blob: a672ea8c4a4591e3e864f205aca4bbfe8054440f [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- S E M _ C H 6 --
-- --
-- B o d y --
-- --
-- Copyright (C) 1992-2022, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 3, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING3. If not, go to --
-- http://www.gnu.org/licenses for a complete copy of the license. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- Extensive contributions were provided by Ada Core Technologies Inc. --
-- --
------------------------------------------------------------------------------
with Aspects; use Aspects;
with Atree; use Atree;
with Checks; use Checks;
with Contracts; use Contracts;
with Debug; use Debug;
with Einfo; use Einfo;
with Einfo.Entities; use Einfo.Entities;
with Einfo.Utils; use Einfo.Utils;
with Elists; use Elists;
with Errout; use Errout;
with Expander; use Expander;
with Exp_Ch3; use Exp_Ch3;
with Exp_Ch6; use Exp_Ch6;
with Exp_Ch9; use Exp_Ch9;
with Exp_Dbug; use Exp_Dbug;
with Exp_Tss; use Exp_Tss;
with Exp_Util; use Exp_Util;
with Freeze; use Freeze;
with Ghost; use Ghost;
with Inline; use Inline;
with Itypes; use Itypes;
with Lib.Xref; use Lib.Xref;
with Layout; use Layout;
with Namet; use Namet;
with Lib; use Lib;
with Nlists; use Nlists;
with Nmake; use Nmake;
with Opt; use Opt;
with Output; use Output;
with Rtsfind; use Rtsfind;
with Sem; use Sem;
with Sem_Aux; use Sem_Aux;
with Sem_Cat; use Sem_Cat;
with Sem_Ch3; use Sem_Ch3;
with Sem_Ch4; use Sem_Ch4;
with Sem_Ch5; use Sem_Ch5;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch9; use Sem_Ch9;
with Sem_Ch10; use Sem_Ch10;
with Sem_Ch12; use Sem_Ch12;
with Sem_Ch13; use Sem_Ch13;
with Sem_Dim; use Sem_Dim;
with Sem_Disp; use Sem_Disp;
with Sem_Dist; use Sem_Dist;
with Sem_Elim; use Sem_Elim;
with Sem_Eval; use Sem_Eval;
with Sem_Mech; use Sem_Mech;
with Sem_Prag; use Sem_Prag;
with Sem_Res; use Sem_Res;
with Sem_Util; use Sem_Util;
with Sem_Type; use Sem_Type;
with Sem_Warn; use Sem_Warn;
with Sinput; use Sinput;
with Stand; use Stand;
with Sinfo; use Sinfo;
with Sinfo.Nodes; use Sinfo.Nodes;
with Sinfo.Utils; use Sinfo.Utils;
with Sinfo.CN; use Sinfo.CN;
with Snames; use Snames;
with Stringt; use Stringt;
with Style;
with Stylesw; use Stylesw;
with Tbuild; use Tbuild;
with Uintp; use Uintp;
with Urealp; use Urealp;
with Validsw; use Validsw;
with Warnsw; use Warnsw;
package body Sem_Ch6 is
May_Hide_Profile : Boolean := False;
-- This flag is used to indicate that two formals in two subprograms being
-- checked for conformance differ only in that one is an access parameter
-- while the other is of a general access type with the same designated
-- type. In this case, if the rest of the signatures match, a call to
-- either subprogram may be ambiguous, which is worth a warning. The flag
-- is set in Compatible_Types, and the warning emitted in
-- New_Overloaded_Entity.
-----------------------
-- Local Subprograms --
-----------------------
procedure Analyze_Function_Return (N : Node_Id);
-- Subsidiary to Analyze_Return_Statement. Called when the return statement
-- applies to a [generic] function.
procedure Analyze_Generic_Subprogram_Body (N : Node_Id; Gen_Id : Entity_Id);
-- Analyze a generic subprogram body. N is the body to be analyzed, and
-- Gen_Id is the defining entity Id for the corresponding spec.
procedure Analyze_Null_Procedure
(N : Node_Id;
Is_Completion : out Boolean);
-- A null procedure can be a declaration or (Ada 2012) a completion
procedure Analyze_Return_Statement (N : Node_Id);
-- Common processing for simple and extended return statements
procedure Analyze_Return_Type (N : Node_Id);
-- Subsidiary to Process_Formals: analyze subtype mark in function
-- specification in a context where the formals are visible and hide
-- outer homographs.
procedure Analyze_Subprogram_Body_Helper (N : Node_Id);
-- Does all the real work of Analyze_Subprogram_Body. This is split out so
-- that we can use RETURN but not skip the debug output at the end.
procedure Check_Conformance
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Ctype : Conformance_Type;
Errmsg : Boolean;
Conforms : out Boolean;
Err_Loc : Node_Id := Empty;
Get_Inst : Boolean := False;
Skip_Controlling_Formals : Boolean := False);
-- Given two entities, this procedure checks that the profiles associated
-- with these entities meet the conformance criterion given by the third
-- parameter. If they conform, Conforms is set True and control returns
-- to the caller. If they do not conform, Conforms is set to False, and
-- in addition, if Errmsg is True on the call, proper messages are output
-- to complain about the conformance failure. If Err_Loc is non_Empty
-- the error messages are placed on Err_Loc, if Err_Loc is empty, then
-- error messages are placed on the appropriate part of the construct
-- denoted by New_Id. If Get_Inst is true, then this is a mode conformance
-- against a formal access-to-subprogram type so Get_Instance_Of must
-- be called.
procedure Check_Formal_Subprogram_Conformance
(New_Id : Entity_Id;
Old_Id : Entity_Id;
Err_Loc : Node_Id;
Errmsg : Boolean;
Conforms : out Boolean);
-- Core implementation of Check_Formal_Subprogram_Conformance from spec.
-- Errmsg can be set to False to not emit error messages.
-- Conforms is set to True if there is conformance, False otherwise.
procedure Check_Limited_Return
(N : Node_Id;
Expr : Node_Id;
R_Type : Entity_Id);
-- Check the appropriate (Ada 95 or Ada 2005) rules for returning limited
-- types. Used only for simple return statements. Expr is the expression
-- returned.
procedure Check_Subprogram_Order (N : Node_Id);
-- N is the N_Subprogram_Body node for a subprogram. This routine applies
-- the alpha ordering rule for N if this ordering requirement applicable.
procedure Check_Returns
(HSS : Node_Id;
Mode : Character;
Err : out Boolean;
Proc : Entity_Id := Empty);
-- Called to check for missing return statements in a function body, or for
-- returns present in a procedure body which has No_Return set. HSS is the
-- handled statement sequence for the subprogram body. This procedure
-- checks all flow paths to make sure they either have return (Mode = 'F',
-- used for functions) or do not have a return (Mode = 'P', used for
-- No_Return procedures). The flag Err is set if there are any control
-- paths not explicitly terminated by a return in the function case, and is
-- True otherwise. Proc is the entity for the procedure case and is used
-- in posting the warning message.
procedure Check_Untagged_Equality (Eq_Op : Entity_Id);
-- In Ada 2012, a primitive equality operator on an untagged record type
-- must appear before the type is frozen, and have the same visibility as
-- that of the type. This procedure checks that this rule is met, and
-- otherwise emits an error on the subprogram declaration and a warning
-- on the earlier freeze point if it is easy to locate. In Ada 2012 mode,
-- this routine outputs errors (or warnings if -gnatd.E is set). In earlier
-- versions of Ada, warnings are output if Warn_On_Ada_2012_Incompatibility
-- is set, otherwise the call has no effect.
procedure Enter_Overloaded_Entity (S : Entity_Id);
-- This procedure makes S, a new overloaded entity, into the first visible
-- entity with that name.
function Is_Non_Overriding_Operation
(Prev_E : Entity_Id;
New_E : Entity_Id) return Boolean;
-- Enforce the rule given in 12.3(18): a private operation in an instance
-- overrides an inherited operation only if the corresponding operation
-- was overriding in the generic. This needs to be checked for primitive
-- operations of types derived (in the generic unit) from formal private
-- or formal derived types.
procedure Make_Inequality_Operator (S : Entity_Id);
-- Create the declaration for an inequality operator that is implicitly
-- created by a user-defined equality operator that yields a boolean.
procedure Preanalyze_Formal_Expression (N : Node_Id; T : Entity_Id);
-- Preanalysis of default expressions of subprogram formals. N is the
-- expression to be analyzed and T is the expected type.
procedure Set_Formal_Validity (Formal_Id : Entity_Id);
-- Formal_Id is an formal parameter entity. This procedure deals with
-- setting the proper validity status for this entity, which depends on
-- the kind of parameter and the validity checking mode.
---------------------------------------------
-- Analyze_Abstract_Subprogram_Declaration --
---------------------------------------------
procedure Analyze_Abstract_Subprogram_Declaration (N : Node_Id) is
Scop : constant Entity_Id := Current_Scope;
Subp_Id : constant Entity_Id :=
Analyze_Subprogram_Specification (Specification (N));
begin
Generate_Definition (Subp_Id);
-- Set the SPARK mode from the current context (may be overwritten later
-- with explicit pragma).
Set_SPARK_Pragma (Subp_Id, SPARK_Mode_Pragma);
Set_SPARK_Pragma_Inherited (Subp_Id);
-- Preserve relevant elaboration-related attributes of the context which
-- are no longer available or very expensive to recompute once analysis,
-- resolution, and expansion are over.
Mark_Elaboration_Attributes
(N_Id => Subp_Id,
Checks => True,
Warnings => True);
Set_Is_Abstract_Subprogram (Subp_Id);
New_Overloaded_Entity (Subp_Id);
Check_Delayed_Subprogram (Subp_Id);
Set_Categorization_From_Scope (Subp_Id, Scop);
if Ekind (Scope (Subp_Id)) = E_Protected_Type then
Error_Msg_N ("abstract subprogram not allowed in protected type", N);
-- Issue a warning if the abstract subprogram is neither a dispatching
-- operation nor an operation that overrides an inherited subprogram or
-- predefined operator, since this most likely indicates a mistake.
elsif Warn_On_Redundant_Constructs
and then not Is_Dispatching_Operation (Subp_Id)
and then not Present (Overridden_Operation (Subp_Id))
and then (not Is_Operator_Symbol_Name (Chars (Subp_Id))
or else Scop /= Scope (Etype (First_Formal (Subp_Id))))
then
Error_Msg_N
("abstract subprogram is not dispatching or overriding?r?", N);
end if;
Generate_Reference_To_Formals (Subp_Id);
Check_Eliminated (Subp_Id);
if Has_Aspects (N) then
Analyze_Aspect_Specifications (N, Subp_Id);
end if;
end Analyze_Abstract_Subprogram_Declaration;
---------------------------------
-- Analyze_Expression_Function --
---------------------------------
procedure Analyze_Expression_Function (N : Node_Id) is
Expr : constant Node_Id := Expression (N);
Loc : constant Source_Ptr := Sloc (N);
LocX : constant Source_Ptr := Sloc (Expr);
Spec : constant Node_Id := Specification (N);
-- Local variables
Asp : Node_Id;
New_Body : Node_Id;
New_Spec : Node_Id;
Orig_N : Node_Id := Empty;
Ret : Node_Id;
Typ : Entity_Id := Empty;
Def_Id : Entity_Id := Empty;
Prev : Entity_Id;
-- If the expression is a completion, Prev is the entity whose
-- declaration is completed. Def_Id is needed to analyze the spec.
begin
-- This is one of the occasions on which we transform the tree during
-- semantic analysis. If this is a completion, transform the expression
-- function into an equivalent subprogram body, and analyze it.
-- Expression functions are inlined unconditionally. The back-end will
-- determine whether this is possible.
Inline_Processing_Required := True;
-- Create a specification for the generated body. This must be done
-- prior to the analysis of the initial declaration.
New_Spec := Copy_Subprogram_Spec (Spec);
Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
-- If there are previous overloadable entities with the same name,
-- check whether any of them is completed by the expression function.
-- In a generic context a formal subprogram has no completion.
if Present (Prev)
and then Is_Overloadable (Prev)
and then not Is_Formal_Subprogram (Prev)
then
Def_Id := Analyze_Subprogram_Specification (Spec);
Prev := Find_Corresponding_Spec (N);
Typ := Etype (Def_Id);
-- The previous entity may be an expression function as well, in
-- which case the redeclaration is illegal.
if Present (Prev)
and then Nkind (Original_Node (Unit_Declaration_Node (Prev))) =
N_Expression_Function
then
Error_Msg_Sloc := Sloc (Prev);
Error_Msg_N ("& conflicts with declaration#", Def_Id);
return;
end if;
end if;
Ret := Make_Simple_Return_Statement (LocX, Expr);
New_Body :=
Make_Subprogram_Body (Loc,
Specification => New_Spec,
Declarations => Empty_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (LocX,
Statements => New_List (Ret)));
Set_Was_Expression_Function (New_Body);
-- If the expression completes a generic subprogram, we must create a
-- separate node for the body, because at instantiation the original
-- node of the generic copy must be a generic subprogram body, and
-- cannot be a expression function. Otherwise we just rewrite the
-- expression with the non-generic body.
if Present (Prev) and then Ekind (Prev) = E_Generic_Function then
Insert_After (N, New_Body);
-- Propagate any aspects or pragmas that apply to the expression
-- function to the proper body when the expression function acts
-- as a completion.
if Has_Aspects (N) then
Move_Aspects (N, To => New_Body);
end if;
Relocate_Pragmas_To_Body (New_Body);
Rewrite (N, Make_Null_Statement (Loc));
Set_Has_Completion (Prev, False);
Analyze (N);
Analyze (New_Body);
Set_Is_Inlined (Prev);
elsif Present (Prev)
and then Is_Overloadable (Prev)
and then not Is_Formal_Subprogram (Prev)
then
Set_Has_Completion (Prev, False);
Set_Is_Inlined (Prev);
-- AI12-0103: Expression functions that are a completion freeze their
-- expression but don't freeze anything else (unlike regular bodies).
-- Note that we cannot defer this freezing to the analysis of the
-- expression itself, because a freeze node might appear in a nested
-- scope, leading to an elaboration order issue in gigi.
-- As elsewhere, we do not emit freeze nodes within a generic unit.
if not Inside_A_Generic then
Freeze_Expr_Types
(Def_Id => Def_Id,
Typ => Typ,
Expr => Expr,
N => N);
end if;
-- For navigation purposes, indicate that the function is a body
Generate_Reference (Prev, Defining_Entity (N), 'b', Force => True);
Rewrite (N, New_Body);
-- Remove any existing aspects from the original node because the act
-- of rewriting causes the list to be shared between the two nodes.
Orig_N := Original_Node (N);
Remove_Aspects (Orig_N);
-- Propagate any pragmas that apply to expression function to the
-- proper body when the expression function acts as a completion.
-- Aspects are automatically transfered because of node rewriting.
Relocate_Pragmas_To_Body (N);
Analyze (N);
-- Prev is the previous entity with the same name, but it is can
-- be an unrelated spec that is not completed by the expression
-- function. In that case the relevant entity is the one in the body.
