blob: b77ff4aba5d10171197c437d5ae24800253479d3 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- R E P I N F O --
-- --
-- B o d y --
-- --
-- Copyright (C) 1999-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Alloc;
with Atree; use Atree;
with Casing; use Casing;
with Debug; use Debug;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Lib; use Lib;
with Namet; use Namet;
with Nlists; use Nlists;
with Opt; use Opt;
with Output; use Output;
with Osint.C; use Osint.C;
with Sem_Aux; use Sem_Aux;
with Sem_Eval; use Sem_Eval;
with Sem_Util;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Sinput; use Sinput;
with Snames; use Snames;
with Stringt; use Stringt;
with Table;
with Ttypes;
with Uname; use Uname;
with Urealp; use Urealp;
with Ada.Unchecked_Conversion;
with GNAT.HTable;
package body Repinfo is
SSU : Pos renames Ttypes.System_Storage_Unit;
-- Value for Storage_Unit
---------------------------------------
-- Representation of GCC Expressions --
---------------------------------------
-- A table internal to this unit is used to hold the values of back
-- annotated expressions.
-- Node values are stored as Uint values using the negative of the node
-- index in this table. Constants appear as non-negative Uint values.
type Exp_Node is record
Expr : TCode;
Op1 : Node_Ref_Or_Val;
Op2 : Node_Ref_Or_Val;
Op3 : Node_Ref_Or_Val;
end record;
-- The following representation clause ensures that the above record
-- has no holes. We do this so that when instances of this record are
-- written, we do not write uninitialized values to the file.
for Exp_Node use record
Expr at 0 range 0 .. 31;
Op1 at 4 range 0 .. 31;
Op2 at 8 range 0 .. 31;
Op3 at 12 range 0 .. 31;
end record;
for Exp_Node'Size use 16 * 8;
-- This ensures that we did not leave out any fields
package Rep_Table is new Table.Table (
Table_Component_Type => Exp_Node,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => Alloc.Rep_Table_Initial,
Table_Increment => Alloc.Rep_Table_Increment,
Table_Name => "BE_Rep_Table");
--------------------------------------------------------------
-- Representation of Front-End Dynamic Size/Offset Entities --
--------------------------------------------------------------
package Dynamic_SO_Entity_Table is new Table.Table (
Table_Component_Type => Entity_Id,
Table_Index_Type => Nat,
Table_Low_Bound => 1,
Table_Initial => Alloc.Rep_Table_Initial,
Table_Increment => Alloc.Rep_Table_Increment,
Table_Name => "FE_Rep_Table");
Unit_Casing : Casing_Type;
-- Identifier casing for current unit. This is set by List_Rep_Info for
-- each unit, before calling subprograms which may read it.
Need_Separator : Boolean;
-- Set True if a separator is needed before outputting any information for
-- the current entity.
------------------------------
-- Set of Relevant Entities --
------------------------------
Relevant_Entities_Size : constant := 4093;
-- Number of headers in hash table
subtype Entity_Header_Num is Integer range 0 .. Relevant_Entities_Size - 1;
-- Range of headers in hash table
function Entity_Hash (Id : Entity_Id) return Entity_Header_Num;
-- Simple hash function for Entity_Ids
package Relevant_Entities is new GNAT.Htable.Simple_HTable
(Header_Num => Entity_Header_Num,
Element => Boolean,
No_Element => False,
Key => Entity_Id,
Hash => Entity_Hash,
Equal => "=");
-- Hash table to record which compiler-generated entities are relevant
-----------------------
-- Local Subprograms --
-----------------------
procedure List_Entities
(Ent : Entity_Id;
Bytes_Big_Endian : Boolean;
In_Subprogram : Boolean := False);
-- This procedure lists the entities associated with the entity E, starting
-- with the First_Entity and using the Next_Entity link. If a nested
-- package is found, entities within the package are recursively processed.
-- When recursing within a subprogram body, Is_Subprogram suppresses
-- duplicate information about signature.
procedure List_Name (Ent : Entity_Id);
-- List name of entity Ent in appropriate case. The name is listed with
-- full qualification up to but not including the compilation unit name.
procedure List_Array_Info (Ent : Entity_Id; Bytes_Big_Endian : Boolean);
-- List representation info for array type Ent
procedure List_Common_Type_Info (Ent : Entity_Id);
-- List common type info (name, size, alignment) for type Ent
procedure List_Linker_Section (Ent : Entity_Id);
-- List linker section for Ent (caller has checked that Ent is an entity
-- for which the Linker_Section_Pragma field is defined).
procedure List_Location (Ent : Entity_Id);
-- List location information for Ent
procedure List_Object_Info (Ent : Entity_Id);
-- List representation info for object Ent
procedure List_Record_Info (Ent : Entity_Id; Bytes_Big_Endian : Boolean);
-- List representation info for record type Ent
procedure List_Scalar_Storage_Order
(Ent : Entity_Id;
Bytes_Big_Endian : Boolean);
-- List scalar storage order information for record or array type Ent.
-- Also includes bit order information for record types, if necessary.
procedure List_Subprogram_Info (Ent : Entity_Id);
-- List subprogram info for subprogram Ent
procedure List_Type_Info (Ent : Entity_Id);
-- List type info for type Ent
function Rep_Not_Constant (Val : Node_Ref_Or_Val) return Boolean;
-- Returns True if Val represents a variable value, and False if it
-- represents a value that is fixed at compile time.
procedure Spaces (N : Natural);
-- Output given number of spaces
procedure Write_Info_Line (S : String);
-- Routine to write a line to Repinfo output file. This routine is passed
-- as a special output procedure to Output.Set_Special_Output. Note that
-- Write_Info_Line is called with an EOL character at the end of each line,
-- as per the Output spec, but the internal call to the appropriate routine
-- in Osint requires that the end of line sequence be stripped off.
procedure Write_Mechanism (M : Mechanism_Type);
-- Writes symbolic string for mechanism represented by M
procedure Write_Separator;
-- Called before outputting anything for an entity. Ensures that
-- a separator precedes the output for a particular entity.
procedure Write_Unknown_Val;
-- Writes symbolic string for an unknown or non-representable value
procedure Write_Val (Val : Node_Ref_Or_Val; Paren : Boolean := False);
-- Given a representation value, write it out. No_Uint values or values
-- dependent on discriminants are written as two question marks. If the
-- flag Paren is set, then the output is surrounded in parentheses if it is
-- other than a simple value.
