blob: 14f0304e2080cf61fa8a2ef9339cb9b544e51f9d [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT LIBRARY COMPONENTS --
-- --
-- ADA.CONTAINERS.FORMAL_DOUBLY_LINKED_LISTS --
-- --
-- B o d y --
-- --
-- Copyright (C) 2010-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
------------------------------------------------------------------------------
with Ada.Containers.Stable_Sorting; use Ada.Containers.Stable_Sorting;
with System; use type System.Address;
package body Ada.Containers.Formal_Doubly_Linked_Lists with
SPARK_Mode => Off
is
-----------------------
-- Local Subprograms --
-----------------------
procedure Allocate
(Container : in out List;
New_Item : Element_Type;
New_Node : out Count_Type);
procedure Free (Container : in out List; X : Count_Type);
procedure Insert_Internal
(Container : in out List;
Before : Count_Type;
New_Node : Count_Type);
function Vet (L : List; Position : Cursor) return Boolean;
---------
-- "=" --
---------
function "=" (Left : List; Right : List) return Boolean is
LI : Count_Type;
RI : Count_Type;
begin
if Left'Address = Right'Address then
return True;
end if;
if Left.Length /= Right.Length then
return False;
end if;
LI := Left.First;
RI := Left.First;
while LI /= 0 loop
if Left.Nodes (LI).Element /= Right.Nodes (LI).Element then
return False;
end if;
LI := Left.Nodes (LI).Next;
RI := Right.Nodes (RI).Next;
end loop;
return True;
end "=";
--------------
-- Allocate --
--------------
procedure Allocate
(Container : in out List;
New_Item : Element_Type;
New_Node : out Count_Type)
is
N : Node_Array renames Container.Nodes;
begin
if Container.Free >= 0 then
New_Node := Container.Free;
N (New_Node).Element := New_Item;
Container.Free := N (New_Node).Next;
else
New_Node := abs Container.Free;
N (New_Node).Element := New_Item;
Container.Free := Container.Free - 1;
end if;
end Allocate;
------------
-- Append --
------------
procedure Append (Container : in out List; New_Item : Element_Type) is
begin
Insert (Container, No_Element, New_Item, 1);
end Append;
procedure Append
(Container : in out List;
New_Item : Element_Type;
Count : Count_Type)
is
begin
Insert (Container, No_Element, New_Item, Count);
end Append;
------------
-- Assign --
------------
procedure Assign (Target : in out List; Source : List) is
N : Node_Array renames Source.Nodes;
J : Count_Type;
begin
if Target'Address = Source'Address then
return;
end if;
if Target.Capacity < Source.Length then
raise Constraint_Error with -- ???
"Source length exceeds Target capacity";
end if;
Clear (Target);
J := Source.First;
while J /= 0 loop
Append (Target, N (J).Element, 1);
J := N (J).Next;
end loop;
end Assign;
-----------
-- Clear --
-----------
procedure Clear (Container : in out List) is
N : Node_Array renames Container.Nodes;
X : Count_Type;
begin
if Container.Length = 0 then
pragma Assert (Container.First = 0);
pragma Assert (Container.Last = 0);
return;
end if;
pragma Assert (Container.First >= 1);
pragma Assert (Container.Last >= 1);
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
while Container.Length > 1 loop
X := Container.First;
Container.First := N (X).Next;
N (Container.First).Prev := 0;
Container.Length := Container.Length - 1;
Free (Container, X);
end loop;
X := Container.First;
Container.First := 0;
Container.Last := 0;
Container.Length := 0;
Free (Container, X);
end Clear;
------------------------
-- Constant_Reference --
------------------------
function Constant_Reference
(Container : aliased List;
Position : Cursor) return not null access constant Element_Type
is
begin
if not Has_Element (Container => Container, Position => Position) then
raise Constraint_Error with "Position cursor has no element";
end if;
return Container.Nodes (Position.Node).Element'Access;
end Constant_Reference;
--------------
-- Contains --
--------------
function Contains
(Container : List;
Item : Element_Type) return Boolean
is
begin
return Find (Container, Item) /= No_Element;
end Contains;
----------
-- Copy --
----------
function Copy
(Source : List;
Capacity : Count_Type := 0) return List
is
C : constant Count_Type := Count_Type'Max (Source.Capacity, Capacity);
N : Count_Type;
P : List (C);
begin
if 0 < Capacity and then Capacity < Source.Capacity then
raise Capacity_Error;
end if;
N := 1;
while N <= Source.Capacity loop
P.Nodes (N).Prev := Source.Nodes (N).Prev;
P.Nodes (N).Next := Source.Nodes (N).Next;
P.Nodes (N).Element := Source.Nodes (N).Element;
N := N + 1;
end loop;
P.Free := Source.Free;
P.Length := Source.Length;
P.First := Source.First;
P.Last := Source.Last;
if P.Free >= 0 then
N := Source.Capacity + 1;
while N <= C loop
Free (P, N);
N := N + 1;
end loop;
end if;
return P;
end Copy;
------------
-- Delete --
------------
procedure Delete (Container : in out List; Position : in out Cursor) is
begin
Delete
(Container => Container,