-- Not clear that the backend can inline it in this case ???
if Has_Completion (Prev) then
-- The formals of the expression function are body formals,
-- and do not appear in the ali file, which will only contain
-- references to the formals of the original subprogram spec.
declare
F1 : Entity_Id;
F2 : Entity_Id;
begin
F1 := First_Formal (Def_Id);
F2 := First_Formal (Prev);
while Present (F1) loop
Set_Spec_Entity (F1, F2);
Next_Formal (F1);
Next_Formal (F2);
end loop;
end;
else
Set_Is_Inlined (Defining_Entity (New_Body));
end if;
-- If this is not a completion, create both a declaration and a body, so
-- that the expression can be inlined whenever possible.
else
-- An expression function that is not a completion is not a
-- subprogram declaration, and thus cannot appear in a protected
-- definition.
if Nkind (Parent (N)) = N_Protected_Definition then
Error_Msg_N
("an expression function is not a legal protected operation", N);
end if;
Rewrite (N, Make_Subprogram_Declaration (Loc, Specification => Spec));
-- Remove any existing aspects from the original node because the act
-- of rewriting causes the list to be shared between the two nodes.
Orig_N := Original_Node (N);
Remove_Aspects (Orig_N);
Analyze (N);
-- If aspect SPARK_Mode was specified on the body, it needs to be
-- repeated both on the generated spec and the body.
Asp := Find_Aspect (Defining_Unit_Name (Spec), Aspect_SPARK_Mode);
if Present (Asp) then
Asp := New_Copy_Tree (Asp);
Set_Analyzed (Asp, False);
Set_Aspect_Specifications (New_Body, New_List (Asp));
end if;
Def_Id := Defining_Entity (N);
Set_Is_Inlined (Def_Id);
Typ := Etype (Def_Id);
-- Establish the linkages between the spec and the body. These are
-- used when the expression function acts as the prefix of attribute
-- 'Access in order to freeze the original expression which has been
-- moved to the generated body.
Set_Corresponding_Body (N, Defining_Entity (New_Body));
Set_Corresponding_Spec (New_Body, Def_Id);
-- Within a generic preanalyze the original expression for name
-- capture. The body is also generated but plays no role in
-- this because it is not part of the original source.
-- If this is an ignored Ghost entity, analysis of the generated
-- body is needed to hide external references (as is done in
-- Analyze_Subprogram_Body) after which the the subprogram profile
-- can be frozen, which is needed to expand calls to such an ignored
-- Ghost subprogram.
if Inside_A_Generic then
Set_Has_Completion (Def_Id, not Is_Ignored_Ghost_Entity (Def_Id));
Push_Scope (Def_Id);
Install_Formals (Def_Id);
Preanalyze_Spec_Expression (Expr, Typ);
End_Scope;
else
Push_Scope (Def_Id);
Install_Formals (Def_Id);
Preanalyze_Formal_Expression (Expr, Typ);
Check_Limited_Return (Orig_N, Expr, Typ);
End_Scope;
end if;
-- If this is a wrapper created in an instance for a formal
-- subprogram, insert body after declaration, to be analyzed when the
-- enclosing instance is analyzed.
if GNATprove_Mode
and then Is_Generic_Actual_Subprogram (Def_Id)
then
Insert_After (N, New_Body);
-- To prevent premature freeze action, insert the new body at the end
-- of the current declarations, or at the end of the package spec.
-- However, resolve usage names now, to prevent spurious visibility
-- on later entities. Note that the function can now be called in
-- the current declarative part, which will appear to be prior to the
-- presence of the body in the code. There are nevertheless no order
-- of elaboration issues because all name resolution has taken place
-- at the point of declaration.
else
declare
Decls : List_Id := List_Containing (N);
Par : constant Node_Id := Parent (Decls);
begin
if Nkind (Par) = N_Package_Specification
and then Decls = Visible_Declarations (Par)
and then not Is_Empty_List (Private_Declarations (Par))
then
Decls := Private_Declarations (Par);
end if;
Insert_After (Last (Decls), New_Body);
end;
end if;
-- In the case of an expression function marked with the aspect
-- Static, we need to check the requirement that the function's
-- expression is a potentially static expression. This is done
-- by making a full copy of the expression tree and performing
-- a special preanalysis on that tree with the global flag
-- Checking_Potentially_Static_Expression enabled. If the
-- resulting expression is static, then it's OK, but if not, that
-- means the expression violates the requirements of the Ada 2022
-- RM in 4.9(3.2/5-3.4/5) and we flag an error.
if Is_Static_Function (Def_Id) then
if not Is_Static_Expression (Expr) then
declare
Exp_Copy : constant Node_Id := New_Copy_Tree (Expr);
begin
Set_Checking_Potentially_Static_Expression (True);
Preanalyze_Formal_Expression (Exp_Copy, Typ);
if not Is_Static_Expression (Exp_Copy) then
Error_Msg_N
("static expression function requires "
& "potentially static expression", Expr);
end if;
Set_Checking_Potentially_Static_Expression (False);
end;
end if;
-- We also make an additional copy of the expression and
-- replace the expression of the expression function with
-- this copy, because the currently present expression is
-- now associated with the body created for the static
-- expression function, which will later be analyzed and
-- possibly rewritten, and we need to have the separate
-- unanalyzed copy available for use with later static
-- calls.
Set_Expression
(Original_Node (Subprogram_Spec (Def_Id)),
New_Copy_Tree (Expr));
-- Mark static expression functions as inlined, to ensure
-- that even calls with nonstatic actuals will be inlined.
Set_Has_Pragma_Inline (Def_Id);
Set_Is_Inlined (Def_Id);
end if;
end if;
-- Check incorrect use of dynamically tagged expression. This doesn't
-- fall out automatically when analyzing the generated function body,
-- because Check_Dynamically_Tagged_Expression deliberately ignores
-- nodes that don't come from source.
if Present (Def_Id)
and then Is_Tagged_Type (Typ)
then
Check_Dynamically_Tagged_Expression
(Expr => Expr,
Typ => Typ,
Related_Nod => Orig_N);
end if;
-- We must enforce checks for unreferenced formals in our newly
-- generated function, so we propagate the referenced flag from the
-- original spec to the new spec as well as setting Comes_From_Source.
if Present (Parameter_Specifications (New_Spec)) then
declare
Form_New_Def : Entity_Id;
Form_New_Spec : Node_Id;
Form_Old_Def : Entity_Id;
Form_Old_Spec : Node_Id;
begin
Form_New_Spec := First (Parameter_Specifications (New_Spec));
Form_Old_Spec := First (Parameter_Specifications (Spec));
while Present (Form_New_Spec) and then Present (Form_Old_Spec) loop
Form_New_Def := Defining_Identifier (Form_New_Spec);
Form_Old_Def := Defining_Identifier (Form_Old_Spec);
Set_Comes_From_Source (Form_New_Def, True);
-- Because of the usefulness of unreferenced controlling
-- formals we exempt them from unreferenced warnings by marking
-- them as always referenced.
Set_Referenced (Form_Old_Def,
(Is_Formal (Form_Old_Def)
and then Is_Controlling_Formal (Form_Old_Def))
or else Referenced (Form_Old_Def));
Next (Form_New_Spec);
Next (Form_Old_Spec);
end loop;
end;
end if;
end Analyze_Expression_Function;
---------------------------------------
-- Analyze_Extended_Return_Statement --
---------------------------------------
procedure Analyze_Extended_Return_Statement (N : Node_Id) is
begin
Analyze_Return_Statement (N);
end Analyze_Extended_Return_Statement;
----------------------------
-- Analyze_Function_Call --
----------------------------
procedure Analyze_Function_Call (N : Node_Id) is
Actuals : constant List_Id := Parameter_Associations (N);
Func_Nam : constant Node_Id := Name (N);
Actual : Node_Id;
begin
Analyze (Func_Nam);
-- A call of the form A.B (X) may be an Ada 2005 call, which is
-- rewritten as B (A, X). If the rewriting is successful, the call
-- has been analyzed and we just return.
if Nkind (Func_Nam) = N_Selected_Component
and then Name (N) /= Func_Nam
and then Is_Rewrite_Substitution (N)
and then Present (Etype (N))
then
return;
end if;
-- If error analyzing name, then set Any_Type as result type and return
if Etype (Func_Nam) = Any_Type then
Set_Etype (N, Any_Type);
return;
end if;
-- Otherwise analyze the parameters
if Present (Actuals) then
Actual := First (Actuals);
while Present (Actual) loop
Analyze (Actual);
Check_Parameterless_Call (Actual);
Next (Actual);
end loop;
end if;
Analyze_Call (N);
end Analyze_Function_Call;
-----------------------------
-- Analyze_Function_Return --
-----------------------------
procedure Analyze_Function_Return (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Stm_Entity : constant Entity_Id := Return_Statement_Entity (N);
Scope_Id : constant Entity_Id := Return_Applies_To (Stm_Entity);
R_Type : constant Entity_Id := Etype (Scope_Id);
-- Function result subtype
procedure Check_No_Return_Expression (Return_Expr : Node_Id);
-- Ada 2022: Check that the return expression in a No_Return function
-- meets the conditions specified by RM 6.5.1(5.1/5).
procedure Check_Return_Construct_Accessibility (Return_Stmt : Node_Id);
-- Apply legality rule of 6.5 (5.9) to the access discriminants of an
-- aggregate in a return statement.
procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id);
-- Check that the return_subtype_indication properly matches the result
-- subtype of the function, as required by RM-6.5(5.1/2-5.3/2).
--------------------------------
-- Check_No_Return_Expression --
--------------------------------
procedure Check_No_Return_Expression (Return_Expr : Node_Id) is
Kind : constant Node_Kind := Nkind (Return_Expr);
begin
if Kind = N_Raise_Expression then
return;
elsif Kind = N_Function_Call
and then Is_Entity_Name (Name (Return_Expr))
and then Ekind (Entity (Name (Return_Expr))) in
E_Function | E_Generic_Function
and then No_Return (Entity (Name (Return_Expr)))
then
return;
end if;
Error_Msg_N
("illegal expression in RETURN statement of No_Return function",
Return_Expr);
Error_Msg_N
("\must be raise expression or call to No_Return (RM 6.5.1(5.1/5))",
Return_Expr);
end Check_No_Return_Expression;
------------------------------------------
-- Check_Return_Construct_Accessibility --
------------------------------------------
procedure Check_Return_Construct_Accessibility (Return_Stmt : Node_Id) is
function First_Selector (Assoc : Node_Id) return Node_Id;
-- Obtain the first selector or choice from a given association
--------------------
-- First_Selector --
--------------------
function First_Selector (Assoc : Node_Id) return Node_Id is
begin
if Nkind (Assoc) = N_Component_Association then
return First (Choices (Assoc));
elsif Nkind (Assoc) = N_Discriminant_Association then
return (First (Selector_Names (Assoc)));
else
raise Program_Error;
end if;
end First_Selector;
-- Local declarations
Assoc : Node_Id := Empty;
-- Assoc should perhaps be renamed and declared as a
-- Node_Or_Entity_Id since it encompasses not only component and
-- discriminant associations, but also discriminant components within
-- a type declaration or subtype indication ???
Assoc_Expr : Node_Id;
Assoc_Present : Boolean := False;
Check_Cond : Node_Id;
Unseen_Disc_Count : Nat := 0;
Seen_Discs : Elist_Id;
Disc : Entity_Id;
First_Disc : Entity_Id;
Obj_Decl : Node_Id;
Return_Con : Node_Id;
Unqual : Node_Id;
-- Start of processing for Check_Return_Construct_Accessibility
begin
-- Only perform checks on record types with access discriminants and
-- non-internally generated functions.
if not Is_Record_Type (R_Type)
or else not Has_Anonymous_Access_Discriminant (R_Type)
or else not Comes_From_Source (Return_Stmt)
then
return;
end if;
-- We are only interested in return statements
if Nkind (Return_Stmt) not in
N_Extended_Return_Statement | N_Simple_Return_Statement
then
return;
end if;
-- Fetch the object from the return statement, in the case of a
-- simple return statement the expression is part of the node.
if Nkind (Return_Stmt) = N_Extended_Return_Statement then
-- Obtain the object definition from the expanded extended return
Return_Con := First (Return_Object_Declarations (Return_Stmt));
while Present (Return_Con) loop
-- Inspect the original node to avoid object declarations
-- expanded into renamings.
if Nkind (Original_Node (Return_Con)) = N_Object_Declaration
and then Comes_From_Source (Original_Node (Return_Con))
then
exit;
end if;
Nlists.Next (Return_Con);
end loop;
pragma Assert (Present (Return_Con));
-- Could be dealing with a renaming
Return_Con := Original_Node (Return_Con);
else
Return_Con := Expression (Return_Stmt);
end if;
-- Obtain the accessibility levels of the expressions associated
-- with all anonymous access discriminants, then generate a
-- dynamic check or static error when relevant.
Unqual := Unqualify (Original_Node (Return_Con));
-- Get the corresponding declaration based on the return object's
-- identifier.
if Nkind (Unqual) = N_Identifier
and then Nkind (Parent (Entity (Unqual)))
in N_Object_Declaration
| N_Object_Renaming_Declaration
then
Obj_Decl := Original_Node (Parent (Entity (Unqual)));
-- We were passed the object declaration directly, so use it
elsif Nkind (Unqual) in N_Object_Declaration
| N_Object_Renaming_Declaration
then
Obj_Decl := Unqual;
-- Otherwise, we are looking at something else
else
Obj_Decl := Empty;
end if;
-- Hop up object renamings when present
if Present (Obj_Decl)
and then Nkind (Obj_Decl) = N_Object_Renaming_Declaration
then
while Nkind (Obj_Decl) = N_Object_Renaming_Declaration loop
if Nkind (Name (Obj_Decl)) not in N_Entity then
-- We may be looking at the expansion of iterators or
-- some other internally generated construct, so it is safe
-- to ignore checks ???
if not Comes_From_Source (Obj_Decl) then
return;
end if;
Obj_Decl := Original_Node
(Declaration_Node
(Ultimate_Prefix (Name (Obj_Decl))));
-- Move up to the next declaration based on the object's name
else
Obj_Decl := Original_Node
(Declaration_Node (Name (Obj_Decl)));
end if;
end loop;
end if;
-- Obtain the discriminant values from the return aggregate
-- Do we cover extension aggregates correctly ???
if Nkind (Unqual) = N_Aggregate then
if Present (Expressions (Unqual)) then
Assoc := First (Expressions (Unqual));
else
Assoc := First (Component_Associations (Unqual));
end if;
-- There is an object declaration for the return object
elsif Present (Obj_Decl) then
-- When a subtype indication is present in an object declaration
-- it must contain the object's discriminants.
if Nkind (Object_Definition (Obj_Decl)) = N_Subtype_Indication then
Assoc := First
(Constraints
(Constraint
(Object_Definition (Obj_Decl))));
-- The object declaration contains an aggregate
elsif Present (Expression (Obj_Decl)) then
if Nkind (Unqualify (Expression (Obj_Decl))) = N_Aggregate then
-- Grab the first associated discriminant expresion
if Present
(Expressions (Unqualify (Expression (Obj_Decl))))
then
Assoc := First
(Expressions
(Unqualify (Expression (Obj_Decl))));
else
Assoc := First
(Component_Associations
(Unqualify (Expression (Obj_Decl))));
end if;
-- Otherwise, this is something else
else
return;
end if;
-- There are no supplied discriminants in the object declaration,
-- so get them from the type definition since they must be default
-- initialized.