------------------------
-- Create_Discrim_Ref --
------------------------
function Create_Discrim_Ref (Discr : Entity_Id) return Node_Ref is
begin
return Create_Node
(Expr => Discrim_Val,
Op1 => Discriminant_Number (Discr));
end Create_Discrim_Ref;
---------------------------
-- Create_Dynamic_SO_Ref --
---------------------------
function Create_Dynamic_SO_Ref (E : Entity_Id) return Dynamic_SO_Ref is
begin
Dynamic_SO_Entity_Table.Append (E);
return UI_From_Int (-Dynamic_SO_Entity_Table.Last);
end Create_Dynamic_SO_Ref;
-----------------
-- Create_Node --
-----------------
function Create_Node
(Expr : TCode;
Op1 : Node_Ref_Or_Val;
Op2 : Node_Ref_Or_Val := No_Uint;
Op3 : Node_Ref_Or_Val := No_Uint) return Node_Ref
is
begin
Rep_Table.Append (
(Expr => Expr,
Op1 => Op1,
Op2 => Op2,
Op3 => Op3));
return UI_From_Int (-Rep_Table.Last);
end Create_Node;
-----------------
-- Entity_Hash --
-----------------
function Entity_Hash (Id : Entity_Id) return Entity_Header_Num is
begin
return Entity_Header_Num (Id mod Relevant_Entities_Size);
end Entity_Hash;
---------------------------
-- Get_Dynamic_SO_Entity --
---------------------------
function Get_Dynamic_SO_Entity (U : Dynamic_SO_Ref) return Entity_Id is
begin
return Dynamic_SO_Entity_Table.Table (-UI_To_Int (U));
end Get_Dynamic_SO_Entity;
-----------------------
-- Is_Dynamic_SO_Ref --
-----------------------
function Is_Dynamic_SO_Ref (U : SO_Ref) return Boolean is
begin
return U < Uint_0;
end Is_Dynamic_SO_Ref;
----------------------
-- Is_Static_SO_Ref --
----------------------
function Is_Static_SO_Ref (U : SO_Ref) return Boolean is
begin
return U >= Uint_0;
end Is_Static_SO_Ref;
---------
-- lgx --
---------
procedure lgx (U : Node_Ref_Or_Val) is
begin
List_GCC_Expression (U);
Write_Eol;
end lgx;
----------------------
-- List_Array_Info --
----------------------
procedure List_Array_Info (Ent : Entity_Id; Bytes_Big_Endian : Boolean) is
begin
Write_Separator;
if List_Representation_Info_To_JSON then
Write_Line ("{");
end if;
List_Common_Type_Info (Ent);
if List_Representation_Info_To_JSON then
Write_Line (",");
Write_Str (" ""Component_Size"": ");
Write_Val (Component_Size (Ent));
else
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Component_Size use ");
Write_Val (Component_Size (Ent));
Write_Line (";");
end if;
List_Scalar_Storage_Order (Ent, Bytes_Big_Endian);
List_Linker_Section (Ent);
if List_Representation_Info_To_JSON then
Write_Eol;
Write_Line ("}");
end if;
-- The component type is relevant for an array
if List_Representation_Info = 4
and then Is_Itype (Component_Type (Base_Type (Ent)))
then
Relevant_Entities.Set (Component_Type (Base_Type (Ent)), True);
end if;
end List_Array_Info;
---------------------------
-- List_Common_Type_Info --
---------------------------
procedure List_Common_Type_Info (Ent : Entity_Id) is
begin
if List_Representation_Info_To_JSON then
Write_Str (" ""name"": """);
List_Name (Ent);
Write_Line (""",");
List_Location (Ent);
end if;
-- Do not list size info for unconstrained arrays, not meaningful
if Is_Array_Type (Ent) and then not Is_Constrained (Ent) then
null;
else
if Known_Esize (Ent) and then Known_RM_Size (Ent) then
-- If Esize and RM_Size are the same, list as Size. This is a
-- common case, which we may as well list in simple form.
if Esize (Ent) = RM_Size (Ent) then
if List_Representation_Info_To_JSON then
Write_Str (" ""Size"": ");
Write_Val (Esize (Ent));
Write_Line (",");
else
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Size use ");
Write_Val (Esize (Ent));
Write_Line (";");
end if;
-- Otherwise list size values separately
else
if List_Representation_Info_To_JSON then
Write_Str (" ""Object_Size"": ");
Write_Val (Esize (Ent));
Write_Line (",");
Write_Str (" ""Value_Size"": ");
Write_Val (RM_Size (Ent));
Write_Line (",");
else
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Object_Size use ");
Write_Val (Esize (Ent));
Write_Line (";");
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Value_Size use ");
Write_Val (RM_Size (Ent));
Write_Line (";");
end if;
end if;
end if;
end if;
if Known_Alignment (Ent) then
if List_Representation_Info_To_JSON then
Write_Str (" ""Alignment"": ");
Write_Val (Alignment (Ent));
else
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Alignment use ");
Write_Val (Alignment (Ent));
Write_Line (";");
end if;
-- Alignment is not always set for task, protected, and class-wide
-- types. Representation aspects are not computed for types in a
-- generic unit.
else
pragma Assert
(Is_Concurrent_Type (Ent) or else
Is_Class_Wide_Type (Ent) or else
Sem_Util.In_Generic_Scope (Ent));
end if;
end List_Common_Type_Info;
-------------------
-- List_Entities --
-------------------
procedure List_Entities
(Ent : Entity_Id;
Bytes_Big_Endian : Boolean;
In_Subprogram : Boolean := False)
is
Body_E : Entity_Id;
E : Entity_Id;
function Find_Declaration (E : Entity_Id) return Node_Id;
-- Utility to retrieve declaration node for entity in the
-- case of package bodies and subprograms.
----------------------
-- Find_Declaration --
----------------------
function Find_Declaration (E : Entity_Id) return Node_Id is
Decl : Node_Id;
begin
Decl := Parent (E);
while Present (Decl)
and then Nkind (Decl) /= N_Package_Body
and then Nkind (Decl) /= N_Subprogram_Declaration
and then Nkind (Decl) /= N_Subprogram_Body
loop
Decl := Parent (Decl);
end loop;
return Decl;
end Find_Declaration;
-- Start of processing for List_Entities
begin
-- List entity if we have one, and it is not a renaming declaration.
-- For renamings, we don't get proper information, and really it makes
-- sense to restrict the output to the renamed entity.
if Present (Ent)
and then Nkind (Declaration_Node (Ent)) not in N_Renaming_Declaration
and then not Is_Ignored_Ghost_Entity (Ent)
then
-- If entity is a subprogram and we are listing mechanisms,
-- then we need to list mechanisms for this entity. We skip this
-- if it is a nested subprogram, as the information has already
-- been produced when listing the enclosing scope.
if List_Representation_Info_Mechanisms
and then Is_Subprogram_Or_Entry (Ent)
and then not In_Subprogram
then
List_Subprogram_Info (Ent);
end if;
E := First_Entity (Ent);
while Present (E) loop
-- We list entities that come from source (excluding private or
-- incomplete types or deferred constants, for which we will list
-- the information for the full view). If requested, we also list
-- relevant entities that have been generated when processing the
-- original entities coming from source. But if debug flag A is
-- set, then all entities are listed.
if ((Comes_From_Source (E)
or else (Ekind (E) = E_Block
and then
Nkind (Parent (E)) = N_Implicit_Label_Declaration
and then
Comes_From_Source (Label_Construct (Parent (E)))))
and then not Is_Incomplete_Or_Private_Type (E)
and then not (Ekind (E) = E_Constant
and then Present (Full_View (E))))
or else (List_Representation_Info = 4
and then Relevant_Entities.Get (E))
or else Debug_Flag_AA
then
if Is_Subprogram (E) then
if List_Representation_Info_Mechanisms then
List_Subprogram_Info (E);
end if;
-- Recurse into entities local to subprogram
List_Entities (E, Bytes_Big_Endian, True);
elsif Ekind (E) in E_Entry
| E_Entry_Family
| E_Subprogram_Type
then
if List_Representation_Info_Mechanisms then
List_Subprogram_Info (E);
end if;
elsif Is_Record_Type (E) then
if List_Representation_Info >= 1 then
List_Record_Info (E, Bytes_Big_Endian);
-- Recurse into entities local to a record type
if List_Representation_Info = 4 then
List_Entities (E, Bytes_Big_Endian, False);
end if;
end if;
elsif Is_Array_Type (E) then
if List_Representation_Info >= 1 then
List_Array_Info (E, Bytes_Big_Endian);
end if;
elsif Is_Type (E) then
if List_Representation_Info >= 2 then
List_Type_Info (E);
end if;
-- Note that formals are not annotated so we skip them here
elsif Ekind (E) in E_Constant
| E_Loop_Parameter
| E_Variable
then
if List_Representation_Info >= 2 then
List_Object_Info (E);
end if;
end if;
-- Recurse into nested package, but not child packages, and not
-- nested package renamings (in particular renamings of the
-- enclosing package, as for some Java bindings and for generic
-- instances).
