| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT COMPILER COMPONENTS -- |
| -- -- |
| -- E X P _ I M G V -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 2001-2022, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- |
| -- for more details. You should have received a copy of the GNU General -- |
| -- Public License distributed with GNAT; see file COPYING3. If not, go to -- |
| -- http://www.gnu.org/licenses for a complete copy of the license. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with Atree; use Atree; |
| with Casing; use Casing; |
| with Checks; use Checks; |
| with Einfo; use Einfo; |
| with Einfo.Entities; use Einfo.Entities; |
| with Einfo.Utils; use Einfo.Utils; |
| with Debug; use Debug; |
| with Exp_Put_Image; |
| with Exp_Util; use Exp_Util; |
| with Lib; use Lib; |
| with Namet; use Namet; |
| with Nmake; use Nmake; |
| with Nlists; use Nlists; |
| with Opt; use Opt; |
| with Restrict; use Restrict; |
| with Rident; use Rident; |
| with Rtsfind; use Rtsfind; |
| with Sem_Aux; use Sem_Aux; |
| with Sem_Res; use Sem_Res; |
| with Sem_Util; use Sem_Util; |
| with Sinfo; use Sinfo; |
| with Sinfo.Nodes; use Sinfo.Nodes; |
| with Sinfo.Utils; use Sinfo.Utils; |
| with Snames; use Snames; |
| with Stand; use Stand; |
| with Stringt; use Stringt; |
| with Targparm; use Targparm; |
| with Tbuild; use Tbuild; |
| with Ttypes; use Ttypes; |
| with Uintp; use Uintp; |
| with Urealp; use Urealp; |
| |
| with System.Perfect_Hash_Generators; |
| |
| package body Exp_Imgv is |
| |
| procedure Rewrite_Object_Image |
| (N : Node_Id; |
| Pref : Entity_Id; |
| Attr_Name : Name_Id; |
| Str_Typ : Entity_Id); |
| -- AI12-0124: Rewrite attribute 'Image when it is applied to an object |
| -- reference as an attribute applied to a type. N denotes the node to be |
| -- rewritten, Pref denotes the prefix of the 'Image attribute, and Name |
| -- and Str_Typ specify which specific string type and 'Image attribute to |
| -- apply (e.g. Name_Wide_Image and Standard_Wide_String). |
| |
| ------------------------------------ |
| -- Build_Enumeration_Image_Tables -- |
| ------------------------------------ |
| |
| procedure Build_Enumeration_Image_Tables (E : Entity_Id; N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (E); |
| In_Main_Unit : constant Boolean := In_Extended_Main_Code_Unit (Loc); |
| |
| Act : List_Id; |
| Eind : Entity_Id; |
| Estr : Entity_Id; |
| H_Id : Entity_Id; |
| H_OK : Boolean; |
| H_Sp : Node_Id; |
| Ind : List_Id; |
| Ityp : Node_Id; |
| Len : Nat; |
| Lit : Entity_Id; |
| Nlit : Nat; |
| S_Id : Entity_Id; |
| S_N : Nat := 0; |
| Str : String_Id; |
| |
| package SPHG renames System.Perfect_Hash_Generators; |
| |
| Saved_SSO : constant Character := Opt.Default_SSO; |
| -- Used to save the current scalar storage order during the generation |
| -- of the literal lookup table. |
| |
| Serial_Number_Budget : constant := 50; |
| -- We may want to compute a perfect hash function for use by the Value |
| -- attribute. However computing this function is costly and, therefore, |
| -- cannot be done when compiling every unit where the enumeration type |
| -- is referenced, so we do it only when compiling the unit where it is |
| -- declared. This means that we may need to control the internal serial |
| -- numbers of this unit, or else we would risk generating public symbols |
| -- with mismatched names later on. The strategy for this is to allocate |
| -- a fixed budget of serial numbers to be spent from a specified point |
| -- until the end of the processing and to make sure that it is always |
| -- exactly spent on all possible paths from this point. |
| |
| Threshold : constant Nat := |
| (if Is_Library_Level_Entity (E) |
| or else not Always_Compatible_Rep_On_Target |
| then 3 |
| else Nat'Last); |
| -- Threshold above which we want to generate the hash function in the |
| -- default case. We avoid doing it if this would cause a trampoline to |
| -- be generated because the type is local and descriptors are not used. |
| |
| Threshold_For_Size : constant Nat := Nat'Max (Threshold, 9); |
| -- But the function and its tables take a bit of space so the threshold |
| -- is raised when compiling for size. |
| |
| procedure Append_Table_To |
| (L : List_Id; |
| E : Entity_Id; |
| UB : Nat; |
| Ctyp : Entity_Id; |
| V : List_Id); |
| -- Append to L the declaration of E as a constant array of range 0 .. UB |
| -- and component type Ctyp with initial value V. |
| |
| --------------------- |
| -- Append_Table_To -- |
| --------------------- |
| |
| procedure Append_Table_To |
| (L : List_Id; |
| E : Entity_Id; |
| UB : Nat; |
| Ctyp : Entity_Id; |
| V : List_Id) |
| is |
| begin |
| Append_To (L, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => E, |
| Constant_Present => True, |
| Object_Definition => |
| Make_Constrained_Array_Definition (Loc, |
| Discrete_Subtype_Definitions => New_List ( |
| Make_Range (Loc, |
| Low_Bound => Make_Integer_Literal (Loc, 0), |
| High_Bound => Make_Integer_Literal (Loc, UB))), |
| Component_Definition => |
| Make_Component_Definition (Loc, |
| Aliased_Present => False, |
| Subtype_Indication => New_Occurrence_Of (Ctyp, Loc))), |
| Expression => Make_Aggregate (Loc, Expressions => V, |
| Is_Enum_Array_Aggregate => True))); |
| end Append_Table_To; |
| |
| -- Start of Build_Enumeration_Image_Tables |
| |
| begin |
| -- Nothing to do for types other than a root enumeration type |
| |
| if E /= Root_Type (E) then |
| return; |
| |
| -- Nothing to do if pragma Discard_Names applies |
| |
| elsif Discard_Names (E) then |
| return; |
| end if; |
| |
| -- Otherwise tables need constructing |
| |
| Start_String; |
| Ind := New_List; |
| Lit := First_Literal (E); |
| Len := 1; |
| Nlit := 0; |
| H_OK := False; |
| |
| loop |
| Append_To (Ind, Make_Integer_Literal (Loc, UI_From_Int (Len))); |
| |
| exit when No (Lit); |
| Nlit := Nlit + 1; |
| |
| Get_Unqualified_Decoded_Name_String (Chars (Lit)); |
| |
| if Name_Buffer (1) /= ''' then |
| Set_Casing (All_Upper_Case); |
| end if; |
| |
| Store_String_Chars (Name_Buffer (1 .. Name_Len)); |
| if In_Main_Unit then |
| SPHG.Insert (Name_Buffer (1 .. Name_Len)); |
| end if; |
| Len := Len + Int (Name_Len); |
| Next_Literal (Lit); |
| end loop; |
| |
| if Len < Int (2 ** (8 - 1)) then |
| Ityp := Standard_Integer_8; |
| elsif Len < Int (2 ** (16 - 1)) then |
| Ityp := Standard_Integer_16; |
| else |
| Ityp := Standard_Integer_32; |
| end if; |
| |
| Str := End_String; |
| |
| Estr := |
| Make_Defining_Identifier (Loc, |
| Chars => New_External_Name (Chars (E), 'S')); |
| |
| Eind := |
| Make_Defining_Identifier (Loc, |
| Chars => New_External_Name (Chars (E), 'N')); |
| |
| Set_Lit_Strings (E, Estr); |
| Set_Lit_Indexes (E, Eind); |
| |
| -- Temporarily set the current scalar storage order to the default |
| -- during the generation of the literals table, since both the Image and |
| -- Value attributes rely on runtime routines for interpreting table |
| -- values. |
| |
| Opt.Default_SSO := ' '; |
| |
| -- Generate literal table |
| |
| Act := |
| New_List ( |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Estr, |
| Constant_Present => True, |
| Object_Definition => |
| New_Occurrence_Of (Standard_String, Loc), |
| Expression => |
| Make_String_Literal (Loc, |
| Strval => Str))); |
| |
| -- Generate index table |
| |
| Append_Table_To (Act, Eind, Nlit, Ityp, Ind); |
| |
| -- If the number of literals is not greater than Threshold, then we are |
| -- done. Otherwise we generate a (perfect) hash function for use by the |
| -- Value attribute. |
| |
| if Nlit > Threshold then |
| -- We start to count serial numbers from here |
| |
| S_N := Increment_Serial_Number; |
| |
| -- Generate specification of hash function |
| |
| H_Id := |
| Make_Defining_Identifier (Loc, |
| Chars => New_External_Name (Chars (E), 'H')); |
| Mutate_Ekind (H_Id, E_Function); |
| Set_Is_Internal (H_Id); |
| |
| if not Debug_Generated_Code then |
| Set_Debug_Info_Off (H_Id); |
| end if; |
| |
| Set_Lit_Hash (E, H_Id); |
| |
| S_Id := Make_Temporary (Loc, 'S'); |
| |
| H_Sp := Make_Function_Specification (Loc, |
| Defining_Unit_Name => H_Id, |
| Parameter_Specifications => New_List ( |
| Make_Parameter_Specification (Loc, |
| Defining_Identifier => S_Id, |
| Parameter_Type => |
| New_Occurrence_Of (Standard_String, Loc))), |
| Result_Definition => |
| New_Occurrence_Of (Standard_Natural, Loc)); |
| |
| -- If the unit where the type is declared is the main unit, and the |
| -- number of literals is greater than Threshold_For_Size when we are |
| -- optimizing for size, and the restriction No_Implicit_Loops is not |
| -- active, and -gnatd_h is not specified, generate the hash function. |
| |
| if In_Main_Unit |
| and then (Optimize_Size = 0 or else Nlit > Threshold_For_Size) |
| and then not Restriction_Active (No_Implicit_Loops) |
| and then not Debug_Flag_Underscore_H |
| then |
| declare |
| LB : constant Positive := 2 * Positive (Nlit) + 1; |
| UB : constant Positive := LB + 24; |
| |
| begin |
| -- Try at most 25 * 4 times to compute the hash function before |
| -- giving up and using a linear search for the Value attribute. |
| |
| for V in LB .. UB loop |
| begin |