-- Do we handle constrained subtypes correctly ???
elsif Nkind (Unqual) = N_Object_Declaration then
Assoc := First_Discriminant
(Etype (Object_Definition (Obj_Decl)));
else
Assoc := First_Discriminant (Etype (Unqual));
end if;
-- When we are not looking at an aggregate or an identifier, return
-- since any other construct (like a function call) is not
-- applicable since checks will be performed on the side of the
-- callee.
else
return;
end if;
-- Obtain the discriminants so we know the actual type in case the
-- value of their associated expression gets implicitly converted.
if No (Obj_Decl) then
pragma Assert (Nkind (Unqual) = N_Aggregate);
Disc := First_Discriminant (Etype (Unqual));
else
Disc := First_Discriminant
(Etype (Defining_Identifier (Obj_Decl)));
end if;
-- Preserve the first discriminant for checking named associations
First_Disc := Disc;
-- Count the number of discriminants for processing an aggregate
-- which includes an others.
Disc := First_Disc;
while Present (Disc) loop
Unseen_Disc_Count := Unseen_Disc_Count + 1;
Next_Discriminant (Disc);
end loop;
Seen_Discs := New_Elmt_List;
-- Loop through each of the discriminants and check each expression
-- associated with an anonymous access discriminant.
-- When named associations occur in the return aggregate then
-- discriminants can be in any order, so we need to ensure we do
-- not continue to loop when all discriminants have been seen.
Disc := First_Disc;
while Present (Assoc)
and then (Present (Disc) or else Assoc_Present)
and then Unseen_Disc_Count > 0
loop
-- Handle named associations by searching through the names of
-- the relevant discriminant components.
if Nkind (Assoc)
in N_Component_Association | N_Discriminant_Association
then
Assoc_Expr := Expression (Assoc);
Assoc_Present := True;
-- We currently don't handle box initialized discriminants,
-- however, since default initialized anonymous access
-- discriminants are a corner case, this is ok for now ???
if Nkind (Assoc) = N_Component_Association
and then Box_Present (Assoc)
then
Assoc_Present := False;
if Nkind (First_Selector (Assoc)) = N_Others_Choice then
Unseen_Disc_Count := 0;
end if;
-- When others is present we must identify a discriminant we
-- haven't already seen so as to get the appropriate type for
-- the static accessibility check.
-- This works because all components within an others clause
-- must have the same type.
elsif Nkind (First_Selector (Assoc)) = N_Others_Choice then
Disc := First_Disc;
Outer : while Present (Disc) loop
declare
Current_Seen_Disc : Elmt_Id;
begin
-- Move through the list of identified discriminants
Current_Seen_Disc := First_Elmt (Seen_Discs);
while Present (Current_Seen_Disc) loop
-- Exit the loop when we found a match
exit when
Chars (Node (Current_Seen_Disc)) = Chars (Disc);
Next_Elmt (Current_Seen_Disc);
end loop;
-- When we have exited the above loop without finding
-- a match then we know that Disc has not been seen.
exit Outer when No (Current_Seen_Disc);
end;
Next_Discriminant (Disc);
end loop Outer;
-- If we got to an others clause with a non-zero
-- discriminant count there must be a discriminant left to
-- check.
pragma Assert (Present (Disc));
-- Set the unseen discriminant count to zero because we know
-- an others clause sets all remaining components of an
-- aggregate.
Unseen_Disc_Count := 0;
-- Move through each of the selectors in the named association
-- and obtain a discriminant for accessibility checking if one
-- is referenced in the list. Also track which discriminants
-- are referenced for the purpose of handling an others clause.
else
declare
Assoc_Choice : Node_Id;
Curr_Disc : Node_Id;
begin
Disc := Empty;
Curr_Disc := First_Disc;
while Present (Curr_Disc) loop
-- Check each of the choices in the associations for a
-- match to the name of the current discriminant.
Assoc_Choice := First_Selector (Assoc);
while Present (Assoc_Choice) loop
-- When the name matches we track that we have seen
-- the discriminant, but instead of exiting the
-- loop we continue iterating to make sure all the
-- discriminants within the named association get
-- tracked.
if Chars (Assoc_Choice) = Chars (Curr_Disc) then
Append_Elmt (Curr_Disc, Seen_Discs);
Disc := Curr_Disc;
Unseen_Disc_Count := Unseen_Disc_Count - 1;
end if;
Next (Assoc_Choice);
end loop;
Next_Discriminant (Curr_Disc);
end loop;
end;
end if;
-- Unwrap the associated expression if we are looking at a default
-- initialized type declaration. In this case Assoc is not really
-- an association, but a component declaration. Should Assoc be
-- renamed in some way to be more clear ???
-- This occurs when the return object does not initialize
-- discriminant and instead relies on the type declaration for
-- their supplied values.
elsif Nkind (Assoc) in N_Entity
and then Ekind (Assoc) = E_Discriminant
then
Append_Elmt (Disc, Seen_Discs);
Assoc_Expr := Discriminant_Default_Value (Assoc);
Unseen_Disc_Count := Unseen_Disc_Count - 1;
-- Otherwise, there is nothing to do because Assoc is an
-- expression within the return aggregate itself.
else
Append_Elmt (Disc, Seen_Discs);
Assoc_Expr := Assoc;
Unseen_Disc_Count := Unseen_Disc_Count - 1;
end if;
-- Check the accessibility level of the expression when the
-- discriminant is of an anonymous access type.
if Present (Assoc_Expr)
and then Present (Disc)
and then Ekind (Etype (Disc)) = E_Anonymous_Access_Type
then
-- Generate a dynamic check based on the extra accessibility of
-- the result or the scope.
Check_Cond :=
Make_Op_Gt (Loc,
Left_Opnd => Accessibility_Level
(Expr => Assoc_Expr,
Level => Dynamic_Level,
In_Return_Context => True),
Right_Opnd => (if Present
(Extra_Accessibility_Of_Result
(Scope_Id))
then
Extra_Accessibility_Of_Result (Scope_Id)
else
Make_Integer_Literal
(Loc, Scope_Depth (Scope (Scope_Id)))));
Insert_Before_And_Analyze (Return_Stmt,
Make_Raise_Program_Error (Loc,
Condition => Check_Cond,
Reason => PE_Accessibility_Check_Failed));
-- If constant folding has happened on the condition for the
-- generated error, then warn about it being unconditional when
-- we know an error will be raised.
if Nkind (Check_Cond) = N_Identifier
and then Entity (Check_Cond) = Standard_True
then
Error_Msg_N
("access discriminant in return object would be a dangling"
& " reference", Return_Stmt);
end if;
end if;
-- Iterate over the discriminants, except when we have encountered
-- a named association since the discriminant order becomes
-- irrelevant in that case.
if not Assoc_Present then
Next_Discriminant (Disc);
end if;
-- Iterate over associations
if not Is_List_Member (Assoc) then
exit;
else
Nlists.Next (Assoc);
end if;
end loop;
end Check_Return_Construct_Accessibility;
-------------------------------------
-- Check_Return_Subtype_Indication --
-------------------------------------
procedure Check_Return_Subtype_Indication (Obj_Decl : Node_Id) is
Return_Obj : constant Node_Id := Defining_Identifier (Obj_Decl);
R_Stm_Type : constant Entity_Id := Etype (Return_Obj);
-- Subtype given in the extended return statement (must match R_Type)
Subtype_Ind : constant Node_Id :=
Object_Definition (Original_Node (Obj_Decl));
procedure Error_No_Match (N : Node_Id);
-- Output error messages for case where types do not statically
-- match. N is the location for the messages.
--------------------
-- Error_No_Match --
--------------------
procedure Error_No_Match (N : Node_Id) is
begin
Error_Msg_N
("subtype must statically match function result subtype", N);
if not Predicates_Match (R_Stm_Type, R_Type) then
Error_Msg_Node_2 := R_Type;
Error_Msg_NE
("\predicate of& does not match predicate of&",
N, R_Stm_Type);
end if;
end Error_No_Match;
-- Start of processing for Check_Return_Subtype_Indication
begin
-- First, avoid cascaded errors
if Error_Posted (Obj_Decl) or else Error_Posted (Subtype_Ind) then
return;
end if;
-- "return access T" case; check that the return statement also has
-- "access T", and that the subtypes statically match:
-- if this is an access to subprogram the signatures must match.
if Is_Anonymous_Access_Type (R_Type) then
if Is_Anonymous_Access_Type (R_Stm_Type) then
if Ekind (Designated_Type (R_Stm_Type)) /= E_Subprogram_Type
then
if Base_Type (Designated_Type (R_Stm_Type)) /=
Base_Type (Designated_Type (R_Type))
or else not Subtypes_Statically_Match (R_Stm_Type, R_Type)
then
Error_No_Match (Subtype_Mark (Subtype_Ind));
end if;
else
-- For two anonymous access to subprogram types, the types
-- themselves must be type conformant.
if not Conforming_Types
(R_Stm_Type, R_Type, Fully_Conformant)
then
Error_No_Match (Subtype_Ind);
end if;
end if;
else
Error_Msg_N ("must use anonymous access type", Subtype_Ind);
end if;
-- If the return object is of an anonymous access type, then report
-- an error if the function's result type is not also anonymous.
elsif Is_Anonymous_Access_Type (R_Stm_Type) then
pragma Assert (not Is_Anonymous_Access_Type (R_Type));
Error_Msg_N
("anonymous access not allowed for function with named access "
& "result", Subtype_Ind);
-- Subtype indication case: check that the return object's type is
-- covered by the result type, and that the subtypes statically match
-- when the result subtype is constrained. Also handle record types
-- with unknown discriminants for which we have built the underlying
-- record view. Coverage is needed to allow specific-type return
-- objects when the result type is class-wide (see AI05-32).
elsif Covers (Base_Type (R_Type), Base_Type (R_Stm_Type))
or else (Is_Underlying_Record_View (Base_Type (R_Stm_Type))
and then
Covers
(Base_Type (R_Type),
Underlying_Record_View (Base_Type (R_Stm_Type))))
then
-- A null exclusion may be present on the return type, on the
-- function specification, on the object declaration or on the
-- subtype itself.
if Is_Access_Type (R_Type)
and then
(Can_Never_Be_Null (R_Type)
or else Null_Exclusion_Present (Parent (Scope_Id))) /=
Can_Never_Be_Null (R_Stm_Type)
then
Error_No_Match (Subtype_Ind);
end if;
-- AI05-103: for elementary types, subtypes must statically match
if Is_Constrained (R_Type) or else Is_Access_Type (R_Type) then
if not Subtypes_Statically_Match (R_Stm_Type, R_Type) then
Error_No_Match (Subtype_Ind);
end if;
end if;
-- All remaining cases are illegal
-- Note: previous versions of this subprogram allowed the return
-- value to be the ancestor of the return type if the return type
-- was a null extension. This was plainly incorrect.
else
Error_Msg_N
("wrong type for return_subtype_indication", Subtype_Ind);
end if;
end Check_Return_Subtype_Indication;
---------------------
-- Local Variables --
---------------------
Expr : Node_Id;
Obj_Decl : Node_Id := Empty;
-- Start of processing for Analyze_Function_Return
begin
Set_Return_Present (Scope_Id);
if Nkind (N) = N_Simple_Return_Statement then
Expr := Expression (N);
-- Guard against a malformed expression. The parser may have tried to
-- recover but the node is not analyzable.
if Nkind (Expr) = N_Error then
Set_Etype (Expr, Any_Type);
Expander_Mode_Save_And_Set (False);
return;
else
-- The resolution of a controlled [extension] aggregate associated
-- with a return statement creates a temporary which needs to be
-- finalized on function exit. Wrap the return statement inside a
-- block so that the finalization machinery can detect this case.
-- This early expansion is done only when the return statement is
-- not part of a handled sequence of statements.
if Nkind (Expr) in N_Aggregate | N_Extension_Aggregate
and then Needs_Finalization (R_Type)
and then Nkind (Parent (N)) /= N_Handled_Sequence_Of_Statements
then
Rewrite (N,
Make_Block_Statement (Loc,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Relocate_Node (N)))));
Analyze (N);
return;
end if;
Analyze (Expr);
-- Ada 2005 (AI-251): If the type of the returned object is
-- an access to an interface type then we add an implicit type
-- conversion to force the displacement of the "this" pointer to
-- reference the secondary dispatch table. We cannot delay the
-- generation of this implicit conversion until the expansion
-- because in this case the type resolution changes the decoration
-- of the expression node to match R_Type; by contrast, if the
-- returned object is a class-wide interface type then it is too
-- early to generate here the implicit conversion since the return
-- statement may be rewritten by the expander into an extended
-- return statement whose expansion takes care of adding the
-- implicit type conversion to displace the pointer to the object.
if Expander_Active
and then Serious_Errors_Detected = 0
and then Is_Access_Type (R_Type)
and then Nkind (Expr) not in N_Null | N_Raise_Expression
and then Is_Interface (Designated_Type (R_Type))
and then Is_Progenitor (Designated_Type (R_Type),
Designated_Type (Etype (Expr)))
then
Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
Analyze (Expr);
end if;
Resolve (Expr, R_Type);
Check_Limited_Return (N, Expr, R_Type);
Check_Return_Construct_Accessibility (N);
-- Ada 2022 (AI12-0269): Any return statement that applies to a
-- nonreturning function shall be a simple_return_statement with
-- an expression that is a raise_expression, or else a call on a
-- nonreturning function, or else a parenthesized expression of
-- one of these.
if Ada_Version >= Ada_2022
and then No_Return (Scope_Id)
and then Comes_From_Source (N)
then
Check_No_Return_Expression (Original_Node (Expr));
end if;
end if;
else
Obj_Decl := Last (Return_Object_Declarations (N));
-- Analyze parts specific to extended_return_statement:
declare
Has_Aliased : constant Boolean := Aliased_Present (Obj_Decl);
HSS : constant Node_Id := Handled_Statement_Sequence (N);
begin
Expr := Expression (Obj_Decl);
-- Note: The check for OK_For_Limited_Init will happen in
-- Analyze_Object_Declaration; we treat it as a normal
-- object declaration.
Set_Is_Return_Object (Defining_Identifier (Obj_Decl));
-- Returning a build-in-place unconstrained array type we defer
-- the full analysis of the returned object to avoid generating
-- the corresponding constrained subtype; otherwise the bounds
-- would be created in the stack and a dangling reference would
-- be returned pointing to the bounds. We perform its preanalysis
-- to report errors on the initializing aggregate now (if any);
-- we also ensure its activation chain and Master variable are
-- defined (if tasks are being declared) since they are generated
-- as part of the analysis and expansion of the object declaration
-- at this stage.
if Is_Array_Type (R_Type)
and then not Is_Constrained (R_Type)
and then Is_Build_In_Place_Function (Scope_Id)
and then Needs_BIP_Alloc_Form (Scope_Id)
and then Nkind (Expr) in N_Aggregate | N_Extension_Aggregate
then
Preanalyze (Obj_Decl);
if Expander_Active then
Ensure_Activation_Chain_And_Master (Obj_Decl);
end if;
else
Analyze (Obj_Decl);
end if;
Check_Return_Subtype_Indication (Obj_Decl);
if Present (HSS) then
Analyze (HSS);
if Present (Exception_Handlers (HSS)) then
-- ???Has_Nested_Block_With_Handler needs to be set.
-- Probably by creating an actual N_Block_Statement.
-- Probably in Expand.
null;
end if;
end if;
-- Mark the return object as referenced, since the return is an
-- implicit reference of the object.
