blob: dcd1b4b4afc4c9b0a7ca2fe41f716efba98da6df [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT RUN-TIME COMPONENTS --
-- --
-- S Y S T E M . W I D T H _ I --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. --
-- --
-- As a special exception under Section 7 of GPL version 3, you are granted --
-- additional permissions described in the GCC Runtime Library Exception, --
-- version 3.1, as published by the Free Software Foundation. --
-- --
-- You should have received a copy of the GNU General Public License and --
-- a copy of the GCC Runtime Library Exception along with this program; --
-- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
-- <http://www.gnu.org/licenses/>. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Ada.Numerics.Big_Numbers.Big_Integers_Ghost;
use Ada.Numerics.Big_Numbers.Big_Integers_Ghost;
function System.Width_I (Lo, Hi : Int) return Natural is
-- Ghost code, loop invariants and assertions in this unit are meant for
-- analysis only, not for run-time checking, as it would be too costly
-- otherwise. This is enforced by setting the assertion policy to Ignore.
pragma Assertion_Policy (Ghost => Ignore,
Loop_Invariant => Ignore,
Assert => Ignore);
-----------------------
-- Local Subprograms --
-----------------------
package Signed_Conversion is new Signed_Conversions (Int => Int);
function Big (Arg : Int) return Big_Integer renames
Signed_Conversion.To_Big_Integer;
-- Maximum value of exponent for 10 that fits in Uns'Base
function Max_Log10 return Natural is
(case Int'Base'Size is
when 8 => 2,
when 16 => 4,
when 32 => 9,
when 64 => 19,
when 128 => 38,
when others => raise Program_Error)
with Ghost;
------------------
-- Local Lemmas --
------------------
procedure Lemma_Lower_Mult (A, B, C : Big_Natural)
with
Ghost,
Pre => A <= B,
Post => A * C <= B * C;
procedure Lemma_Div_Commutation (X, Y : Int)
with
Ghost,
Pre => X >= 0 and Y > 0,
Post => Big (X) / Big (Y) = Big (X / Y);
procedure Lemma_Div_Twice (X : Big_Natural; Y, Z : Big_Positive)
with
Ghost,
Post => X / Y / Z = X / (Y * Z);
----------------------
-- Lemma_Lower_Mult --
----------------------
procedure Lemma_Lower_Mult (A, B, C : Big_Natural) is null;
---------------------------
-- Lemma_Div_Commutation --
---------------------------
procedure Lemma_Div_Commutation (X, Y : Int) is null;
---------------------
-- Lemma_Div_Twice --
---------------------
procedure Lemma_Div_Twice (X : Big_Natural; Y, Z : Big_Positive) is
XY : constant Big_Natural := X / Y;
YZ : constant Big_Natural := Y * Z;
XYZ : constant Big_Natural := X / Y / Z;
R : constant Big_Natural := (XY rem Z) * Y + (X rem Y);
begin
pragma Assert (X = XY * Y + (X rem Y));
pragma Assert (XY = XY / Z * Z + (XY rem Z));
pragma Assert (X = XYZ * YZ + R);
pragma Assert ((XY rem Z) * Y <= (Z - 1) * Y);
pragma Assert (R <= YZ - 1);
pragma Assert (X / YZ = (XYZ * YZ + R) / YZ);
pragma Assert (X / YZ = XYZ + R / YZ);
end Lemma_Div_Twice;
-- Local variables
W : Natural;
T : Int;
-- Local ghost variables
Max_W : constant Natural := Max_Log10 with Ghost;
Big_10 : constant Big_Integer := Big (10) with Ghost;
Pow : Big_Integer := 1 with Ghost;
T_Init : constant Int :=
Int'Max (abs (Int'Max (Lo, Int'First + 1)),
abs (Int'Max (Hi, Int'First + 1)))
with Ghost;
-- Start of processing for System.Width_I
begin
if Lo > Hi then
return 0;
else
-- Minimum value is 2, one for sign, one for digit
W := 2;
-- Get max of absolute values, but avoid bomb if we have the maximum
-- negative number (note that First + 1 has same digits as First)
T := Int'Max (
abs (Int'Max (Lo, Int'First + 1)),
abs (Int'Max (Hi, Int'First + 1)));
-- Increase value if more digits required
while T >= 10 loop
Lemma_Div_Commutation (T, 10);
Lemma_Div_Twice (Big (T_Init), Big_10 ** (W - 2), Big_10);
T := T / 10;
W := W + 1;
Pow := Pow * 10;
pragma Loop_Invariant (T >= 0);
pragma Loop_Invariant (W in 3 .. Max_W + 3);
pragma Loop_Invariant (Pow = Big_10 ** (W - 2));
pragma Loop_Invariant (Big (T) = Big (T_Init) / Pow);
pragma Loop_Variant (Decreases => T);
end loop;
declare
F : constant Big_Integer := Big_10 ** (W - 2) with Ghost;
Q : constant Big_Integer := Big (T_Init) / F with Ghost;
R : constant Big_Integer := Big (T_Init) rem F with Ghost;
begin
pragma Assert (Q < Big_10);
pragma Assert (Big (T_Init) = Q * F + R);
Lemma_Lower_Mult (Q, Big (9), F);
pragma Assert (Big (T_Init) <= Big (9) * F + F - 1);
pragma Assert (Big (T_Init) < Big_10 * F);
pragma Assert (Big_10 * F = Big_10 ** (W - 1));
end;
-- This is an expression of the functional postcondition for Width_I,
-- which cannot be expressed readily as a postcondition as this would
-- require making the instantiation Signed_Conversion and function Big
-- available from the spec.
pragma Assert (Big (Int'Max (Lo, Int'First + 1)) < Big_10 ** (W - 1));
pragma Assert (Big (Int'Max (Hi, Int'First + 1)) < Big_10 ** (W - 1));
return W;
end if;
end System.Width_I;