| SPHG.Initialize (4321, V, SPHG.Memory_Space, Tries => 4); |
| SPHG.Compute (""); |
| H_OK := True; |
| exit; |
| exception |
| when SPHG.Too_Many_Tries => null; |
| end; |
| end loop; |
| end; |
| end if; |
| |
| -- If the hash function has been successfully computed, 4 more tables |
| -- named P, T1, T2 and G are needed. The hash function is of the form |
| |
| -- function Hash (S : String) return Natural is |
| -- xxxP : constant array (0 .. X) of Natural = [...]; |
| -- xxxT1 : constant array (0 .. Y) of Index_Type = [...]; |
| -- xxxT2 : constant array (0 .. Y) of Index_Type = [...]; |
| -- xxxG : constant array (0 .. Z) of Index_Type = [...]; |
| |
| -- F : constant Natural := S'First - 1; |
| -- L : constant Natural := S'Length; |
| -- A, B : Natural := 0; |
| -- J : Natural; |
| |
| -- begin |
| -- for K in P'Range loop |
| -- exit when L < P (K); |
| -- J := Character'Pos (S (P (K) + F)); |
| -- A := (A + Natural (T1 (K) * J)) mod N; |
| -- B := (B + Natural (T2 (K) * J)) mod N; |
| -- end loop; |
| |
| -- return (Natural (G (A)) + Natural (G (B))) mod M; |
| -- end Hash; |
| |
| -- where N is the length of G and M the number of literals. Note that |
| -- we declare the tables inside the function for two reasons: first, |
| -- their analysis creates array subtypes and thus their concatenation |
| -- operators which are homonyms of the concatenation operator and may |
| -- change the homonym number of user operators declared in the scope; |
| -- second, the code generator can fold the values in the tables when |
| -- they are small and avoid emitting them in the final object code. |
| |
| if H_OK then |
| declare |
| Siz, L1, L2 : Natural; |
| I : Int; |
| |
| Pos, T1, T2, G : List_Id; |
| EPos, ET1, ET2, EG : Entity_Id; |
| |
| F, L, A, B, J, K : Entity_Id; |
| Body_Decls : List_Id; |
| Body_Stmts : List_Id; |
| Loop_Stmts : List_Id; |
| |
| begin |
| Body_Decls := New_List; |
| |
| -- Generate position table |
| |
| SPHG.Define (SPHG.Character_Position, Siz, L1, L2); |
| Pos := New_List; |
| for J in 0 .. L1 - 1 loop |
| I := Int (SPHG.Value (SPHG.Character_Position, J)); |
| Append_To (Pos, Make_Integer_Literal (Loc, UI_From_Int (I))); |
| end loop; |
| |
| EPos := |
| Make_Defining_Identifier (Loc, |
| Chars => New_External_Name (Chars (E), 'P')); |
| |
| Append_Table_To |
| (Body_Decls, EPos, Nat (L1 - 1), Standard_Natural, Pos); |
| |
| -- Generate function table 1 |
| |
| SPHG.Define (SPHG.Function_Table_1, Siz, L1, L2); |
| T1 := New_List; |
| for J in 0 .. L1 - 1 loop |
| I := Int (SPHG.Value (SPHG.Function_Table_1, J)); |
| Append_To (T1, Make_Integer_Literal (Loc, UI_From_Int (I))); |
| end loop; |
| |
| ET1 := |
| Make_Defining_Identifier (Loc, |
| Chars => New_External_Name (Chars (E), "T1")); |
| |
| Ityp := |
| Small_Integer_Type_For (UI_From_Int (Int (Siz)), Uns => True); |
| Append_Table_To (Body_Decls, ET1, Nat (L1 - 1), Ityp, T1); |
| |
| -- Generate function table 2 |
| |
| SPHG.Define (SPHG.Function_Table_2, Siz, L1, L2); |
| T2 := New_List; |
| for J in 0 .. L1 - 1 loop |
| I := Int (SPHG.Value (SPHG.Function_Table_2, J)); |
| Append_To (T2, Make_Integer_Literal (Loc, UI_From_Int (I))); |
| end loop; |
| |
| ET2 := |
| Make_Defining_Identifier (Loc, |
| Chars => New_External_Name (Chars (E), "T2")); |
| |
| Ityp := |
| Small_Integer_Type_For (UI_From_Int (Int (Siz)), Uns => True); |
| Append_Table_To (Body_Decls, ET2, Nat (L1 - 1), Ityp, T2); |
| |
| -- Generate graph table |
| |
| SPHG.Define (SPHG.Graph_Table, Siz, L1, L2); |
| G := New_List; |
| for J in 0 .. L1 - 1 loop |
| I := Int (SPHG.Value (SPHG.Graph_Table, J)); |
| Append_To (G, Make_Integer_Literal (Loc, UI_From_Int (I))); |
| end loop; |
| |
| EG := |
| Make_Defining_Identifier (Loc, |
| Chars => New_External_Name (Chars (E), 'G')); |
| |
| Ityp := |
| Small_Integer_Type_For (UI_From_Int (Int (Siz)), Uns => True); |
| Append_Table_To (Body_Decls, EG, Nat (L1 - 1), Ityp, G); |
| |
| F := Make_Temporary (Loc, 'F'); |
| |
| Append_To (Body_Decls, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => F, |
| Object_Definition => |
| New_Occurrence_Of (Standard_Natural, Loc), |
| Expression => |
| Make_Op_Subtract (Loc, |
| Left_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (S_Id, Loc), |
| Attribute_Name => Name_First), |
| Right_Opnd => |
| Make_Integer_Literal (Loc, 1)))); |
| |
| L := Make_Temporary (Loc, 'L'); |
| |
| Append_To (Body_Decls, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => L, |
| Object_Definition => |
| New_Occurrence_Of (Standard_Natural, Loc), |
| Expression => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (S_Id, Loc), |
| Attribute_Name => Name_Length))); |
| |
| A := Make_Temporary (Loc, 'A'); |
| |
| Append_To (Body_Decls, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => A, |
| Object_Definition => |
| New_Occurrence_Of (Standard_Natural, Loc), |
| Expression => Make_Integer_Literal (Loc, 0))); |
| |
| B := Make_Temporary (Loc, 'B'); |
| |
| Append_To (Body_Decls, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => B, |
| Object_Definition => |
| New_Occurrence_Of (Standard_Natural, Loc), |
| Expression => Make_Integer_Literal (Loc, 0))); |
| |
| J := Make_Temporary (Loc, 'J'); |
| |
| Append_To (Body_Decls, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => J, |
| Object_Definition => |
| New_Occurrence_Of (Standard_Natural, Loc))); |
| |
| K := Make_Temporary (Loc, 'K'); |
| |
| -- Generate exit when L < P (K); |
| |
| Loop_Stmts := New_List ( |
| Make_Exit_Statement (Loc, |
| Condition => |
| Make_Op_Lt (Loc, |
| Left_Opnd => New_Occurrence_Of (L, Loc), |
| Right_Opnd => |
| Make_Indexed_Component (Loc, |
| Prefix => New_Occurrence_Of (EPos, Loc), |
| Expressions => New_List ( |
| New_Occurrence_Of (K, Loc)))))); |
| |
| -- Generate J := Character'Pos (S (P (K) + F)); |
| |
| Append_To (Loop_Stmts, |
| Make_Assignment_Statement (Loc, |
| Name => New_Occurrence_Of (J, Loc), |
| Expression => |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| New_Occurrence_Of (Standard_Character, Loc), |
| Attribute_Name => Name_Pos, |
| Expressions => New_List ( |
| Make_Indexed_Component (Loc, |
| Prefix => New_Occurrence_Of (S_Id, Loc), |
| Expressions => New_List ( |
| Make_Op_Add (Loc, |
| Left_Opnd => |
| Make_Indexed_Component (Loc, |
| Prefix => |
| New_Occurrence_Of (EPos, Loc), |
| Expressions => New_List ( |
| New_Occurrence_Of (K, Loc))), |
| Right_Opnd => |
| New_Occurrence_Of (F, Loc)))))))); |
| |
| -- Generate A := (A + Natural (T1 (K) * J)) mod N; |
| |
| Append_To (Loop_Stmts, |
| Make_Assignment_Statement (Loc, |
| Name => New_Occurrence_Of (A, Loc), |
| Expression => |
| Make_Op_Mod (Loc, |
| Left_Opnd => |
| Make_Op_Add (Loc, |
| Left_Opnd => New_Occurrence_Of (A, Loc), |
| Right_Opnd => |
| Make_Op_Multiply (Loc, |
| Left_Opnd => |
| Convert_To (Standard_Natural, |
| Make_Indexed_Component (Loc, |
| Prefix => |
| New_Occurrence_Of (ET1, Loc), |
| Expressions => New_List ( |
| New_Occurrence_Of (K, Loc)))), |
| Right_Opnd => New_Occurrence_Of (J, Loc))), |
| Right_Opnd => Make_Integer_Literal (Loc, Int (L1))))); |
| |
| -- Generate B := (B + Natural (T2 (K) * J)) mod N; |
| |
| Append_To (Loop_Stmts, |
| Make_Assignment_Statement (Loc, |
| Name => New_Occurrence_Of (B, Loc), |
| Expression => |
| Make_Op_Mod (Loc, |
| Left_Opnd => |
| Make_Op_Add (Loc, |
| Left_Opnd => New_Occurrence_Of (B, Loc), |
| Right_Opnd => |
| Make_Op_Multiply (Loc, |
| Left_Opnd => |
| Convert_To (Standard_Natural, |
| Make_Indexed_Component (Loc, |
| Prefix => |
| New_Occurrence_Of (ET2, Loc), |
| Expressions => New_List ( |
| New_Occurrence_Of (K, Loc)))), |
| Right_Opnd => New_Occurrence_Of (J, Loc))), |
| Right_Opnd => Make_Integer_Literal (Loc, Int (L1))))); |
| |
| -- Generate loop |
| |
| Body_Stmts := New_List ( |
| Make_Implicit_Loop_Statement (N, |
| Iteration_Scheme => |
| Make_Iteration_Scheme (Loc, |
| Loop_Parameter_Specification => |
| Make_Loop_Parameter_Specification (Loc, |
| Defining_Identifier => K, |
| Discrete_Subtype_Definition => |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| New_Occurrence_Of (EPos, Loc), |
| Attribute_Name => Name_Range))), |
| Statements => Loop_Stmts)); |
| |
| -- Generate return (Natural (G (A)) + Natural (G (B))) mod M; |
| |
| Append_To (Body_Stmts, |
| Make_Simple_Return_Statement (Loc, |
| Expression => |
| Make_Op_Mod (Loc, |
| Left_Opnd => |
| Make_Op_Add (Loc, |
| Left_Opnd => |
| Convert_To (Standard_Natural, |
| Make_Indexed_Component (Loc, |
| Prefix => |
| New_Occurrence_Of (EG, Loc), |
| Expressions => New_List ( |
| New_Occurrence_Of (A, Loc)))), |
| Right_Opnd => |
| Convert_To (Standard_Natural, |
| Make_Indexed_Component (Loc, |
| Prefix => |
| New_Occurrence_Of (EG, Loc), |
| Expressions => New_List ( |
| New_Occurrence_Of (B, Loc))))), |
| Right_Opnd => Make_Integer_Literal (Loc, Nlit)))); |
| |
| -- Generate final body |
| |
| Append_To (Act, |
| Make_Subprogram_Body (Loc, |
| Specification => H_Sp, |
| Declarations => Body_Decls, |
| Handled_Statement_Sequence => |
| Make_Handled_Sequence_Of_Statements (Loc, Body_Stmts))); |
| end; |
| |
| -- If we chose not to or did not manage to compute the hash function, |
| -- we need to build a dummy function always returning Natural'Last |