Position => Position,
Count => 1);
end Delete;
procedure Delete
(Container : in out List;
Position : in out Cursor;
Count : Count_Type)
is
N : Node_Array renames Container.Nodes;
X : Count_Type;
begin
if not Has_Element (Container => Container,
Position => Position)
then
raise Constraint_Error with "Position cursor has no element";
end if;
pragma Assert (Vet (Container, Position), "bad cursor in Delete");
pragma Assert (Container.First >= 1);
pragma Assert (Container.Last >= 1);
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
if Position.Node = Container.First then
Delete_First (Container, Count);
Position := No_Element;
return;
end if;
if Count = 0 then
Position := No_Element;
return;
end if;
for Index in 1 .. Count loop
pragma Assert (Container.Length >= 2);
X := Position.Node;
Container.Length := Container.Length - 1;
if X = Container.Last then
Position := No_Element;
Container.Last := N (X).Prev;
N (Container.Last).Next := 0;
Free (Container, X);
return;
end if;
Position.Node := N (X).Next;
pragma Assert (N (Position.Node).Prev >= 0);
N (N (X).Next).Prev := N (X).Prev;
N (N (X).Prev).Next := N (X).Next;
Free (Container, X);
end loop;
Position := No_Element;
end Delete;
------------------
-- Delete_First --
------------------
procedure Delete_First (Container : in out List) is
begin
Delete_First
(Container => Container,
Count => 1);
end Delete_First;
procedure Delete_First (Container : in out List; Count : Count_Type) is
N : Node_Array renames Container.Nodes;
X : Count_Type;
begin
if Count >= Container.Length then
Clear (Container);
return;
end if;
if Count = 0 then
return;
end if;
for J in 1 .. Count loop
X := Container.First;
pragma Assert (N (N (X).Next).Prev = Container.First);
Container.First := N (X).Next;
N (Container.First).Prev := 0;
Container.Length := Container.Length - 1;
Free (Container, X);
end loop;
end Delete_First;
-----------------
-- Delete_Last --
-----------------
procedure Delete_Last (Container : in out List) is
begin
Delete_Last
(Container => Container,
Count => 1);
end Delete_Last;
procedure Delete_Last (Container : in out List; Count : Count_Type) is
N : Node_Array renames Container.Nodes;
X : Count_Type;
begin
if Count >= Container.Length then
Clear (Container);
return;
end if;
if Count = 0 then
return;
end if;
for J in 1 .. Count loop
X := Container.Last;
pragma Assert (N (N (X).Prev).Next = Container.Last);
Container.Last := N (X).Prev;
N (Container.Last).Next := 0;
Container.Length := Container.Length - 1;
Free (Container, X);
end loop;
end Delete_Last;
-------------
-- Element --
-------------
function Element
(Container : List;
Position : Cursor) return Element_Type
is
begin
if not Has_Element (Container => Container, Position => Position) then
raise Constraint_Error with "Position cursor has no element";
end if;
return Container.Nodes (Position.Node).Element;
end Element;
----------
-- Find --
----------
function Find
(Container : List;
Item : Element_Type;
Position : Cursor := No_Element) return Cursor
is
From : Count_Type := Position.Node;
begin
if From = 0 and Container.Length = 0 then
return No_Element;
end if;
if From = 0 then
From := Container.First;
end if;
if Position.Node /= 0 and then not Has_Element (Container, Position) then
raise Constraint_Error with "Position cursor has no element";
end if;
while From /= 0 loop
if Container.Nodes (From).Element = Item then
return (Node => From);
end if;
From := Container.Nodes (From).Next;
end loop;
return No_Element;
end Find;
-----------
-- First --
-----------
function First (Container : List) return Cursor is
begin
if Container.First = 0 then
return No_Element;
end if;
return (Node => Container.First);
end First;
-------------------
-- First_Element --
-------------------
function First_Element (Container : List) return Element_Type is
F : constant Count_Type := Container.First;
begin
if F = 0 then
raise Constraint_Error with "list is empty";
else
return Container.Nodes (F).Element;
end if;
end First_Element;
------------------
-- Formal_Model --
------------------
package body Formal_Model is
----------------------------
-- Lift_Abstraction_Level --
----------------------------
procedure Lift_Abstraction_Level (Container : List) is null;
-------------------------
-- M_Elements_In_Union --
-------------------------
function M_Elements_In_Union
(Container : M.Sequence;
Left : M.Sequence;
Right : M.Sequence) return Boolean
is
Elem : Element_Type;
begin
for Index in 1 .. M.Length (Container) loop
Elem := Element (Container, Index);
if not M.Contains (Left, 1, M.Length (Left), Elem)
and then not M.Contains (Right, 1, M.Length (Right), Elem)
then
return False;
end if;
end loop;
return True;
end M_Elements_In_Union;
-------------------------
-- M_Elements_Included --
-------------------------
function M_Elements_Included
(Left : M.Sequence;
