blob: c9e5505c93cfd6225f7d67f1c5c115fd89bc74f3 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S Y S T E M . V A L _ R E A L --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with System.Double_Real;
with System.Float_Control;
with System.Unsigned_Types; use System.Unsigned_Types;
with System.Val_Util; use System.Val_Util;
with System.Value_R;
pragma Warnings (Off, "non-static constant in preelaborated unit");
-- Every constant is static given our instantiation model
package body System.Val_Real is
pragma Assert (Num'Machine_Mantissa <= Uns'Size);
-- We need an unsigned type large enough to represent the mantissa
Need_Extra : constant Boolean := Num'Machine_Mantissa > Uns'Size - 4;
-- If the mantissa of the floating-point type is almost as large as the
-- unsigned type, we do not have enough space for an extra digit in the
-- unsigned type so we handle the extra digit separately, at the cost of
-- a bit more work in Integer_to_Real.
Precision_Limit : constant Uns :=
(if Need_Extra then 2**Num'Machine_Mantissa - 1 else 2**Uns'Size - 1);
-- If we handle the extra digit separately, we use the precision of the
-- floating-point type so that the conversion is exact.
package Impl is new Value_R (Uns, Precision_Limit, Round => Need_Extra);
subtype Base_T is Unsigned range 2 .. 16;
-- The following tables compute the maximum exponent of the base that can
-- fit in the given floating-point format, that is to say the element at
-- index N is the largest K such that N**K <= Num'Last.
Maxexp32 : constant array (Base_T) of Positive :=
[2 => 127, 3 => 80, 4 => 63, 5 => 55, 6 => 49,
7 => 45, 8 => 42, 9 => 40, 10 => 38, 11 => 37,
12 => 35, 13 => 34, 14 => 33, 15 => 32, 16 => 31];
Maxexp64 : constant array (Base_T) of Positive :=
[2 => 1023, 3 => 646, 4 => 511, 5 => 441, 6 => 396,
7 => 364, 8 => 341, 9 => 323, 10 => 308, 11 => 296,
12 => 285, 13 => 276, 14 => 268, 15 => 262, 16 => 255];
Maxexp80 : constant array (Base_T) of Positive :=
[2 => 16383, 3 => 10337, 4 => 8191, 5 => 7056, 6 => 6338,
7 => 5836, 8 => 5461, 9 => 5168, 10 => 4932, 11 => 4736,
12 => 4570, 13 => 4427, 14 => 4303, 15 => 4193, 16 => 4095];
package Double_Real is new System.Double_Real (Num);
use type Double_Real.Double_T;
subtype Double_T is Double_Real.Double_T;
-- The double floating-point type
function Integer_to_Real
(Str : String;
Val : Uns;
Base : Unsigned;
Scale : Integer;
Extra : Unsigned;
Minus : Boolean) return Num;
-- Convert the real value from integer to real representation
function Large_Powten (Exp : Natural) return Double_T;
-- Return 10.0**Exp as a double number, where Exp > Maxpow
---------------------
-- Integer_to_Real --
---------------------
function Integer_to_Real
(Str : String;
Val : Uns;
Base : Unsigned;
Scale : Integer;
Extra : Unsigned;
Minus : Boolean) return Num
is
pragma Assert (Base in 2 .. 16);
pragma Assert (Num'Machine_Radix = 2);
pragma Unsuppress (Range_Check);
Maxexp : constant Positive :=
(if Num'Size = 32 then Maxexp32 (Base)
elsif Num'Size = 64 then Maxexp64 (Base)
elsif Num'Machine_Mantissa = 64 then Maxexp80 (Base)
else raise Program_Error);
-- Maximum exponent of the base that can fit in Num
R_Val : Num;
D_Val : Double_T;
S : Integer := Scale;
begin
-- We call the floating-point processor reset routine so we can be sure
-- that the x87 FPU is properly set for conversions. This is especially
-- needed on Windows, where calls to the operating system randomly reset
-- the processor into 64-bit mode.
if Num'Machine_Mantissa = 64 then
System.Float_Control.Reset;
end if;
-- Take into account the extra digit, i.e. do the two computations
-- (1) R_Val := R_Val * Num (B) + Num (Extra)
-- (2) S := S - 1
-- In the first, the three operands are exact, so using an FMA would
-- be ideal, but we are most likely running on the x87 FPU, hence we
-- may not have one. That is why we turn the multiplication into an
-- iterated addition with exact error handling, so that we can do a
-- single rounding at the end.
if Need_Extra and then Extra > 0 then
declare
B : Unsigned := Base;
Acc : Num := 0.0;
Err : Num := 0.0;
Fac : Num := Num (Val);
DS : Double_T;
begin
loop
-- If B is odd, add one factor. Note that the accumulator is
-- never larger than the factor at this point (it is in fact
-- never larger than the factor minus the initial value).
if B rem 2 /= 0 then
if Acc = 0.0 then
Acc := Fac;
else
DS := Double_Real.Quick_Two_Sum (Fac, Acc);
Acc := DS.Hi;
Err := Err + DS.Lo;
end if;
exit when B = 1;
end if;
-- Now B is (morally) even, halve it and double the factor,
-- which is always an exact operation.