| -- because other units reference it if they use the Value attribute. |
| |
| elsif In_Main_Unit then |
| declare |
| Body_Stmts : List_Id; |
| |
| begin |
| -- Generate return Natural'Last |
| |
| Body_Stmts := New_List ( |
| Make_Simple_Return_Statement (Loc, |
| Expression => |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| New_Occurrence_Of (Standard_Natural, Loc), |
| Attribute_Name => Name_Last))); |
| |
| -- Generate body |
| |
| Append_To (Act, |
| Make_Subprogram_Body (Loc, |
| Specification => H_Sp, |
| Declarations => Empty_List, |
| Handled_Statement_Sequence => |
| Make_Handled_Sequence_Of_Statements (Loc, Body_Stmts))); |
| end; |
| |
| -- For the other units, just declare the function |
| |
| else |
| Append_To (Act, |
| Make_Subprogram_Declaration (Loc, Specification => H_Sp)); |
| end if; |
| |
| else |
| Set_Lit_Hash (E, Empty); |
| end if; |
| |
| if In_Main_Unit then |
| System.Perfect_Hash_Generators.Finalize; |
| end if; |
| |
| Insert_Actions (N, Act, Suppress => All_Checks); |
| |
| -- This is where we check that our budget of serial numbers has been |
| -- entirely spent, see the declaration of Serial_Number_Budget above. |
| |
| if Nlit > Threshold then |
| Synchronize_Serial_Number (S_N + Serial_Number_Budget); |
| end if; |
| |
| -- Reset the scalar storage order to the saved value |
| |
| Opt.Default_SSO := Saved_SSO; |
| end Build_Enumeration_Image_Tables; |
| |
| ---------------------------- |
| -- Expand_Image_Attribute -- |
| ---------------------------- |
| |
| -- For all cases other than user-defined enumeration types, the scheme |
| -- is as follows. First we insert the following code: |
| |
| -- Snn : String (1 .. rt'Width); |
| -- Pnn : Natural; |
| -- Image_xx (tv, Snn, Pnn [,pm]); |
| -- |
| -- and then Expr is replaced by Snn (1 .. Pnn) |
| |
| -- In the above expansion: |
| |
| -- rt is the root type of the expression |
| -- tv is the expression with the value, usually a type conversion |
| -- pm is an extra parameter present in some cases |
| |
| -- The following table shows tv, xx, and (if used) pm for the various |
| -- possible types of the argument: |
| |
| -- For types whose root type is Character |
| -- xx = Character |
| -- tv = Character (Expr) |
| |
| -- For types whose root type is Boolean |
| -- xx = Boolean |
| -- tv = Boolean (Expr) |
| |
| -- For signed integer types |
| -- xx = [Long_Long_[Long_]]Integer |
| -- tv = [Long_Long_[Long_]]Integer (Expr) |
| |
| -- For modular types |
| -- xx = [Long_Long_[Long_]]Unsigned |
| -- tv = System.Unsigned_Types.[Long_Long_[Long_]]Unsigned (Expr) |
| |
| -- For types whose root type is Wide_Character |
| -- xx = Wide_Character |
| -- tv = Wide_Character (Expr) |
| -- pm = Boolean, true if Ada 2005 mode, False otherwise |
| |
| -- For types whose root type is Wide_Wide_Character |
| -- xx = Wide_Wide_Character |
| -- tv = Wide_Wide_Character (Expr) |
| |
| -- For floating-point types |
| -- xx = Floating_Point |
| -- tv = [Long_[Long_]]Float (Expr) |
| -- pm = typ'Digits (typ = subtype of expression) |
| |
| -- For decimal fixed-point types |
| -- xx = Decimal{32,64,128} |
| -- tv = Integer_{32,64,128} (Expr)? [convert with no scaling] |
| -- pm = typ'Scale (typ = subtype of expression) |
| |
| -- For the most common ordinary fixed-point types |
| -- xx = Fixed{32,64,128} |
| -- tv = Integer_{32,64,128} (Expr) [convert with no scaling] |
| -- pm = numerator of typ'Small (typ = subtype of expression) |
| -- denominator of typ'Small |
| -- (Integer_{32,64,128} x typ'Small)'Fore |
| -- typ'Aft |
| |
| -- For other ordinary fixed-point types |
| -- xx = Fixed |
| -- tv = Long_Float (Expr) |
| -- pm = typ'Aft (typ = subtype of expression) |
| |
| -- For enumeration types other than those declared in package Standard |
| -- or System, Snn, Pnn, are expanded as above, but the call looks like: |
| |
| -- Image_Enumeration_NN (rt'Pos (X), Snn, Pnn, typS, typI'Address) |
| |
| -- where rt is the root type of the expression, and typS and typI are |
| -- the entities constructed as described in the spec for the procedure |
| -- Build_Enumeration_Image_Tables and NN is 32/16/8 depending on the |
| -- element type of Lit_Indexes. The rewriting of the expression to |
| -- Snn (1 .. Pnn) then occurs as in the other cases. A special case is |
| -- when pragma Discard_Names applies, in which case we replace expr by: |
| |
| -- (rt'Pos (expr))'Img |
| |
| -- So that the result is a space followed by the decimal value for the |
| -- position of the enumeration value in the enumeration type. |
| |
| procedure Expand_Image_Attribute (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| Exprs : constant List_Id := Expressions (N); |
| Expr : constant Node_Id := Relocate_Node (First (Exprs)); |
| Pref : constant Node_Id := Prefix (N); |
| |
| procedure Expand_Standard_Boolean_Image; |
| -- Expand attribute 'Image in Standard.Boolean, avoiding string copy |
| |
| procedure Expand_User_Defined_Enumeration_Image (Typ : Entity_Id); |
| -- Expand attribute 'Image in user-defined enumeration types, avoiding |
| -- string copy. |
| |
| ----------------------------------- |
| -- Expand_Standard_Boolean_Image -- |
| ----------------------------------- |
| |
| procedure Expand_Standard_Boolean_Image is |
| Ins_List : constant List_Id := New_List; |
| S1_Id : constant Entity_Id := Make_Temporary (Loc, 'S'); |
| T_Id : constant Entity_Id := Make_Temporary (Loc, 'T'); |
| F_Id : constant Entity_Id := Make_Temporary (Loc, 'F'); |
| V_Id : constant Entity_Id := Make_Temporary (Loc, 'V'); |
| |
| begin |
| -- We use a single 5-character string subtype throughout so that the |
| -- subtype of the string if-expression is constrained and, therefore, |
| -- does not force the creation of a temporary during analysis. |
| |
| -- Generate: |
| -- subtype S1 is String (1 .. 5); |
| |
| Append_To (Ins_List, |
| Make_Subtype_Declaration (Loc, |
| Defining_Identifier => S1_Id, |
| Subtype_Indication => |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => |
| New_Occurrence_Of (Standard_String, Loc), |
| Constraint => |
| Make_Index_Or_Discriminant_Constraint (Loc, |
| Constraints => New_List ( |
| Make_Range (Loc, |
| Low_Bound => Make_Integer_Literal (Loc, 1), |
| High_Bound => Make_Integer_Literal (Loc, 5))))))); |
| |
| -- Generate: |
| -- T : constant String (1 .. 5) := "TRUE "; |
| |
| Start_String; |
| Store_String_Chars ("TRUE "); |
| |
| Append_To (Ins_List, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => T_Id, |
| Object_Definition => |
| New_Occurrence_Of (S1_Id, Loc), |
| Constant_Present => True, |
| Expression => Make_String_Literal (Loc, End_String))); |
| |
| -- Generate: |
| -- F : constant String (1 .. 5) := "FALSE"; |
| |
| Start_String; |
| Store_String_Chars ("FALSE"); |
| |
| Append_To (Ins_List, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => F_Id, |
| Object_Definition => |
| New_Occurrence_Of (S1_Id, Loc), |
| Constant_Present => True, |
| Expression => Make_String_Literal (Loc, End_String))); |
| |
| -- Generate: |
| -- V : String (1 .. 5) renames (if Expr then T else F); |
| |
| Append_To (Ins_List, |
| Make_Object_Renaming_Declaration (Loc, |
| Defining_Identifier => V_Id, |
| Subtype_Mark => |
| New_Occurrence_Of (S1_Id, Loc), |
| Name => |
| Make_If_Expression (Loc, |
| Expressions => New_List ( |
| Duplicate_Subexpr (Expr), |
| New_Occurrence_Of (T_Id, Loc), |
| New_Occurrence_Of (F_Id, Loc))))); |
| |
| -- Insert all the above declarations before N. We suppress checks |
| -- because everything is in range at this stage. |
| |
| Insert_Actions (N, Ins_List, Suppress => All_Checks); |
| |
| -- Final step is to rewrite the expression as a slice: |
| -- V (1 .. (if Expr then 4 else 5)) and analyze, again with no |
| -- checks, since we are sure that everything is OK. |
| |
| Rewrite (N, |
| Make_Slice (Loc, |
| Prefix => New_Occurrence_Of (V_Id, Loc), |
| Discrete_Range => |
| Make_Range (Loc, |
| Low_Bound => Make_Integer_Literal (Loc, 1), |
| High_Bound => |
| Make_If_Expression (Loc, |
| Expressions => New_List ( |
| Duplicate_Subexpr (Expr), |
| Make_Integer_Literal (Loc, 4), |
| Make_Integer_Literal (Loc, 5)))))); |
| |
| Analyze_And_Resolve (N, Standard_String, Suppress => All_Checks); |
| end Expand_Standard_Boolean_Image; |
| |
| ------------------------------------------- |
| -- Expand_User_Defined_Enumeration_Image -- |
| ------------------------------------------- |
| |
| procedure Expand_User_Defined_Enumeration_Image (Typ : Entity_Id) is |
| Ins_List : constant List_Id := New_List; |
| P1_Id : constant Entity_Id := Make_Temporary (Loc, 'P'); |
| P2_Id : constant Entity_Id := Make_Temporary (Loc, 'P'); |
| P3_Id : constant Entity_Id := Make_Temporary (Loc, 'P'); |
| P4_Id : constant Entity_Id := Make_Temporary (Loc, 'P'); |
| S1_Id : constant Entity_Id := Make_Temporary (Loc, 'S'); |
| |
| begin |
| -- Apply a validity check, since it is a bit drastic to get a |
| -- completely junk image value for an invalid value. |
| |
| if not Expr_Known_Valid (Expr) then |
| Insert_Valid_Check (Expr); |
| end if; |
| |
| -- Generate: |
| -- P1 : constant Natural := Typ'Pos (Typ?(Expr)); |
| |
| Append_To (Ins_List, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => P1_Id, |