if Ekind (E) = E_Package then
if No (Renamed_Entity (E)) and then not Is_Child_Unit (E)
then
List_Entities (E, Bytes_Big_Endian);
end if;
-- Recurse into bodies
elsif Ekind (E) in E_Package_Body
| E_Protected_Body
| E_Protected_Type
| E_Subprogram_Body
| E_Task_Body
| E_Task_Type
then
List_Entities (E, Bytes_Big_Endian);
-- Recurse into blocks
elsif Ekind (E) = E_Block then
List_Entities (E, Bytes_Big_Endian);
end if;
end if;
Next_Entity (E);
end loop;
-- For a package body, the entities of the visible subprograms are
-- declared in the corresponding spec. Iterate over its entities in
-- order to handle properly the subprogram bodies. Skip bodies in
-- subunits, which are listed independently.
if Ekind (Ent) = E_Package_Body
and then Present (Corresponding_Spec (Find_Declaration (Ent)))
then
E := First_Entity (Corresponding_Spec (Find_Declaration (Ent)));
while Present (E) loop
if Is_Subprogram (E)
and then
Nkind (Find_Declaration (E)) = N_Subprogram_Declaration
then
Body_E := Corresponding_Body (Find_Declaration (E));
if Present (Body_E)
and then
Nkind (Parent (Find_Declaration (Body_E))) /= N_Subunit
then
List_Entities (Body_E, Bytes_Big_Endian);
end if;
end if;
Next_Entity (E);
end loop;
end if;
end if;
end List_Entities;
-------------------------
-- List_GCC_Expression --
-------------------------
procedure List_GCC_Expression (U : Node_Ref_Or_Val) is
procedure Print_Expr (Val : Node_Ref_Or_Val);
-- Internal recursive procedure to print expression
----------------
-- Print_Expr --
----------------
procedure Print_Expr (Val : Node_Ref_Or_Val) is
begin
if Val >= 0 then
UI_Write (Val, Decimal);
else
declare
Node : Exp_Node renames Rep_Table.Table (-UI_To_Int (Val));
procedure Unop (S : String);
-- Output text for unary operator with S being operator name
procedure Binop (S : String);
-- Output text for binary operator with S being operator name
----------
-- Unop --
----------
procedure Unop (S : String) is
begin
if List_Representation_Info_To_JSON then
Write_Str ("{ ""code"": """);
if S (S'Last) = ' ' then
Write_Str (S (S'First .. S'Last - 1));
else
Write_Str (S);
end if;
Write_Str (""", ""operands"": [ ");
Print_Expr (Node.Op1);
Write_Str (" ] }");
else
Write_Str (S);
Print_Expr (Node.Op1);
end if;
end Unop;
-----------
-- Binop --
-----------
procedure Binop (S : String) is
begin
if List_Representation_Info_To_JSON then
Write_Str ("{ ""code"": """);
Write_Str (S (S'First + 1 .. S'Last - 1));
Write_Str (""", ""operands"": [ ");
Print_Expr (Node.Op1);
Write_Str (", ");
Print_Expr (Node.Op2);
Write_Str (" ] }");
else
Write_Char ('(');
Print_Expr (Node.Op1);
Write_Str (S);
Print_Expr (Node.Op2);
Write_Char (')');
end if;
end Binop;
-- Start of processing for Print_Expr
begin
case Node.Expr is
when Cond_Expr =>
if List_Representation_Info_To_JSON then
Write_Str ("{ ""code"": ""?<>""");
Write_Str (", ""operands"": [ ");
Print_Expr (Node.Op1);
Write_Str (", ");
Print_Expr (Node.Op2);
Write_Str (", ");
Print_Expr (Node.Op3);
Write_Str (" ] }");
else
Write_Str ("(if ");
Print_Expr (Node.Op1);
Write_Str (" then ");
Print_Expr (Node.Op2);
Write_Str (" else ");
Print_Expr (Node.Op3);
Write_Str (" end)");
end if;
when Plus_Expr =>
Binop (" + ");
when Minus_Expr =>
Binop (" - ");
when Mult_Expr =>
Binop (" * ");
when Trunc_Div_Expr =>
Binop (" /t ");
when Ceil_Div_Expr =>
Binop (" /c ");
when Floor_Div_Expr =>
Binop (" /f ");
when Trunc_Mod_Expr =>
Binop (" modt ");
when Ceil_Mod_Expr =>
Binop (" modc ");
when Floor_Mod_Expr =>
Binop (" modf ");
when Exact_Div_Expr =>
Binop (" /e ");
when Negate_Expr =>
Unop ("-");
when Min_Expr =>
Binop (" min ");
when Max_Expr =>
Binop (" max ");
when Abs_Expr =>
Unop ("abs ");
when Truth_And_Expr =>
Binop (" and ");
when Truth_Or_Expr =>
Binop (" or ");
when Truth_Xor_Expr =>
Binop (" xor ");
when Truth_Not_Expr =>
Unop ("not ");
when Lt_Expr =>
Binop (" < ");
when Le_Expr =>
Binop (" <= ");
when Gt_Expr =>
Binop (" > ");
when Ge_Expr =>
Binop (" >= ");
when Eq_Expr =>
Binop (" == ");
when Ne_Expr =>
Binop (" != ");
when Bit_And_Expr =>
Binop (" & ");
when Discrim_Val =>
Unop ("#");
when Dynamic_Val =>
Unop ("var");
end case;
end;
end if;
end Print_Expr;
-- Start of processing for List_GCC_Expression
begin
if No (U) then
Write_Unknown_Val;
else
Print_Expr (U);
end if;
end List_GCC_Expression;
-------------------------
-- List_Linker_Section --
-------------------------
procedure List_Linker_Section (Ent : Entity_Id) is
Args : List_Id;
Sect : Node_Id;
begin
if Present (Linker_Section_Pragma (Ent)) then
Args := Pragma_Argument_Associations (Linker_Section_Pragma (Ent));
Sect := Expr_Value_S (Get_Pragma_Arg (Last (Args)));
if List_Representation_Info_To_JSON then
Write_Line (",");
Write_Str (" ""Linker_Section"": """);
else
Write_Str ("pragma Linker_Section (");
List_Name (Ent);
Write_Str (", """);
end if;
pragma Assert (Nkind (Sect) = N_String_Literal);
String_To_Name_Buffer (Strval (Sect));
Write_Str (Name_Buffer (1 .. Name_Len));
Write_Str ("""");
if not List_Representation_Info_To_JSON then
Write_Line (");");
end if;
end if;
end List_Linker_Section;
-------------------
-- List_Location --
-------------------
procedure List_Location (Ent : Entity_Id) is
begin
pragma Assert (List_Representation_Info_To_JSON);
Write_Str (" ""location"": """);
Write_Location (Sloc (Ent));
Write_Line (""",");
end List_Location;
---------------
-- List_Name --
---------------
procedure List_Name (Ent : Entity_Id) is
C : Character;
begin
-- List the qualified name recursively, except
-- at compilation unit level in default mode.
