vect_finish_stmt_generation (stmt, new_stmt, gsi); |
| |
| if (j == 0) |
| STMT_VINFO_VEC_STMT (stmt_info) = new_stmt; |
| else |
| STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; |
| |
| prev_stmt_info = vinfo_for_stmt (new_stmt); |
| } |
| |
| *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info); |
| |
| break; |
| |
| case WIDEN: |
| /* No current target implements this case. */ |
| return false; |
| } |
| |
| vargs.release (); |
| |
| /* Update the exception handling table with the vector stmt if necessary. */ |
| if (maybe_clean_or_replace_eh_stmt (stmt, *vec_stmt)) |
| gimple_purge_dead_eh_edges (gimple_bb (stmt)); |
| |
| /* The call in STMT might prevent it from being removed in dce. |
| We however cannot remove it here, due to the way the ssa name |
| it defines is mapped to the new definition. So just replace |
| rhs of the statement with something harmless. */ |
| |
| if (slp_node) |
| return true; |
| |
| type = TREE_TYPE (scalar_dest); |
| if (is_pattern_stmt_p (stmt_info)) |
| lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info)); |
| else |
| lhs = gimple_call_lhs (stmt); |
| new_stmt = gimple_build_assign (lhs, build_zero_cst (type)); |
| set_vinfo_for_stmt (new_stmt, stmt_info); |
| set_vinfo_for_stmt (stmt, NULL); |
| STMT_VINFO_STMT (stmt_info) = new_stmt; |
| gsi_replace (gsi, new_stmt, false); |
| SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt; |
| |
| return true; |
| } |
| |
| |
| /* Function vect_gen_widened_results_half |
| |
| Create a vector stmt whose code, type, number of arguments, and result |
| variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are |
| VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI. |
| In the case that CODE is a CALL_EXPR, this means that a call to DECL |
| needs to be created (DECL is a function-decl of a target-builtin). |
| STMT is the original scalar stmt that we are vectorizing. */ |
| |
| static gimple |
| vect_gen_widened_results_half (enum tree_code code, |
| tree decl, |
| tree vec_oprnd0, tree vec_oprnd1, int op_type, |
| tree vec_dest, gimple_stmt_iterator *gsi, |
| gimple stmt) |
| { |
| gimple new_stmt; |
| tree new_temp; |
| |
| /* Generate half of the widened result: */ |
| if (code == CALL_EXPR) |
| { |
| /* Target specific support */ |
| if (op_type == binary_op) |
| new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1); |
| else |
| new_stmt = gimple_build_call (decl, 1, vec_oprnd0); |
| new_temp = make_ssa_name (vec_dest, new_stmt); |
| gimple_call_set_lhs (new_stmt, new_temp); |
| } |
| else |
| { |
| /* Generic support */ |
| gcc_assert (op_type == TREE_CODE_LENGTH (code)); |
| if (op_type != binary_op) |
| vec_oprnd1 = NULL; |
| new_stmt = gimple_build_assign_with_ops (code, vec_dest, vec_oprnd0, |
| vec_oprnd1); |
| new_temp = make_ssa_name (vec_dest, new_stmt); |
| gimple_assign_set_lhs (new_stmt, new_temp); |
| } |
| vect_finish_stmt_generation (stmt, new_stmt, gsi); |
| |
| return new_stmt; |
| } |
| |
| |
| /* Get vectorized definitions for loop-based vectorization. For the first |
| operand we call vect_get_vec_def_for_operand() (with OPRND containing |
| scalar operand), and for the rest we get a copy with |
| vect_get_vec_def_for_stmt_copy() using the previous vector definition |
| (stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details. |
| The vectors are collected into VEC_OPRNDS. */ |
| |
| static void |
| vect_get_loop_based_defs (tree *oprnd, gimple stmt, enum vect_def_type dt, |
| vec<tree> *vec_oprnds, int multi_step_cvt) |
| { |
| tree vec_oprnd; |
| |
| /* Get first vector operand. */ |
| /* All the vector operands except the very first one (that is scalar oprnd) |
| are stmt copies. */ |
| if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE) |
| vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt, NULL); |
| else |
| vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd); |
| |
| vec_oprnds->quick_push (vec_oprnd); |
| |
| /* Get second vector operand. */ |
| vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd); |
| vec_oprnds->quick_push (vec_oprnd); |
| |
| *oprnd = vec_oprnd; |
| |
| /* For conversion in multiple steps, continue to get operands |
| recursively. */ |
| if (multi_step_cvt) |
| vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1); |
| } |
| |
| |
| /* Create vectorized demotion statements for vector operands from VEC_OPRNDS. |
| For multi-step conversions store the resulting vectors and call the function |