| Object_Definition => |
| New_Occurrence_Of (Standard_Natural, Loc), |
| Constant_Present => True, |
| Expression => |
| Convert_To (Standard_Natural, |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Pos, |
| Prefix => New_Occurrence_Of (Typ, Loc), |
| Expressions => New_List (OK_Convert_To (Typ, Expr)))))); |
| |
| -- Compute the index of the string start, generating: |
| -- P2 : constant Natural := call_put_enumN (P1); |
| |
| Append_To (Ins_List, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => P2_Id, |
| Object_Definition => |
| New_Occurrence_Of (Standard_Natural, Loc), |
| Constant_Present => True, |
| Expression => |
| Convert_To (Standard_Natural, |
| Make_Indexed_Component (Loc, |
| Prefix => |
| New_Occurrence_Of (Lit_Indexes (Typ), Loc), |
| Expressions => |
| New_List (New_Occurrence_Of (P1_Id, Loc)))))); |
| |
| -- Compute the index of the next value, generating: |
| -- P3 : constant Natural := call_put_enumN (P1 + 1); |
| |
| declare |
| Add_Node : constant Node_Id := New_Op_Node (N_Op_Add, Loc); |
| |
| begin |
| Set_Left_Opnd (Add_Node, New_Occurrence_Of (P1_Id, Loc)); |
| Set_Right_Opnd (Add_Node, Make_Integer_Literal (Loc, 1)); |
| |
| Append_To (Ins_List, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => P3_Id, |
| Object_Definition => |
| New_Occurrence_Of (Standard_Natural, Loc), |
| Constant_Present => True, |
| Expression => |
| Convert_To (Standard_Natural, |
| Make_Indexed_Component (Loc, |
| Prefix => |
| New_Occurrence_Of (Lit_Indexes (Typ), Loc), |
| Expressions => |
| New_List (Add_Node))))); |
| end; |
| |
| -- Generate: |
| -- P4 : String renames call_put_enumS (P2 .. P3 - 1); |
| |
| declare |
| Sub_Node : constant Node_Id := New_Op_Node (N_Op_Subtract, Loc); |
| |
| begin |
| Set_Left_Opnd (Sub_Node, New_Occurrence_Of (P3_Id, Loc)); |
| Set_Right_Opnd (Sub_Node, Make_Integer_Literal (Loc, 1)); |
| |
| Append_To (Ins_List, |
| Make_Object_Renaming_Declaration (Loc, |
| Defining_Identifier => P4_Id, |
| Subtype_Mark => |
| New_Occurrence_Of (Standard_String, Loc), |
| Name => |
| Make_Slice (Loc, |
| Prefix => |
| New_Occurrence_Of (Lit_Strings (Typ), Loc), |
| Discrete_Range => |
| Make_Range (Loc, |
| Low_Bound => New_Occurrence_Of (P2_Id, Loc), |
| High_Bound => Sub_Node)))); |
| end; |
| |
| -- Generate: |
| -- subtype S1 is String (1 .. P3 - P2); |
| |
| declare |
| HB : constant Node_Id := New_Op_Node (N_Op_Subtract, Loc); |
| |
| begin |
| Set_Left_Opnd (HB, New_Occurrence_Of (P3_Id, Loc)); |
| Set_Right_Opnd (HB, New_Occurrence_Of (P2_Id, Loc)); |
| |
| Append_To (Ins_List, |
| Make_Subtype_Declaration (Loc, |
| Defining_Identifier => S1_Id, |
| Subtype_Indication => |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => |
| New_Occurrence_Of (Standard_String, Loc), |
| Constraint => |
| Make_Index_Or_Discriminant_Constraint (Loc, |
| Constraints => New_List ( |
| Make_Range (Loc, |
| Low_Bound => Make_Integer_Literal (Loc, 1), |
| High_Bound => HB)))))); |
| end; |
| |
| -- Insert all the above declarations before N. We suppress checks |
| -- because everything is in range at this stage. |
| |
| Insert_Actions (N, Ins_List, Suppress => All_Checks); |
| |
| Rewrite (N, |
| Unchecked_Convert_To (S1_Id, New_Occurrence_Of (P4_Id, Loc))); |
| |
| Analyze_And_Resolve (N, Standard_String); |
| end Expand_User_Defined_Enumeration_Image; |
| |
| -- Local variables |
| |
| Enum_Case : Boolean; |
| Imid : RE_Id; |
| Proc_Ent : Entity_Id; |
| Ptyp : Entity_Id; |
| Rtyp : Entity_Id; |
| Tent : Entity_Id := Empty; |
| Ttyp : Entity_Id; |
| |
| Arg_List : List_Id; |
| -- List of arguments for run-time procedure call |
| |
| Ins_List : List_Id; |
| -- List of actions to be inserted |
| |
| Snn : constant Entity_Id := Make_Temporary (Loc, 'S'); |
| Pnn : constant Entity_Id := Make_Temporary (Loc, 'P'); |
| |
| -- Start of processing for Expand_Image_Attribute |
| |
| begin |
| if Is_Object_Image (Pref) then |
| Rewrite_Object_Image (N, Pref, Name_Image, Standard_String); |
| return; |
| end if; |
| |
| -- If Image should be transformed using Put_Image, then do so. See |
| -- Exp_Put_Image for details. |
| |
| if Exp_Put_Image.Image_Should_Call_Put_Image (N) then |
| Rewrite (N, Exp_Put_Image.Build_Image_Call (N)); |
| Analyze_And_Resolve (N, Standard_String, Suppress => All_Checks); |
| return; |
| end if; |
| |
| Ptyp := Underlying_Type (Entity (Pref)); |
| |
| -- Ada 2022 allows 'Image on private types, so fetch the underlying |
| -- type to obtain the structure of the type. We use the base type, |
| -- not the root type for discrete types, to handle properly derived |
| -- types, but we use the root type for enumeration types, because the |
| -- literal map is attached to the root. Should be inherited ??? |
| |
| if Is_Real_Type (Ptyp) or else Is_Enumeration_Type (Ptyp) then |
| Rtyp := Underlying_Type (Root_Type (Ptyp)); |
| else |
| Rtyp := Underlying_Type (Base_Type (Ptyp)); |
| end if; |
| |
| -- Set Imid (RE_Id of procedure to call), and Tent, target for the |
| -- type conversion of the first argument for all possibilities. |
| |
| Enum_Case := False; |
| |
| if Rtyp = Standard_Boolean then |
| -- Use inline expansion if the -gnatd_x switch is not passed to the |
| -- compiler. Otherwise expand into a call to the runtime. |
| |
| if not Debug_Flag_Underscore_X then |
| Expand_Standard_Boolean_Image; |
| return; |
| |
| else |
| Imid := RE_Image_Boolean; |
| Tent := Rtyp; |
| end if; |
| |
| -- For standard character, we have to select the version which handles |
| -- soft hyphen correctly, based on the version of Ada in use (this is |
| -- ugly, but we have no choice). |
| |
| elsif Rtyp = Standard_Character then |
| if Ada_Version < Ada_2005 then |
| Imid := RE_Image_Character; |
| else |
| Imid := RE_Image_Character_05; |
| end if; |
| |
| Tent := Rtyp; |
| |
| elsif Rtyp = Standard_Wide_Character then |
| Imid := RE_Image_Wide_Character; |
| Tent := Rtyp; |
| |
| elsif Rtyp = Standard_Wide_Wide_Character then |
| Imid := RE_Image_Wide_Wide_Character; |
| Tent := Rtyp; |
| |
| elsif Is_Signed_Integer_Type (Rtyp) then |
| if Esize (Rtyp) <= Standard_Integer_Size then |
| Imid := RE_Image_Integer; |
| Tent := Standard_Integer; |
| elsif Esize (Rtyp) <= Standard_Long_Long_Integer_Size then |
| Imid := RE_Image_Long_Long_Integer; |
| Tent := Standard_Long_Long_Integer; |
| else |
| Imid := RE_Image_Long_Long_Long_Integer; |
| Tent := Standard_Long_Long_Long_Integer; |
| end if; |
| |
| elsif Is_Modular_Integer_Type (Rtyp) then |
| if Modulus (Rtyp) <= Modulus (RTE (RE_Unsigned)) then |
| Imid := RE_Image_Unsigned; |
| Tent := RTE (RE_Unsigned); |
| elsif Modulus (Rtyp) <= Modulus (RTE (RE_Long_Long_Unsigned)) then |
| Imid := RE_Image_Long_Long_Unsigned; |
| Tent := RTE (RE_Long_Long_Unsigned); |
| else |
| Imid := RE_Image_Long_Long_Long_Unsigned; |
| Tent := RTE (RE_Long_Long_Long_Unsigned); |
| end if; |
| |
| elsif Is_Decimal_Fixed_Point_Type (Rtyp) then |
| if Esize (Rtyp) <= 32 then |
| Imid := RE_Image_Decimal32; |
| Tent := RTE (RE_Integer_32); |
| elsif Esize (Rtyp) <= 64 then |
| Imid := RE_Image_Decimal64; |
| Tent := RTE (RE_Integer_64); |
| else |
| Imid := RE_Image_Decimal128; |
| Tent := RTE (RE_Integer_128); |
| end if; |
| |
| elsif Is_Ordinary_Fixed_Point_Type (Rtyp) then |
| declare |
| Num : constant Uint := Norm_Num (Small_Value (Rtyp)); |
| Den : constant Uint := Norm_Den (Small_Value (Rtyp)); |
| Max : constant Uint := UI_Max (Num, Den); |
| Min : constant Uint := UI_Min (Num, Den); |
| Siz : constant Uint := Esize (Rtyp); |
| |
| begin |
| -- Note that we do not use sharp bounds to speed things up |
| |
| if Siz <= 32 |
| and then Max <= Uint_2 ** 31 |
| and then (Min = Uint_1 |
| or else (Num < Den and then Den <= Uint_2 ** 27) |
| or else (Den < Num and then Num <= Uint_2 ** 25)) |
| then |
| Imid := RE_Image_Fixed32; |
| Tent := RTE (RE_Integer_32); |
| elsif Siz <= 64 |
| and then Max <= Uint_2 ** 63 |
| and then (Min = Uint_1 |
| or else (Num < Den and then Den <= Uint_2 ** 59) |
| or else (Den < Num and then Num <= Uint_2 ** 53)) |
| then |
| Imid := RE_Image_Fixed64; |
| Tent := RTE (RE_Integer_64); |
| elsif System_Max_Integer_Size = 128 |
| and then Max <= Uint_2 ** 127 |
| and then (Min = Uint_1 |
| or else (Num < Den and then Den <= Uint_2 ** 123) |
| or else (Den < Num and then Num <= Uint_2 ** 122)) |
| then |
| Imid := RE_Image_Fixed128; |
| Tent := RTE (RE_Integer_128); |
| else |
| Imid := RE_Image_Fixed; |
| Tent := Standard_Long_Float; |
| end if; |
| end; |
| |
| elsif Is_Floating_Point_Type (Rtyp) then |
| -- Short_Float and Float are the same type for GNAT |
| |
| if Rtyp = Standard_Short_Float or else Rtyp = Standard_Float then |
| Imid := RE_Image_Float; |
| Tent := Standard_Float; |
| |
| elsif Rtyp = Standard_Long_Float then |
| Imid := RE_Image_Long_Float; |
| Tent := Standard_Long_Float; |
| |
| else |
| Imid := RE_Image_Long_Long_Float; |
| Tent := Standard_Long_Long_Float; |
| end if; |
| |
| -- Only other possibility is user-defined enumeration type |
| |
| else |
| pragma Assert (Is_Enumeration_Type (Rtyp)); |
| |
| if Discard_Names (First_Subtype (Ptyp)) |
| or else No (Lit_Strings (Rtyp)) |
| then |
| -- When pragma Discard_Names applies to the first subtype, build |