if Is_Compilation_Unit (Ent) then
null;
elsif not Is_Compilation_Unit (Scope (Ent))
or else List_Representation_Info_To_JSON
then
List_Name (Scope (Ent));
Write_Char ('.');
end if;
Get_Unqualified_Decoded_Name_String (Chars (Ent));
Set_Casing (Unit_Casing);
-- The name of operators needs to be properly escaped for JSON
for J in 1 .. Name_Len loop
C := Name_Buffer (J);
if C = '"' and then List_Representation_Info_To_JSON then
Write_Char ('\');
end if;
Write_Char (C);
end loop;
end List_Name;
---------------------
-- List_Object_Info --
---------------------
procedure List_Object_Info (Ent : Entity_Id) is
begin
-- The information has not been computed in a generic unit, so don't try
-- to print it.
if Sem_Util.In_Generic_Scope (Ent) then
return;
end if;
Write_Separator;
if List_Representation_Info_To_JSON then
Write_Line ("{");
Write_Str (" ""name"": """);
List_Name (Ent);
Write_Line (""",");
List_Location (Ent);
Write_Str (" ""Size"": ");
Write_Val (Esize (Ent));
Write_Line (",");
Write_Str (" ""Alignment"": ");
Write_Val (Alignment (Ent));
List_Linker_Section (Ent);
Write_Eol;
Write_Line ("}");
else
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Size use ");
Write_Val (Esize (Ent));
Write_Line (";");
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Alignment use ");
Write_Val (Alignment (Ent));
Write_Line (";");
List_Linker_Section (Ent);
end if;
-- The type is relevant for an object
if List_Representation_Info = 4 and then Is_Itype (Etype (Ent)) then
Relevant_Entities.Set (Etype (Ent), True);
end if;
end List_Object_Info;
----------------------
-- List_Record_Info --
----------------------
procedure List_Record_Info (Ent : Entity_Id; Bytes_Big_Endian : Boolean) is
procedure Compute_Max_Length
(Ent : Entity_Id;
Starting_Position : Uint := Uint_0;
Starting_First_Bit : Uint := Uint_0;
Prefix_Length : Natural := 0);
-- Internal recursive procedure to compute the max length
procedure List_Component_Layout
(Ent : Entity_Id;
Starting_Position : Uint := Uint_0;
Starting_First_Bit : Uint := Uint_0;
Prefix : String := "";
Indent : Natural := 0);
-- Procedure to display the layout of a single component
procedure List_Record_Layout
(Ent : Entity_Id;
Starting_Position : Uint := Uint_0;
Starting_First_Bit : Uint := Uint_0;
Prefix : String := "");
-- Internal recursive procedure to display the layout
procedure List_Structural_Record_Layout
(Ent : Entity_Id;
Ext_Ent : Entity_Id;
Ext_Level : Nat := 0;
Variant : Node_Id := Empty;
Indent : Natural := 0);
-- Internal recursive procedure to display the structural layout.
-- If Ext_Ent is not equal to Ent, it is an extension of Ent and
-- Ext_Level is the number of successive extensions between them.
-- If Variant is present, it's for a variant in the variant part
-- instead of the common part of Ent. Indent is the indentation.
Incomplete_Layout : exception;
-- Exception raised if the layout is incomplete in -gnatc mode
Not_In_Extended_Main : exception;
-- Exception raised when an ancestor is not declared in the main unit
Max_Name_Length : Natural := 0;
Max_Spos_Length : Natural := 0;
------------------------
-- Compute_Max_Length --
------------------------
procedure Compute_Max_Length
(Ent : Entity_Id;
Starting_Position : Uint := Uint_0;
Starting_First_Bit : Uint := Uint_0;
Prefix_Length : Natural := 0)
is
Comp : Entity_Id;
begin
Comp := First_Component_Or_Discriminant (Ent);
while Present (Comp) loop
-- Skip a completely hidden discriminant or a discriminant in an
-- unchecked union (since it is not there).
if Ekind (Comp) = E_Discriminant
and then (Is_Completely_Hidden (Comp)
or else Is_Unchecked_Union (Ent))
then
goto Continue;
end if;
-- Skip _Parent component in extension (to avoid overlap)
if Chars (Comp) = Name_uParent then
goto Continue;
end if;
-- All other cases
declare
Ctyp : constant Entity_Id := Underlying_Type (Etype (Comp));
Bofs : constant Uint := Component_Bit_Offset (Comp);
Npos : Uint;
Fbit : Uint;
Spos : Uint;
Sbit : Uint;
Name_Length : Natural;
begin
Get_Decoded_Name_String (Chars (Comp));
Name_Length := Prefix_Length + Name_Len;
if Rep_Not_Constant (Bofs) then
-- If the record is not packed, then we know that all fields
-- whose position is not specified have starting normalized
-- bit position of zero.
if not Known_Normalized_First_Bit (Comp)
and then not Is_Packed (Ent)
then
Set_Normalized_First_Bit (Comp, Uint_0);
end if;
UI_Image_Length := 2; -- For "??" marker
else
Npos := Bofs / SSU;
Fbit := Bofs mod SSU;
-- Complete annotation in case not done
if not Known_Normalized_First_Bit (Comp) then
Set_Normalized_Position (Comp, Npos);
Set_Normalized_First_Bit (Comp, Fbit);
end if;
Spos := Starting_Position + Npos;
Sbit := Starting_First_Bit + Fbit;
if Sbit >= SSU then
Spos := Spos + 1;
Sbit := Sbit - SSU;
end if;
-- If extended information is requested, recurse fully into
-- record components, i.e. skip the outer level.