| recursively. */ |
| |
| static void |
| vect_create_vectorized_demotion_stmts (vec<tree> *vec_oprnds, |
| int multi_step_cvt, gimple stmt, |
| vec<tree> vec_dsts, |
| gimple_stmt_iterator *gsi, |
| slp_tree slp_node, enum tree_code code, |
| stmt_vec_info *prev_stmt_info) |
| { |
| unsigned int i; |
| tree vop0, vop1, new_tmp, vec_dest; |
| gimple new_stmt; |
| stmt_vec_info stmt_info = vinfo_for_stmt (stmt); |
| |
| vec_dest = vec_dsts.pop (); |
| |
| for (i = 0; i < vec_oprnds->length (); i += 2) |
| { |
| /* Create demotion operation. */ |
| vop0 = (*vec_oprnds)[i]; |
| vop1 = (*vec_oprnds)[i + 1]; |
| new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1); |
| new_tmp = make_ssa_name (vec_dest, new_stmt); |
| gimple_assign_set_lhs (new_stmt, new_tmp); |
| vect_finish_stmt_generation (stmt, new_stmt, gsi); |
| |
| if (multi_step_cvt) |
| /* Store the resulting vector for next recursive call. */ |
| (*vec_oprnds)[i/2] = new_tmp; |
| else |
| { |
| /* This is the last step of the conversion sequence. Store the |
| vectors in SLP_NODE or in vector info of the scalar statement |
| (or in STMT_VINFO_RELATED_STMT chain). */ |
| if (slp_node) |
| SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); |
| else |
| { |
| if (!*prev_stmt_info) |
| STMT_VINFO_VEC_STMT (stmt_info) = new_stmt; |
| else |
| STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt; |
| |
| *prev_stmt_info = vinfo_for_stmt (new_stmt); |
| } |
| } |
| } |
| |
| /* For multi-step demotion operations we first generate demotion operations |
| from the source type to the intermediate types, and then combine the |
| results (stored in VEC_OPRNDS) in demotion operation to the destination |
| type. */ |
| if (multi_step_cvt) |
| { |
| /* At each level of recursion we have half of the operands we had at the |
| previous level. */ |
| vec_oprnds->truncate ((i+1)/2); |
| vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1, |
| stmt, vec_dsts, gsi, slp_node, |
| VEC_PACK_TRUNC_EXPR, |
| prev_stmt_info); |
| } |
| |
| vec_dsts.quick_push (vec_dest); |
| } |
| |
| |
| /* Create vectorized promotion statements for vector operands from VEC_OPRNDS0 |
| and VEC_OPRNDS1 (for binary operations). For multi-step conversions store |
| the resulting vectors and call the function recursively. */ |
| |
| static void |
| vect_create_vectorized_promotion_stmts (vec<tree> *vec_oprnds0, |
| vec<tree> *vec_oprnds1, |
| gimple stmt, tree vec_dest, |
| gimple_stmt_iterator *gsi, |
| enum tree_code code1, |
| enum tree_code code2, tree decl1, |
| tree decl2, int op_type) |
| { |
| int i; |
| tree vop0, vop1, new_tmp1, new_tmp2; |
| gimple new_stmt1, new_stmt2; |
| vec<tree> vec_tmp = vNULL; |
| |
| vec_tmp.create (vec_oprnds0->length () * 2); |
| FOR_EACH_VEC_ELT (*vec_oprnds0, i, vop0) |
| { |
| if (op_type == binary_op) |
| vop1 = (*vec_oprnds1)[i]; |
| else |
| vop1 = NULL_TREE; |
| |
| /* Generate the two halves of promotion operation. */ |
| new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1, |
| op_type, vec_dest, gsi, stmt); |
| new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1, |
| op_type, vec_dest, gsi, stmt); |
| if (is_gimple_call (new_stmt1)) |
| { |
| new_tmp1 = gimple_call_lhs (new_stmt1); |
| new_tmp2 = gimple_call_lhs (new_stmt2); |
| } |
| else |
| { |
| new_tmp1 = gimple_assign_lhs (new_stmt1); |
| new_tmp2 = gimple_assign_lhs (new_stmt2); |
| } |
| |
| /* Store the results for the next step. */ |
| vec_tmp.quick_push (new_tmp1); |
| vec_tmp.quick_push (new_tmp2); |
| } |
| |
| vec_oprnds0->release (); |
| *vec_oprnds0 = vec_tmp; |
| } |
| |
| |
| /* Check if STMT performs a conversion operation, that can be vectorized. |
| If VEC_STMT is also passed, vectorize the STMT: create a vectorized |
| stmt to replace it, put it in VEC_STMT, and insert it at GSI. |
| Return FALSE if not a vectorizable STMT, TRUE otherwise. */ |
| |
| static bool |
| vectorizable_conversion (gimple stmt, gimple_stmt_iterator *gsi, |
| gimple *vec_stmt, slp_tree slp_node) |
| { |
| tree vec_dest; |
| tree scalar_dest; |
| tree op0, op1 = NULL_TREE; |
| tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE; |
| stmt_vec_info stmt_info = vinfo_for_stmt (stmt); |
| loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); |
| enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK; |
| enum tree_code codecvt1 = ERROR_MARK, codecvt2 = ERROR_MARK; |
| tree decl1 = NULL_TREE, decl2 = NULL_TREE; |