L_Fst : Positive_Count_Type := 1;
L_Lst : Count_Type;
Right : M.Sequence;
R_Fst : Positive_Count_Type := 1;
R_Lst : Count_Type) return Boolean
is
begin
for I in L_Fst .. L_Lst loop
declare
Found : Boolean := False;
J : Count_Type := R_Fst - 1;
begin
while not Found and J < R_Lst loop
J := J + 1;
if Element (Left, I) = Element (Right, J) then
Found := True;
end if;
end loop;
if not Found then
return False;
end if;
end;
end loop;
return True;
end M_Elements_Included;
-------------------------
-- M_Elements_Reversed --
-------------------------
function M_Elements_Reversed
(Left : M.Sequence;
Right : M.Sequence) return Boolean
is
L : constant Count_Type := M.Length (Left);
begin
if L /= M.Length (Right) then
return False;
end if;
for I in 1 .. L loop
if Element (Left, I) /= Element (Right, L - I + 1) then
return False;
end if;
end loop;
return True;
end M_Elements_Reversed;
------------------------
-- M_Elements_Swapped --
------------------------
function M_Elements_Swapped
(Left : M.Sequence;
Right : M.Sequence;
X : Positive_Count_Type;
Y : Positive_Count_Type) return Boolean
is
begin
if M.Length (Left) /= M.Length (Right)
or else Element (Left, X) /= Element (Right, Y)
or else Element (Left, Y) /= Element (Right, X)
then
return False;
end if;
for I in 1 .. M.Length (Left) loop
if I /= X and then I /= Y
and then Element (Left, I) /= Element (Right, I)
then
return False;
end if;
end loop;
return True;
end M_Elements_Swapped;
-----------
-- Model --
-----------
function Model (Container : List) return M.Sequence is
Position : Count_Type := Container.First;
R : M.Sequence;
begin
-- Can't use First, Next or Element here, since they depend on models
-- for their postconditions.
while Position /= 0 loop
R := M.Add (R, Container.Nodes (Position).Element);
Position := Container.Nodes (Position).Next;
end loop;
return R;
end Model;
-----------------------
-- Mapping_Preserved --
-----------------------
function Mapping_Preserved
(M_Left : M.Sequence;
M_Right : M.Sequence;
P_Left : P.Map;
P_Right : P.Map) return Boolean
is
begin
for C of P_Left loop
if not P.Has_Key (P_Right, C)
or else P.Get (P_Left, C) > M.Length (M_Left)
or else P.Get (P_Right, C) > M.Length (M_Right)
or else M.Get (M_Left, P.Get (P_Left, C)) /=
M.Get (M_Right, P.Get (P_Right, C))
then
return False;
end if;
end loop;
for C of P_Right loop
if not P.Has_Key (P_Left, C) then
return False;
end if;
end loop;
return True;
end Mapping_Preserved;
-------------------------
-- P_Positions_Shifted --
-------------------------
function P_Positions_Shifted
(Small : P.Map;
Big : P.Map;
Cut : Positive_Count_Type;
Count : Count_Type := 1) return Boolean
is
begin
for Cu of Small loop
if not P.Has_Key (Big, Cu) then
return False;
end if;
end loop;
for Cu of Big loop
declare
Pos : constant Positive_Count_Type := P.Get (Big, Cu);
begin
if Pos < Cut then
if not P.Has_Key (Small, Cu)
or else Pos /= P.Get (Small, Cu)
then
return False;
end if;
elsif Pos >= Cut + Count then
if not P.Has_Key (Small, Cu)
or else Pos /= P.Get (Small, Cu) + Count
then
return False;
end if;
else
if P.Has_Key (Small, Cu) then
return False;
end if;
end if;
end;
end loop;
return True;
end P_Positions_Shifted;
-------------------------
-- P_Positions_Swapped --
-------------------------
function P_Positions_Swapped
(Left : P.Map;
Right : P.Map;
X : Cursor;
Y : Cursor) return Boolean
is
begin
if not P.Has_Key (Left, X)
or not P.Has_Key (Left, Y)
or not P.Has_Key (Right, X)
or not P.Has_Key (Right, Y)
then
return False;
end if;
if P.Get (Left, X) /= P.Get (Right, Y)
or P.Get (Left, Y) /= P.Get (Right, X)
then
return False;
end if;
for C of Left loop
if not P.Has_Key (Right, C) then
return False;
end if;
end loop;
for C of Right loop
if not P.Has_Key (Left, C)
or else (C /= X
and C /= Y
and P.Get (Left, C) /= P.Get (Right, C))
then
return False;
end if;
end loop;
return True;
end P_Positions_Swapped;
---------------------------
-- P_Positions_Truncated --
---------------------------
function P_Positions_Truncated
(Small : P.Map;
Big : P.Map;
Cut : Positive_Count_Type;
Count : Count_Type := 1) return Boolean
is
begin
for Cu of Small loop
if not P.Has_Key (Big, Cu) then
return False;
end if;
end loop;
for Cu of Big loop
declare
Pos : constant Positive_Count_Type := P.Get (Big, Cu);
begin
if Pos < Cut then
if not P.Has_Key (Small, Cu)
or else Pos /= P.Get (Small, Cu)
then
return False;
end if;
elsif Pos >= Cut + Count then
return False;
elsif P.Has_Key (Small, Cu) then
return False;
end if;
end;
end loop;
return True;
end P_Positions_Truncated;
---------------
-- Positions --
---------------
function Positions (Container : List) return P.Map is
I : Count_Type := 1;
Position : Count_Type := Container.First;
R : P.Map;
begin
-- Can't use First, Next or Element here, since they depend on models
-- for their postconditions.