if List_Representation_Info_Extended
and then Is_Record_Type (Ctyp)
then
Compute_Max_Length (Ctyp, Spos, Sbit, Name_Length + 1);
goto Continue;
end if;
UI_Image (Spos);
end if;
Max_Name_Length := Natural'Max (Max_Name_Length, Name_Length);
Max_Spos_Length :=
Natural'Max (Max_Spos_Length, UI_Image_Length);
end;
<<Continue>>
Next_Component_Or_Discriminant (Comp);
end loop;
end Compute_Max_Length;
---------------------------
-- List_Component_Layout --
---------------------------
procedure List_Component_Layout
(Ent : Entity_Id;
Starting_Position : Uint := Uint_0;
Starting_First_Bit : Uint := Uint_0;
Prefix : String := "";
Indent : Natural := 0)
is
Esiz : constant Uint := Esize (Ent);
Npos : constant Uint := Normalized_Position (Ent);
Fbit : constant Uint := Normalized_First_Bit (Ent);
Spos : Uint;
Sbit : Uint := No_Uint;
Lbit : Uint;
begin
if List_Representation_Info_To_JSON then
Spaces (Indent);
Write_Line (" {");
Spaces (Indent);
Write_Str (" ""name"": """);
Write_Str (Prefix);
Write_Str (Name_Buffer (1 .. Name_Len));
Write_Line (""",");
if Ekind (Ent) = E_Discriminant then
Spaces (Indent);
Write_Str (" ""discriminant"": ");
UI_Write (Discriminant_Number (Ent), Decimal);
Write_Line (",");
end if;
Spaces (Indent);
Write_Str (" ""Position"": ");
else
Write_Str (" ");
Write_Str (Prefix);
Write_Str (Name_Buffer (1 .. Name_Len));
Spaces (Max_Name_Length - Prefix'Length - Name_Len);
Write_Str (" at ");
end if;
if Known_Static_Normalized_Position (Ent) then
Spos := Starting_Position + Npos;
Sbit := Starting_First_Bit + Fbit;
if Sbit >= SSU then
Spos := Spos + 1;
end if;
UI_Image (Spos);
Spaces (Max_Spos_Length - UI_Image_Length);
Write_Str (UI_Image_Buffer (1 .. UI_Image_Length));
elsif Known_Normalized_Position (Ent)
and then List_Representation_Info >= 3
then
Spaces (Max_Spos_Length - 2);
if Starting_Position /= Uint_0 then
UI_Write (Starting_Position, Decimal);
Write_Str (" + ");
end if;
Write_Val (Npos);
else
Write_Unknown_Val;
end if;
if List_Representation_Info_To_JSON then
Write_Line (",");
Spaces (Indent);
Write_Str (" ""First_Bit"": ");
else
Write_Str (" range ");
end if;
if Known_Static_Normalized_First_Bit (Ent) then
Sbit := Starting_First_Bit + Fbit;
if Sbit >= SSU then
Sbit := Sbit - SSU;
end if;
UI_Write (Sbit, Decimal);
else
Write_Unknown_Val;
end if;
if List_Representation_Info_To_JSON then
Write_Line (", ");
Spaces (Indent);
Write_Str (" ""Size"": ");
else
Write_Str (" .. ");
end if;
if Known_Static_Esize (Ent)
and then Known_Static_Normalized_First_Bit (Ent)
then
Lbit := Sbit + Esiz - 1;
if List_Representation_Info_To_JSON then
UI_Write (Esiz, Decimal);
else
if Lbit >= 0 and then Lbit < 10 then
Write_Char (' ');
end if;
UI_Write (Lbit, Decimal);
end if;
elsif List_Representation_Info < 3 or else not Known_Esize (Ent) then
Write_Unknown_Val;
-- List_Representation >= 3 and Known_Esize (Ent)
else
Write_Val (Esiz, Paren => not List_Representation_Info_To_JSON);
-- Add appropriate first bit offset
if not List_Representation_Info_To_JSON then
if Sbit = 0 then
Write_Str (" - 1");
elsif Sbit = 1 then
null;
else
Write_Str (" + ");
Write_Int (UI_To_Int (Sbit) - 1);
end if;
end if;
end if;
if List_Representation_Info_To_JSON then
Write_Eol;
Spaces (Indent);
Write_Str (" }");
else
Write_Line (";");
end if;
-- The type is relevant for a component
if List_Representation_Info = 4 and then Is_Itype (Etype (Ent)) then
Relevant_Entities.Set (Etype (Ent), True);
end if;
end List_Component_Layout;
------------------------
-- List_Record_Layout --
------------------------
procedure List_Record_Layout
(Ent : Entity_Id;
Starting_Position : Uint := Uint_0;
Starting_First_Bit : Uint := Uint_0;
Prefix : String := "")
is
Comp : Entity_Id;
First : Boolean := True;
begin
Comp := First_Component_Or_Discriminant (Ent);
while Present (Comp) loop
-- Skip a completely hidden discriminant or a discriminant in an
-- unchecked union (since it is not there).
if Ekind (Comp) = E_Discriminant
and then (Is_Completely_Hidden (Comp)
or else Is_Unchecked_Union (Ent))
then
goto Continue;
end if;
-- Skip _Parent component in extension (to avoid overlap)
if Chars (Comp) = Name_uParent then
goto Continue;
end if;
-- All other cases
declare
Ctyp : constant Entity_Id := Underlying_Type (Etype (Comp));
Npos : constant Uint := Normalized_Position (Comp);
Fbit : constant Uint := Normalized_First_Bit (Comp);
Spos : Uint;
Sbit : Uint;
begin
Get_Decoded_Name_String (Chars (Comp));
Set_Casing (Unit_Casing);
-- If extended information is requested, recurse fully into
-- record components, i.e. skip the outer level.
if List_Representation_Info_Extended
and then Is_Record_Type (Ctyp)
and then Known_Static_Normalized_Position (Comp)
and then Known_Static_Normalized_First_Bit (Comp)
then
Spos := Starting_Position + Npos;
Sbit := Starting_First_Bit + Fbit;
if Sbit >= SSU then
Spos := Spos + 1;
Sbit := Sbit - SSU;
end if;
List_Record_Layout (Ctyp,
Spos, Sbit, Prefix & Name_Buffer (1 .. Name_Len) & ".");
goto Continue;
end if;
if List_Representation_Info_To_JSON then
if First then
Write_Eol;
First := False;
else
Write_Line (",");
end if;
end if;
-- The Parent_Subtype in an extension is not back-annotated
List_Component_Layout (
(if Known_Normalized_Position (Comp)
then Comp
else Original_Record_Component (Comp)),
Starting_Position, Starting_First_Bit, Prefix);
end;
<<Continue>>
Next_Component_Or_Discriminant (Comp);
end loop;
end List_Record_Layout;
-----------------------------------
-- List_Structural_Record_Layout --
-----------------------------------
procedure List_Structural_Record_Layout
(Ent : Entity_Id;
Ext_Ent : Entity_Id;
Ext_Level : Nat := 0;
Variant : Node_Id := Empty;
Indent : Natural := 0)
is
function Derived_Discriminant (Disc : Entity_Id) return Entity_Id;
-- This function assumes that Ext_Ent is an extension of Ent.
-- Disc is a discriminant of Ent that does not itself constrain a
-- discriminant of the parent type of Ent. Return the discriminant
-- of Ext_Ent that ultimately constrains Disc, if any.
----------------------------
-- Derived_Discriminant --
----------------------------
function Derived_Discriminant (Disc : Entity_Id) return Entity_Id is
Corr_Disc : Entity_Id;
Derived_Disc : Entity_Id;
begin
Derived_Disc := First_Discriminant (Ext_Ent);
-- Loop over the discriminants of the extension
while Present (Derived_Disc) loop
-- Check if this discriminant constrains another discriminant.
-- If so, find the ultimately constrained discriminant and
-- compare with the original components in the base type.
if Present (Corresponding_Discriminant (Derived_Disc)) then
Corr_Disc := Corresponding_Discriminant (Derived_Disc);
while Present (Corresponding_Discriminant (Corr_Disc)) loop
Corr_Disc := Corresponding_Discriminant (Corr_Disc);
end loop;
if Original_Record_Component (Corr_Disc) =
Original_Record_Component (Disc)
then
return Derived_Disc;
end if;
end if;
Next_Discriminant (Derived_Disc);
end loop;
-- Disc is not constrained by a discriminant of Ext_Ent
return Empty;
end Derived_Discriminant;
-- Local declarations
Comp : Node_Id;
Comp_List : Node_Id;
First : Boolean := True;
Var : Node_Id;
-- Start of processing for List_Structural_Record_Layout
begin
-- If we are dealing with a variant, just process the components
if Present (Variant) then
Comp_List := Component_List (Variant);
-- Otherwise, we are dealing with the full record and need to get
-- to its definition in order to retrieve its structural layout.
else
declare
Definition : Node_Id :=
Type_Definition (Declaration_Node (Ent));
Is_Extension : constant Boolean :=
Is_Tagged_Type (Ent)
and then Nkind (Definition) =
N_Derived_Type_Definition;
Disc : Entity_Id;
Listed_Disc : Entity_Id;
Parent_Type : Entity_Id;
begin
-- If this is an extension, first list the layout of the parent
-- and then proceed to the extension part, if any.