| tree new_temp; |
| tree def; |
| gimple def_stmt; |
| enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type}; |
| gimple new_stmt = NULL; |
| stmt_vec_info prev_stmt_info; |
| int nunits_in; |
| int nunits_out; |
| tree vectype_out, vectype_in; |
| int ncopies, i, j; |
| tree lhs_type, rhs_type; |
| enum { NARROW, NONE, WIDEN } modifier; |
| vec<tree> vec_oprnds0 = vNULL; |
| vec<tree> vec_oprnds1 = vNULL; |
| tree vop0; |
| bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); |
| int multi_step_cvt = 0; |
| vec<tree> vec_dsts = vNULL; |
| vec<tree> interm_types = vNULL; |
| tree last_oprnd, intermediate_type, cvt_type = NULL_TREE; |
| int op_type; |
| enum machine_mode rhs_mode; |
| unsigned short fltsz; |
| |
| /* Is STMT a vectorizable conversion? */ |
| |
| if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) |
| return false; |
| |
| if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def) |
| return false; |
| |
| if (!is_gimple_assign (stmt)) |
| return false; |
| |
| if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME) |
| return false; |
| |
| code = gimple_assign_rhs_code (stmt); |
| if (!CONVERT_EXPR_CODE_P (code) |
| && code != FIX_TRUNC_EXPR |
| && code != FLOAT_EXPR |
| && code != WIDEN_MULT_EXPR |
| && code != WIDEN_LSHIFT_EXPR) |
| return false; |
| |
| op_type = TREE_CODE_LENGTH (code); |
| |
| /* Check types of lhs and rhs. */ |
| scalar_dest = gimple_assign_lhs (stmt); |
| lhs_type = TREE_TYPE (scalar_dest); |
| vectype_out = STMT_VINFO_VECTYPE (stmt_info); |
| |
| op0 = gimple_assign_rhs1 (stmt); |
| rhs_type = TREE_TYPE (op0); |
| |
| if ((code != FIX_TRUNC_EXPR && code != FLOAT_EXPR) |
| && !((INTEGRAL_TYPE_P (lhs_type) |
| && INTEGRAL_TYPE_P (rhs_type)) |
| || (SCALAR_FLOAT_TYPE_P (lhs_type) |
| && SCALAR_FLOAT_TYPE_P (rhs_type)))) |
| return false; |
| |
| if ((INTEGRAL_TYPE_P (lhs_type) |
| && (TYPE_PRECISION (lhs_type) |
| != GET_MODE_PRECISION (TYPE_MODE (lhs_type)))) |
| || (INTEGRAL_TYPE_P (rhs_type) |
| && (TYPE_PRECISION (rhs_type) |
| != GET_MODE_PRECISION (TYPE_MODE (rhs_type))))) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "type conversion to/from bit-precision unsupported."); |
| return false; |
| } |
| |
| /* Check the operands of the operation. */ |
| if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo, |
| &def_stmt, &def, &dt[0], &vectype_in)) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "use not simple."); |
| return false; |
| } |
| if (op_type == binary_op) |
| { |
| bool ok; |
| |
| op1 = gimple_assign_rhs2 (stmt); |
| gcc_assert (code == WIDEN_MULT_EXPR || code == WIDEN_LSHIFT_EXPR); |
| /* For WIDEN_MULT_EXPR, if OP0 is a constant, use the type of |
| OP1. */ |
| if (CONSTANT_CLASS_P (op0)) |
| ok = vect_is_simple_use_1 (op1, stmt, loop_vinfo, bb_vinfo, |
| &def_stmt, &def, &dt[1], &vectype_in); |
| else |
| ok = vect_is_simple_use (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt, |
| &def, &dt[1]); |
| |
| if (!ok) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "use not simple."); |
| return false; |
| } |
| } |
| |
| /* If op0 is an external or constant defs use a vector type of |
| the same size as the output vector type. */ |
| if (!vectype_in) |
| vectype_in = get_same_sized_vectype (rhs_type, vectype_out); |
| if (vec_stmt) |
| gcc_assert (vectype_in); |
| if (!vectype_in) |
| { |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "no vectype for scalar type "); |
| dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type); |
| } |
| |
| return false; |
| } |
| |
| nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in); |
| nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out); |
| if (nunits_in < nunits_out) |
| modifier = NARROW; |
| else if (nunits_out == nunits_in) |
| modifier = NONE; |
| else |
| modifier = WIDEN; |
| |
| /* Multiple types in SLP are handled by creating the appropriate number of |
| vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in |
| case of SLP. */ |
| if (slp_node || PURE_SLP_STMT (stmt_info)) |
| ncopies = 1; |
| else if (modifier == NARROW) |
| ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out; |
| else |
| ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in; |
| |
| /* Sanity check: make sure that at least one copy of the vectorized stmt |
| needs to be generated. */ |
| gcc_assert (ncopies >= 1); |
| |
| /* Supportable by target? */ |
| switch (modifier) |
| { |
| case NONE: |