| -- (Long_Long_Integer (Pref'Pos (Expr)))'Img. The conversion is |
| -- there to avoid applying 'Img directly in Universal_Integer, |
| -- which can be a very large type. See also the handling of 'Val. |
| |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| Convert_To (Standard_Long_Long_Integer, |
| Make_Attribute_Reference (Loc, |
| Prefix => Pref, |
| Attribute_Name => Name_Pos, |
| Expressions => New_List (Expr))), |
| Attribute_Name => |
| Name_Img)); |
| Analyze_And_Resolve (N, Standard_String); |
| return; |
| |
| -- Use inline expansion if the -gnatd_x switch is not passed to the |
| -- compiler. Otherwise expand into a call to the runtime. |
| |
| elsif not Debug_Flag_Underscore_X then |
| Expand_User_Defined_Enumeration_Image (Rtyp); |
| return; |
| |
| else |
| Ttyp := Component_Type (Etype (Lit_Indexes (Rtyp))); |
| |
| if Ttyp = Standard_Integer_8 then |
| Imid := RE_Image_Enumeration_8; |
| |
| elsif Ttyp = Standard_Integer_16 then |
| Imid := RE_Image_Enumeration_16; |
| |
| else |
| Imid := RE_Image_Enumeration_32; |
| end if; |
| |
| -- Apply a validity check, since it is a bit drastic to get a |
| -- completely junk image value for an invalid value. |
| |
| if not Expr_Known_Valid (Expr) then |
| Insert_Valid_Check (Expr); |
| end if; |
| |
| Enum_Case := True; |
| end if; |
| end if; |
| |
| -- Build first argument for call |
| |
| if Enum_Case then |
| Arg_List := New_List ( |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Pos, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Expressions => New_List (Expr))); |
| |
| -- AI12-0020: Ada 2022 allows 'Image for all types, including private |
| -- types. If the full type is not a fixed-point type, then it is enough |
| -- to set the Conversion_OK flag. However, that would not work for |
| -- fixed-point types, because that flag changes the run-time semantics |
| -- of fixed-point type conversions; therefore, we must first convert to |
| -- Rtyp, and then to Tent. |
| |
| else |
| declare |
| Conv : Node_Id; |
| |
| begin |
| if Is_Private_Type (Etype (Expr)) then |
| if Is_Fixed_Point_Type (Rtyp) then |
| Conv := Convert_To (Tent, OK_Convert_To (Rtyp, Expr)); |
| else |
| Conv := OK_Convert_To (Tent, Expr); |
| end if; |
| else |
| Conv := Convert_To (Tent, Expr); |
| end if; |
| |
| Arg_List := New_List (Conv); |
| end; |
| end if; |
| |
| -- Build declarations of Snn and Pnn to be inserted |
| |
| Ins_List := New_List ( |
| |
| -- Snn : String (1 .. typ'Width); |
| |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Snn, |
| Object_Definition => |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => New_Occurrence_Of (Standard_String, Loc), |
| Constraint => |
| Make_Index_Or_Discriminant_Constraint (Loc, |
| Constraints => New_List ( |
| Make_Range (Loc, |
| Low_Bound => Make_Integer_Literal (Loc, 1), |
| High_Bound => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Rtyp, Loc), |
| Attribute_Name => Name_Width)))))), |
| |
| -- Pnn : Natural; |
| |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Pnn, |
| Object_Definition => New_Occurrence_Of (Standard_Natural, Loc))); |
| |
| -- Append Snn, Pnn arguments |
| |
| Append_To (Arg_List, New_Occurrence_Of (Snn, Loc)); |
| Append_To (Arg_List, New_Occurrence_Of (Pnn, Loc)); |
| |
| -- Get entity of procedure to call |
| |
| Proc_Ent := RTE (Imid); |
| |
| -- If the procedure entity is empty, that means we have a case in |
| -- no run time mode where the operation is not allowed, and an |
| -- appropriate diagnostic has already been issued. |
| |
| if No (Proc_Ent) then |
| return; |
| end if; |
| |
| -- Otherwise complete preparation of arguments for run-time call |
| |
| -- Add extra arguments for Enumeration case |
| |
| if Enum_Case then |
| Append_To (Arg_List, New_Occurrence_Of (Lit_Strings (Rtyp), Loc)); |
| Append_To (Arg_List, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Lit_Indexes (Rtyp), Loc), |
| Attribute_Name => Name_Address)); |
| |
| -- For floating-point types, append Digits argument |
| |
| elsif Is_Floating_Point_Type (Rtyp) then |
| Append_To (Arg_List, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Digits)); |
| |
| -- For decimal, append Scale and also set to do literal conversion |
| |
| elsif Is_Decimal_Fixed_Point_Type (Rtyp) then |
| Set_Conversion_OK (First (Arg_List)); |
| |
| Append_To (Arg_List, Make_Integer_Literal (Loc, Scale_Value (Ptyp))); |
| |
| -- For ordinary fixed-point types, append Num, Den, Fore, Aft parameters |
| -- and also set to do literal conversion. |
| |
| elsif Is_Ordinary_Fixed_Point_Type (Rtyp) then |
| if Imid /= RE_Image_Fixed then |
| Set_Conversion_OK (First (Arg_List)); |
| |
| Append_To (Arg_List, |
| Make_Integer_Literal (Loc, -Norm_Num (Small_Value (Ptyp)))); |
| |
| Append_To (Arg_List, |
| Make_Integer_Literal (Loc, -Norm_Den (Small_Value (Ptyp)))); |
| |
| -- We want to compute the Fore value for the fixed point type |
| -- whose mantissa type is Tent and whose small is typ'Small. |
| |
| declare |
| T : Ureal := Uint_2 ** (Esize (Tent) - 1) * Small_Value (Ptyp); |
| F : Nat := 2; |
| |
| begin |
| while T >= Ureal_10 loop |
| F := F + 1; |
| T := T / Ureal_10; |
| end loop; |
| |
| Append_To (Arg_List, |
| Make_Integer_Literal (Loc, UI_From_Int (F))); |
| end; |
| end if; |
| |
| Append_To (Arg_List, Make_Integer_Literal (Loc, Aft_Value (Ptyp))); |
| |
| -- For Wide_Character, append Ada 2005 indication |
| |
| elsif Rtyp = Standard_Wide_Character then |
| Append_To (Arg_List, |
| New_Occurrence_Of |
| (Boolean_Literals (Ada_Version >= Ada_2005), Loc)); |
| end if; |
| |
| -- Now append the procedure call to the insert list |
| |
| Append_To (Ins_List, |
| Make_Procedure_Call_Statement (Loc, |
| Name => New_Occurrence_Of (Proc_Ent, Loc), |
| Parameter_Associations => Arg_List)); |
| |
| -- Insert declarations of Snn, Pnn, and the procedure call. We suppress |
| -- checks because we are sure that everything is in range at this stage. |
| |
| Insert_Actions (N, Ins_List, Suppress => All_Checks); |
| |
| -- Final step is to rewrite the expression as a slice and analyze, |
| -- again with no checks, since we are sure that everything is OK. |
| |
| Rewrite (N, |
| Make_Slice (Loc, |
| Prefix => New_Occurrence_Of (Snn, Loc), |
| Discrete_Range => |
| Make_Range (Loc, |
| Low_Bound => Make_Integer_Literal (Loc, 1), |
| High_Bound => New_Occurrence_Of (Pnn, Loc)))); |
| |
| Analyze_And_Resolve (N, Standard_String, Suppress => All_Checks); |
| end Expand_Image_Attribute; |
| |
| ---------------------------------- |
| -- Expand_Valid_Value_Attribute -- |
| ---------------------------------- |
| |
| procedure Expand_Valid_Value_Attribute (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| Btyp : constant Entity_Id := Base_Type (Entity (Prefix (N))); |
| Rtyp : constant Entity_Id := Root_Type (Btyp); |
| pragma Assert (Is_Enumeration_Type (Rtyp)); |
| |
| Args : constant List_Id := Expressions (N); |
| Func : RE_Id; |
| Ttyp : Entity_Id; |
| |
| begin |
| -- Generate: |
| |
| -- Valid_Value_Enumeration_NN |
| -- (typS, typN'Address, typH'Unrestricted_Access, Num, X) |
| |
| Ttyp := Component_Type (Etype (Lit_Indexes (Rtyp))); |
| |
| if Ttyp = Standard_Integer_8 then |
| Func := RE_Valid_Value_Enumeration_8; |
| elsif Ttyp = Standard_Integer_16 then |
| Func := RE_Valid_Value_Enumeration_16; |
| else |
| Func := RE_Valid_Value_Enumeration_32; |
| end if; |
| |
| Prepend_To (Args, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Rtyp, Loc), |
| Attribute_Name => Name_Pos, |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Rtyp, Loc), |
| Attribute_Name => Name_Last)))); |
| |
| if Present (Lit_Hash (Rtyp)) then |
| Prepend_To (Args, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Lit_Hash (Rtyp), Loc), |
| Attribute_Name => Name_Unrestricted_Access)); |
| else |
| Prepend_To (Args, Make_Null (Loc)); |
| end if; |
| |
| Prepend_To (Args, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Lit_Indexes (Rtyp), Loc), |
| Attribute_Name => Name_Address)); |
| |
| Prepend_To (Args, |
| New_Occurrence_Of (Lit_Strings (Rtyp), Loc)); |
| |
| Rewrite (N, |
| Make_Function_Call (Loc, |
| Name => |
| New_Occurrence_Of (RTE (Func), Loc), |
| Parameter_Associations => Args)); |
| |
| Analyze_And_Resolve (N, Standard_Boolean); |
| end Expand_Valid_Value_Attribute; |
| |
| ---------------------------- |
| -- Expand_Value_Attribute -- |
| ---------------------------- |
| |
| -- For scalar types derived from Boolean, Character and integer types |
| -- in package Standard, typ'Value (X) expands into: |
| |
| -- btyp (Value_xx (X)) |
| |
| -- where btyp is the base type of the prefix |
| |
| -- For types whose root type is Character |
| -- xx = Character |
| |
| -- For types whose root type is Wide_Character |
| -- xx = Wide_Character |
| |
| -- For types whose root type is Wide_Wide_Character |
| -- xx = Wide_Wide_Character |
| |
| -- For types whose root type is Boolean |
| -- xx = Boolean |
| |
| -- For signed integer types |
| -- xx = [Long_Long_[Long_]]Integer |
| |
| -- For modular types |
| -- xx = [Long_Long_[Long_]]Unsigned |
| |
| -- For floating-point types |
| -- xx = [Long_[Long_]]Float |
| |
| -- For decimal fixed-point types, typ'Value (X) expands into |