while Position /= 0 loop
R := P.Add (R, (Node => Position), I);
pragma Assert (P.Length (R) = I);
Position := Container.Nodes (Position).Next;
I := I + 1;
end loop;
return R;
end Positions;
end Formal_Model;
----------
-- Free --
----------
procedure Free (Container : in out List; X : Count_Type) is
pragma Assert (X > 0);
pragma Assert (X <= Container.Capacity);
N : Node_Array renames Container.Nodes;
begin
N (X).Prev := -1; -- Node is deallocated (not on active list)
if Container.Free >= 0 then
N (X).Next := Container.Free;
Container.Free := X;
elsif X + 1 = abs Container.Free then
N (X).Next := 0; -- Not strictly necessary, but marginally safer
Container.Free := Container.Free + 1;
else
Container.Free := abs Container.Free;
if Container.Free > Container.Capacity then
Container.Free := 0;
else
for J in Container.Free .. Container.Capacity - 1 loop
N (J).Next := J + 1;
end loop;
N (Container.Capacity).Next := 0;
end if;
N (X).Next := Container.Free;
Container.Free := X;
end if;
end Free;
---------------------
-- Generic_Sorting --
---------------------
package body Generic_Sorting with SPARK_Mode => Off is
------------------
-- Formal_Model --
------------------
package body Formal_Model is
-----------------------
-- M_Elements_Sorted --
-----------------------
function M_Elements_Sorted (Container : M.Sequence) return Boolean is
begin
if M.Length (Container) = 0 then
return True;
end if;
declare
E1 : Element_Type := Element (Container, 1);
begin
for I in 2 .. M.Length (Container) loop
declare
E2 : constant Element_Type := Element (Container, I);
begin
if E2 < E1 then
return False;
end if;
E1 := E2;
end;
end loop;
end;
return True;
end M_Elements_Sorted;
end Formal_Model;
---------------
-- Is_Sorted --
---------------
function Is_Sorted (Container : List) return Boolean is
Nodes : Node_Array renames Container.Nodes;
Node : Count_Type := Container.First;
begin
for J in 2 .. Container.Length loop
if Nodes (Nodes (Node).Next).Element < Nodes (Node).Element then
return False;
else
Node := Nodes (Node).Next;
end if;
end loop;
return True;
end Is_Sorted;
-----------
-- Merge --
-----------
procedure Merge (Target : in out List; Source : in out List) is
LN : Node_Array renames Target.Nodes;
RN : Node_Array renames Source.Nodes;
LI : Cursor;
RI : Cursor;
begin
if Target'Address = Source'Address then
raise Program_Error with "Target and Source denote same container";
end if;
LI := First (Target);
RI := First (Source);
while RI.Node /= 0 loop
pragma Assert
(RN (RI.Node).Next = 0
or else not (RN (RN (RI.Node).Next).Element <
RN (RI.Node).Element));
if LI.Node = 0 then
Splice (Target, No_Element, Source);
return;
end if;
pragma Assert
(LN (LI.Node).Next = 0
or else not (LN (LN (LI.Node).Next).Element <
LN (LI.Node).Element));
if RN (RI.Node).Element < LN (LI.Node).Element then
declare
RJ : Cursor := RI;
pragma Warnings (Off, RJ);
begin
RI.Node := RN (RI.Node).Next;
Splice (Target, LI, Source, RJ);
end;
else
LI.Node := LN (LI.Node).Next;
end if;
end loop;
end Merge;
----------
-- Sort --
----------
procedure Sort (Container : in out List) is
N : Node_Array renames Container.Nodes;
begin
if Container.Length <= 1 then
return;
end if;
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
declare
package Descriptors is new List_Descriptors
(Node_Ref => Count_Type, Nil => 0);
use Descriptors;
function Next (Idx : Count_Type) return Count_Type is
(N (Idx).Next);
procedure Set_Next (Idx : Count_Type; Next : Count_Type)
with Inline;
procedure Set_Prev (Idx : Count_Type; Prev : Count_Type)
with Inline;
function "<" (L, R : Count_Type) return Boolean is
(N (L).Element < N (R).Element);
procedure Update_Container (List : List_Descriptor) with Inline;
procedure Set_Next (Idx : Count_Type; Next : Count_Type) is
begin
N (Idx).Next := Next;
end Set_Next;
procedure Set_Prev (Idx : Count_Type; Prev : Count_Type) is
begin
N (Idx).Prev := Prev;
end Set_Prev;
procedure Update_Container (List : List_Descriptor) is
begin
Container.First := List.First;
Container.Last := List.Last;
Container.Length := List.Length;
end Update_Container;
