blob: 60d86e505b8a4a8ed5b39682b5b4fc3a9e63e7ff [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . E X P _ M O D --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
-- Preconditions, postconditions, ghost code, loop invariants and assertions
-- in this unit are meant for analysis only, not for run-time checking, as it
-- would be too costly otherwise. This is enforced by setting the assertion
-- policy to Ignore.
pragma Assertion_Policy (Pre => Ignore,
Post => Ignore,
Ghost => Ignore,
Loop_Invariant => Ignore,
Assert => Ignore);
with Ada.Numerics.Big_Numbers.Big_Integers_Ghost;
use Ada.Numerics.Big_Numbers.Big_Integers_Ghost;
package body System.Exp_Mod
with SPARK_Mode
is
use System.Unsigned_Types;
-- Local lemmas
procedure Lemma_Add_Mod (X, Y : Big_Natural; B : Big_Positive)
with
Ghost,
Post => (X + Y) mod B = ((X mod B) + (Y mod B)) mod B;
procedure Lemma_Exp_Expand (A : Big_Integer; Exp : Natural)
with
Ghost,
Post =>
(if Exp rem 2 = 0 then
A ** Exp = A ** (Exp / 2) * A ** (Exp / 2)
else
A ** Exp = A ** (Exp / 2) * A ** (Exp / 2) * A);
procedure Lemma_Exp_Mod (A : Big_Natural; Exp : Natural; B : Big_Positive)
with
Ghost,
Subprogram_Variant => (Decreases => Exp),
Post => ((A mod B) ** Exp) mod B = (A ** Exp) mod B;
procedure Lemma_Mod_Ident (A : Big_Natural; B : Big_Positive)
with
Ghost,
Pre => A < B,
Post => A mod B = A;
procedure Lemma_Mod_Mod (A : Big_Integer; B : Big_Positive)
with
Ghost,
Post => A mod B mod B = A mod B;
procedure Lemma_Mult_Div (X : Big_Natural; Y : Big_Positive)
with
Ghost,
Post => X * Y / Y = X;
procedure Lemma_Mult_Mod (X, Y : Big_Natural; B : Big_Positive)
with
Ghost,
-- The following subprogram variant can be added as soon as supported
-- Subprogram_Variant => (Decreases => Y),
Post => (X * Y) mod B = ((X mod B) * (Y mod B)) mod B;
-----------------------------
-- Local lemma null bodies --
-----------------------------
procedure Lemma_Mod_Ident (A : Big_Natural; B : Big_Positive) is null;
procedure Lemma_Mod_Mod (A : Big_Integer; B : Big_Positive) is null;
procedure Lemma_Mult_Div (X : Big_Natural; Y : Big_Positive) is null;
-------------------
-- Lemma_Add_Mod --
-------------------
procedure Lemma_Add_Mod (X, Y : Big_Natural; B : Big_Positive) is
Left : constant Big_Natural := (X + Y) mod B;
Right : constant Big_Natural := ((X mod B) + (Y mod B)) mod B;
XQuot : constant Big_Natural := X / B;
YQuot : constant Big_Natural := Y / B;
AQuot : constant Big_Natural := (X mod B + Y mod B) / B;
begin
if Y /= 0 and B > 1 then
pragma Assert (X = XQuot * B + X mod B);
pragma Assert (Y = YQuot * B + Y mod B);
pragma Assert
(Left = ((XQuot + YQuot) * B + X mod B + Y mod B) mod B);
pragma Assert (X mod B + Y mod B = AQuot * B + Right);
pragma Assert (Left = ((XQuot + YQuot + AQuot) * B + Right) mod B);
pragma Assert (Left = Right);
end if;
end Lemma_Add_Mod;
----------------------
-- Lemma_Exp_Expand --
----------------------
procedure Lemma_Exp_Expand (A : Big_Integer; Exp : Natural) is
begin
if Exp rem 2 = 0 then
pragma Assert (Exp = Exp / 2 + Exp / 2);
else
pragma Assert (Exp = Exp / 2 + Exp / 2 + 1);
pragma Assert (A ** Exp = A ** (Exp / 2) * A ** (Exp / 2 + 1));
pragma Assert (A ** (Exp / 2 + 1) = A ** (Exp / 2) * A);
pragma Assert (A ** Exp = A ** (Exp / 2) * A ** (Exp / 2) * A);
end if;
end Lemma_Exp_Expand;
-------------------
-- Lemma_Exp_Mod --
-------------------
procedure Lemma_Exp_Mod (A : Big_Natural; Exp : Natural; B : Big_Positive)
is
begin
if Exp /= 0 then
declare
Left : constant Big_Integer := ((A mod B) ** Exp) mod B;
Right : constant Big_Integer := (A ** Exp) mod B;
begin
Lemma_Mult_Mod (A mod B, (A mod B) ** (Exp - 1), B);
Lemma_Mod_Mod (A, B);
Lemma_Exp_Mod (A, Exp - 1, B);
Lemma_Mult_Mod (A, A ** (Exp - 1), B);
pragma Assert (Left = Right);
end;
end if;
end Lemma_Exp_Mod;
--------------------
-- Lemma_Mult_Mod --
--------------------
procedure Lemma_Mult_Mod (X, Y : Big_Natural; B : Big_Positive) is
Left : constant Big_Natural := (X * Y) mod B;
Right : constant Big_Natural := ((X mod B) * (Y mod B)) mod B;
begin
if Y /= 0 and B > 1 then
Lemma_Add_Mod (X * (Y - 1), X, B);
Lemma_Mult_Mod (X, Y - 1, B);
Lemma_Mod_Mod (X, B);
Lemma_Add_Mod ((X mod B) * ((Y - 1) mod B), X mod B, B);
Lemma_Add_Mod (Y - 1, 1, B);
pragma Assert (((Y - 1) mod B + 1) mod B = Y mod B);
if (Y - 1) mod B + 1 < B then
Lemma_Mod_Ident ((Y - 1) mod B + 1, B);
Lemma_Mod_Mod ((X mod B) * (Y mod B), B);
pragma Assert (Left = Right);
else
pragma Assert (Y mod B = 0);
pragma Assert ((X * Y) mod B = (X * Y) - (X * Y) / B * B);
pragma Assert
((X * Y) mod B = (X * Y) - (X * (Y / B) * B) / B * B);
Lemma_Mult_Div (X * (Y / B), B);
pragma Assert (Left = 0);
pragma Assert (Left = Right);
end if;
end if;
end Lemma_Mult_Mod;
-----------------
-- Exp_Modular --
-----------------
function Exp_Modular
(Left : Unsigned;
Modulus : Unsigned;
Right : Natural) return Unsigned
is
Result : Unsigned := 1;
Factor : Unsigned := Left;
Exp : Natural := Right;
function Mult (X, Y : Unsigned) return Unsigned is
(Unsigned (Long_Long_Unsigned (X) * Long_Long_Unsigned (Y)
mod Long_Long_Unsigned (Modulus)))
with
Pre => Modulus /= 0;
-- Modular multiplication. Note that we can't take advantage of the
-- compiler's circuit, because the modulus is not known statically.