Set_Referenced (Defining_Identifier (Obj_Decl));
Check_References (Stm_Entity);
Check_Return_Construct_Accessibility (N);
-- Check RM 6.5 (5.9/3)
if Has_Aliased then
if Ada_Version < Ada_2012
and then Warn_On_Ada_2012_Compatibility
then
Error_Msg_N
("ALIASED only allowed for limited return objects "
& "in Ada 2012?y?", N);
elsif not Is_Limited_View (R_Type) then
Error_Msg_N
("ALIASED only allowed for limited return objects", N);
end if;
end if;
-- Ada 2022 (AI12-0269): Any return statement that applies to a
-- nonreturning function shall be a simple_return_statement.
if Ada_Version >= Ada_2022
and then No_Return (Scope_Id)
and then Comes_From_Source (N)
then
Error_Msg_N
("extended RETURN statement not allowed in No_Return "
& "function", N);
end if;
end;
end if;
-- Case of Expr present
if Present (Expr) then
-- Defend against previous errors
if Nkind (Expr) = N_Empty
or else No (Etype (Expr))
then
return;
end if;
-- Apply constraint check. Note that this is done before the implicit
-- conversion of the expression done for anonymous access types to
-- ensure correct generation of the null-excluding check associated
-- with null-excluding expressions found in return statements. We
-- don't need a check if the subtype of the return object is the
-- same as the result subtype of the function.
if Nkind (N) /= N_Extended_Return_Statement
or else Nkind (Obj_Decl) /= N_Object_Declaration
or else Nkind (Object_Definition (Obj_Decl)) not in N_Has_Entity
or else Entity (Object_Definition (Obj_Decl)) /= R_Type
then
Apply_Constraint_Check (Expr, R_Type);
end if;
-- The return value is converted to the return type of the function,
-- which implies a predicate check if the return type is predicated.
-- We do not apply the check for an extended return statement because
-- Analyze_Object_Declaration has already done it on Obj_Decl above.
-- We do not apply the check to a case expression because it will
-- be expanded into a series of return statements, each of which
-- will receive a predicate check.
if Nkind (N) /= N_Extended_Return_Statement
and then Nkind (Expr) /= N_Case_Expression
then
Apply_Predicate_Check (Expr, R_Type);
end if;
-- Ada 2005 (AI-318-02): When the result type is an anonymous access
-- type, apply an implicit conversion of the expression to that type
-- to force appropriate static and run-time accessibility checks.
-- But we want to apply the checks to an extended return statement
-- only once, i.e. not to the simple return statement generated at
-- the end of its expansion because, prior to leaving the function,
-- the accessibility level of the return object changes to be a level
-- determined by the point of call (RM 3.10.2(10.8/3)).
if Ada_Version >= Ada_2005
and then Ekind (R_Type) = E_Anonymous_Access_Type
and then (Nkind (N) = N_Extended_Return_Statement
or else not Comes_From_Extended_Return_Statement (N))
then
Rewrite (Expr, Convert_To (R_Type, Relocate_Node (Expr)));
Analyze_And_Resolve (Expr, R_Type);
-- If this is a local anonymous access to subprogram, the
-- accessibility check can be applied statically. The return is
-- illegal if the access type of the return expression is declared
-- inside of the subprogram (except if it is the subtype indication
-- of an extended return statement).
elsif Ekind (R_Type) = E_Anonymous_Access_Subprogram_Type then
if not Comes_From_Source (Current_Scope)
or else Ekind (Current_Scope) = E_Return_Statement
then
null;
elsif
Scope_Depth (Scope (Etype (Expr))) >= Scope_Depth (Scope_Id)
then
Error_Msg_N ("cannot return local access to subprogram", N);
end if;
-- The expression cannot be of a formal incomplete type
elsif Ekind (Etype (Expr)) = E_Incomplete_Type
and then Is_Generic_Type (Etype (Expr))
then
Error_Msg_N
("cannot return expression of a formal incomplete type", N);
end if;
-- If the result type is class-wide, then check that the return
-- expression's type is not declared at a deeper level than the
-- function (RM05-6.5(5.6/2)).
if Ada_Version >= Ada_2005
and then Is_Class_Wide_Type (R_Type)
then
if Type_Access_Level (Etype (Expr)) >
Subprogram_Access_Level (Scope_Id)
then
Error_Msg_N
("level of return expression type is deeper than "
& "class-wide function!", Expr);
end if;
end if;
-- Check incorrect use of dynamically tagged expression
if Is_Tagged_Type (R_Type) then
Check_Dynamically_Tagged_Expression
(Expr => Expr,
Typ => R_Type,
Related_Nod => N);
end if;
-- Perform static accessibility checks for cases involving
-- dereferences of access parameters. Runtime accessibility checks
-- get generated elsewhere.
if (Ada_Version < Ada_2005 or else Debug_Flag_Dot_L)
and then Is_Limited_View (Etype (Scope_Id))
and then Static_Accessibility_Level (Expr, Zero_On_Dynamic_Level)
> Subprogram_Access_Level (Scope_Id)
then
-- Suppress the message in a generic, where the rewriting
-- is irrelevant.
if Inside_A_Generic then
null;
else
Rewrite (N,
Make_Raise_Program_Error (Loc,
Reason => PE_Accessibility_Check_Failed));
Analyze (N);
Error_Msg_Warn := SPARK_Mode /= On;
Error_Msg_N ("cannot return a local value by reference<<", N);
Error_Msg_N ("\Program_Error [<<", N);
end if;
end if;
if Known_Null (Expr)
and then Nkind (Parent (Scope_Id)) = N_Function_Specification
and then Null_Exclusion_Present (Parent (Scope_Id))
then
Apply_Compile_Time_Constraint_Error
(N => Expr,
Msg => "(Ada 2005) null not allowed for "
& "null-excluding return??",
Reason => CE_Null_Not_Allowed);
end if;
-- RM 6.5 (5.4/3): accessibility checks also apply if the return object
-- has no initializing expression.
elsif Ada_Version > Ada_2005 and then Is_Class_Wide_Type (R_Type) then
if Type_Access_Level (Etype (Defining_Identifier (Obj_Decl))) >
Subprogram_Access_Level (Scope_Id)
then
Error_Msg_N
("level of return expression type is deeper than "
& "class-wide function!", Obj_Decl);
end if;
end if;
end Analyze_Function_Return;
-------------------------------------
-- Analyze_Generic_Subprogram_Body --
-------------------------------------
procedure Analyze_Generic_Subprogram_Body
(N : Node_Id;
Gen_Id : Entity_Id)
is
Gen_Decl : constant Node_Id := Unit_Declaration_Node (Gen_Id);
Kind : constant Entity_Kind := Ekind (Gen_Id);
Body_Id : Entity_Id;
New_N : Node_Id;
Spec : Node_Id;
begin
-- Copy body and disable expansion while analyzing the generic For a
-- stub, do not copy the stub (which would load the proper body), this
-- will be done when the proper body is analyzed.
if Nkind (N) /= N_Subprogram_Body_Stub then
New_N := Copy_Generic_Node (N, Empty, Instantiating => False);
Rewrite (N, New_N);
-- Once the contents of the generic copy and the template are
-- swapped, do the same for their respective aspect specifications.
Exchange_Aspects (N, New_N);
-- Collect all contract-related source pragmas found within the
-- template and attach them to the contract of the subprogram body.
-- This contract is used in the capture of global references within
-- annotations.
Create_Generic_Contract (N);
Start_Generic;
end if;
Spec := Specification (N);
-- Within the body of the generic, the subprogram is callable, and
-- behaves like the corresponding non-generic unit.
Body_Id := Defining_Entity (Spec);
if Kind = E_Generic_Procedure
and then Nkind (Spec) /= N_Procedure_Specification
then
Error_Msg_N ("invalid body for generic procedure", Body_Id);
return;
elsif Kind = E_Generic_Function
and then Nkind (Spec) /= N_Function_Specification
then
Error_Msg_N ("invalid body for generic function", Body_Id);
return;
end if;
Set_Corresponding_Body (Gen_Decl, Body_Id);
if Has_Completion (Gen_Id)
and then Nkind (Parent (N)) /= N_Subunit
then
Error_Msg_N ("duplicate generic body", N);
return;
else
Set_Has_Completion (Gen_Id);
end if;
if Nkind (N) = N_Subprogram_Body_Stub then
Mutate_Ekind (Defining_Entity (Specification (N)), Kind);
else
Set_Corresponding_Spec (N, Gen_Id);
end if;
if Nkind (Parent (N)) = N_Compilation_Unit then
Set_Cunit_Entity (Current_Sem_Unit, Defining_Entity (N));
end if;
-- Make generic parameters immediately visible in the body. They are
-- needed to process the formals declarations. Then make the formals
-- visible in a separate step.
Push_Scope (Gen_Id);
declare
E : Entity_Id;
First_Ent : Entity_Id;
begin
First_Ent := First_Entity (Gen_Id);
E := First_Ent;
while Present (E) and then not Is_Formal (E) loop
Install_Entity (E);
Next_Entity (E);
end loop;
Set_Use (Generic_Formal_Declarations (Gen_Decl));
-- Now generic formals are visible, and the specification can be
-- analyzed, for subsequent conformance check.
Body_Id := Analyze_Subprogram_Specification (Spec);
-- Make formal parameters visible
if Present (E) then
-- E is the first formal parameter, we loop through the formals
-- installing them so that they will be visible.
Set_First_Entity (Gen_Id, E);
while Present (E) loop
Install_Entity (E);
Next_Formal (E);
end loop;
end if;
-- Visible generic entity is callable within its own body
Mutate_Ekind (Gen_Id, Ekind (Body_Id));
Reinit_Field_To_Zero (Body_Id, F_Has_Out_Or_In_Out_Parameter,
Old_Ekind =>
(E_Function | E_Procedure |
E_Generic_Function | E_Generic_Procedure => True,
others => False));
Mutate_Ekind (Body_Id, E_Subprogram_Body);
Set_Convention (Body_Id, Convention (Gen_Id));
Set_Is_Obsolescent (Body_Id, Is_Obsolescent (Gen_Id));
Set_Scope (Body_Id, Scope (Gen_Id));
Check_Fully_Conformant (Body_Id, Gen_Id, Body_Id);
if Nkind (N) = N_Subprogram_Body_Stub then
-- No body to analyze, so restore state of generic unit
Mutate_Ekind (Gen_Id, Kind);
Mutate_Ekind (Body_Id, Kind);
if Present (First_Ent) then
Set_First_Entity (Gen_Id, First_Ent);
end if;
End_Scope;
return;
end if;
-- If this is a compilation unit, it must be made visible explicitly,
-- because the compilation of the declaration, unlike other library
-- unit declarations, does not. If it is not a unit, the following
-- is redundant but harmless.
Set_Is_Immediately_Visible (Gen_Id);
Reference_Body_Formals (Gen_Id, Body_Id);
if Is_Child_Unit (Gen_Id) then
Generate_Reference (Gen_Id, Scope (Gen_Id), 'k', False);
end if;
Set_Actual_Subtypes (N, Current_Scope);
Set_SPARK_Pragma (Body_Id, SPARK_Mode_Pragma);
Set_SPARK_Pragma_Inherited (Body_Id);
-- Analyze any aspect specifications that appear on the generic
-- subprogram body.
if Has_Aspects (N) then
Analyze_Aspects_On_Subprogram_Body_Or_Stub (N);
end if;
Analyze_Declarations (Declarations (N));
Check_Completion;
-- Process the contract of the subprogram body after all declarations
-- have been analyzed. This ensures that any contract-related pragmas
-- are available through the N_Contract node of the body.
Analyze_Entry_Or_Subprogram_Body_Contract (Body_Id);
Analyze (Handled_Statement_Sequence (N));
Save_Global_References (Original_Node (N));
-- Prior to exiting the scope, include generic formals again (if any
-- are present) in the set of local entities.
if Present (First_Ent) then
Set_First_Entity (Gen_Id, First_Ent);
end if;
Check_References (Gen_Id);
end;
Process_End_Label (Handled_Statement_Sequence (N), 't', Current_Scope);
Update_Use_Clause_Chain;
Validate_Categorization_Dependency (N, Gen_Id);
End_Scope;
Check_Subprogram_Order (N);
-- Outside of its body, unit is generic again
Reinit_Field_To_Zero (Gen_Id, F_Has_Nested_Subprogram,
Old_Ekind => (E_Function | E_Procedure => True, others => False));
Mutate_Ekind (Gen_Id, Kind);
Generate_Reference (Gen_Id, Body_Id, 'b', Set_Ref => False);
if Style_Check then
Style.Check_Identifier (Body_Id, Gen_Id);
end if;
End_Generic;
end Analyze_Generic_Subprogram_Body;
----------------------------
-- Analyze_Null_Procedure --
----------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos that jump to the end of the routine and restore the
-- Ghost mode.
procedure Analyze_Null_Procedure
(N : Node_Id;
Is_Completion : out Boolean)
is
Loc : constant Source_Ptr := Sloc (N);
Spec : constant Node_Id := Specification (N);
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
Saved_ISMP : constant Boolean :=
Ignore_SPARK_Mode_Pragmas_In_Instance;
-- Save the Ghost and SPARK mode-related data to restore on exit
Designator : Entity_Id;
Form : Node_Id;
Null_Body : Node_Id := Empty;
Null_Stmt : Node_Id := Null_Statement (Spec);
Prev : Entity_Id;
begin
Prev := Current_Entity_In_Scope (Defining_Entity (Spec));
-- A null procedure is Ghost when it is stand-alone and is subject to
-- pragma Ghost, or when the corresponding spec is Ghost. Set the mode
-- now, to ensure that any nodes generated during analysis and expansion
-- are properly marked as Ghost.
if Present (Prev) then
Mark_And_Set_Ghost_Body (N, Prev);
end if;
-- Capture the profile of the null procedure before analysis, for
-- expansion at the freeze point and at each point of call. The body is
-- used if the procedure has preconditions, or if it is a completion. In
-- the first case the body is analyzed at the freeze point, in the other
-- it replaces the null procedure declaration.
-- For a null procedure that comes from source, a NULL statement is
-- provided by the parser, which carries the source location of the
-- NULL keyword, and has Comes_From_Source set. For a null procedure
-- from expansion, create one now.
if No (Null_Stmt) then
Null_Stmt := Make_Null_Statement (Loc);
end if;
Null_Body :=
Make_Subprogram_Body (Loc,
Specification => New_Copy_Tree (Spec),
Declarations => New_List,
Handled_Statement_Sequence =>
Make_Handled_Sequence_Of_Statements (Loc,
Statements => New_List (Null_Stmt)));
-- Create new entities for body and formals
Set_Defining_Unit_Name (Specification (Null_Body),
Make_Defining_Identifier
(Sloc (Defining_Entity (N)),
Chars (Defining_Entity (N))));
Form := First (Parameter_Specifications (Specification (Null_Body)));
while Present (Form) loop
Set_Defining_Identifier (Form,
Make_Defining_Identifier
(Sloc (Defining_Identifier (Form)),
Chars (Defining_Identifier (Form))));
Next (Form);
end loop;
-- Determine whether the null procedure may be a completion of a generic
-- suprogram, in which case we use the new null body as the completion
-- and set minimal semantic information on the original declaration,
-- which is rewritten as a null statement.
if Present (Prev) and then Is_Generic_Subprogram (Prev) then
Insert_Before (N, Null_Body);
Mutate_Ekind (Defining_Entity (N), Ekind (Prev));
Rewrite (N, Make_Null_Statement (Loc));
Analyze_Generic_Subprogram_Body (Null_Body, Prev);
Is_Completion := True;
goto Leave;
else
-- Resolve the types of the formals now, because the freeze point may
-- appear in a different context, e.g. an instantiation.