| |
| -- btyp?(Value_Decimal{32,64,128} (X, typ'Scale)); |
| |
| -- For the most common ordinary fixed-point types, it expands into |
| |
| -- btyp?(Value_Fixed{32,64,128} (X, numerator of S, denominator of S)); |
| -- where S = typ'Small |
| |
| -- For other ordinary fixed-point types, it expands into |
| |
| -- btyp (Value_Long_Float (X)) |
| |
| -- For Wide_[Wide_]Character types, typ'Value (X) expands into |
| |
| -- btyp (Value_xx (X, EM)) |
| |
| -- where btyp is the base type of the prefix, and EM is the encoding method |
| |
| -- For enumeration types other than those derived from types Boolean, |
| -- Character, Wide_[Wide_]Character in Standard, typ'Value (X) expands to: |
| |
| -- Enum'Val |
| -- (Value_Enumeration_NN |
| -- (typS, typN'Address, typH'Unrestricted_Access, Num, X)) |
| |
| -- where typS, typN and typH are the Lit_Strings, Lit_Indexes and Lit_Hash |
| -- entities from T's root type entity, and Num is Enum'Pos (Enum'Last). |
| -- The Value_Enumeration_NN function will search the tables looking for |
| -- X and return the position number in the table if found which is |
| -- used to provide the result of 'Value (using Enum'Val). If the |
| -- value is not found Constraint_Error is raised. The suffix _NN |
| -- depends on the element type of typN. |
| |
| procedure Expand_Value_Attribute (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| Btyp : constant Entity_Id := Etype (N); |
| pragma Assert (Is_Base_Type (Btyp)); |
| pragma Assert (Btyp = Base_Type (Entity (Prefix (N)))); |
| Rtyp : constant Entity_Id := Root_Type (Btyp); |
| |
| Args : constant List_Id := Expressions (N); |
| Ttyp : Entity_Id; |
| Vid : RE_Id; |
| |
| begin |
| -- Fall through for all cases except user-defined enumeration type |
| -- and decimal types, with Vid set to the Id of the entity for the |
| -- Value routine and Args set to the list of parameters for the call. |
| |
| if Rtyp = Standard_Boolean then |
| Vid := RE_Value_Boolean; |
| |
| elsif Rtyp = Standard_Character then |
| Vid := RE_Value_Character; |
| |
| elsif Rtyp = Standard_Wide_Character then |
| Vid := RE_Value_Wide_Character; |
| |
| Append_To (Args, |
| Make_Integer_Literal (Loc, |
| Intval => Int (Wide_Character_Encoding_Method))); |
| |
| elsif Rtyp = Standard_Wide_Wide_Character then |
| Vid := RE_Value_Wide_Wide_Character; |
| |
| Append_To (Args, |
| Make_Integer_Literal (Loc, |
| Intval => Int (Wide_Character_Encoding_Method))); |
| |
| elsif Is_Signed_Integer_Type (Rtyp) then |
| if Esize (Rtyp) <= Standard_Integer_Size then |
| Vid := RE_Value_Integer; |
| elsif Esize (Rtyp) <= Standard_Long_Long_Integer_Size then |
| Vid := RE_Value_Long_Long_Integer; |
| else |
| Vid := RE_Value_Long_Long_Long_Integer; |
| end if; |
| |
| elsif Is_Modular_Integer_Type (Rtyp) then |
| if Modulus (Rtyp) <= Modulus (RTE (RE_Unsigned)) then |
| Vid := RE_Value_Unsigned; |
| elsif Modulus (Rtyp) <= Modulus (RTE (RE_Long_Long_Unsigned)) then |
| Vid := RE_Value_Long_Long_Unsigned; |
| else |
| Vid := RE_Value_Long_Long_Long_Unsigned; |
| end if; |
| |
| elsif Is_Decimal_Fixed_Point_Type (Rtyp) then |
| if Esize (Rtyp) <= 32 and then abs (Scale_Value (Rtyp)) <= 9 then |
| Vid := RE_Value_Decimal32; |
| elsif Esize (Rtyp) <= 64 and then abs (Scale_Value (Rtyp)) <= 18 then |
| Vid := RE_Value_Decimal64; |
| else |
| Vid := RE_Value_Decimal128; |
| end if; |
| |
| Append_To (Args, Make_Integer_Literal (Loc, Scale_Value (Rtyp))); |
| |
| Rewrite (N, |
| OK_Convert_To (Btyp, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (Vid), Loc), |
| Parameter_Associations => Args))); |
| |
| Set_Etype (N, Btyp); |
| Analyze_And_Resolve (N, Btyp); |
| return; |
| |
| elsif Is_Ordinary_Fixed_Point_Type (Rtyp) then |
| declare |
| Num : constant Uint := Norm_Num (Small_Value (Rtyp)); |
| Den : constant Uint := Norm_Den (Small_Value (Rtyp)); |
| Max : constant Uint := UI_Max (Num, Den); |
| Min : constant Uint := UI_Min (Num, Den); |
| Siz : constant Uint := Esize (Rtyp); |
| |
| begin |
| if Siz <= 32 |
| and then Max <= Uint_2 ** 31 |
| and then (Min = Uint_1 or else Max <= Uint_2 ** 27) |
| then |
| Vid := RE_Value_Fixed32; |
| elsif Siz <= 64 |
| and then Max <= Uint_2 ** 63 |
| and then (Min = Uint_1 or else Max <= Uint_2 ** 59) |
| then |
| Vid := RE_Value_Fixed64; |
| elsif System_Max_Integer_Size = 128 |
| and then Max <= Uint_2 ** 127 |
| and then (Min = Uint_1 or else Max <= Uint_2 ** 123) |
| then |
| Vid := RE_Value_Fixed128; |
| else |
| Vid := RE_Value_Long_Float; |
| end if; |
| |
| if Vid /= RE_Value_Long_Float then |
| Append_To (Args, |
| Make_Integer_Literal (Loc, -Norm_Num (Small_Value (Rtyp)))); |
| |
| Append_To (Args, |
| Make_Integer_Literal (Loc, -Norm_Den (Small_Value (Rtyp)))); |
| |
| Rewrite (N, |
| OK_Convert_To (Btyp, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (Vid), Loc), |
| Parameter_Associations => Args))); |
| |
| Set_Etype (N, Btyp); |
| Analyze_And_Resolve (N, Btyp); |
| return; |
| end if; |
| end; |
| |
| elsif Is_Floating_Point_Type (Rtyp) then |
| -- Short_Float and Float are the same type for GNAT |
| |
| if Rtyp = Standard_Short_Float or else Rtyp = Standard_Float then |
| Vid := RE_Value_Float; |
| |
| elsif Rtyp = Standard_Long_Float then |
| Vid := RE_Value_Long_Float; |
| |
| else |
| Vid := RE_Value_Long_Long_Float; |
| end if; |
| |
| -- Only other possibility is user-defined enumeration type |
| |
| else |
| pragma Assert (Is_Enumeration_Type (Rtyp)); |
| |
| -- Case of pragma Discard_Names, transform the Value |
| -- attribute to Btyp'Val (Long_Long_Integer'Value (Args)) |
| |
| if Discard_Names (First_Subtype (Btyp)) |
| or else No (Lit_Strings (Rtyp)) |
| then |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Btyp, Loc), |
| Attribute_Name => Name_Val, |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| New_Occurrence_Of (Standard_Long_Long_Integer, Loc), |
| Attribute_Name => Name_Value, |
| Expressions => Args)))); |
| |
| Analyze_And_Resolve (N, Btyp); |
| |
| -- Normal case where we have enumeration tables, build |
| |
| -- T'Val |
| -- (Value_Enumeration_NN |
| -- (typS, typN'Address, typH'Unrestricted_Access, Num, X)) |
| |
| else |
| Ttyp := Component_Type (Etype (Lit_Indexes (Rtyp))); |
| |
| if Ttyp = Standard_Integer_8 then |
| Vid := RE_Value_Enumeration_8; |
| elsif Ttyp = Standard_Integer_16 then |
| Vid := RE_Value_Enumeration_16; |
| else |
| Vid := RE_Value_Enumeration_32; |
| end if; |
| |
| Prepend_To (Args, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Rtyp, Loc), |
| Attribute_Name => Name_Pos, |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Rtyp, Loc), |
| Attribute_Name => Name_Last)))); |
| |
| if Present (Lit_Hash (Rtyp)) then |
| Prepend_To (Args, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Lit_Hash (Rtyp), Loc), |
| Attribute_Name => Name_Unrestricted_Access)); |
| else |
| Prepend_To (Args, Make_Null (Loc)); |
| end if; |
| |
| Prepend_To (Args, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Lit_Indexes (Rtyp), Loc), |
| Attribute_Name => Name_Address)); |
| |
| Prepend_To (Args, |
| New_Occurrence_Of (Lit_Strings (Rtyp), Loc)); |
| |
| Rewrite (N, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Btyp, Loc), |
| Attribute_Name => Name_Val, |
| Expressions => New_List ( |
| Make_Function_Call (Loc, |
| Name => |
| New_Occurrence_Of (RTE (Vid), Loc), |
| Parameter_Associations => Args)))); |
| |
| Analyze_And_Resolve (N, Btyp); |
| end if; |
| |
| return; |
| end if; |
| |
| -- Compiling package Ada.Tags under No_Run_Time_Mode we disable the |
| -- expansion of the attribute into the function call statement to avoid |
| -- generating spurious errors caused by the use of Integer_Address'Value |
| -- in our implementation of Ada.Tags.Internal_Tag. |
| |
| if No_Run_Time_Mode |
| and then Is_RTE (Rtyp, RE_Integer_Address) |
| and then RTU_Loaded (Ada_Tags) |
| and then Cunit_Entity (Current_Sem_Unit) |
| = Body_Entity (RTU_Entity (Ada_Tags)) |
| then |
| Rewrite (N, |
| Unchecked_Convert_To (Rtyp, |
| Make_Integer_Literal (Loc, Uint_0))); |
| |
| else |
| Rewrite (N, |
| Convert_To (Btyp, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (Vid), Loc), |
| Parameter_Associations => Args))); |
| end if; |
| |
| Analyze_And_Resolve (N, Btyp); |
| end Expand_Value_Attribute; |
| |
| --------------------------------- |
| -- Expand_Wide_Image_Attribute -- |
| --------------------------------- |
| |
| -- We expand typ'Wide_Image (X) as follows. First we insert this code: |
| |
| -- Rnn : Wide_String (1 .. rt'Wide_Width); |
| -- Lnn : Natural; |
| -- String_To_Wide_String |
| -- (typ'Image (Expr), Rnn, Lnn, Wide_Character_Encoding_Method); |
| |
| -- where rt is the root type of the prefix type |
| |
| -- Now we replace the Wide_Image reference by |
| |
| -- Rnn (1 .. Lnn) |
| |
| -- This works in all cases because String_To_Wide_String converts any |
| -- wide character escape sequences resulting from the Image call to the |
| -- proper Wide_Character equivalent |
| |
| -- not quite right for typ = Wide_Character ??? |
| |
| procedure Expand_Wide_Image_Attribute (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| Pref : constant Entity_Id := Prefix (N); |
| Rnn : constant Entity_Id := Make_Temporary (Loc, 'S'); |