| if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR) |
| return false; |
| if (supportable_convert_operation (code, vectype_out, vectype_in, |
| &decl1, &code1)) |
| break; |
| /* FALLTHRU */ |
| unsupported: |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "conversion not supported by target."); |
| return false; |
| |
| case WIDEN: |
| if (supportable_widening_operation (code, stmt, vectype_out, vectype_in, |
| &code1, &code2, &multi_step_cvt, |
| &interm_types)) |
| { |
| /* Binary widening operation can only be supported directly by the |
| architecture. */ |
| gcc_assert (!(multi_step_cvt && op_type == binary_op)); |
| break; |
| } |
| |
| if (code != FLOAT_EXPR |
| || (GET_MODE_SIZE (TYPE_MODE (lhs_type)) |
| <= GET_MODE_SIZE (TYPE_MODE (rhs_type)))) |
| goto unsupported; |
| |
| rhs_mode = TYPE_MODE (rhs_type); |
| fltsz = GET_MODE_SIZE (TYPE_MODE (lhs_type)); |
| for (rhs_mode = GET_MODE_2XWIDER_MODE (TYPE_MODE (rhs_type)); |
| rhs_mode != VOIDmode && GET_MODE_SIZE (rhs_mode) <= fltsz; |
| rhs_mode = GET_MODE_2XWIDER_MODE (rhs_mode)) |
| { |
| cvt_type |
| = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0); |
| cvt_type = get_same_sized_vectype (cvt_type, vectype_in); |
| if (cvt_type == NULL_TREE) |
| goto unsupported; |
| |
| if (GET_MODE_SIZE (rhs_mode) == fltsz) |
| { |
| if (!supportable_convert_operation (code, vectype_out, |
| cvt_type, &decl1, &codecvt1)) |
| goto unsupported; |
| } |
| else if (!supportable_widening_operation (code, stmt, vectype_out, |
| cvt_type, &codecvt1, |
| &codecvt2, &multi_step_cvt, |
| &interm_types)) |
| continue; |
| else |
| gcc_assert (multi_step_cvt == 0); |
| |
| if (supportable_widening_operation (NOP_EXPR, stmt, cvt_type, |
| vectype_in, &code1, &code2, |
| &multi_step_cvt, &interm_types)) |
| break; |
| } |
| |
| if (rhs_mode == VOIDmode || GET_MODE_SIZE (rhs_mode) > fltsz) |
| goto unsupported; |
| |
| if (GET_MODE_SIZE (rhs_mode) == fltsz) |
| codecvt2 = ERROR_MARK; |
| else |
| { |
| multi_step_cvt++; |
| interm_types.safe_push (cvt_type); |
| cvt_type = NULL_TREE; |
| } |
| break; |
| |
| case NARROW: |
| gcc_assert (op_type == unary_op); |
| if (supportable_narrowing_operation (code, vectype_out, vectype_in, |
| &code1, &multi_step_cvt, |
| &interm_types)) |
| break; |
| |
| if (code != FIX_TRUNC_EXPR |
| || (GET_MODE_SIZE (TYPE_MODE (lhs_type)) |
| >= GET_MODE_SIZE (TYPE_MODE (rhs_type)))) |
| goto unsupported; |
| |
| rhs_mode = TYPE_MODE (rhs_type); |
| cvt_type |
| = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0); |
| cvt_type = get_same_sized_vectype (cvt_type, vectype_in); |
| if (cvt_type == NULL_TREE) |
| goto unsupported; |
| if (!supportable_convert_operation (code, cvt_type, vectype_in, |
| &decl1, &codecvt1)) |
| goto unsupported; |
| if (supportable_narrowing_operation (NOP_EXPR, vectype_out, cvt_type, |
| &code1, &multi_step_cvt, |
| &interm_types)) |
| break; |
| goto unsupported; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| if (!vec_stmt) /* transformation not required. */ |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "=== vectorizable_conversion ==="); |
| if (code == FIX_TRUNC_EXPR || code == FLOAT_EXPR) |
| { |
| STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type; |
| vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL); |
| } |
| else if (modifier == NARROW) |
| { |
| STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type; |
| vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt); |
| } |
| else |
| { |
| STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type; |
| vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt); |
| } |
| interm_types.release (); |
| return true; |
| } |
| |
| /** Transform. **/ |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "transform conversion. ncopies = %d.", ncopies); |
| |
| if (op_type == binary_op) |
| { |
| if (CONSTANT_CLASS_P (op0)) |
| op0 = fold_convert (TREE_TYPE (op1), op0); |
| else if (CONSTANT_CLASS_P (op1)) |
| op1 = fold_convert (TREE_TYPE (op0), op1); |
| } |
| |
| /* In case of multi-step conversion, we first generate conversion operations |
| to the intermediate types, and then from that types to the final one. |
| We create vector destinations for the intermediate type (TYPES) received |
| from supportable_*_operation, and store them in the correct order |
| for future use in vect_create_vectorized_*_stmts (). */ |
| vec_dsts.create (multi_step_cvt + 1); |
| vec_dest = vect_create_destination_var (scalar_dest, |