-- Local ghost variables, functions and lemmas
M : constant Big_Positive := Big (Modulus) with Ghost;
function Equal_Modulo (X, Y : Big_Integer) return Boolean is
(X mod M = Y mod M)
with
Ghost,
Pre => Modulus /= 0;
procedure Lemma_Mult (X, Y : Unsigned)
with
Ghost,
Post => Big (Mult (X, Y)) = (Big (X) * Big (Y)) mod M
and then Big (Mult (X, Y)) < M;
procedure Lemma_Mult (X, Y : Unsigned) is null;
Rest : Big_Integer with Ghost;
-- Ghost variable to hold Factor**Exp between Exp and Factor updates
begin
pragma Assert (Modulus /= 1);
-- We use the standard logarithmic approach, Exp gets shifted right
-- testing successive low order bits and Factor is the value of the
-- base raised to the next power of 2.
-- Note: it is not worth special casing the cases of base values -1,0,+1
-- since the expander does this when the base is a literal, and other
-- cases will be extremely rare.
if Exp /= 0 then
loop
pragma Loop_Invariant (Exp > 0);
pragma Loop_Invariant (Result < Modulus);
pragma Loop_Invariant (Equal_Modulo
(Big (Result) * Big (Factor) ** Exp, Big (Left) ** Right));
pragma Loop_Variant (Decreases => Exp);
pragma Annotate
(CodePeer, False_Positive,
"validity check", "confusion on generated code");
if Exp rem 2 /= 0 then
pragma Assert
(Big (Factor) ** Exp
= Big (Factor) * Big (Factor) ** (Exp - 1));
pragma Assert (Equal_Modulo
((Big (Result) * Big (Factor)) * Big (Factor) ** (Exp - 1),
Big (Left) ** Right));
Lemma_Mult_Mod (Big (Result) * Big (Factor),
Big (Factor) ** (Exp - 1),
Big (Modulus));
Lemma_Mult (Result, Factor);
Result := Mult (Result, Factor);
Lemma_Mod_Ident (Big (Result), Big (Modulus));
Lemma_Mod_Mod (Big (Factor) ** (Exp - 1), Big (Modulus));
Lemma_Mult_Mod (Big (Result),
Big (Factor) ** (Exp - 1),
Big (Modulus));
pragma Assert (Equal_Modulo
(Big (Result) * Big (Factor) ** (Exp - 1),
Big (Left) ** Right));
Lemma_Exp_Expand (Big (Factor), Exp - 1);
pragma Assert (Exp / 2 = (Exp - 1) / 2);
end if;
Lemma_Exp_Expand (Big (Factor), Exp);
Exp := Exp / 2;
exit when Exp = 0;
Rest := Big (Factor) ** Exp;
pragma Assert (Equal_Modulo
(Big (Result) * (Rest * Rest), Big (Left) ** Right));
Lemma_Exp_Mod (Big (Factor) * Big (Factor), Exp, Big (Modulus));
pragma Assert
((Big (Factor) * Big (Factor)) ** Exp = Rest * Rest);
pragma Assert (Equal_Modulo
((Big (Factor) * Big (Factor)) ** Exp,
Rest * Rest));
Lemma_Mult (Factor, Factor);
Factor := Mult (Factor, Factor);
Lemma_Mod_Mod (Rest * Rest, Big (Modulus));
Lemma_Mod_Ident (Big (Result), Big (Modulus));
Lemma_Mult_Mod (Big (Result), Rest * Rest, Big (Modulus));
Lemma_Mult_Mod (Big (Result), Big (Factor) ** Exp,
Big (Modulus));
pragma Assert (Equal_Modulo
(Big (Result) * Big (Factor) ** Exp, Big (Left) ** Right));
end loop;
pragma Assert (Big (Result) = Big (Left) ** Right mod Big (Modulus));
end if;
return Result;
end Exp_Modular;
end System.Exp_Mod;