procedure Sort_List is new Doubly_Linked_List_Sort;
begin
Sort_List (List_Descriptor'(First => Container.First,
Last => Container.Last,
Length => Container.Length));
end;
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
end Sort;
end Generic_Sorting;
-----------------
-- Has_Element --
-----------------
function Has_Element (Container : List; Position : Cursor) return Boolean is
begin
if Position.Node = 0 then
return False;
end if;
return Container.Nodes (Position.Node).Prev /= -1;
end Has_Element;
------------
-- Insert --
------------
procedure Insert
(Container : in out List;
Before : Cursor;
New_Item : Element_Type;
Position : out Cursor;
Count : Count_Type)
is
J : Count_Type;
begin
if Before.Node /= 0 then
pragma Assert (Vet (Container, Before), "bad cursor in Insert");
end if;
if Count = 0 then
Position := Before;
return;
end if;
if Container.Length > Container.Capacity - Count then
raise Constraint_Error with "new length exceeds capacity";
end if;
Allocate (Container, New_Item, New_Node => J);
Insert_Internal (Container, Before.Node, New_Node => J);
Position := (Node => J);
for Index in 2 .. Count loop
Allocate (Container, New_Item, New_Node => J);
Insert_Internal (Container, Before.Node, New_Node => J);
end loop;
end Insert;
procedure Insert
(Container : in out List;
Before : Cursor;
New_Item : Element_Type;
Position : out Cursor)
is
begin
Insert
(Container => Container,
Before => Before,
New_Item => New_Item,
Position => Position,
Count => 1);
end Insert;
procedure Insert
(Container : in out List;
Before : Cursor;
New_Item : Element_Type;
Count : Count_Type)
is
Position : Cursor;
begin
Insert (Container, Before, New_Item, Position, Count);
end Insert;
procedure Insert
(Container : in out List;
Before : Cursor;
New_Item : Element_Type)
is
Position : Cursor;
begin
Insert (Container, Before, New_Item, Position, 1);
end Insert;
---------------------
-- Insert_Internal --
---------------------
procedure Insert_Internal
(Container : in out List;
Before : Count_Type;
New_Node : Count_Type)
is
N : Node_Array renames Container.Nodes;
begin
if Container.Length = 0 then
pragma Assert (Before = 0);
pragma Assert (Container.First = 0);
pragma Assert (Container.Last = 0);
Container.First := New_Node;
Container.Last := New_Node;
N (Container.First).Prev := 0;
N (Container.Last).Next := 0;
elsif Before = 0 then
pragma Assert (N (Container.Last).Next = 0);
N (Container.Last).Next := New_Node;
N (New_Node).Prev := Container.Last;
Container.Last := New_Node;
N (Container.Last).Next := 0;
elsif Before = Container.First then
pragma Assert (N (Container.First).Prev = 0);
N (Container.First).Prev := New_Node;
N (New_Node).Next := Container.First;
Container.First := New_Node;
N (Container.First).Prev := 0;
else
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
N (New_Node).Next := Before;
N (New_Node).Prev := N (Before).Prev;
N (N (Before).Prev).Next := New_Node;
N (Before).Prev := New_Node;
end if;
Container.Length := Container.Length + 1;
end Insert_Internal;
--------------
-- Is_Empty --
--------------
function Is_Empty (Container : List) return Boolean is
begin
return Length (Container) = 0;
end Is_Empty;
----------
-- Last --
----------
function Last (Container : List) return Cursor is
begin
if Container.Last = 0 then
return No_Element;
end if;
return (Node => Container.Last);
end Last;
------------------
-- Last_Element --
------------------
function Last_Element (Container : List) return Element_Type is
L : constant Count_Type := Container.Last;
begin
if L = 0 then
raise Constraint_Error with "list is empty";
else
return Container.Nodes (L).Element;
end if;
end Last_Element;
------------
-- Length --
------------
function Length (Container : List) return Count_Type is
begin
return Container.Length;
end Length;
----------
-- Move --
----------
procedure Move (Target : in out List; Source : in out List) is
N : Node_Array renames Source.Nodes;
X : Count_Type;
begin
if Target'Address = Source'Address then
return;
end if;
if Target.Capacity < Source.Length then
raise Constraint_Error with -- ???