| (cvt_type && modifier == WIDEN) |
| ? cvt_type : vectype_out); |
| vec_dsts.quick_push (vec_dest); |
| |
| if (multi_step_cvt) |
| { |
| for (i = interm_types.length () - 1; |
| interm_types.iterate (i, &intermediate_type); i--) |
| { |
| vec_dest = vect_create_destination_var (scalar_dest, |
| intermediate_type); |
| vec_dsts.quick_push (vec_dest); |
| } |
| } |
| |
| if (cvt_type) |
| vec_dest = vect_create_destination_var (scalar_dest, |
| modifier == WIDEN |
| ? vectype_out : cvt_type); |
| |
| if (!slp_node) |
| { |
| if (modifier == WIDEN) |
| { |
| vec_oprnds0.create (multi_step_cvt ? vect_pow2(multi_step_cvt) : 1); |
| if (op_type == binary_op) |
| vec_oprnds1.create (1); |
| } |
| else if (modifier == NARROW) |
| vec_oprnds0.create ( |
| 2 * (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1)); |
| } |
| else if (code == WIDEN_LSHIFT_EXPR) |
| vec_oprnds1.create (slp_node->vec_stmts_size); |
| |
| last_oprnd = op0; |
| prev_stmt_info = NULL; |
| switch (modifier) |
| { |
| case NONE: |
| for (j = 0; j < ncopies; j++) |
| { |
| if (j == 0) |
| vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node, |
| -1); |
| else |
| vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL); |
| |
| FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0) |
| { |
| /* Arguments are ready, create the new vector stmt. */ |
| if (code1 == CALL_EXPR) |
| { |
| new_stmt = gimple_build_call (decl1, 1, vop0); |
| new_temp = make_ssa_name (vec_dest, new_stmt); |
| gimple_call_set_lhs (new_stmt, new_temp); |
| } |
| else |
| { |
| gcc_assert (TREE_CODE_LENGTH (code1) == unary_op); |
| new_stmt = gimple_build_assign_with_ops (code1, vec_dest, |
| vop0, NULL); |
| new_temp = make_ssa_name (vec_dest, new_stmt); |
| gimple_assign_set_lhs (new_stmt, new_temp); |
| } |
| |
| vect_finish_stmt_generation (stmt, new_stmt, gsi); |
| if (slp_node) |
| SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); |
| } |
| |
| if (j == 0) |
| STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt; |
| else |
| STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; |
| prev_stmt_info = vinfo_for_stmt (new_stmt); |
| } |
| break; |
| |
| case WIDEN: |
| /* In case the vectorization factor (VF) is bigger than the number |
| of elements that we can fit in a vectype (nunits), we have to |
| generate more than one vector stmt - i.e - we need to "unroll" |
| the vector stmt by a factor VF/nunits. */ |
| for (j = 0; j < ncopies; j++) |
| { |
| /* Handle uses. */ |
| if (j == 0) |
| { |
| if (slp_node) |
| { |
| if (code == WIDEN_LSHIFT_EXPR) |
| { |
| unsigned int k; |
| |
| vec_oprnd1 = op1; |
| /* Store vec_oprnd1 for every vector stmt to be created |
| for SLP_NODE. We check during the analysis that all |
| the shift arguments are the same. */ |
| for (k = 0; k < slp_node->vec_stmts_size - 1; k++) |
| vec_oprnds1.quick_push (vec_oprnd1); |
| |
| vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL, |
| slp_node, -1); |
| } |
| else |
| vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, |
| &vec_oprnds1, slp_node, -1); |
| } |
| else |
| { |
| vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL); |
| vec_oprnds0.quick_push (vec_oprnd0); |
| if (op_type == binary_op) |
| { |
| if (code == WIDEN_LSHIFT_EXPR) |
| vec_oprnd1 = op1; |
| else |
| vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, |
| NULL); |
| vec_oprnds1.quick_push (vec_oprnd1); |
| } |
| } |
| } |
| else |
| { |
| vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0); |
| vec_oprnds0.truncate (0); |
| vec_oprnds0.quick_push (vec_oprnd0); |
| if (op_type == binary_op) |
| { |
| if (code == WIDEN_LSHIFT_EXPR) |
| vec_oprnd1 = op1; |
| else |
| vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1], |
| vec_oprnd1); |
| vec_oprnds1.truncate (0); |
| vec_oprnds1.quick_push (vec_oprnd1); |
| } |
| } |
| |
| /* Arguments are ready. Create the new vector stmts. */ |
| for (i = multi_step_cvt; i >= 0; i--) |
| { |
| tree this_dest = vec_dsts[i]; |
| enum tree_code c1 = code1, c2 = code2; |
| if (i == 0 && codecvt2 != ERROR_MARK) |
| { |
| c1 = codecvt1; |
| c2 = codecvt2; |
| } |
| vect_create_vectorized_promotion_stmts (&vec_oprnds0, |
| &vec_oprnds1, |
| stmt, this_dest, gsi, |
| c1, c2, decl1, decl2, |
| op_type); |
| } |
| |
| FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0) |
| { |
| if (cvt_type) |
| { |
| if (codecvt1 == CALL_EXPR) |
| { |
| new_stmt = gimple_build_call (decl1, 1, vop0); |