Form := First (Parameter_Specifications (Specification (Null_Body)));
while Present (Form) loop
if Nkind (Parameter_Type (Form)) /= N_Access_Definition then
Find_Type (Parameter_Type (Form));
elsif No (Access_To_Subprogram_Definition
(Parameter_Type (Form)))
then
Find_Type (Subtype_Mark (Parameter_Type (Form)));
-- The case of a null procedure with a formal that is an
-- access-to-subprogram type, and that is used as an actual
-- in an instantiation is left to the enthusiastic reader.
else
null;
end if;
Next (Form);
end loop;
end if;
-- If there are previous overloadable entities with the same name, check
-- whether any of them is completed by the null procedure.
if Present (Prev) and then Is_Overloadable (Prev) then
Designator := Analyze_Subprogram_Specification (Spec);
Prev := Find_Corresponding_Spec (N);
end if;
if No (Prev) or else not Comes_From_Source (Prev) then
Designator := Analyze_Subprogram_Specification (Spec);
Set_Has_Completion (Designator);
-- Signal to caller that this is a procedure declaration
Is_Completion := False;
-- Null procedures are always inlined, but generic formal subprograms
-- which appear as such in the internal instance of formal packages,
-- need no completion and are not marked Inline.
if Expander_Active
and then Nkind (N) /= N_Formal_Concrete_Subprogram_Declaration
then
Set_Corresponding_Body (N, Defining_Entity (Null_Body));
Set_Body_To_Inline (N, Null_Body);
Set_Is_Inlined (Designator);
end if;
else
-- The null procedure is a completion. We unconditionally rewrite
-- this as a null body (even if expansion is not active), because
-- there are various error checks that are applied on this body
-- when it is analyzed (e.g. correct aspect placement).
if Has_Completion (Prev) then
Error_Msg_Sloc := Sloc (Prev);
Error_Msg_NE ("duplicate body for & declared#", N, Prev);
end if;
Check_Previous_Null_Procedure (N, Prev);
Is_Completion := True;
Rewrite (N, Null_Body);
Analyze (N);
end if;
<<Leave>>
Ignore_SPARK_Mode_Pragmas_In_Instance := Saved_ISMP;
Restore_Ghost_Region (Saved_GM, Saved_IGR);
end Analyze_Null_Procedure;
-----------------------------
-- Analyze_Operator_Symbol --
-----------------------------
-- An operator symbol such as "+" or "and" may appear in context where the
-- literal denotes an entity name, such as "+"(x, y) or in context when it
-- is just a string, as in (conjunction = "or"). In these cases the parser
-- generates this node, and the semantics does the disambiguation. Other
-- such case are actuals in an instantiation, the generic unit in an
-- instantiation, pragma arguments, and aspect specifications.
procedure Analyze_Operator_Symbol (N : Node_Id) is
Par : constant Node_Id := Parent (N);
Maybe_Aspect_Spec : Node_Id := Par;
begin
if Nkind (Maybe_Aspect_Spec) /= N_Aspect_Specification then
-- deal with N_Aggregate nodes
Maybe_Aspect_Spec := Parent (Maybe_Aspect_Spec);
end if;
if (Nkind (Par) = N_Function_Call and then N = Name (Par))
or else Nkind (Par) = N_Function_Instantiation
or else (Nkind (Par) = N_Indexed_Component and then N = Prefix (Par))
or else (Nkind (Par) = N_Pragma_Argument_Association
and then not Is_Pragma_String_Literal (Par))
or else Nkind (Par) = N_Subprogram_Renaming_Declaration
or else (Nkind (Par) = N_Attribute_Reference
and then Attribute_Name (Par) /= Name_Value)
or else (Nkind (Maybe_Aspect_Spec) = N_Aspect_Specification
and then Get_Aspect_Id (Maybe_Aspect_Spec)
-- Include aspects that can be specified by a
-- subprogram name, which can be an operator.
in Aspect_Stable_Properties
| Aspect_Integer_Literal
| Aspect_Real_Literal
| Aspect_String_Literal
| Aspect_Aggregate)
then
Find_Direct_Name (N);
else
Change_Operator_Symbol_To_String_Literal (N);
Analyze (N);
end if;
end Analyze_Operator_Symbol;
-----------------------------------
-- Analyze_Parameter_Association --
-----------------------------------
procedure Analyze_Parameter_Association (N : Node_Id) is
begin
Analyze (Explicit_Actual_Parameter (N));
end Analyze_Parameter_Association;
----------------------------
-- Analyze_Procedure_Call --
----------------------------
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos that jump to the end of the routine and restore the
-- Ghost mode.
procedure Analyze_Procedure_Call (N : Node_Id) is
procedure Analyze_Call_And_Resolve;
-- Do Analyze and Resolve calls for procedure call. At the end, check
-- for illegal order dependence.
-- ??? where is the check for illegal order dependencies?
------------------------------
-- Analyze_Call_And_Resolve --
------------------------------
procedure Analyze_Call_And_Resolve is
begin
if Nkind (N) = N_Procedure_Call_Statement then
Analyze_Call (N);
Resolve (N, Standard_Void_Type);
else
Analyze (N);
end if;
end Analyze_Call_And_Resolve;
-- Local variables
Actuals : constant List_Id := Parameter_Associations (N);
Loc : constant Source_Ptr := Sloc (N);
P : constant Node_Id := Name (N);
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
-- Save the Ghost-related attributes to restore on exit
Actual : Node_Id;
New_N : Node_Id;
-- Start of processing for Analyze_Procedure_Call
begin
-- The syntactic construct: PREFIX ACTUAL_PARAMETER_PART can denote
-- a procedure call or an entry call. The prefix may denote an access
-- to subprogram type, in which case an implicit dereference applies.
-- If the prefix is an indexed component (without implicit dereference)
-- then the construct denotes a call to a member of an entire family.
-- If the prefix is a simple name, it may still denote a call to a
-- parameterless member of an entry family. Resolution of these various
-- interpretations is delicate.
-- Do not analyze machine code statements to avoid rejecting them in
-- CodePeer mode.
if CodePeer_Mode and then Nkind (P) = N_Qualified_Expression then
Set_Etype (P, Standard_Void_Type);
else
Analyze (P);
end if;
-- If this is a call of the form Obj.Op, the call may have been analyzed
-- and possibly rewritten into a block, in which case we are done.
if Analyzed (N) then
return;
-- If there is an error analyzing the name (which may have been
-- rewritten if the original call was in prefix notation) then error
-- has been emitted already, mark node and return.
elsif Error_Posted (N) or else Etype (Name (N)) = Any_Type then
Set_Etype (N, Any_Type);
return;
end if;
-- A procedure call is Ghost when its name denotes a Ghost procedure.
-- Set the mode now to ensure that any nodes generated during analysis
-- and expansion are properly marked as Ghost.
Mark_And_Set_Ghost_Procedure_Call (N);
-- Otherwise analyze the parameters
if Present (Actuals) then
Actual := First (Actuals);
while Present (Actual) loop
Analyze (Actual);
Check_Parameterless_Call (Actual);
Next (Actual);
end loop;
end if;
-- Special processing for Elab_Spec, Elab_Body and Elab_Subp_Body calls
if Nkind (P) = N_Attribute_Reference
and then Attribute_Name (P) in Name_Elab_Spec
| Name_Elab_Body
| Name_Elab_Subp_Body
then
if Present (Actuals) then
Error_Msg_N
("no parameters allowed for this call", First (Actuals));
goto Leave;
end if;
Set_Etype (N, Standard_Void_Type);
Set_Analyzed (N);
elsif Is_Entity_Name (P)
and then Is_Record_Type (Etype (Entity (P)))
and then Remote_AST_I_Dereference (P)
then
goto Leave;
elsif Is_Entity_Name (P)
and then Ekind (Entity (P)) /= E_Entry_Family
then
if Is_Access_Type (Etype (P))
and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
and then No (Actuals)
and then Comes_From_Source (N)
then
Error_Msg_N ("missing explicit dereference in call", N);
elsif Ekind (Entity (P)) = E_Operator then
Error_Msg_Name_1 := Chars (P);
Error_Msg_N ("operator % cannot be used as a procedure", N);
end if;
Analyze_Call_And_Resolve;
-- If the prefix is the simple name of an entry family, this is a
-- parameterless call from within the task body itself.
elsif Is_Entity_Name (P)
and then Nkind (P) = N_Identifier
and then Ekind (Entity (P)) = E_Entry_Family
and then Present (Actuals)
and then No (Next (First (Actuals)))
then
-- Can be call to parameterless entry family. What appears to be the
-- sole argument is in fact the entry index. Rewrite prefix of node
-- accordingly. Source representation is unchanged by this
-- transformation.
New_N :=
Make_Indexed_Component (Loc,
Prefix =>
Make_Selected_Component (Loc,
Prefix => New_Occurrence_Of (Scope (Entity (P)), Loc),
Selector_Name => New_Occurrence_Of (Entity (P), Loc)),
Expressions => Actuals);
Set_Name (N, New_N);
Set_Etype (New_N, Standard_Void_Type);
Set_Parameter_Associations (N, No_List);
Analyze_Call_And_Resolve;
elsif Nkind (P) = N_Explicit_Dereference then
if Ekind (Etype (P)) = E_Subprogram_Type then
Analyze_Call_And_Resolve;
else
Error_Msg_N ("expect access to procedure in call", P);
end if;
-- The name can be a selected component or an indexed component that
-- yields an access to subprogram. Such a prefix is legal if the call
-- has parameter associations.
elsif Is_Access_Type (Etype (P))
and then Ekind (Designated_Type (Etype (P))) = E_Subprogram_Type
then
if Present (Actuals) then
Analyze_Call_And_Resolve;
else
Error_Msg_N ("missing explicit dereference in call", N);
end if;
-- If not an access to subprogram, then the prefix must resolve to the
-- name of an entry, entry family, or protected operation.
-- For the case of a simple entry call, P is a selected component where
-- the prefix is the task and the selector name is the entry. A call to
-- a protected procedure will have the same syntax. If the protected
-- object contains overloaded operations, the entity may appear as a
-- function, the context will select the operation whose type is Void.
elsif Nkind (P) = N_Selected_Component
and then Ekind (Entity (Selector_Name (P)))
in E_Entry | E_Function | E_Procedure
then
-- When front-end inlining is enabled, as with SPARK_Mode, a call
-- in prefix notation may still be missing its controlling argument,
-- so perform the transformation now.
if SPARK_Mode = On and then In_Inlined_Body then
declare
Subp : constant Entity_Id := Entity (Selector_Name (P));
Typ : constant Entity_Id := Etype (Prefix (P));
begin
if Is_Tagged_Type (Typ)
and then Present (First_Formal (Subp))
and then (Etype (First_Formal (Subp)) = Typ
or else
Class_Wide_Type (Etype (First_Formal (Subp))) = Typ)
and then Try_Object_Operation (P)
then
return;
else
Analyze_Call_And_Resolve;
end if;
end;
else
Analyze_Call_And_Resolve;
end if;
elsif Nkind (P) = N_Selected_Component
and then Ekind (Entity (Selector_Name (P))) = E_Entry_Family
and then Present (Actuals)
and then No (Next (First (Actuals)))
then
-- Can be call to parameterless entry family. What appears to be the
-- sole argument is in fact the entry index. Rewrite prefix of node
-- accordingly. Source representation is unchanged by this
-- transformation.
New_N :=
Make_Indexed_Component (Loc,
Prefix => New_Copy (P),
Expressions => Actuals);
Set_Name (N, New_N);
Set_Etype (New_N, Standard_Void_Type);
Set_Parameter_Associations (N, No_List);
Analyze_Call_And_Resolve;
-- For the case of a reference to an element of an entry family, P is
-- an indexed component whose prefix is a selected component (task and
-- entry family), and whose index is the entry family index.
elsif Nkind (P) = N_Indexed_Component
and then Nkind (Prefix (P)) = N_Selected_Component
and then Ekind (Entity (Selector_Name (Prefix (P)))) = E_Entry_Family
then
Analyze_Call_And_Resolve;
-- If the prefix is the name of an entry family, it is a call from
-- within the task body itself.
elsif Nkind (P) = N_Indexed_Component
and then Nkind (Prefix (P)) = N_Identifier
and then Ekind (Entity (Prefix (P))) = E_Entry_Family
then
New_N :=
Make_Selected_Component (Loc,
Prefix =>
New_Occurrence_Of (Scope (Entity (Prefix (P))), Loc),
Selector_Name => New_Occurrence_Of (Entity (Prefix (P)), Loc));
Rewrite (Prefix (P), New_N);
Analyze (P);
Analyze_Call_And_Resolve;
-- In Ada 2012. a qualified expression is a name, but it cannot be a
-- procedure name, so the construct can only be a qualified expression.
elsif Nkind (P) = N_Qualified_Expression
and then Ada_Version >= Ada_2012
then
Rewrite (N, Make_Code_Statement (Loc, Expression => P));
Analyze (N);
-- Anything else is an error
else
Error_Msg_N ("invalid procedure or entry call", N);
-- Specialize the error message in the case where both a primitive
-- operation and a record component are visible at the same time.
if Nkind (P) = N_Selected_Component
and then Is_Entity_Name (Selector_Name (P))
then
declare
Sel : constant Entity_Id := Entity (Selector_Name (P));
begin
if Ekind (Sel) = E_Component
and then Present (Homonym (Sel))
and then Ekind (Homonym (Sel)) = E_Procedure
then
Error_Msg_NE ("\component & conflicts with"
& " homonym procedure (RM 4.1.3 (9.2/3))",
Selector_Name (P), Sel);
end if;
end;
end if;
end if;
<<Leave>>
Restore_Ghost_Region (Saved_GM, Saved_IGR);
end Analyze_Procedure_Call;
------------------------------
-- Analyze_Return_Statement --
------------------------------
procedure Analyze_Return_Statement (N : Node_Id) is
pragma Assert
(Nkind (N) in N_Extended_Return_Statement | N_Simple_Return_Statement);
Returns_Object : constant Boolean :=
Nkind (N) = N_Extended_Return_Statement
or else
(Nkind (N) = N_Simple_Return_Statement
and then Present (Expression (N)));
-- True if we're returning something; that is, "return <expression>;"
-- or "return Result : T [:= ...]". False for "return;". Used for error
-- checking: If Returns_Object is True, N should apply to a function
-- body; otherwise N should apply to a procedure body, entry body,
-- accept statement, or extended return statement.
function Find_What_It_Applies_To return Entity_Id;
-- Find the entity representing the innermost enclosing body, accept
-- statement, or extended return statement. If the result is a callable
-- construct or extended return statement, then this will be the value
-- of the Return_Applies_To attribute. Otherwise, the program is
-- illegal. See RM-6.5(4/2).