"Source length exceeds Target capacity";
end if;
Clear (Target);
while Source.Length > 1 loop
pragma Assert (Source.First in 1 .. Source.Capacity);
pragma Assert (Source.Last /= Source.First);
pragma Assert (N (Source.First).Prev = 0);
pragma Assert (N (Source.Last).Next = 0);
-- Copy first element from Source to Target
X := Source.First;
Append (Target, N (X).Element); -- optimize away???
-- Unlink first node of Source
Source.First := N (X).Next;
N (Source.First).Prev := 0;
Source.Length := Source.Length - 1;
-- The representation invariants for Source have been restored. It is
-- now safe to free the unlinked node, without fear of corrupting the
-- active links of Source.
-- Note that the algorithm we use here models similar algorithms used
-- in the unbounded form of the doubly-linked list container. In that
-- case, Free is an instantation of Unchecked_Deallocation, which can
-- fail (because PE will be raised if controlled Finalize fails), so
-- we must defer the call until the last step. Here in the bounded
-- form, Free merely links the node we have just "deallocated" onto a
-- list of inactive nodes, so technically Free cannot fail. However,
-- for consistency, we handle Free the same way here as we do for the
-- unbounded form, with the pessimistic assumption that it can fail.
Free (Source, X);
end loop;
if Source.Length = 1 then
pragma Assert (Source.First in 1 .. Source.Capacity);
pragma Assert (Source.Last = Source.First);
pragma Assert (N (Source.First).Prev = 0);
pragma Assert (N (Source.Last).Next = 0);
-- Copy element from Source to Target
X := Source.First;
Append (Target, N (X).Element);
-- Unlink node of Source
Source.First := 0;
Source.Last := 0;
Source.Length := 0;
-- Return the unlinked node to the free store
Free (Source, X);
end if;
end Move;
----------
-- Next --
----------
procedure Next (Container : List; Position : in out Cursor) is
begin
Position := Next (Container, Position);
end Next;
function Next (Container : List; Position : Cursor) return Cursor is
begin
if Position.Node = 0 then
return No_Element;
end if;
if not Has_Element (Container, Position) then
raise Program_Error with "Position cursor has no element";
end if;
return (Node => Container.Nodes (Position.Node).Next);
end Next;
-------------
-- Prepend --
-------------
procedure Prepend (Container : in out List; New_Item : Element_Type) is
begin
Insert (Container, First (Container), New_Item, 1);
end Prepend;
procedure Prepend
(Container : in out List;
New_Item : Element_Type;
Count : Count_Type)
is
begin
Insert (Container, First (Container), New_Item, Count);
end Prepend;
--------------
-- Previous --
--------------
procedure Previous (Container : List; Position : in out Cursor) is
begin
Position := Previous (Container, Position);
end Previous;
function Previous (Container : List; Position : Cursor) return Cursor is
begin
if Position.Node = 0 then
return No_Element;
end if;
if not Has_Element (Container, Position) then
raise Program_Error with "Position cursor has no element";
end if;
return (Node => Container.Nodes (Position.Node).Prev);
end Previous;
---------------
-- Reference --
---------------
function Reference
(Container : not null access List;
Position : Cursor) return not null access Element_Type
is
begin
if not Has_Element (Container.all, Position) then
raise Constraint_Error with "Position cursor has no element";
end if;
return Container.Nodes (Position.Node).Element'Access;
end Reference;
---------------------
-- Replace_Element --
---------------------
procedure Replace_Element
(Container : in out List;
Position : Cursor;
New_Item : Element_Type)
is
begin
if not Has_Element (Container, Position) then
raise Constraint_Error with "Position cursor has no element";
end if;
pragma Assert
(Vet (Container, Position), "bad cursor in Replace_Element");
Container.Nodes (Position.Node).Element := New_Item;
end Replace_Element;
----------------------
-- Reverse_Elements --
----------------------
procedure Reverse_Elements (Container : in out List) is
N : Node_Array renames Container.Nodes;
I : Count_Type := Container.First;
J : Count_Type := Container.Last;
procedure Swap (L : Count_Type; R : Count_Type);
----------
-- Swap --
----------
procedure Swap (L : Count_Type; R : Count_Type) is
LN : constant Count_Type := N (L).Next;