| Lnn : constant Entity_Id := Make_Temporary (Loc, 'P'); |
| Rtyp : Entity_Id; |
| |
| begin |
| if Is_Object_Image (Pref) then |
| Rewrite_Object_Image (N, Pref, Name_Wide_Image, Standard_Wide_String); |
| return; |
| end if; |
| |
| Rtyp := Root_Type (Entity (Pref)); |
| |
| Insert_Actions (N, New_List ( |
| |
| -- Rnn : Wide_String (1 .. base_typ'Width); |
| |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Rnn, |
| Object_Definition => |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => |
| New_Occurrence_Of (Standard_Wide_String, Loc), |
| Constraint => |
| Make_Index_Or_Discriminant_Constraint (Loc, |
| Constraints => New_List ( |
| Make_Range (Loc, |
| Low_Bound => Make_Integer_Literal (Loc, 1), |
| High_Bound => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Rtyp, Loc), |
| Attribute_Name => Name_Wide_Width)))))), |
| |
| -- Lnn : Natural; |
| |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Lnn, |
| Object_Definition => New_Occurrence_Of (Standard_Natural, Loc)), |
| |
| -- String_To_Wide_String |
| -- (typ'Image (X), Rnn, Lnn, Wide_Character_Encoding_Method); |
| |
| Make_Procedure_Call_Statement (Loc, |
| Name => |
| New_Occurrence_Of (RTE (RE_String_To_Wide_String), Loc), |
| |
| Parameter_Associations => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => Prefix (N), |
| Attribute_Name => Name_Image, |
| Expressions => Expressions (N)), |
| New_Occurrence_Of (Rnn, Loc), |
| New_Occurrence_Of (Lnn, Loc), |
| Make_Integer_Literal (Loc, |
| Intval => Int (Wide_Character_Encoding_Method))))), |
| |
| -- Suppress checks because we know everything is properly in range |
| |
| Suppress => All_Checks); |
| |
| -- Final step is to rewrite the expression as a slice and analyze, |
| -- again with no checks, since we are sure that everything is OK. |
| |
| Rewrite (N, |
| Make_Slice (Loc, |
| Prefix => New_Occurrence_Of (Rnn, Loc), |
| Discrete_Range => |
| Make_Range (Loc, |
| Low_Bound => Make_Integer_Literal (Loc, 1), |
| High_Bound => New_Occurrence_Of (Lnn, Loc)))); |
| |
| Analyze_And_Resolve (N, Standard_Wide_String, Suppress => All_Checks); |
| end Expand_Wide_Image_Attribute; |
| |
| -------------------------------------- |
| -- Expand_Wide_Wide_Image_Attribute -- |
| -------------------------------------- |
| |
| -- We expand typ'Wide_Wide_Image (X) as follows. First we insert this code: |
| |
| -- Rnn : Wide_Wide_String (1 .. rt'Wide_Wide_Width); |
| -- Lnn : Natural; |
| -- String_To_Wide_Wide_String |
| -- (typ'Image (Expr), Rnn, Lnn, Wide_Character_Encoding_Method); |
| |
| -- where rt is the root type of the prefix type |
| |
| -- Now we replace the Wide_Wide_Image reference by |
| |
| -- Rnn (1 .. Lnn) |
| |
| -- This works in all cases because String_To_Wide_Wide_String converts any |
| -- wide character escape sequences resulting from the Image call to the |
| -- proper Wide_Wide_Character equivalent |
| |
| -- not quite right for typ = Wide_Wide_Character ??? |
| |
| procedure Expand_Wide_Wide_Image_Attribute (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| Pref : constant Entity_Id := Prefix (N); |
| Rnn : constant Entity_Id := Make_Temporary (Loc, 'S'); |
| Lnn : constant Entity_Id := Make_Temporary (Loc, 'P'); |
| Rtyp : Entity_Id; |
| |
| begin |
| if Is_Object_Image (Pref) then |
| Rewrite_Object_Image |
| (N, Pref, Name_Wide_Wide_Image, Standard_Wide_Wide_String); |
| return; |
| end if; |
| |
| Rtyp := Root_Type (Entity (Pref)); |
| |
| Insert_Actions (N, New_List ( |
| |
| -- Rnn : Wide_Wide_String (1 .. rt'Wide_Wide_Width); |
| |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Rnn, |
| Object_Definition => |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => |
| New_Occurrence_Of (Standard_Wide_Wide_String, Loc), |
| Constraint => |
| Make_Index_Or_Discriminant_Constraint (Loc, |
| Constraints => New_List ( |
| Make_Range (Loc, |
| Low_Bound => Make_Integer_Literal (Loc, 1), |
| High_Bound => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Rtyp, Loc), |
| Attribute_Name => Name_Wide_Wide_Width)))))), |
| |
| -- Lnn : Natural; |
| |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Lnn, |
| Object_Definition => New_Occurrence_Of (Standard_Natural, Loc)), |
| |
| -- String_To_Wide_Wide_String |
| -- (typ'Image (X), Rnn, Lnn, Wide_Character_Encoding_Method); |
| |
| Make_Procedure_Call_Statement (Loc, |
| Name => |
| New_Occurrence_Of (RTE (RE_String_To_Wide_Wide_String), Loc), |
| |
| Parameter_Associations => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => Prefix (N), |
| Attribute_Name => Name_Image, |
| Expressions => Expressions (N)), |
| New_Occurrence_Of (Rnn, Loc), |
| New_Occurrence_Of (Lnn, Loc), |
| Make_Integer_Literal (Loc, |
| Intval => Int (Wide_Character_Encoding_Method))))), |
| |
| -- Suppress checks because we know everything is properly in range |
| |
| Suppress => All_Checks); |
| |
| -- Final step is to rewrite the expression as a slice and analyze, |
| -- again with no checks, since we are sure that everything is OK. |
| |
| Rewrite (N, |
| Make_Slice (Loc, |
| Prefix => New_Occurrence_Of (Rnn, Loc), |
| Discrete_Range => |
| Make_Range (Loc, |
| Low_Bound => Make_Integer_Literal (Loc, 1), |
| High_Bound => New_Occurrence_Of (Lnn, Loc)))); |
| |
| Analyze_And_Resolve |
| (N, Standard_Wide_Wide_String, Suppress => All_Checks); |
| end Expand_Wide_Wide_Image_Attribute; |
| |
| ---------------------------- |
| -- Expand_Width_Attribute -- |
| ---------------------------- |
| |
| -- The processing here also handles the case of Wide_[Wide_]Width. With the |
| -- exceptions noted, the processing is identical |
| |
| -- For scalar types derived from Boolean, character and integer types |
| -- in package Standard. Note that the Width attribute is computed at |
| -- compile time for all cases except those involving non-static sub- |
| -- types. For such subtypes, typ'[Wide_[Wide_]]Width expands into: |
| |
| -- Result_Type (xx (yy (Ptyp'First), yy (Ptyp'Last))) |
| |
| -- where |
| |
| -- For types whose root type is Character |
| -- xx = Width_Character |
| -- yy = Character |
| |
| -- For types whose root type is Wide_Character |
| -- xx = Wide_Width_Character |
| -- yy = Character |
| |
| -- For types whose root type is Wide_Wide_Character |
| -- xx = Wide_Wide_Width_Character |
| -- yy = Character |
| |
| -- For types whose root type is Boolean |
| -- xx = Width_Boolean |
| -- yy = Boolean |
| |
| -- For signed integer types |
| -- xx = Width_[Long_Long_[Long_]]Integer |
| -- yy = [Long_Long_[Long_]]Integer |
| |
| -- For modular integer types |
| -- xx = Width_[Long_Long_[Long_]]Unsigned |
| -- yy = [Long_Long_[Long_]]Unsigned |
| |
| -- For types derived from Wide_Character, typ'Width expands into |
| |
| -- Result_Type (Width_Wide_Character ( |
| -- Wide_Character (typ'First), |
| -- Wide_Character (typ'Last), |
| |
| -- and typ'Wide_Width expands into: |
| |
| -- Result_Type (Wide_Width_Wide_Character ( |
| -- Wide_Character (typ'First), |
| -- Wide_Character (typ'Last)); |
| |
| -- and typ'Wide_Wide_Width expands into |
| |
| -- Result_Type (Wide_Wide_Width_Wide_Character ( |
| -- Wide_Character (typ'First), |
| -- Wide_Character (typ'Last)); |
| |
| -- For types derived from Wide_Wide_Character, typ'Width expands into |
| |
| -- Result_Type (Width_Wide_Wide_Character ( |
| -- Wide_Wide_Character (typ'First), |
| -- Wide_Wide_Character (typ'Last), |
| |
| -- and typ'Wide_Width expands into: |
| |
| -- Result_Type (Wide_Width_Wide_Wide_Character ( |
| -- Wide_Wide_Character (typ'First), |
| -- Wide_Wide_Character (typ'Last)); |
| |
| -- and typ'Wide_Wide_Width expands into |
| |
| -- Result_Type (Wide_Wide_Width_Wide_Wide_Char ( |
| -- Wide_Wide_Character (typ'First), |
| -- Wide_Wide_Character (typ'Last)); |
| |
| -- For fixed point types, typ'Width and typ'Wide_[Wide_]Width expand into |
| |
| -- if Ptyp'First > Ptyp'Last then 0 else Ptyp'Fore + 1 + Ptyp'Aft end if |
| |
| -- and for floating point types, they expand into |
| |
| -- if Ptyp'First > Ptyp'Last then 0 else btyp'Width end if |
| |
| -- where btyp is the base type. This looks recursive but it isn't |
| -- because the base type is always static, and hence the expression |
| -- in the else is reduced to an integer literal. |
| |
| -- For user-defined enumeration types, typ'Width expands into |
| |
| -- Result_Type (Width_Enumeration_NN |
| -- (typS, |
| -- typI'Address, |
| -- typ'Pos (typ'First), |
| -- typ'Pos (Typ'Last))); |
| |
| -- and typ'Wide_Width expands into: |
| |
| -- Result_Type (Wide_Width_Enumeration_NN |
| -- (typS, |
| -- typI, |
| -- typ'Pos (typ'First), |
| -- typ'Pos (Typ'Last)) |
| -- Wide_Character_Encoding_Method); |
| |
| -- and typ'Wide_Wide_Width expands into: |
| |
| -- Result_Type (Wide_Wide_Width_Enumeration_NN |
| -- (typS, |
| -- typI, |
| -- typ'Pos (typ'First), |
| -- typ'Pos (Typ'Last)) |
| -- Wide_Character_Encoding_Method); |
| |
| -- where typS and typI are the enumeration image strings and indexes |
| -- table, as described in Build_Enumeration_Image_Tables. NN is 8/16/32 |
| -- for depending on the element type for typI. |
| |
| -- Finally if Discard_Names is in effect for an enumeration type, then |
| -- a special if expression is built that yields the space needed for the |