if Is_Extension then
Parent_Type := Parent_Subtype (Ent);
if No (Parent_Type) then
raise Incomplete_Layout;
end if;
if Is_Private_Type (Parent_Type) then
Parent_Type := Full_View (Parent_Type);
pragma Assert (Present (Parent_Type));
end if;
-- Do not list variants if one of them has been selected
if Has_Static_Discriminants (Parent_Type) then
List_Record_Layout (Parent_Type);
else
Parent_Type := Base_Type (Parent_Type);
if not In_Extended_Main_Source_Unit (Parent_Type) then
raise Not_In_Extended_Main;
end if;
List_Structural_Record_Layout
(Parent_Type, Ext_Ent, Ext_Level + 1);
end if;
First := False;
if Present (Record_Extension_Part (Definition)) then
Definition := Record_Extension_Part (Definition);
end if;
end if;
-- If the record has discriminants and is not an unchecked
-- union, then display them now. Note that, even if this is
-- a structural layout, we list the visible discriminants.
if Has_Discriminants (Ent)
and then not Is_Unchecked_Union (Ent)
then
Disc := First_Discriminant (Ent);
while Present (Disc) loop
-- If this is a record extension and the discriminant is
-- the renaming of another discriminant, skip it.
if Is_Extension
and then Present (Corresponding_Discriminant (Disc))
then
goto Continue_Disc;
end if;
-- If this is the parent type of an extension, retrieve
-- the derived discriminant from the extension, if any.
if Ent /= Ext_Ent then
Listed_Disc := Derived_Discriminant (Disc);
if No (Listed_Disc) then
goto Continue_Disc;
end if;
else
Listed_Disc := Disc;
end if;
Get_Decoded_Name_String (Chars (Listed_Disc));
Set_Casing (Unit_Casing);
if First then
Write_Eol;
First := False;
else
Write_Line (",");
end if;
List_Component_Layout (Listed_Disc, Indent => Indent);
<<Continue_Disc>>
Next_Discriminant (Disc);
end loop;
end if;
Comp_List := Component_List (Definition);
end;
end if;
-- Bail out for the null record
if No (Comp_List) then
return;
end if;
-- Now deal with the regular components, if any
if Present (Component_Items (Comp_List)) then
Comp := First_Non_Pragma (Component_Items (Comp_List));
while Present (Comp) loop
-- Skip _Parent component in extension (to avoid overlap)
if Chars (Defining_Identifier (Comp)) = Name_uParent then
goto Continue_Comp;
end if;
Get_Decoded_Name_String (Chars (Defining_Identifier (Comp)));
Set_Casing (Unit_Casing);
if First then
Write_Eol;
First := False;
else
Write_Line (",");
end if;
List_Component_Layout
(Defining_Identifier (Comp), Indent => Indent);
<<Continue_Comp>>
Next_Non_Pragma (Comp);
end loop;
end if;
-- We are done if there is no variant part
if No (Variant_Part (Comp_List)) then
return;
end if;
Write_Eol;
Spaces (Indent);
Write_Line (" ],");
Spaces (Indent);
Write_Str (" """);
for J in 1 .. Ext_Level loop
Write_Str ("parent_");
end loop;
Write_Str ("variant"" : [");
-- Otherwise we recurse on each variant
Var := First_Non_Pragma (Variants (Variant_Part (Comp_List)));
First := True;
while Present (Var) loop
if First then
Write_Eol;
First := False;
else
Write_Line (",");
end if;
Spaces (Indent);
Write_Line (" {");
Spaces (Indent);
Write_Str (" ""present"": ");
Write_Val (Present_Expr (Var));
Write_Line (",");
Spaces (Indent);
Write_Str (" ""record"": [");
List_Structural_Record_Layout
(Ent, Ext_Ent, Ext_Level, Var, Indent + 4);
Write_Eol;
Spaces (Indent);
Write_Line (" ]");
Spaces (Indent);
Write_Str (" }");
Next_Non_Pragma (Var);
end loop;
end List_Structural_Record_Layout;
-- Start of processing for List_Record_Info
begin
Write_Separator;
if List_Representation_Info_To_JSON then
Write_Line ("{");
end if;
List_Common_Type_Info (Ent);
-- First find out max line length and max starting position
-- length, for the purpose of lining things up nicely.
Compute_Max_Length (Ent);
-- Then do actual output based on those values
if List_Representation_Info_To_JSON then
Write_Line (",");
Write_Str (" ""record"": [");
-- ??? We can output structural layout only for base types fully
-- declared in the extended main source unit for the time being,
-- because otherwise declarations might not be processed at all.
if Is_Base_Type (Ent) then
begin
List_Structural_Record_Layout (Ent, Ent);
exception
when Incomplete_Layout
| Not_In_Extended_Main
=>
List_Record_Layout (Ent);
when others =>
raise Program_Error;
end;
else
List_Record_Layout (Ent);
end if;
Write_Eol;
Write_Str (" ]");
else
Write_Str ("for ");
List_Name (Ent);
Write_Line (" use record");
List_Record_Layout (Ent);
Write_Line ("end record;");
end if;
List_Scalar_Storage_Order (Ent, Bytes_Big_Endian);
List_Linker_Section (Ent);
if List_Representation_Info_To_JSON then
Write_Eol;
Write_Line ("}");
end if;
-- The type is relevant for a record subtype
if List_Representation_Info = 4
and then not Is_Base_Type (Ent)
and then Is_Itype (Etype (Ent))
then
Relevant_Entities.Set (Etype (Ent), True);
end if;
end List_Record_Info;
-------------------
-- List_Rep_Info --
-------------------
procedure List_Rep_Info (Bytes_Big_Endian : Boolean) is
Col : Nat;
begin
if List_Representation_Info /= 0
or else List_Representation_Info_Mechanisms
then
-- For the normal case, we output a single JSON stream
if not List_Representation_Info_To_File
and then List_Representation_Info_To_JSON
then
Write_Line ("[");
Need_Separator := False;
end if;
for U in Main_Unit .. Last_Unit loop
if In_Extended_Main_Source_Unit (Cunit_Entity (U)) then
Unit_Casing := Identifier_Casing (Source_Index (U));
if List_Representation_Info = 4 then
Relevant_Entities.Reset;
end if;
-- Normal case, list to standard output
if not List_Representation_Info_To_File then
if not List_Representation_Info_To_JSON then
Write_Eol;
Write_Str ("Representation information for unit ");
Write_Unit_Name (Unit_Name (U));
Col := Column;
Write_Eol;
for J in 1 .. Col - 1 loop
Write_Char ('-');
end loop;
Write_Eol;
Need_Separator := True;
end if;
List_Entities (Cunit_Entity (U), Bytes_Big_Endian);
-- List representation information to file
else
Create_Repinfo_File
(Get_Name_String (File_Name (Source_Index (U))));
Set_Special_Output (Write_Info_Line'Access);
if List_Representation_Info_To_JSON then
Write_Line ("[");
end if;
Need_Separator := False;
List_Entities (Cunit_Entity (U), Bytes_Big_Endian);
if List_Representation_Info_To_JSON then
Write_Line ("]");
end if;
Cancel_Special_Output;
Close_Repinfo_File;
end if;
end if;
end loop;
if not List_Representation_Info_To_File
and then List_Representation_Info_To_JSON
then
Write_Line ("]");
end if;
end if;
end List_Rep_Info;
-------------------------------
-- List_Scalar_Storage_Order --
-------------------------------
procedure List_Scalar_Storage_Order
(Ent : Entity_Id;
Bytes_Big_Endian : Boolean)
is
procedure List_Attr (Attr_Name : String; Is_Reversed : Boolean);
-- Show attribute definition clause for Attr_Name (an endianness
-- attribute), depending on whether or not the endianness is reversed
-- compared to native endianness.