| new_temp = make_ssa_name (vec_dest, new_stmt); |
| gimple_call_set_lhs (new_stmt, new_temp); |
| } |
| else |
| { |
| gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op); |
| new_temp = make_ssa_name (vec_dest, NULL); |
| new_stmt = gimple_build_assign_with_ops (codecvt1, |
| new_temp, |
| vop0, NULL); |
| } |
| |
| vect_finish_stmt_generation (stmt, new_stmt, gsi); |
| } |
| else |
| new_stmt = SSA_NAME_DEF_STMT (vop0); |
| |
| if (slp_node) |
| SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); |
| else |
| { |
| if (!prev_stmt_info) |
| STMT_VINFO_VEC_STMT (stmt_info) = new_stmt; |
| else |
| STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; |
| prev_stmt_info = vinfo_for_stmt (new_stmt); |
| } |
| } |
| } |
| |
| *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info); |
| break; |
| |
| case NARROW: |
| /* In case the vectorization factor (VF) is bigger than the number |
| of elements that we can fit in a vectype (nunits), we have to |
| generate more than one vector stmt - i.e - we need to "unroll" |
| the vector stmt by a factor VF/nunits. */ |
| for (j = 0; j < ncopies; j++) |
| { |
| /* Handle uses. */ |
| if (slp_node) |
| vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL, |
| slp_node, -1); |
| else |
| { |
| vec_oprnds0.truncate (0); |
| vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0, |
| vect_pow2 (multi_step_cvt) - 1); |
| } |
| |
| /* Arguments are ready. Create the new vector stmts. */ |
| if (cvt_type) |
| FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0) |
| { |
| if (codecvt1 == CALL_EXPR) |
| { |
| new_stmt = gimple_build_call (decl1, 1, vop0); |
| new_temp = make_ssa_name (vec_dest, new_stmt); |
| gimple_call_set_lhs (new_stmt, new_temp); |
| } |
| else |
| { |
| gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op); |
| new_temp = make_ssa_name (vec_dest, NULL); |
| new_stmt = gimple_build_assign_with_ops (codecvt1, new_temp, |
| vop0, NULL); |
| } |
| |
| vect_finish_stmt_generation (stmt, new_stmt, gsi); |
| vec_oprnds0[i] = new_temp; |
| } |
| |
| vect_create_vectorized_demotion_stmts (&vec_oprnds0, multi_step_cvt, |
| stmt, vec_dsts, gsi, |
| slp_node, code1, |
| &prev_stmt_info); |
| } |
| |
| *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info); |
| break; |
| } |
| |
| vec_oprnds0.release (); |
| vec_oprnds1.release (); |
| vec_dsts.release (); |
| interm_types.release (); |
| |
| return true; |
| } |
| |
| |
| /* Function vectorizable_assignment. |
| |
| Check if STMT performs an assignment (copy) that can be vectorized. |
| If VEC_STMT is also passed, vectorize the STMT: create a vectorized |
| stmt to replace it, put it in VEC_STMT, and insert it at BSI. |
| Return FALSE if not a vectorizable STMT, TRUE otherwise. */ |
| |
| static bool |
| vectorizable_assignment (gimple stmt, gimple_stmt_iterator *gsi, |
| gimple *vec_stmt, slp_tree slp_node) |
| { |
| tree vec_dest; |
| tree scalar_dest; |
| tree op; |
| stmt_vec_info stmt_info = vinfo_for_stmt (stmt); |
| tree vectype = STMT_VINFO_VECTYPE (stmt_info); |
| loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); |
| tree new_temp; |
| tree def; |
| gimple def_stmt; |
| enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type}; |
| unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype); |
| int ncopies; |
| int i, j; |
| vec<tree> vec_oprnds = vNULL; |
| tree vop; |
| bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); |
| gimple new_stmt = NULL; |
| stmt_vec_info prev_stmt_info = NULL; |
| enum tree_code code; |
| tree vectype_in; |
| |
| /* Multiple types in SLP are handled by creating the appropriate number of |
| vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in |
| case of SLP. */ |
| if (slp_node || PURE_SLP_STMT (stmt_info)) |
| ncopies = 1; |
| else |
| ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits; |
| |
| gcc_assert (ncopies >= 1); |
| |
| if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) |
| return false; |
| |
| if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def) |
| return false; |
| |
| /* Is vectorizable assignment? */ |
| if (!is_gimple_assign (stmt)) |
| return false; |
| |
| scalar_dest = gimple_assign_lhs (stmt); |
| if (TREE_CODE (scalar_dest) != SSA_NAME) |
| return false; |
| |
| code = gimple_assign_rhs_code (stmt); |
| if (gimple_assign_single_p (stmt) |
| || code == PAREN_EXPR |
| || CONVERT_EXPR_CODE_P (code)) |
| op = gimple_assign_rhs1 (stmt); |