-----------------------------
-- Find_What_It_Applies_To --
-----------------------------
function Find_What_It_Applies_To return Entity_Id is
Result : Entity_Id := Empty;
begin
-- Loop outward through the Scope_Stack, skipping blocks, and loops
for J in reverse 0 .. Scope_Stack.Last loop
Result := Scope_Stack.Table (J).Entity;
exit when Ekind (Result) not in E_Block | E_Loop;
end loop;
pragma Assert (Present (Result));
return Result;
end Find_What_It_Applies_To;
-- Local declarations
Scope_Id : constant Entity_Id := Find_What_It_Applies_To;
Kind : constant Entity_Kind := Ekind (Scope_Id);
Loc : constant Source_Ptr := Sloc (N);
Stm_Entity : constant Entity_Id :=
New_Internal_Entity
(E_Return_Statement, Current_Scope, Loc, 'R');
-- Start of processing for Analyze_Return_Statement
begin
Set_Return_Statement_Entity (N, Stm_Entity);
Set_Etype (Stm_Entity, Standard_Void_Type);
Set_Return_Applies_To (Stm_Entity, Scope_Id);
-- Place Return entity on scope stack, to simplify enforcement of 6.5
-- (4/2): an inner return statement will apply to this extended return.
if Nkind (N) = N_Extended_Return_Statement then
Push_Scope (Stm_Entity);
end if;
-- Check that pragma No_Return is obeyed. Don't complain about the
-- implicitly-generated return that is placed at the end.
if No_Return (Scope_Id)
and then Kind in E_Procedure | E_Generic_Procedure
and then Comes_From_Source (N)
then
Error_Msg_N
("RETURN statement not allowed in No_Return procedure", N);
end if;
-- Warn on any unassigned OUT parameters if in procedure
if Ekind (Scope_Id) = E_Procedure then
Warn_On_Unassigned_Out_Parameter (N, Scope_Id);
end if;
-- Check that functions return objects, and other things do not
if Kind in E_Function | E_Generic_Function then
if not Returns_Object then
Error_Msg_N ("missing expression in return from function", N);
end if;
elsif Kind in E_Procedure | E_Generic_Procedure then
if Returns_Object then
Error_Msg_N ("procedure cannot return value (use function)", N);
end if;
elsif Kind in E_Entry | E_Entry_Family then
if Returns_Object then
if Is_Protected_Type (Scope (Scope_Id)) then
Error_Msg_N ("entry body cannot return value", N);
else
Error_Msg_N ("accept statement cannot return value", N);
end if;
end if;
elsif Kind = E_Return_Statement then
-- We are nested within another return statement, which must be an
-- extended_return_statement.
if Returns_Object then
if Nkind (N) = N_Extended_Return_Statement then
Error_Msg_N
("extended return statement cannot be nested (use `RETURN;`)",
N);
-- Case of a simple return statement with a value inside extended
-- return statement.
else
Error_Msg_N
("return nested in extended return statement cannot return "
& "value (use `RETURN;`)", N);
end if;
end if;
else
Error_Msg_N ("illegal context for return statement", N);
end if;
if Kind in E_Function | E_Generic_Function then
Analyze_Function_Return (N);
elsif Kind in E_Procedure | E_Generic_Procedure then
Set_Return_Present (Scope_Id);
end if;
if Nkind (N) = N_Extended_Return_Statement then
End_Scope;
end if;
Kill_Current_Values (Last_Assignment_Only => True);
Check_Unreachable_Code (N);
Analyze_Dimension (N);
end Analyze_Return_Statement;
-----------------------------------
-- Analyze_Return_When_Statement --
-----------------------------------
procedure Analyze_Return_When_Statement (N : Node_Id) is
begin
-- Verify the condition is a Boolean expression
Analyze_And_Resolve (Condition (N), Any_Boolean);
Check_Unset_Reference (Condition (N));
end Analyze_Return_When_Statement;
-------------------------------------
-- Analyze_Simple_Return_Statement --
-------------------------------------
procedure Analyze_Simple_Return_Statement (N : Node_Id) is
begin
if Present (Expression (N)) then
Mark_Coextensions (N, Expression (N));
end if;
Analyze_Return_Statement (N);
end Analyze_Simple_Return_Statement;
-------------------------
-- Analyze_Return_Type --
-------------------------
procedure Analyze_Return_Type (N : Node_Id) is
Designator : constant Entity_Id := Defining_Entity (N);
Typ : Entity_Id := Empty;
begin
-- Normal case where result definition does not indicate an error
if Result_Definition (N) /= Error then
if Nkind (Result_Definition (N)) = N_Access_Definition then
-- Ada 2005 (AI-254): Handle anonymous access to subprograms
declare
AD : constant Node_Id :=
Access_To_Subprogram_Definition (Result_Definition (N));
begin
if Present (AD) and then Protected_Present (AD) then
Typ := Replace_Anonymous_Access_To_Protected_Subprogram (N);
else
Typ := Access_Definition (N, Result_Definition (N));
end if;
end;
Set_Parent (Typ, Result_Definition (N));
Set_Is_Local_Anonymous_Access (Typ);
Set_Etype (Designator, Typ);
-- Ada 2005 (AI-231): Ensure proper usage of null exclusion
Null_Exclusion_Static_Checks (N);
-- Subtype_Mark case
else
Find_Type (Result_Definition (N));
Typ := Entity (Result_Definition (N));
Set_Etype (Designator, Typ);
-- Ada 2005 (AI-231): Ensure proper usage of null exclusion
Null_Exclusion_Static_Checks (N);
-- If a null exclusion is imposed on the result type, then create
-- a null-excluding itype (an access subtype) and use it as the
-- function's Etype. Note that the null exclusion checks are done
-- right before this, because they don't get applied to types that
-- do not come from source.
if Is_Access_Type (Typ) and then Null_Exclusion_Present (N) then
Set_Etype (Designator,
Create_Null_Excluding_Itype
(T => Typ,
Related_Nod => N,
Scope_Id => Scope (Current_Scope)));
-- The new subtype must be elaborated before use because
-- it is visible outside of the function. However its base
-- type may not be frozen yet, so the reference that will
-- force elaboration must be attached to the freezing of
-- the base type.
-- If the return specification appears on a proper body,
-- the subtype will have been created already on the spec.
if Is_Frozen (Typ) then
if Nkind (Parent (N)) = N_Subprogram_Body
and then Nkind (Parent (Parent (N))) = N_Subunit
then
null;
else
Build_Itype_Reference (Etype (Designator), Parent (N));
end if;
else
declare
IR : constant Node_Id := Make_Itype_Reference (Sloc (N));
begin
Set_Itype (IR, Etype (Designator));
Append_Freeze_Action (Typ, IR);
end;
end if;
else
Set_Etype (Designator, Typ);
end if;
if Ekind (Typ) = E_Incomplete_Type
or else (Is_Class_Wide_Type (Typ)
and then Ekind (Root_Type (Typ)) = E_Incomplete_Type)
then
-- AI05-0151: Tagged incomplete types are allowed in all formal
-- parts. Untagged incomplete types are not allowed in bodies.
-- As a consequence, limited views cannot appear in a basic
-- declaration that is itself within a body, because there is
-- no point at which the non-limited view will become visible.
if Ada_Version >= Ada_2012 then
if From_Limited_With (Typ) and then In_Package_Body then
Error_Msg_NE
("invalid use of incomplete type&",
Result_Definition (N), Typ);
-- The return type of a subprogram body cannot be of a
-- formal incomplete type.
elsif Is_Generic_Type (Typ)
and then Nkind (Parent (N)) = N_Subprogram_Body
then
Error_Msg_N
("return type cannot be a formal incomplete type",
Result_Definition (N));
elsif Is_Class_Wide_Type (Typ)
and then Is_Generic_Type (Root_Type (Typ))
and then Nkind (Parent (N)) = N_Subprogram_Body
then
Error_Msg_N
("return type cannot be a formal incomplete type",
Result_Definition (N));
elsif Is_Tagged_Type (Typ) then
null;
-- Use is legal in a thunk generated for an operation
-- inherited from a progenitor.
elsif Is_Thunk (Designator)
and then Present (Non_Limited_View (Typ))
then
null;
elsif Nkind (Parent (N)) = N_Subprogram_Body
or else Nkind (Parent (Parent (N))) in
N_Accept_Statement | N_Entry_Body
then
Error_Msg_NE
("invalid use of untagged incomplete type&",
Designator, Typ);
end if;
-- The type must be completed in the current package. This
-- is checked at the end of the package declaration when
-- Taft-amendment types are identified. If the return type
-- is class-wide, there is no required check, the type can
-- be a bona fide TAT.
if Ekind (Scope (Current_Scope)) = E_Package
and then In_Private_Part (Scope (Current_Scope))
and then not Is_Class_Wide_Type (Typ)
then
Append_Elmt (Designator, Private_Dependents (Typ));
end if;
else
Error_Msg_NE
("invalid use of incomplete type&", Designator, Typ);
end if;
end if;
end if;
-- Case where result definition does indicate an error
else
Set_Etype (Designator, Any_Type);
end if;
end Analyze_Return_Type;
-----------------------------
-- Analyze_Subprogram_Body --
-----------------------------
procedure Analyze_Subprogram_Body (N : Node_Id) is
Loc : constant Source_Ptr := Sloc (N);
Body_Spec : constant Node_Id := Specification (N);
Body_Id : constant Entity_Id := Defining_Entity (Body_Spec);
begin
if Debug_Flag_C then
Write_Str ("==> subprogram body ");
Write_Name (Chars (Body_Id));
Write_Str (" from ");
Write_Location (Loc);
Write_Eol;
Indent;
end if;
Trace_Scope (N, Body_Id, " Analyze subprogram: ");
-- The real work is split out into the helper, so it can do "return;"
-- without skipping the debug output:
Analyze_Subprogram_Body_Helper (N);
if Debug_Flag_C then
Outdent;
Write_Str ("<== subprogram body ");
Write_Name (Chars (Body_Id));
Write_Str (" from ");
Write_Location (Loc);
Write_Eol;
end if;
end Analyze_Subprogram_Body;
------------------------------------
-- Analyze_Subprogram_Body_Helper --
------------------------------------
-- This procedure is called for regular subprogram bodies, generic bodies,
-- and for subprogram stubs of both kinds. In the case of stubs, only the
-- specification matters, and is used to create a proper declaration for
-- the subprogram, or to perform conformance checks.
-- WARNING: This routine manages Ghost regions. Return statements must be
-- replaced by gotos that jump to the end of the routine and restore the
-- Ghost mode.
procedure Analyze_Subprogram_Body_Helper (N : Node_Id) is
Body_Spec : Node_Id := Specification (N);
Body_Id : Entity_Id := Defining_Entity (Body_Spec);
Loc : constant Source_Ptr := Sloc (N);
Prev_Id : constant Entity_Id := Current_Entity_In_Scope (Body_Id);
Body_Nod : Node_Id := Empty;
Minimum_Acc_Objs : List_Id := No_List;
Conformant : Boolean;
Desig_View : Entity_Id := Empty;
Exch_Views : Elist_Id := No_Elist;
HSS : Node_Id;
Mask_Types : Elist_Id := No_Elist;
Prot_Typ : Entity_Id := Empty;
Spec_Decl : Node_Id := Empty;
Spec_Id : Entity_Id;
Last_Real_Spec_Entity : Entity_Id := Empty;
-- When we analyze a separate spec, the entity chain ends up containing
-- the formals, as well as any itypes generated during analysis of the
-- default expressions for parameters, or the arguments of associated
-- precondition/postcondition pragmas (which are analyzed in the context
-- of the spec since they have visibility on formals).
--
-- These entities belong with the spec and not the body. However we do
-- the analysis of the body in the context of the spec (again to obtain
-- visibility to the formals), and all the entities generated during
-- this analysis end up also chained to the entity chain of the spec.
-- But they really belong to the body, and there is circuitry to move
-- them from the spec to the body.
--
-- However, when we do this move, we don't want to move the real spec
-- entities (first para above) to the body. The Last_Real_Spec_Entity
-- variable points to the last real spec entity, so we only move those
-- chained beyond that point. It is initialized to Empty to deal with
-- the case where there is no separate spec.
function Body_Has_Contract return Boolean;
-- Check whether unanalyzed body has an aspect or pragma that may
-- generate a SPARK contract.
function Body_Has_SPARK_Mode_On return Boolean;
-- Check whether SPARK_Mode On applies to the subprogram body, either
-- because it is specified directly on the body, or because it is
-- inherited from the enclosing subprogram or package.
function Build_Internal_Protected_Declaration
(N : Node_Id) return Entity_Id;
-- A subprogram body without a previous spec that appears in a protected
-- body must be expanded separately to create a subprogram declaration
-- for it, in order to resolve internal calls to it from other protected
-- operations.
--
-- Possibly factor this with Exp_Dist.Copy_Specification ???
procedure Build_Subprogram_Declaration;
-- Create a matching subprogram declaration for subprogram body N
procedure Check_Anonymous_Return;
-- Ada 2005: if a function returns an access type that denotes a task,
-- or a type that contains tasks, we must create a master entity for
-- the anonymous type, which typically will be used in an allocator
-- in the body of the function.
procedure Check_Inline_Pragma (Spec : in out Node_Id);
-- Look ahead to recognize a pragma that may appear after the body.
-- If there is a previous spec, check that it appears in the same
-- declarative part. If the pragma is Inline_Always, perform inlining
-- unconditionally, otherwise only if Front_End_Inlining is requested.
-- If the body acts as a spec, and inlining is required, we create a
-- subprogram declaration for it, in order to attach the body to inline.
-- If pragma does not appear after the body, check whether there is
-- an inline pragma before any local declarations.
procedure Check_Missing_Return;
-- Checks for a function with a no return statements, and also performs
-- the warning checks implemented by Check_Returns. In formal mode, also
-- verify that a function ends with a RETURN and that a procedure does
-- not contain any RETURN.
function Disambiguate_Spec return Entity_Id;
-- When a primitive is declared between the private view and the full
-- view of a concurrent type which implements an interface, a special
-- mechanism is used to find the corresponding spec of the primitive
-- body.
function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id;
-- Ada 2012 (AI05-0151): Detect whether the profile of Subp_Id contains
-- incomplete types coming from a limited context and replace their
-- limited views with the non-limited ones. Return the list of changes
-- to be used to undo the transformation.
procedure Generate_Minimum_Accessibility
(Extra_Access : Entity_Id;
Related_Form : Entity_Id := Empty);
-- Generate a minimum accessibility object for a given extra
-- accessibility formal (Extra_Access) and its related formal if it
-- exists.
function Is_Private_Concurrent_Primitive
(Subp_Id : Entity_Id) return Boolean;
-- Determine whether subprogram Subp_Id is a primitive of a concurrent
-- type that implements an interface and has a private view.
function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id;
-- N is the body generated for an expression function that is not a
-- completion and Spec_Id the defining entity of its spec. Mark all
-- the not-yet-frozen types referenced by the simple return statement
-- of the function as formally frozen.
procedure Move_Pragmas (From : Node_Id; To : Node_Id);
-- Find all suitable source pragmas at the top of subprogram body
-- From's declarations and move them after arbitrary node To.
-- One exception is pragma SPARK_Mode which is copied rather than moved,
-- as it applies to the body too.
procedure Restore_Limited_Views (Restore_List : Elist_Id);
-- Undo the transformation done by Exchange_Limited_Views.
procedure Set_Trivial_Subprogram (N : Node_Id);
-- Sets the Is_Trivial_Subprogram flag in both spec and body of the
-- subprogram whose body is being analyzed. N is the statement node
-- causing the flag to be set, if the following statement is a return
-- of an entity, we mark the entity as set in source to suppress any
-- warning on the stylized use of function stubs with a dummy return.
procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id);
-- Undo the transformation done by Mask_Unfrozen_Types
procedure Verify_Overriding_Indicator;
-- If there was a previous spec, the entity has been entered in the
-- current scope previously. If the body itself carries an overriding
-- indicator, check that it is consistent with the known status of the
-- entity.