---------------
-- List_Attr --
---------------
procedure List_Attr (Attr_Name : String; Is_Reversed : Boolean) is
begin
if List_Representation_Info_To_JSON then
Write_Line (",");
Write_Str (" """);
Write_Str (Attr_Name);
Write_Str (""": ""System.");
else
Write_Str ("for ");
List_Name (Ent);
Write_Char (''');
Write_Str (Attr_Name);
Write_Str (" use System.");
end if;
if Bytes_Big_Endian xor Is_Reversed then
Write_Str ("High");
else
Write_Str ("Low");
end if;
Write_Str ("_Order_First");
if List_Representation_Info_To_JSON then
Write_Str ("""");
else
Write_Line (";");
end if;
end List_Attr;
List_SSO : constant Boolean :=
Has_Rep_Item (Ent, Name_Scalar_Storage_Order)
or else SSO_Set_Low_By_Default (Ent)
or else SSO_Set_High_By_Default (Ent);
-- Scalar_Storage_Order is displayed if specified explicitly or set by
-- Default_Scalar_Storage_Order.
-- Start of processing for List_Scalar_Storage_Order
begin
-- For record types, list Bit_Order if not default, or if SSO is shown
-- Also, when -gnatR4 is in effect always list bit order and scalar
-- storage order explicitly, so that you don't need to know the native
-- endianness of the target for which the output was produced in order
-- to interpret it.
if Is_Record_Type (Ent)
and then (List_SSO
or else Reverse_Bit_Order (Ent)
or else List_Representation_Info = 4)
then
List_Attr ("Bit_Order", Reverse_Bit_Order (Ent));
end if;
-- List SSO if required. If not, then storage is supposed to be in
-- native order.
if List_SSO or else List_Representation_Info = 4 then
List_Attr ("Scalar_Storage_Order", Reverse_Storage_Order (Ent));
else
pragma Assert (not Reverse_Storage_Order (Ent));
null;
end if;
end List_Scalar_Storage_Order;
--------------------------
-- List_Subprogram_Info --
--------------------------
procedure List_Subprogram_Info (Ent : Entity_Id) is
First : Boolean := True;
Plen : Natural;
Form : Entity_Id;
begin
Write_Separator;
if List_Representation_Info_To_JSON then
Write_Line ("{");
Write_Str (" ""name"": """);
List_Name (Ent);
Write_Line (""",");
List_Location (Ent);
Write_Str (" ""Convention"": """);
else
case Ekind (Ent) is
when E_Function =>
Write_Str ("function ");
when E_Operator =>
Write_Str ("operator ");
when E_Procedure =>
Write_Str ("procedure ");
when E_Subprogram_Type =>
Write_Str ("type ");
when E_Entry
| E_Entry_Family
=>
Write_Str ("entry ");
when others =>
raise Program_Error;
end case;
List_Name (Ent);
Write_Str (" declared at ");
Write_Location (Sloc (Ent));
Write_Eol;
Write_Str ("convention : ");
end if;
case Convention (Ent) is
when Convention_Ada =>
Write_Str ("Ada");
when Convention_Ada_Pass_By_Copy =>
Write_Str ("Ada_Pass_By_Copy");
when Convention_Ada_Pass_By_Reference =>
Write_Str ("Ada_Pass_By_Reference");
when Convention_Intrinsic =>
Write_Str ("Intrinsic");
when Convention_Entry =>
Write_Str ("Entry");
when Convention_Protected =>
Write_Str ("Protected");
when Convention_Assembler =>
Write_Str ("Assembler");
when Convention_C =>
Write_Str ("C");
when Convention_C_Variadic =>
declare
N : Nat :=
Convention_Id'Pos (Convention (Ent)) -
Convention_Id'Pos (Convention_C_Variadic_0);
begin
Write_Str ("C_Variadic_");
if N >= 10 then
Write_Char ('1');
N := N - 10;
end if;
pragma Assert (N < 10);
Write_Char (Character'Val (Character'Pos ('0') + N));
end;
when Convention_COBOL =>
Write_Str ("COBOL");
when Convention_CPP =>
Write_Str ("C++");
when Convention_Fortran =>
Write_Str ("Fortran");
when Convention_Stdcall =>
Write_Str ("Stdcall");
when Convention_Stubbed =>
Write_Str ("Stubbed");
end case;
if List_Representation_Info_To_JSON then
Write_Line (""",");
Write_Str (" ""formal"": [");
else
Write_Eol;
end if;
-- Find max length of formal name
Plen := 0;
Form := First_Formal (Ent);
while Present (Form) loop
Get_Unqualified_Decoded_Name_String (Chars (Form));
if Name_Len > Plen then
Plen := Name_Len;
end if;
Next_Formal (Form);
end loop;
-- Output formals and mechanisms
Form := First_Formal (Ent);
while Present (Form) loop
Get_Unqualified_Decoded_Name_String (Chars (Form));
Set_Casing (Unit_Casing);
if List_Representation_Info_To_JSON then
if First then
Write_Eol;
First := False;
else
Write_Line (",");
end if;
Write_Line (" {");
Write_Str (" ""name"": """);
Write_Str (Name_Buffer (1 .. Name_Len));
Write_Line (""",");
Write_Str (" ""mechanism"": """);
Write_Mechanism (Mechanism (Form));
Write_Line ("""");
Write_Str (" }");
else
while Name_Len <= Plen loop
Name_Len := Name_Len + 1;
Name_Buffer (Name_Len) := ' ';
end loop;
Write_Str (" ");
Write_Str (Name_Buffer (1 .. Plen + 1));
Write_Str (": passed by ");
Write_Mechanism (Mechanism (Form));
Write_Eol;
end if;
Next_Formal (Form);
end loop;
if List_Representation_Info_To_JSON then
Write_Eol;
Write_Str (" ]");
end if;
if Ekind (Ent) = E_Function then
if List_Representation_Info_To_JSON then
Write_Line (",");
Write_Str (" ""mechanism"": """);
Write_Mechanism (Mechanism (Ent));
Write_Str ("""");
else
Write_Str ("returns by ");
Write_Mechanism (Mechanism (Ent));
Write_Eol;
end if;
end if;
if not Is_Entry (Ent) then
List_Linker_Section (Ent);
end if;
if List_Representation_Info_To_JSON then
Write_Eol;
Write_Line ("}");
end if;
end List_Subprogram_Info;
--------------------
-- List_Type_Info --
--------------------
procedure List_Type_Info (Ent : Entity_Id) is
begin
Write_Separator;
if List_Representation_Info_To_JSON then
Write_Line ("{");
end if;
List_Common_Type_Info (Ent);
-- Special stuff for fixed-point
if Is_Fixed_Point_Type (Ent) then
-- Write small (always a static constant)
if List_Representation_Info_To_JSON then
Write_Line (",");
Write_Str (" ""Small"": ");
UR_Write_To_JSON (Small_Value (Ent));
else
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Small use ");
UR_Write (Small_Value (Ent));
Write_Line (";");
end if;
-- Write range if static
declare
R : constant Node_Id := Scalar_Range (Ent);
begin
if Nkind (Low_Bound (R)) = N_Real_Literal
and then
Nkind (High_Bound (R)) = N_Real_Literal
then
if List_Representation_Info_To_JSON then
Write_Line (",");
Write_Str (" ""Range"": [ ");
UR_Write_To_JSON (Realval (Low_Bound (R)));
Write_Str (", ");
UR_Write_To_JSON (Realval (High_Bound (R)));
Write_Str (" ]");
else
Write_Str ("for ");
List_Name (Ent);
Write_Str ("'Range use ");
UR_Write (Realval (Low_Bound (R)));
Write_Str (" .. ");
UR_Write (Realval (High_Bound (R)));
Write_Line (";");
end if;
end if;
end;
end if;
List_Linker_Section (Ent);
if List_Representation_Info_To_JSON then
Write_Eol;
Write_Line ("}");
end if;
end List_Type_Info;
----------------------
-- Rep_Not_Constant --
----------------------
function Rep_Not_Constant (Val : Node_Ref_Or_Val) return Boolean is
begin
if No (Val) or else Val < 0 then
return True;
else
return False;
end if;
end Rep_Not_Constant;
---------------
-- Rep_Value --
---------------
function Rep_Value (Val : Node_Ref_Or_Val; D : Discrim_List) return Uint is
function B (Val : Boolean) return Ubool;
-- Returns Uint_0 for False, Uint_1 for True
function T (Val : Node_Ref_Or_Val) return Boolean;
-- Returns True for 0, False for any non-zero (i.e. True)
function V (Val : Node_Ref_Or_Val) return Uint;
-- Internal recursive routine to evaluate tree
function W (Val : Uint) return Word;
-- Convert Val to Word, assuming Val is always in the Int range. This
-- is a helper function for the evaluation of bitwise expressions like
-- Bit_And_Expr, for which there is no direct support in uintp. Uint
-- values out of the Int range are expected to be seen in such
-- expressions only with overflowing byte sizes around, introducing
-- inherent unreliabilities in computations anyway.