LP : constant Count_Type := N (L).Prev;
RN : constant Count_Type := N (R).Next;
RP : constant Count_Type := N (R).Prev;
begin
if LP /= 0 then
N (LP).Next := R;
end if;
if RN /= 0 then
N (RN).Prev := L;
end if;
N (L).Next := RN;
N (R).Prev := LP;
if LN = R then
pragma Assert (RP = L);
N (L).Prev := R;
N (R).Next := L;
else
N (L).Prev := RP;
N (RP).Next := L;
N (R).Next := LN;
N (LN).Prev := R;
end if;
end Swap;
-- Start of processing for Reverse_Elements
begin
if Container.Length <= 1 then
return;
end if;
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
Container.First := J;
Container.Last := I;
loop
Swap (L => I, R => J);
J := N (J).Next;
exit when I = J;
I := N (I).Prev;
exit when I = J;
Swap (L => J, R => I);
I := N (I).Next;
exit when I = J;
J := N (J).Prev;
exit when I = J;
end loop;
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
end Reverse_Elements;
------------------
-- Reverse_Find --
------------------
function Reverse_Find
(Container : List;
Item : Element_Type;
Position : Cursor := No_Element) return Cursor
is
CFirst : Count_Type := Position.Node;
begin
if CFirst = 0 then
CFirst := Container.Last;
end if;
if Container.Length = 0 then
return No_Element;
else
while CFirst /= 0 loop
if Container.Nodes (CFirst).Element = Item then
return (Node => CFirst);
else
CFirst := Container.Nodes (CFirst).Prev;
end if;
end loop;
return No_Element;
end if;
end Reverse_Find;
------------
-- Splice --
------------
procedure Splice
(Target : in out List;
Before : Cursor;
Source : in out List)
is
SN : Node_Array renames Source.Nodes;
begin
if Target'Address = Source'Address then
raise Program_Error with "Target and Source denote same container";
end if;
if Before.Node /= 0 then
pragma Assert (Vet (Target, Before), "bad cursor in Splice");
end if;
pragma Assert (SN (Source.First).Prev = 0);
pragma Assert (SN (Source.Last).Next = 0);
if Target.Length > Count_Type'Base'Last - Source.Length then
raise Constraint_Error with "new length exceeds maximum";
end if;
if Target.Length + Source.Length > Target.Capacity then
raise Constraint_Error;
end if;
loop
Insert (Target, Before, SN (Source.Last).Element);
Delete_Last (Source);
exit when Is_Empty (Source);
end loop;
end Splice;
procedure Splice
(Target : in out List;
Before : Cursor;
Source : in out List;
Position : in out Cursor)
is
Target_Position : Cursor;
begin
if Target'Address = Source'Address then
raise Program_Error with "Target and Source denote same container";
end if;
if Position.Node = 0 then
raise Constraint_Error with "Position cursor has no element";
end if;
pragma Assert (Vet (Source, Position), "bad Position cursor in Splice");
if Target.Length >= Target.Capacity then
raise Constraint_Error;
end if;
Insert
(Container => Target,
Before => Before,
New_Item => Source.Nodes (Position.Node).Element,
Position => Target_Position);
Delete (Source, Position);
Position := Target_Position;
end Splice;
procedure Splice
(Container : in out List;
Before : Cursor;
Position : Cursor)
is
N : Node_Array renames Container.Nodes;
begin
if Before.Node /= 0 then
pragma Assert
(Vet (Container, Before), "bad Before cursor in Splice");
end if;
if Position.Node = 0 then
raise Constraint_Error with "Position cursor has no element";
end if;
pragma Assert
(Vet (Container, Position), "bad Position cursor in Splice");
if Position.Node = Before.Node
or else N (Position.Node).Next = Before.Node
then
return;
end if;
pragma Assert (Container.Length >= 2);
if Before.Node = 0 then
pragma Assert (Position.Node /= Container.Last);
if Position.Node = Container.First then
Container.First := N (Position.Node).Next;
N (Container.First).Prev := 0;
else
N (N (Position.Node).Prev).Next := N (Position.Node).Next;
N (N (Position.Node).Next).Prev := N (Position.Node).Prev;
end if;
N (Container.Last).Next := Position.Node;
N (Position.Node).Prev := Container.Last;
Container.Last := Position.Node;
N (Container.Last).Next := 0;
return;
end if;
if Before.Node = Container.First then
pragma Assert (Position.Node /= Container.First);
if Position.Node = Container.Last then
Container.Last := N (Position.Node).Prev;
N (Container.Last).Next := 0;
else
N (N (Position.Node).Prev).Next := N (Position.Node).Next;
N (N (Position.Node).Next).Prev := N (Position.Node).Prev;
end if;
N (Container.First).Prev := Position.Node;