B := B / 2;
Fac := Fac * 2.0;
end loop;
-- Add Extra to the error, which are both small integers
D_Val := Double_Real.Quick_Two_Sum (Acc, Err + Num (Extra));
S := S - 1;
end;
-- Or else, if the Extra digit is zero, do the exact conversion
elsif Need_Extra then
D_Val := Double_Real.To_Double (Num (Val));
-- Otherwise, the value contains more bits than the mantissa so do the
-- conversion in two steps.
else
declare
Mask : constant Uns := 2**(Uns'Size - Num'Machine_Mantissa) - 1;
Hi : constant Uns := Val and not Mask;
Lo : constant Uns := Val and Mask;
begin
if Hi = 0 then
D_Val := Double_Real.To_Double (Num (Lo));
else
D_Val := Double_Real.Quick_Two_Sum (Num (Hi), Num (Lo));
end if;
end;
end if;
-- Compute the final value by applying the scaling, if any
if Val = 0 or else S = 0 then
R_Val := Double_Real.To_Single (D_Val);
else
case Base is
-- If the base is a power of two, we use the efficient Scaling
-- attribute with an overflow check, if it is not 2, to catch
-- ludicrous exponents that would result in an infinity or zero.
when 2 =>
R_Val := Num'Scaling (Double_Real.To_Single (D_Val), S);
when 4 =>
if Integer'First / 2 <= S and then S <= Integer'Last / 2 then
S := S * 2;
end if;
R_Val := Num'Scaling (Double_Real.To_Single (D_Val), S);
when 8 =>
if Integer'First / 3 <= S and then S <= Integer'Last / 3 then
S := S * 3;
end if;
R_Val := Num'Scaling (Double_Real.To_Single (D_Val), S);
when 16 =>
if Integer'First / 4 <= S and then S <= Integer'Last / 4 then
S := S * 4;
end if;
R_Val := Num'Scaling (Double_Real.To_Single (D_Val), S);
-- If the base is 10, use a double implementation for the sake
-- of accuracy, to be removed when exponentiation is improved.
-- When the exponent is positive, we can do the computation
-- directly because, if the exponentiation overflows, then
-- the final value overflows as well. But when the exponent
-- is negative, we may need to do it in two steps to avoid
-- an artificial underflow.
when 10 =>
declare
Powten : constant array (0 .. Maxpow) of Double_T;
pragma Import (Ada, Powten);
for Powten'Address use Powten_Address;
begin
if S > 0 then
if S <= Maxpow then
D_Val := D_Val * Powten (S);
else
D_Val := D_Val * Large_Powten (S);
end if;
else
if S < -Maxexp then
D_Val := D_Val / Large_Powten (Maxexp);
S := S + Maxexp;
end if;
if S >= -Maxpow then
D_Val := D_Val / Powten (-S);
else
D_Val := D_Val / Large_Powten (-S);
end if;
end if;
R_Val := Double_Real.To_Single (D_Val);
end;
-- Implementation for other bases with exponentiation
-- When the exponent is positive, we can do the computation
-- directly because, if the exponentiation overflows, then
-- the final value overflows as well. But when the exponent
-- is negative, we may need to do it in two steps to avoid
-- an artificial underflow.
when others =>
declare
B : constant Num := Num (Base);
begin
R_Val := Double_Real.To_Single (D_Val);
if S > 0 then
R_Val := R_Val * B ** S;
else
if S < -Maxexp then
R_Val := R_Val / B ** Maxexp;
S := S + Maxexp;
end if;
R_Val := R_Val / B ** (-S);
end if;
end;
end case;
end if;
-- Finally deal with initial minus sign, note that this processing is
-- done even if Uval is zero, so that -0.0 is correctly interpreted.
return (if Minus then -R_Val else R_Val);
exception
when Constraint_Error => Bad_Value (Str);
end Integer_to_Real;
------------------
-- Large_Powten --
------------------
function Large_Powten (Exp : Natural) return Double_T is
Powten : constant array (0 .. Maxpow) of Double_T;
pragma Import (Ada, Powten);
for Powten'Address use Powten_Address;
R : Double_T;
E : Natural;
begin
pragma Assert (Exp > Maxpow);
R := Powten (Maxpow);
E := Exp - Maxpow;
while E > Maxpow loop
R := R * Powten (Maxpow);
E := E - Maxpow;
end loop;
R := R * Powten (E);
return R;
end Large_Powten;
---------------
-- Scan_Real --
---------------
function Scan_Real
(Str : String;
Ptr : not null access Integer;
Max : Integer) return Num
is
Base : Unsigned;
Scale : Integer;
Extra : Unsigned;
Minus : Boolean;
Val : Uns;
begin
Val := Impl.Scan_Raw_Real (Str, Ptr, Max, Base, Scale, Extra, Minus);
return Integer_to_Real (Str, Val, Base, Scale, Extra, Minus);
end Scan_Real;
----------------
-- Value_Real --
----------------
function Value_Real (Str : String) return Num is
Base : Unsigned;
Scale : Integer;
Extra : Unsigned;
Minus : Boolean;
Val : Uns;
begin
Val := Impl.Value_Raw_Real (Str, Base, Scale, Extra, Minus);
return Integer_to_Real (Str, Val, Base, Scale, Extra, Minus);
end Value_Real;
end System.Val_Real;