-------
-- B --
-------
function B (Val : Boolean) return Ubool is
begin
if Val then
return Uint_1;
else
return Uint_0;
end if;
end B;
-------
-- T --
-------
function T (Val : Node_Ref_Or_Val) return Boolean is
begin
if V (Val) = 0 then
return False;
else
return True;
end if;
end T;
-------
-- V --
-------
function V (Val : Node_Ref_Or_Val) return Uint is
L, R, Q : Uint;
begin
if Val >= 0 then
return Val;
else
declare
Node : Exp_Node renames Rep_Table.Table (-UI_To_Int (Val));
begin
case Node.Expr is
when Cond_Expr =>
if T (Node.Op1) then
return V (Node.Op2);
else
return V (Node.Op3);
end if;
when Plus_Expr =>
return V (Node.Op1) + V (Node.Op2);
when Minus_Expr =>
return V (Node.Op1) - V (Node.Op2);
when Mult_Expr =>
return V (Node.Op1) * V (Node.Op2);
when Trunc_Div_Expr =>
return V (Node.Op1) / V (Node.Op2);
when Ceil_Div_Expr =>
return
UR_Ceiling
(V (Node.Op1) / UR_From_Uint (V (Node.Op2)));
when Floor_Div_Expr =>
return
UR_Floor
(V (Node.Op1) / UR_From_Uint (V (Node.Op2)));
when Trunc_Mod_Expr =>
return V (Node.Op1) rem V (Node.Op2);
when Floor_Mod_Expr =>
return V (Node.Op1) mod V (Node.Op2);
when Ceil_Mod_Expr =>
L := V (Node.Op1);
R := V (Node.Op2);
Q := UR_Ceiling (L / UR_From_Uint (R));
return L - R * Q;
when Exact_Div_Expr =>
return V (Node.Op1) / V (Node.Op2);
when Negate_Expr =>
return -V (Node.Op1);
when Min_Expr =>
return UI_Min (V (Node.Op1), V (Node.Op2));
when Max_Expr =>
return UI_Max (V (Node.Op1), V (Node.Op2));
when Abs_Expr =>
return UI_Abs (V (Node.Op1));
when Truth_And_Expr =>
return B (T (Node.Op1) and then T (Node.Op2));
when Truth_Or_Expr =>
return B (T (Node.Op1) or else T (Node.Op2));
when Truth_Xor_Expr =>
return B (T (Node.Op1) xor T (Node.Op2));
when Truth_Not_Expr =>
return B (not T (Node.Op1));
when Bit_And_Expr =>
L := V (Node.Op1);
R := V (Node.Op2);
return UI_From_Int (Int (W (L) and W (R)));
when Lt_Expr =>
return B (V (Node.Op1) < V (Node.Op2));
when Le_Expr =>
return B (V (Node.Op1) <= V (Node.Op2));
when Gt_Expr =>
return B (V (Node.Op1) > V (Node.Op2));
when Ge_Expr =>
return B (V (Node.Op1) >= V (Node.Op2));
when Eq_Expr =>
return B (V (Node.Op1) = V (Node.Op2));
when Ne_Expr =>
return B (V (Node.Op1) /= V (Node.Op2));
when Discrim_Val =>
declare
Sub : constant Int := UI_To_Int (Node.Op1);
begin
pragma Assert (Sub in D'Range);
return D (Sub);
end;
when Dynamic_Val =>
return No_Uint;
end case;
end;
end if;
end V;
-------
-- W --
-------
-- We use an unchecked conversion to map Int values to their Word
-- bitwise equivalent, which we could not achieve with a normal type
-- conversion for negative Ints. We want bitwise equivalents because W
-- is used as a helper for bit operators like Bit_And_Expr, and can be
-- called for negative Ints in the context of aligning expressions like
-- X+Align & -Align.
function W (Val : Uint) return Word is
function To_Word is new Ada.Unchecked_Conversion (Int, Word);
begin
return To_Word (UI_To_Int (Val));
end W;
-- Start of processing for Rep_Value
begin
if No (Val) then
return No_Uint;
else
return V (Val);
end if;
end Rep_Value;
------------
-- Spaces --
------------
procedure Spaces (N : Natural) is
begin
for J in 1 .. N loop
Write_Char (' ');
end loop;
end Spaces;
---------------------
-- Write_Info_Line --
---------------------
procedure Write_Info_Line (S : String) is
begin
Write_Repinfo_Line (S (S'First .. S'Last - 1));
end Write_Info_Line;
---------------------
-- Write_Mechanism --
---------------------
procedure Write_Mechanism (M : Mechanism_Type) is
begin
case M is
when 0 =>
Write_Str ("default");
when -1 =>
Write_Str ("copy");
when -2 =>
Write_Str ("reference");
when others =>
raise Program_Error;
end case;
end Write_Mechanism;
---------------------
-- Write_Separator --
---------------------
procedure Write_Separator is
begin
if Need_Separator then
if List_Representation_Info_To_JSON then
Write_Line (",");
else
Write_Eol;
end if;
else
Need_Separator := True;
end if;
end Write_Separator;
-----------------------
-- Write_Unknown_Val --
-----------------------
procedure Write_Unknown_Val is
begin
if List_Representation_Info_To_JSON then
Write_Str ("""??""");
else
Write_Str ("??");
end if;
end Write_Unknown_Val;
---------------
-- Write_Val --
---------------
procedure Write_Val (Val : Node_Ref_Or_Val; Paren : Boolean := False) is
begin
if Rep_Not_Constant (Val) then
if List_Representation_Info < 3 or else No (Val) then
Write_Unknown_Val;
else
if Paren then
Write_Char ('(');
end if;
List_GCC_Expression (Val);
if Paren then
Write_Char (')');
end if;
end if;
else
UI_Write (Val, Decimal);
end if;
end Write_Val;
end Repinfo;