| else |
| return false; |
| |
| if (code == VIEW_CONVERT_EXPR) |
| op = TREE_OPERAND (op, 0); |
| |
| if (!vect_is_simple_use_1 (op, stmt, loop_vinfo, bb_vinfo, |
| &def_stmt, &def, &dt[0], &vectype_in)) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "use not simple."); |
| return false; |
| } |
| |
| /* We can handle NOP_EXPR conversions that do not change the number |
| of elements or the vector size. */ |
| if ((CONVERT_EXPR_CODE_P (code) |
| || code == VIEW_CONVERT_EXPR) |
| && (!vectype_in |
| || TYPE_VECTOR_SUBPARTS (vectype_in) != nunits |
| || (GET_MODE_SIZE (TYPE_MODE (vectype)) |
| != GET_MODE_SIZE (TYPE_MODE (vectype_in))))) |
| return false; |
| |
| /* We do not handle bit-precision changes. */ |
| if ((CONVERT_EXPR_CODE_P (code) |
| || code == VIEW_CONVERT_EXPR) |
| && INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest)) |
| && ((TYPE_PRECISION (TREE_TYPE (scalar_dest)) |
| != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest)))) |
| || ((TYPE_PRECISION (TREE_TYPE (op)) |
| != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (op)))))) |
| /* But a conversion that does not change the bit-pattern is ok. */ |
| && !((TYPE_PRECISION (TREE_TYPE (scalar_dest)) |
| > TYPE_PRECISION (TREE_TYPE (op))) |
| && TYPE_UNSIGNED (TREE_TYPE (op)))) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "type conversion to/from bit-precision " |
| "unsupported."); |
| return false; |
| } |
| |
| if (!vec_stmt) /* transformation not required. */ |
| { |
| STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type; |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "=== vectorizable_assignment ==="); |
| vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL); |
| return true; |
| } |
| |
| /** Transform. **/ |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, "transform assignment."); |
| |
| /* Handle def. */ |
| vec_dest = vect_create_destination_var (scalar_dest, vectype); |
| |
| /* Handle use. */ |
| for (j = 0; j < ncopies; j++) |
| { |
| /* Handle uses. */ |
| if (j == 0) |
| vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node, -1); |
| else |
| vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL); |
| |
| /* Arguments are ready. create the new vector stmt. */ |
| FOR_EACH_VEC_ELT (vec_oprnds, i, vop) |
| { |
| if (CONVERT_EXPR_CODE_P (code) |
| || code == VIEW_CONVERT_EXPR) |
| vop = build1 (VIEW_CONVERT_EXPR, vectype, vop); |
| new_stmt = gimple_build_assign (vec_dest, vop); |
| new_temp = make_ssa_name (vec_dest, new_stmt); |
| gimple_assign_set_lhs (new_stmt, new_temp); |
| vect_finish_stmt_generation (stmt, new_stmt, gsi); |
| if (slp_node) |
| SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt); |
| } |
| |
| if (slp_node) |
| continue; |
| |
| if (j == 0) |
| STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt; |
| else |
| STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt; |
| |
| prev_stmt_info = vinfo_for_stmt (new_stmt); |
| } |
| |
| vec_oprnds.release (); |
| return true; |
| } |
| |
| |
| /* Return TRUE if CODE (a shift operation) is supported for SCALAR_TYPE |
| either as shift by a scalar or by a vector. */ |
| |
| bool |
| vect_supportable_shift (enum tree_code code, tree scalar_type) |
| { |
| |
| enum machine_mode vec_mode; |
| optab optab; |
| int icode; |
| tree vectype; |
| |
| vectype = get_vectype_for_scalar_type (scalar_type); |
| if (!vectype) |
| return false; |
| |
| optab = optab_for_tree_code (code, vectype, optab_scalar); |
| if (!optab |
| || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing) |
| { |
| optab = optab_for_tree_code (code, vectype, optab_vector); |
| if (!optab |
| || (optab_handler (optab, TYPE_MODE (vectype)) |
| == CODE_FOR_nothing)) |
| return false; |
| } |
| |
| vec_mode = TYPE_MODE (vectype); |
| icode = (int) optab_handler (optab, vec_mode); |
| if (icode == CODE_FOR_nothing) |
| return false; |
| |
| return true; |
| } |
| |
| |
| /* Function vectorizable_shift. |
| |
| Check if STMT performs a shift operation that can be vectorized. |
| If VEC_STMT is also passed, vectorize the STMT: create a vectorized |
| stmt to replace it, put it in VEC_STMT, and insert it at BSI. |
| Return FALSE if not a vectorizable STMT, TRUE otherwise. */ |
| |
| static bool |
| vectorizable_shift (gimple stmt, gimple_stmt_iterator *gsi, |
| gimple *vec_stmt, slp_tree slp_node) |
| { |
| tree vec_dest; |
| tree scalar_dest; |
| tree op0, op1 = NULL; |
| tree vec_oprnd1 = NULL_TREE; |