| -- decimal representation of the largest pos value in the subtype. See |
| -- code below for details. |
| |
| procedure Expand_Width_Attribute (N : Node_Id; Attr : Atype := Normal) is |
| Loc : constant Source_Ptr := Sloc (N); |
| Typ : constant Entity_Id := Etype (N); |
| Pref : constant Node_Id := Prefix (N); |
| Ptyp : constant Entity_Id := Etype (Pref); |
| Rtyp : constant Entity_Id := Root_Type (Ptyp); |
| Arglist : List_Id; |
| Ttyp : Entity_Id; |
| XX : RE_Id; |
| YY : Entity_Id; |
| |
| begin |
| -- Types derived from Standard.Boolean |
| |
| if Rtyp = Standard_Boolean then |
| XX := RE_Width_Boolean; |
| YY := Rtyp; |
| |
| -- Types derived from Standard.Character |
| |
| elsif Rtyp = Standard_Character then |
| case Attr is |
| when Normal => XX := RE_Width_Character; |
| when Wide => XX := RE_Wide_Width_Character; |
| when Wide_Wide => XX := RE_Wide_Wide_Width_Character; |
| end case; |
| |
| YY := Rtyp; |
| |
| -- Types derived from Standard.Wide_Character |
| |
| elsif Rtyp = Standard_Wide_Character then |
| case Attr is |
| when Normal => XX := RE_Width_Wide_Character; |
| when Wide => XX := RE_Wide_Width_Wide_Character; |
| when Wide_Wide => XX := RE_Wide_Wide_Width_Wide_Character; |
| end case; |
| |
| YY := Rtyp; |
| |
| -- Types derived from Standard.Wide_Wide_Character |
| |
| elsif Rtyp = Standard_Wide_Wide_Character then |
| case Attr is |
| when Normal => XX := RE_Width_Wide_Wide_Character; |
| when Wide => XX := RE_Wide_Width_Wide_Wide_Character; |
| when Wide_Wide => XX := RE_Wide_Wide_Width_Wide_Wide_Char; |
| end case; |
| |
| YY := Rtyp; |
| |
| -- Signed integer types |
| |
| elsif Is_Signed_Integer_Type (Rtyp) then |
| if Esize (Rtyp) <= Standard_Integer_Size then |
| XX := RE_Width_Integer; |
| YY := Standard_Integer; |
| elsif Esize (Rtyp) <= Standard_Long_Long_Integer_Size then |
| XX := RE_Width_Long_Long_Integer; |
| YY := Standard_Long_Long_Integer; |
| else |
| XX := RE_Width_Long_Long_Long_Integer; |
| YY := Standard_Long_Long_Long_Integer; |
| end if; |
| |
| -- Modular integer types |
| |
| elsif Is_Modular_Integer_Type (Rtyp) then |
| if Modulus (Rtyp) <= Modulus (RTE (RE_Unsigned)) then |
| XX := RE_Width_Unsigned; |
| YY := RTE (RE_Unsigned); |
| elsif Modulus (Rtyp) <= Modulus (RTE (RE_Long_Long_Unsigned)) then |
| XX := RE_Width_Long_Long_Unsigned; |
| YY := RTE (RE_Long_Long_Unsigned); |
| else |
| XX := RE_Width_Long_Long_Long_Unsigned; |
| YY := RTE (RE_Long_Long_Long_Unsigned); |
| end if; |
| |
| -- Fixed point types |
| |
| elsif Is_Fixed_Point_Type (Rtyp) then |
| Rewrite (N, |
| Make_If_Expression (Loc, |
| Expressions => New_List ( |
| |
| Make_Op_Gt (Loc, |
| Left_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_First), |
| |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Last)), |
| |
| Make_Integer_Literal (Loc, 0), |
| |
| Make_Op_Add (Loc, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Fore), |
| |
| Make_Op_Add (Loc, |
| Make_Integer_Literal (Loc, 1), |
| Make_Integer_Literal (Loc, Aft_Value (Ptyp))))))); |
| |
| Analyze_And_Resolve (N, Typ); |
| return; |
| |
| -- Floating point types |
| |
| elsif Is_Floating_Point_Type (Rtyp) then |
| Rewrite (N, |
| Make_If_Expression (Loc, |
| Expressions => New_List ( |
| |
| Make_Op_Gt (Loc, |
| Left_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_First), |
| |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Last)), |
| |
| Make_Integer_Literal (Loc, 0), |
| |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Base_Type (Ptyp), Loc), |
| Attribute_Name => Name_Width)))); |
| |
| Analyze_And_Resolve (N, Typ); |
| return; |
| |
| -- User-defined enumeration types |
| |
| else |
| pragma Assert (Is_Enumeration_Type (Rtyp)); |
| |
| -- Whenever pragma Discard_Names is in effect, the value we need |
| -- is the value needed to accommodate the largest integer pos value |
| -- in the range of the subtype + 1 for the space at the start. We |
| -- build: |
| |
| -- Tnn : constant Integer := Rtyp'Pos (Ptyp'Last) |
| |
| -- and replace the expression by |
| |
| -- (if Ptyp'Range_Length = 0 then 0 |
| -- else (if Tnn < 10 then 2 |
| -- else (if Tnn < 100 then 3 |
| -- ... |
| -- else n)))... |
| |
| -- where n is equal to Rtyp'Pos (Ptyp'Last) + 1 |
| |
| -- Note: The above processing is in accordance with the intent of |
| -- the RM, which is that Width should be related to the impl-defined |
| -- behavior of Image. It is not clear what this means if Image is |
| -- not defined (as in the configurable run-time case for GNAT) and |
| -- gives an error at compile time. |
| |
| -- We choose in this case to just go ahead and implement Width the |
| -- same way, returning what Image would have returned if it has been |
| -- available in the configurable run-time library. |
| |
| if Discard_Names (Rtyp) then |
| declare |
| Tnn : constant Entity_Id := Make_Temporary (Loc, 'T'); |
| Cexpr : Node_Id; |
| P : Int; |
| M : Int; |
| K : Int; |
| |
| begin |
| Insert_Action (N, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Tnn, |
| Constant_Present => True, |
| Object_Definition => |
| New_Occurrence_Of (Standard_Integer, Loc), |
| Expression => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Rtyp, Loc), |
| Attribute_Name => Name_Pos, |
| Expressions => New_List ( |
| Convert_To (Rtyp, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Last)))))); |
| |
| -- OK, now we need to build the if expression. First get the |
| -- value of M, the largest possible value needed. |
| |
| P := UI_To_Int |
| (Enumeration_Pos (Entity (Type_High_Bound (Rtyp)))); |
| |
| K := 1; |
| M := 1; |
| while M < P loop |
| M := M * 10; |
| K := K + 1; |
| end loop; |
| |
| -- Build inner else |
| |
| Cexpr := Make_Integer_Literal (Loc, K); |
| |
| -- Wrap in inner if's until counted down to 2 |
| |
| while K > 2 loop |
| M := M / 10; |
| K := K - 1; |
| |
| Cexpr := |
| Make_If_Expression (Loc, |
| Expressions => New_List ( |
| Make_Op_Lt (Loc, |
| Left_Opnd => New_Occurrence_Of (Tnn, Loc), |
| Right_Opnd => Make_Integer_Literal (Loc, M)), |
| Make_Integer_Literal (Loc, K), |
| Cexpr)); |
| end loop; |
| |
| -- Add initial comparison for null range and we are done, so |
| -- rewrite the attribute occurrence with this expression. |
| |
| Rewrite (N, |
| Convert_To (Typ, |
| Make_If_Expression (Loc, |
| Expressions => New_List ( |
| Make_Op_Eq (Loc, |
| Left_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Range_Length), |
| Right_Opnd => Make_Integer_Literal (Loc, 0)), |
| Make_Integer_Literal (Loc, 0), |
| Cexpr)))); |
| |
| Analyze_And_Resolve (N, Typ); |
| return; |
| end; |
| end if; |
| |
| -- Normal case, not Discard_Names |
| |
| Ttyp := Component_Type (Etype (Lit_Indexes (Rtyp))); |
| |
| case Attr is |
| when Normal => |
| if Ttyp = Standard_Integer_8 then |
| XX := RE_Width_Enumeration_8; |
| elsif Ttyp = Standard_Integer_16 then |
| XX := RE_Width_Enumeration_16; |
| else |
| XX := RE_Width_Enumeration_32; |
| end if; |
| |
| when Wide => |
| if Ttyp = Standard_Integer_8 then |
| XX := RE_Wide_Width_Enumeration_8; |
| elsif Ttyp = Standard_Integer_16 then |
| XX := RE_Wide_Width_Enumeration_16; |
| else |
| XX := RE_Wide_Width_Enumeration_32; |
| end if; |
| |
| when Wide_Wide => |
| if Ttyp = Standard_Integer_8 then |
| XX := RE_Wide_Wide_Width_Enumeration_8; |
| elsif Ttyp = Standard_Integer_16 then |
| XX := RE_Wide_Wide_Width_Enumeration_16; |
| else |
| XX := RE_Wide_Wide_Width_Enumeration_32; |
| end if; |
| end case; |
| |
| Arglist := |
| New_List ( |
| New_Occurrence_Of (Lit_Strings (Rtyp), Loc), |
| |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Lit_Indexes (Rtyp), Loc), |
| Attribute_Name => Name_Address), |
| |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Pos, |
| |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_First))), |
| |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Pos, |
| |
| Expressions => New_List ( |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Last)))); |
| |
| Rewrite (N, |
| Convert_To (Typ, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (XX), Loc), |
| Parameter_Associations => Arglist))); |
| |
| Analyze_And_Resolve (N, Typ); |
| return; |
| end if; |
| |
| -- If we fall through XX and YY are set |
| |
| Arglist := New_List ( |
| Convert_To (YY, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_First)), |
| |
| Convert_To (YY, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Ptyp, Loc), |
| Attribute_Name => Name_Last))); |
| |
| Rewrite (N, |
| Convert_To (Typ, |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (XX), Loc), |
| Parameter_Associations => Arglist))); |
| |
| Analyze_And_Resolve (N, Typ); |
| end Expand_Width_Attribute; |
| |
| -------------------------- |
| -- Rewrite_Object_Image -- |
| -------------------------- |
| |
| procedure Rewrite_Object_Image |
| (N : Node_Id; |
| Pref : Entity_Id; |
| Attr_Name : Name_Id; |
| Str_Typ : Entity_Id) |
| is |
| begin |
| Rewrite (N, |
| Make_Attribute_Reference (Sloc (N), |
| Prefix => New_Occurrence_Of (Etype (Pref), Sloc (N)), |
| Attribute_Name => Attr_Name, |
| Expressions => New_List (Relocate_Node (Pref)))); |
| |
| Analyze_And_Resolve (N, Str_Typ); |
| end Rewrite_Object_Image; |
| end Exp_Imgv; |