-----------------------
-- Body_Has_Contract --
-----------------------
function Body_Has_Contract return Boolean is
Decls : constant List_Id := Declarations (N);
Item : Node_Id;
begin
-- Check for aspects that may generate a contract
if Present (Aspect_Specifications (N)) then
Item := First (Aspect_Specifications (N));
while Present (Item) loop
if Is_Subprogram_Contract_Annotation (Item) then
return True;
end if;
Next (Item);
end loop;
end if;
-- Check for pragmas that may generate a contract
if Present (Decls) then
Item := First (Decls);
while Present (Item) loop
if Nkind (Item) = N_Pragma
and then Is_Subprogram_Contract_Annotation (Item)
then
return True;
end if;
Next (Item);
end loop;
end if;
return False;
end Body_Has_Contract;
----------------------------
-- Body_Has_SPARK_Mode_On --
----------------------------
function Body_Has_SPARK_Mode_On return Boolean is
Decls : constant List_Id := Declarations (N);
Item : Node_Id;
begin
-- Check for SPARK_Mode aspect
if Present (Aspect_Specifications (N)) then
Item := First (Aspect_Specifications (N));
while Present (Item) loop
if Get_Aspect_Id (Item) = Aspect_SPARK_Mode then
return Get_SPARK_Mode_From_Annotation (Item) = On;
end if;
Next (Item);
end loop;
end if;
-- Check for SPARK_Mode pragma
if Present (Decls) then
Item := First (Decls);
while Present (Item) loop
-- Pragmas that apply to a subprogram body are usually grouped
-- together. Look for a potential pragma SPARK_Mode among them.
if Nkind (Item) = N_Pragma then
if Get_Pragma_Id (Item) = Pragma_SPARK_Mode then
return Get_SPARK_Mode_From_Annotation (Item) = On;
end if;
-- Otherwise the first non-pragma declarative item terminates
-- the region where pragma SPARK_Mode may appear.
else
exit;
end if;
Next (Item);
end loop;
end if;
-- Otherwise, the applicable SPARK_Mode is inherited from the
-- enclosing subprogram or package.
return SPARK_Mode = On;
end Body_Has_SPARK_Mode_On;
------------------------------------------
-- Build_Internal_Protected_Declaration --
------------------------------------------
function Build_Internal_Protected_Declaration
(N : Node_Id) return Entity_Id
is
procedure Analyze_Pragmas (From : Node_Id);
-- Analyze all pragmas which follow arbitrary node From
---------------------
-- Analyze_Pragmas --
---------------------
procedure Analyze_Pragmas (From : Node_Id) is
Decl : Node_Id;
begin
Decl := Next (From);
while Present (Decl) loop
if Nkind (Decl) = N_Pragma then
Analyze_Pragma (Decl);
-- No candidate pragmas are available for analysis
else
exit;
end if;
Next (Decl);
end loop;
end Analyze_Pragmas;
-- Local variables
Body_Id : constant Entity_Id := Defining_Entity (N);
Loc : constant Source_Ptr := Sloc (N);
Decl : Node_Id;
Formal : Entity_Id;
Formals : List_Id;
Spec : Node_Id;
Spec_Id : Entity_Id;
-- Start of processing for Build_Internal_Protected_Declaration
begin
Formal := First_Formal (Body_Id);
-- The protected operation always has at least one formal, namely the
-- object itself, but it is only placed in the parameter list if
-- expansion is enabled.
if Present (Formal) or else Expander_Active then
Formals := Copy_Parameter_List (Body_Id);
else
Formals := No_List;
end if;
Spec_Id :=
Make_Defining_Identifier (Sloc (Body_Id),
Chars => Chars (Body_Id));
-- Indicate that the entity comes from source, to ensure that cross-
-- reference information is properly generated. The body itself is
-- rewritten during expansion, and the body entity will not appear in
-- calls to the operation.
Set_Comes_From_Source (Spec_Id, True);
if Nkind (Specification (N)) = N_Procedure_Specification then
Spec :=
Make_Procedure_Specification (Loc,
Defining_Unit_Name => Spec_Id,
Parameter_Specifications => Formals);
else
Spec :=
Make_Function_Specification (Loc,
Defining_Unit_Name => Spec_Id,
Parameter_Specifications => Formals,
Result_Definition =>
New_Occurrence_Of (Etype (Body_Id), Loc));
end if;
Decl := Make_Subprogram_Declaration (Loc, Specification => Spec);
Set_Corresponding_Body (Decl, Body_Id);
Set_Corresponding_Spec (N, Spec_Id);
Insert_Before (N, Decl);
-- Associate all aspects and pragmas of the body with the spec. This
-- ensures that these annotations apply to the initial declaration of
-- the subprogram body.
Move_Aspects (From => N, To => Decl);
Move_Pragmas (From => N, To => Decl);
Analyze (Decl);
-- The analysis of the spec may generate pragmas which require manual
-- analysis. Since the generation of the spec and the relocation of
-- the annotations is driven by the expansion of the stand-alone
-- body, the pragmas will not be analyzed in a timely manner. Do this
-- now.
Analyze_Pragmas (Decl);
-- This subprogram has convention Intrinsic as per RM 6.3.1(10/2)
-- ensuring in particular that 'Access is illegal.
Set_Convention (Spec_Id, Convention_Intrinsic);
Set_Has_Completion (Spec_Id);
return Spec_Id;
end Build_Internal_Protected_Declaration;
----------------------------------
-- Build_Subprogram_Declaration --
----------------------------------
procedure Build_Subprogram_Declaration is
Decl : Node_Id;
Subp_Decl : Node_Id;
begin
-- Create a matching subprogram spec using the profile of the body.
-- The structure of the tree is identical, but has new entities for
-- the defining unit name and formal parameters.
Subp_Decl :=
Make_Subprogram_Declaration (Loc,
Specification => Copy_Subprogram_Spec (Body_Spec));
Set_Comes_From_Source (Subp_Decl, True);
-- Also mark parameters as coming from source
if Present (Parameter_Specifications (Specification (Subp_Decl))) then
declare
Form : Entity_Id;
begin
Form :=
First (Parameter_Specifications (Specification (Subp_Decl)));
while Present (Form) loop
Set_Comes_From_Source (Defining_Identifier (Form), True);
Next (Form);
end loop;
end;
end if;
-- Relocate the aspects and relevant pragmas from the subprogram body
-- to the generated spec because it acts as the initial declaration.
Insert_Before (N, Subp_Decl);
Move_Aspects (N, To => Subp_Decl);
Move_Pragmas (N, To => Subp_Decl);
-- Ensure that the generated corresponding spec and original body
-- share the same SPARK_Mode pragma or aspect. As a result, both have
-- the same SPARK_Mode attributes, and the global SPARK_Mode value is
-- correctly set for local subprograms.
Copy_SPARK_Mode_Aspect (Subp_Decl, To => N);
Analyze (Subp_Decl);
-- Propagate the attributes Rewritten_For_C and Corresponding_Proc to
-- the body since the expander may generate calls using that entity.
-- Required to ensure that Expand_Call rewrites calls to this
-- function by calls to the built procedure.
if Transform_Function_Array
and then Nkind (Body_Spec) = N_Function_Specification
and then
Rewritten_For_C (Defining_Entity (Specification (Subp_Decl)))
then
Set_Rewritten_For_C (Defining_Entity (Body_Spec));
Set_Corresponding_Procedure (Defining_Entity (Body_Spec),
Corresponding_Procedure
(Defining_Entity (Specification (Subp_Decl))));
end if;
-- Analyze any relocated source pragmas or pragmas created for aspect
-- specifications.
Decl := Next (Subp_Decl);
while Present (Decl) loop
-- Stop the search for pragmas once the body has been reached as
-- this terminates the region where pragmas may appear.
if Decl = N then
exit;
elsif Nkind (Decl) = N_Pragma then
Analyze (Decl);
end if;
Next (Decl);
end loop;
Spec_Id := Defining_Entity (Subp_Decl);
Set_Corresponding_Spec (N, Spec_Id);
-- Mark the generated spec as a source construct to ensure that all
-- calls to it are properly registered in ALI files for GNATprove.
Set_Comes_From_Source (Spec_Id, True);
-- Ensure that the specs of the subprogram declaration and its body
-- are identical, otherwise they will appear non-conformant due to
-- rewritings in the default values of formal parameters.
Body_Spec := Copy_Subprogram_Spec (Body_Spec);
Set_Specification (N, Body_Spec);
Body_Id := Analyze_Subprogram_Specification (Body_Spec);
end Build_Subprogram_Declaration;
----------------------------
-- Check_Anonymous_Return --
----------------------------
procedure Check_Anonymous_Return is
Decl : Node_Id;
Par : Node_Id;
Scop : Entity_Id;
begin
if Present (Spec_Id) then
Scop := Spec_Id;
else
Scop := Body_Id;
end if;
if Ekind (Scop) = E_Function
and then Ekind (Etype (Scop)) = E_Anonymous_Access_Type
and then not Is_Thunk (Scop)
-- Skip internally built functions which handle the case of
-- a null access (see Expand_Interface_Conversion)
and then not (Is_Interface (Designated_Type (Etype (Scop)))
and then not Comes_From_Source (Parent (Scop)))
and then (Has_Task (Designated_Type (Etype (Scop)))
or else
(Is_Class_Wide_Type (Designated_Type (Etype (Scop)))
and then
Is_Limited_Record (Designated_Type (Etype (Scop)))))
and then Expander_Active
then
Decl := Build_Master_Declaration (Loc);
if Present (Declarations (N)) then
Prepend (Decl, Declarations (N));
else
Set_Declarations (N, New_List (Decl));
end if;
Set_Master_Id (Etype (Scop), Defining_Identifier (Decl));
Set_Has_Master_Entity (Scop);
-- Now mark the containing scope as a task master
Par := N;
while Nkind (Par) /= N_Compilation_Unit loop
Par := Parent (Par);
pragma Assert (Present (Par));
-- If we fall off the top, we are at the outer level, and
-- the environment task is our effective master, so nothing
-- to mark.
if Nkind (Par)
in N_Task_Body | N_Block_Statement | N_Subprogram_Body
then
Set_Is_Task_Master (Par, True);
exit;
end if;
end loop;
end if;
end Check_Anonymous_Return;
-------------------------
-- Check_Inline_Pragma --
-------------------------
procedure Check_Inline_Pragma (Spec : in out Node_Id) is
Prag : Node_Id;
Plist : List_Id;
function Is_Inline_Pragma (N : Node_Id) return Boolean;
-- True when N is a pragma Inline or Inline_Always that applies
-- to this subprogram.
-----------------------
-- Is_Inline_Pragma --
-----------------------
function Is_Inline_Pragma (N : Node_Id) return Boolean is
begin
if Nkind (N) = N_Pragma
and then
(Pragma_Name_Unmapped (N) = Name_Inline_Always
or else (Pragma_Name_Unmapped (N) = Name_Inline
and then
(Front_End_Inlining or else Optimization_Level > 0)))
and then Present (Pragma_Argument_Associations (N))
then
declare
Pragma_Arg : Node_Id :=
Expression (First (Pragma_Argument_Associations (N)));
begin
if Nkind (Pragma_Arg) = N_Selected_Component then
Pragma_Arg := Selector_Name (Pragma_Arg);
end if;
return Chars (Pragma_Arg) = Chars (Body_Id);
end;
else
return False;
end if;
end Is_Inline_Pragma;
-- Start of processing for Check_Inline_Pragma
begin
if not Expander_Active then
return;
end if;
if Is_List_Member (N)
and then Present (Next (N))
and then Is_Inline_Pragma (Next (N))
then
Prag := Next (N);
elsif Nkind (N) /= N_Subprogram_Body_Stub
and then Present (Declarations (N))
and then Is_Inline_Pragma (First (Declarations (N)))
then
Prag := First (Declarations (N));
else
Prag := Empty;
end if;
if Present (Prag) and then Is_List_Member (N) then
if Present (Spec_Id) then
if Is_List_Member (Unit_Declaration_Node (Spec_Id))
and then In_Same_List (N, Unit_Declaration_Node (Spec_Id))
then
Analyze (Prag);
end if;
else
-- Create a subprogram declaration, to make treatment uniform.
-- Make the sloc of the subprogram name that of the entity in
-- the body, so that style checks find identical strings.
declare
Subp : constant Entity_Id :=
Make_Defining_Identifier
(Sloc (Body_Id), Chars (Body_Id));
Decl : constant Node_Id :=
Make_Subprogram_Declaration (Loc,
Specification =>
New_Copy_Tree (Specification (N)));
begin
-- Link the body and the generated spec
Set_Corresponding_Body (Decl, Body_Id);
if Nkind (N) = N_Subprogram_Body_Stub then
Set_Corresponding_Spec_Of_Stub (N, Subp);
else
Set_Corresponding_Spec (N, Subp);
end if;
Set_Defining_Unit_Name (Specification (Decl), Subp);
-- To ensure proper coverage when body is inlined, indicate
-- whether the subprogram comes from source.
Preserve_Comes_From_Source (Subp, N);
if Present (First_Formal (Body_Id)) then
Plist := Copy_Parameter_List (Body_Id);
Set_Parameter_Specifications
(Specification (Decl), Plist);
end if;
-- Move aspects to the new spec
if Has_Aspects (N) then
Move_Aspects (N, To => Decl);
end if;
Insert_Before (N, Decl);
Analyze (Decl);
Analyze (Prag);
Set_Has_Pragma_Inline (Subp);
if Pragma_Name (Prag) = Name_Inline_Always then
Set_Is_Inlined (Subp);
Set_Has_Pragma_Inline_Always (Subp);
end if;
-- Prior to copying the subprogram body to create a template
-- for it for subsequent inlining, remove the pragma from
-- the current body so that the copy that will produce the
-- new body will start from a completely unanalyzed tree.
if Nkind (Parent (Prag)) = N_Subprogram_Body then
Rewrite (Prag, Make_Null_Statement (Sloc (Prag)));
end if;
Spec := Subp;
end;
end if;
end if;
end Check_Inline_Pragma;
--------------------------
-- Check_Missing_Return --
--------------------------
procedure Check_Missing_Return is
Id : Entity_Id;
Missing_Ret : Boolean;
begin
if Nkind (Body_Spec) = N_Function_Specification then
if Present (Spec_Id) then
Id := Spec_Id;
else
Id := Body_Id;
end if;
if Return_Present (Id) then
Check_Returns (HSS, 'F', Missing_Ret);
if Missing_Ret then
Set_Has_Missing_Return (Id);
end if;
-- Within a premature instantiation of a package with no body, we
-- build completions of the functions therein, with a Raise
-- statement. No point in complaining about a missing return in
-- this case.
elsif Ekind (Id) = E_Function
and then In_Instance
and then Present (Statements (HSS))
and then Nkind (First (Statements (HSS))) = N_Raise_Program_Error
then
null;
elsif Is_Generic_Subprogram (Id)
or else not Is_Machine_Code_Subprogram (Id)
then
Error_Msg_N ("missing RETURN statement in function body", N);
end if;
-- If procedure with No_Return, check returns
elsif Nkind (Body_Spec) = N_Procedure_Specification then
if Present (Spec_Id) then
Id := Spec_Id;
else
Id := Body_Id;
end if;
if No_Return (Id) then
Check_Returns (HSS, 'P', Missing_Ret, Id);
end if;
end if;
end Check_Missing_Return;
-----------------------
-- Disambiguate_Spec --
-----------------------
function Disambiguate_Spec return Entity_Id is
Priv_Spec : Entity_Id;
Spec_N : Entity_Id;
procedure Replace_Types (To_Corresponding : Boolean);
-- Depending on the flag, replace the type of formal parameters of
-- Body_Id if it is a concurrent type implementing interfaces with
-- the corresponding record type or the other way around.
procedure Replace_Types (To_Corresponding : Boolean) is
Formal : Entity_Id;
Formal_Typ : Entity_Id;
begin
Formal := First_Formal (Body_Id);
while Present (Formal) loop
Formal_Typ := Etype (Formal);
if Is_Class_Wide_Type (Formal_Typ) then
Formal_Typ := Root_Type (Formal_Typ);
end if;
-- From concurrent type to corresponding record
if To_Corresponding then
if Is_Concurrent_Type (Formal_Typ)
and then Present (Corresponding_Record_Type (Formal_Typ))
and then
Present (Interfaces
(Corresponding_Record_Type (Formal_Typ)))
then
Set_Etype (Formal,
Corresponding_Record_Type (Formal_Typ));
end if;
-- From corresponding record to concurrent type
else
if Is_Concurrent_Record_Type (Formal_Typ)
and then Present (Interfaces (Formal_Typ))
then
Set_Etype (Formal,
Corresponding_Concurrent_Type (Formal_Typ));
end if;
end if;
Next_Formal (Formal);
end loop;
end Replace_Types;
-- Start of processing for Disambiguate_Spec
begin
-- Try to retrieve the specification of the body as is. All error
-- messages are suppressed because the body may not have a spec in
-- its current state.