| stmt_vec_info stmt_info = vinfo_for_stmt (stmt); |
| tree vectype; |
| loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info); |
| enum tree_code code; |
| enum machine_mode vec_mode; |
| tree new_temp; |
| optab optab; |
| int icode; |
| enum machine_mode optab_op2_mode; |
| tree def; |
| gimple def_stmt; |
| enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type}; |
| gimple new_stmt = NULL; |
| stmt_vec_info prev_stmt_info; |
| int nunits_in; |
| int nunits_out; |
| tree vectype_out; |
| tree op1_vectype; |
| int ncopies; |
| int j, i; |
| vec<tree> vec_oprnds0 = vNULL; |
| vec<tree> vec_oprnds1 = vNULL; |
| tree vop0, vop1; |
| unsigned int k; |
| bool scalar_shift_arg = true; |
| bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info); |
| int vf; |
| |
| if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo) |
| return false; |
| |
| if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def) |
| return false; |
| |
| /* Is STMT a vectorizable binary/unary operation? */ |
| if (!is_gimple_assign (stmt)) |
| return false; |
| |
| if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME) |
| return false; |
| |
| code = gimple_assign_rhs_code (stmt); |
| |
| if (!(code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR |
| || code == RROTATE_EXPR)) |
| return false; |
| |
| scalar_dest = gimple_assign_lhs (stmt); |
| vectype_out = STMT_VINFO_VECTYPE (stmt_info); |
| if (TYPE_PRECISION (TREE_TYPE (scalar_dest)) |
| != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest)))) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "bit-precision shifts not supported."); |
| return false; |
| } |
| |
| op0 = gimple_assign_rhs1 (stmt); |
| if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo, |
| &def_stmt, &def, &dt[0], &vectype)) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "use not simple."); |
| return false; |
| } |
| /* If op0 is an external or constant def use a vector type with |
| the same size as the output vector type. */ |
| if (!vectype) |
| vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out); |
| if (vec_stmt) |
| gcc_assert (vectype); |
| if (!vectype) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "no vectype for scalar type "); |
| return false; |
| } |
| |
| nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out); |
| nunits_in = TYPE_VECTOR_SUBPARTS (vectype); |
| if (nunits_out != nunits_in) |
| return false; |
| |
| op1 = gimple_assign_rhs2 (stmt); |
| if (!vect_is_simple_use_1 (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt, |
| &def, &dt[1], &op1_vectype)) |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "use not simple."); |
| return false; |
| } |
| |
| if (loop_vinfo) |
| vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo); |
| else |
| vf = 1; |
| |
| /* Multiple types in SLP are handled by creating the appropriate number of |
| vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in |
| case of SLP. */ |
| if (slp_node || PURE_SLP_STMT (stmt_info)) |
| ncopies = 1; |
| else |
| ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in; |
| |
| gcc_assert (ncopies >= 1); |
| |
| /* Determine whether the shift amount is a vector, or scalar. If the |
| shift/rotate amount is a vector, use the vector/vector shift optabs. */ |
| |
| if (dt[1] == vect_internal_def && !slp_node) |
| scalar_shift_arg = false; |
| else if (dt[1] == vect_constant_def |
| || dt[1] == vect_external_def |
| || dt[1] == vect_internal_def) |
| { |
| /* In SLP, need to check whether the shift count is the same, |
| in loops if it is a constant or invariant, it is always |
| a scalar shift. */ |
| if (slp_node) |
| { |
| vec<gimple> stmts = SLP_TREE_SCALAR_STMTS (slp_node); |
| gimple slpstmt; |
| |
| FOR_EACH_VEC_ELT (stmts, k, slpstmt) |
| if (!operand_equal_p (gimple_assign_rhs2 (slpstmt), op1, 0)) |
| scalar_shift_arg = false; |
| } |
| } |
| else |
| { |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location, |
| "operand mode requires invariant argument."); |
| return false; |
| } |
| |
| /* Vector shifted by vector. */ |
| if (!scalar_shift_arg) |
| { |
| optab = optab_for_tree_code (code, vectype, optab_vector); |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vector/vector shift/rotate found."); |
| |
| if (!op1_vectype) |
| op1_vectype = get_same_sized_vectype (TREE_TYPE (op1), vectype_out); |
| if (op1_vectype == NULL_TREE |
| || TYPE_MODE (op1_vectype) != TYPE_MODE (vectype)) |
| |