N (Position.Node).Next := Container.First;
Container.First := Position.Node;
N (Container.First).Prev := 0;
return;
end if;
if Position.Node = Container.First then
Container.First := N (Position.Node).Next;
N (Container.First).Prev := 0;
elsif Position.Node = Container.Last then
Container.Last := N (Position.Node).Prev;
N (Container.Last).Next := 0;
else
N (N (Position.Node).Prev).Next := N (Position.Node).Next;
N (N (Position.Node).Next).Prev := N (Position.Node).Prev;
end if;
N (N (Before.Node).Prev).Next := Position.Node;
N (Position.Node).Prev := N (Before.Node).Prev;
N (Before.Node).Prev := Position.Node;
N (Position.Node).Next := Before.Node;
pragma Assert (N (Container.First).Prev = 0);
pragma Assert (N (Container.Last).Next = 0);
end Splice;
----------
-- Swap --
----------
procedure Swap
(Container : in out List;
I : Cursor;
J : Cursor)
is
begin
if I.Node = 0 then
raise Constraint_Error with "I cursor has no element";
end if;
if J.Node = 0 then
raise Constraint_Error with "J cursor has no element";
end if;
if I.Node = J.Node then
return;
end if;
pragma Assert (Vet (Container, I), "bad I cursor in Swap");
pragma Assert (Vet (Container, J), "bad J cursor in Swap");
declare
NN : Node_Array renames Container.Nodes;
NI : Node_Type renames NN (I.Node);
NJ : Node_Type renames NN (J.Node);
EI_Copy : constant Element_Type := NI.Element;
begin
NI.Element := NJ.Element;
NJ.Element := EI_Copy;
end;
end Swap;
----------------
-- Swap_Links --
----------------
procedure Swap_Links
(Container : in out List;
I : Cursor;
J : Cursor)
is
I_Next : Cursor;
J_Next : Cursor;
begin
if I.Node = 0 then
raise Constraint_Error with "I cursor has no element";
end if;
if J.Node = 0 then
raise Constraint_Error with "J cursor has no element";
end if;
if I.Node = J.Node then
return;
end if;
pragma Assert (Vet (Container, I), "bad I cursor in Swap_Links");
pragma Assert (Vet (Container, J), "bad J cursor in Swap_Links");
I_Next := Next (Container, I);
if I_Next = J then
Splice (Container, Before => I, Position => J);
else
J_Next := Next (Container, J);
if J_Next = I then
Splice (Container, Before => J, Position => I);
else
pragma Assert (Container.Length >= 3);
Splice (Container, Before => I_Next, Position => J);
Splice (Container, Before => J_Next, Position => I);
end if;
end if;
end Swap_Links;
---------
-- Vet --
---------
function Vet (L : List; Position : Cursor) return Boolean is
N : Node_Array renames L.Nodes;
begin
if L.Length = 0 then
return False;
end if;
if L.First = 0 then
return False;
end if;
if L.Last = 0 then
return False;
end if;
if Position.Node > L.Capacity then
return False;
end if;
if N (Position.Node).Prev < 0
or else N (Position.Node).Prev > L.Capacity
then
return False;
end if;
if N (Position.Node).Next > L.Capacity then
return False;
end if;
if N (L.First).Prev /= 0 then
return False;
end if;
if N (L.Last).Next /= 0 then
return False;
end if;
if N (Position.Node).Prev = 0 and then Position.Node /= L.First then
return False;
end if;
if N (Position.Node).Next = 0 and then Position.Node /= L.Last then
return False;
end if;
if L.Length = 1 then
return L.First = L.Last;
end if;
if L.First = L.Last then
return False;
end if;
if N (L.First).Next = 0 then
return False;
end if;
if N (L.Last).Prev = 0 then
return False;
end if;
if N (N (L.First).Next).Prev /= L.First then
return False;
end if;
if N (N (L.Last).Prev).Next /= L.Last then
return False;
end if;
if L.Length = 2 then
if N (L.First).Next /= L.Last then
return False;
end if;
if N (L.Last).Prev /= L.First then
return False;
end if;
return True;
end if;
if N (L.First).Next = L.Last then
return False;
end if;
if N (L.Last).Prev = L.First then
return False;
end if;
if Position.Node = L.First then
return True;
end if;
if Position.Node = L.Last then
return True;
end if;
if N (Position.Node).Next = 0 then
return False;
end if;
if N (Position.Node).Prev = 0 then
return False;
end if;
if N (N (Position.Node).Next).Prev /= Position.Node then
return False;
end if;
if N (N (Position.Node).Prev).Next /= Position.Node then
return False;
end if;
if L.Length = 3 then
if N (L.First).Next /= Position.Node then
return False;
end if;
if N (L.Last).Prev /= Position.Node then
return False;
end if;
end if;
return True;
end Vet;
end Ada.Containers.Formal_Doubly_Linked_Lists;