Spec_N := Find_Corresponding_Spec (N, False);
-- It is possible that this is the body of a primitive declared
-- between a private and a full view of a concurrent type. The
-- controlling parameter of the spec carries the concurrent type,
-- not the corresponding record type as transformed by Analyze_
-- Subprogram_Specification. In such cases, we undo the change
-- made by the analysis of the specification and try to find the
-- spec again.
-- Note that wrappers already have their corresponding specs and
-- bodies set during their creation, so if the candidate spec is
-- a wrapper, then we definitely need to swap all types to their
-- original concurrent status.
if No (Spec_N)
or else Is_Primitive_Wrapper (Spec_N)
then
-- Restore all references of corresponding record types to the
-- original concurrent types.
Replace_Types (To_Corresponding => False);
Priv_Spec := Find_Corresponding_Spec (N, False);
-- The current body truly belongs to a primitive declared between
-- a private and a full view. We leave the modified body as is,
-- and return the true spec.
if Present (Priv_Spec)
and then Is_Private_Primitive (Priv_Spec)
then
return Priv_Spec;
end if;
-- In case that this is some sort of error, restore the original
-- state of the body.
Replace_Types (To_Corresponding => True);
end if;
return Spec_N;
end Disambiguate_Spec;
----------------------------
-- Exchange_Limited_Views --
----------------------------
function Exchange_Limited_Views (Subp_Id : Entity_Id) return Elist_Id is
Result : Elist_Id := No_Elist;
procedure Detect_And_Exchange (Id : Entity_Id);
-- Determine whether Id's type denotes an incomplete type associated
-- with a limited with clause and exchange the limited view with the
-- non-limited one when available. Note that the non-limited view
-- may exist because of a with_clause in another unit in the context,
-- but cannot be used because the current view of the enclosing unit
-- is still a limited view.
-------------------------
-- Detect_And_Exchange --
-------------------------
procedure Detect_And_Exchange (Id : Entity_Id) is
Typ : constant Entity_Id := Etype (Id);
begin
if From_Limited_With (Typ)
and then Has_Non_Limited_View (Typ)
and then not From_Limited_With (Scope (Typ))
then
if No (Result) then
Result := New_Elmt_List;
end if;
Prepend_Elmt (Typ, Result);
Prepend_Elmt (Id, Result);
Set_Etype (Id, Non_Limited_View (Typ));
end if;
end Detect_And_Exchange;
-- Local variables
Formal : Entity_Id;
-- Start of processing for Exchange_Limited_Views
begin
-- Do not process subprogram bodies as they already use the non-
-- limited view of types.
if Ekind (Subp_Id) not in E_Function | E_Procedure then
return No_Elist;
end if;
-- Examine all formals and swap views when applicable
Formal := First_Formal (Subp_Id);
while Present (Formal) loop
Detect_And_Exchange (Formal);
Next_Formal (Formal);
end loop;
-- Process the return type of a function
if Ekind (Subp_Id) = E_Function then
Detect_And_Exchange (Subp_Id);
end if;
return Result;
end Exchange_Limited_Views;
------------------------------------
-- Generate_Minimum_Accessibility --
------------------------------------
procedure Generate_Minimum_Accessibility
(Extra_Access : Entity_Id;
Related_Form : Entity_Id := Empty)
is
Loc : constant Source_Ptr := Sloc (Body_Nod);
Form : Entity_Id;
Obj_Node : Node_Id;
begin
-- When no related formal exists then we are dealing with an
-- extra accessibility formal for a function result.
if No (Related_Form) then
Form := Extra_Access;
else
Form := Related_Form;
end if;
-- Create the minimum accessibility object
Obj_Node :=
Make_Object_Declaration (Loc,
Defining_Identifier =>
Make_Temporary
(Loc, 'A', Extra_Access),
Object_Definition => New_Occurrence_Of
(Standard_Natural, Loc),
Expression =>
Make_Attribute_Reference (Loc,
Prefix => New_Occurrence_Of
(Standard_Natural, Loc),
Attribute_Name => Name_Min,
Expressions => New_List (
Make_Integer_Literal (Loc,
Scope_Depth (Body_Id)),
New_Occurrence_Of
(Extra_Access, Loc))));
-- Add the new local object to the Minimum_Acc_Obj to
-- be later prepended to the subprogram's list of
-- declarations after we are sure all expansion is
-- done.
if Present (Minimum_Acc_Objs) then
Prepend (Obj_Node, Minimum_Acc_Objs);
else
Minimum_Acc_Objs := New_List (Obj_Node);
end if;
-- Register the object and analyze it
Set_Minimum_Accessibility
(Form, Defining_Identifier (Obj_Node));
Analyze (Obj_Node);
end Generate_Minimum_Accessibility;
-------------------------------------
-- Is_Private_Concurrent_Primitive --
-------------------------------------
function Is_Private_Concurrent_Primitive
(Subp_Id : Entity_Id) return Boolean
is
Formal_Typ : Entity_Id;
begin
if Present (First_Formal (Subp_Id)) then
Formal_Typ := Etype (First_Formal (Subp_Id));
if Is_Concurrent_Record_Type (Formal_Typ) then
if Is_Class_Wide_Type (Formal_Typ) then
Formal_Typ := Root_Type (Formal_Typ);
end if;
Formal_Typ := Corresponding_Concurrent_Type (Formal_Typ);
end if;
-- The type of the first formal is a concurrent tagged type with
-- a private view.
return
Is_Concurrent_Type (Formal_Typ)
and then Is_Tagged_Type (Formal_Typ)
and then Has_Private_Declaration (Formal_Typ);
end if;
return False;
end Is_Private_Concurrent_Primitive;
-------------------------
-- Mask_Unfrozen_Types --
-------------------------
function Mask_Unfrozen_Types (Spec_Id : Entity_Id) return Elist_Id is
Result : Elist_Id := No_Elist;
function Mask_Type_Refs (Node : Node_Id) return Traverse_Result;
-- Mask all types referenced in the subtree rooted at Node as
-- formally frozen.
--------------------
-- Mask_Type_Refs --
--------------------
function Mask_Type_Refs (Node : Node_Id) return Traverse_Result is
procedure Mask_Type (Typ : Entity_Id);
-- Mask a given type as formally frozen when outside the current
-- scope, or else freeze the type.
---------------
-- Mask_Type --
---------------
procedure Mask_Type (Typ : Entity_Id) is
begin
-- Skip Itypes created by the preanalysis
if Is_Itype (Typ)
and then Scope_Within_Or_Same (Scope (Typ), Spec_Id)
then
return;
end if;
if not Is_Frozen (Typ) then
if Scope (Typ) /= Current_Scope then
Set_Is_Frozen (Typ);
Append_New_Elmt (Typ, Result);
else
Freeze_Before (N, Typ);
end if;
end if;
end Mask_Type;
-- Start of processing for Mask_Type_Refs
begin
if Is_Entity_Name (Node) and then Present (Entity (Node)) then
Mask_Type (Etype (Entity (Node)));
if Ekind (Entity (Node)) in E_Component | E_Discriminant then
Mask_Type (Scope (Entity (Node)));
end if;
elsif Nkind (Node) in N_Aggregate | N_Null | N_Type_Conversion
and then Present (Etype (Node))
then
Mask_Type (Etype (Node));
end if;
return OK;
end Mask_Type_Refs;
procedure Mask_References is new Traverse_Proc (Mask_Type_Refs);
-- Local variables
Return_Stmt : constant Node_Id :=
First (Statements (Handled_Statement_Sequence (N)));
-- Start of processing for Mask_Unfrozen_Types
begin
pragma Assert (Nkind (Return_Stmt) = N_Simple_Return_Statement);
Mask_References (Expression (Return_Stmt));
return Result;
end Mask_Unfrozen_Types;
------------------
-- Move_Pragmas --
------------------
procedure Move_Pragmas (From : Node_Id; To : Node_Id) is
Decl : Node_Id;
Insert_Nod : Node_Id;
Next_Decl : Node_Id;
begin
pragma Assert (Nkind (From) = N_Subprogram_Body);
-- The pragmas are moved in an order-preserving fashion
Insert_Nod := To;
-- Inspect the declarations of the subprogram body and relocate all
-- candidate pragmas.
Decl := First (Declarations (From));
while Present (Decl) loop
-- Preserve the following declaration for iteration purposes, due
-- to possible relocation of a pragma.
Next_Decl := Next (Decl);
if Nkind (Decl) = N_Pragma then
-- Copy pragma SPARK_Mode if present in the declarative list
-- of subprogram body From and insert it after node To. This
-- pragma should not be moved, as it applies to the body too.
if Pragma_Name_Unmapped (Decl) = Name_SPARK_Mode then
Insert_After (Insert_Nod, New_Copy_Tree (Decl));
-- Move relevant pragmas to the spec
elsif Pragma_Name_Unmapped (Decl) in Name_Depends
| Name_Ghost
| Name_Global
| Name_Pre
| Name_Precondition
| Name_Post
| Name_Refined_Depends
| Name_Refined_Global
| Name_Refined_Post
| Name_Inline
| Name_Pure_Function
| Name_Volatile_Function
then
Remove (Decl);
Insert_After (Insert_Nod, Decl);
Insert_Nod := Decl;
end if;
-- Skip internally generated code
elsif not Comes_From_Source (Decl) then
null;
-- No candidate pragmas are available for relocation
else
exit;
end if;
Decl := Next_Decl;
end loop;
end Move_Pragmas;
---------------------------
-- Restore_Limited_Views --
---------------------------
procedure Restore_Limited_Views (Restore_List : Elist_Id) is
Elmt : Elmt_Id := First_Elmt (Restore_List);
Id : Entity_Id;
begin
while Present (Elmt) loop
Id := Node (Elmt);
Next_Elmt (Elmt);
Set_Etype (Id, Node (Elmt));
Next_Elmt (Elmt);
end loop;
end Restore_Limited_Views;
----------------------------
-- Set_Trivial_Subprogram --
----------------------------
procedure Set_Trivial_Subprogram (N : Node_Id) is
Nxt : constant Node_Id := Next (N);
begin
Set_Is_Trivial_Subprogram (Body_Id);
if Present (Spec_Id) then
Set_Is_Trivial_Subprogram (Spec_Id);
end if;
if Present (Nxt)
and then Nkind (Nxt) = N_Simple_Return_Statement
and then No (Next (Nxt))
and then Present (Expression (Nxt))
and then Is_Entity_Name (Expression (Nxt))
then
Set_Never_Set_In_Source (Entity (Expression (Nxt)), False);
end if;
end Set_Trivial_Subprogram;
---------------------------
-- Unmask_Unfrozen_Types --
---------------------------
procedure Unmask_Unfrozen_Types (Unmask_List : Elist_Id) is
Elmt : Elmt_Id := First_Elmt (Unmask_List);
begin
while Present (Elmt) loop
Set_Is_Frozen (Node (Elmt), False);
Next_Elmt (Elmt);
end loop;
end Unmask_Unfrozen_Types;
---------------------------------
-- Verify_Overriding_Indicator --
---------------------------------
procedure Verify_Overriding_Indicator is
begin
if Must_Override (Body_Spec) then
if Nkind (Spec_Id) = N_Defining_Operator_Symbol
and then Operator_Matches_Spec (Spec_Id, Spec_Id)
then
null;
-- Overridden controlled primitives may have had their
-- Overridden_Operation field cleared according to the setting of
-- the Is_Hidden flag. An issue arises, however, when analyzing
-- an instance that may have manipulated the flag during
-- expansion. As a result, we add an exception for this case.
elsif not Present (Overridden_Operation (Spec_Id))
and then not (Chars (Spec_Id) in Name_Adjust
| Name_Finalize
| Name_Initialize
and then In_Instance)
then
Error_Msg_NE
("subprogram& is not overriding", Body_Spec, Spec_Id);
-- Overriding indicators aren't allowed for protected subprogram
-- bodies (see the Confirmation in Ada Comment AC95-00213). Change
-- this to a warning if -gnatd.E is enabled.
elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
Error_Msg_Warn := Error_To_Warning;
Error_Msg_N
("<<overriding indicator not allowed for protected "
& "subprogram body", Body_Spec);
end if;
elsif Must_Not_Override (Body_Spec) then
if Present (Overridden_Operation (Spec_Id)) then
Error_Msg_NE
("subprogram& overrides inherited operation",
Body_Spec, Spec_Id);
elsif Nkind (Spec_Id) = N_Defining_Operator_Symbol
and then Operator_Matches_Spec (Spec_Id, Spec_Id)
then
Error_Msg_NE
("subprogram& overrides predefined operator",
Body_Spec, Spec_Id);
-- Overriding indicators aren't allowed for protected subprogram
-- bodies (see the Confirmation in Ada Comment AC95-00213). Change
-- this to a warning if -gnatd.E is enabled.
elsif Ekind (Scope (Spec_Id)) = E_Protected_Type then
Error_Msg_Warn := Error_To_Warning;
Error_Msg_N
("<<overriding indicator not allowed "
& "for protected subprogram body", Body_Spec);
-- If this is not a primitive operation, then the overriding
-- indicator is altogether illegal.
elsif not Is_Primitive (Spec_Id) then
Error_Msg_N
("overriding indicator only allowed "
& "if subprogram is primitive", Body_Spec);
end if;
-- If checking the style rule and the operation overrides, then
-- issue a warning about a missing overriding_indicator. Protected
-- subprogram bodies are excluded from this style checking, since
-- they aren't primitives (even though their declarations can
-- override) and aren't allowed to have an overriding_indicator.
elsif Style_Check
and then Present (Overridden_Operation (Spec_Id))
and then Ekind (Scope (Spec_Id)) /= E_Protected_Type
then
pragma Assert (Unit_Declaration_Node (Body_Id) = N);
Style.Missing_Overriding (N, Body_Id);
elsif Style_Check
and then Can_Override_Operator (Spec_Id)
and then not In_Predefined_Unit (Spec_Id)
then
pragma Assert (Unit_Declaration_Node (Body_Id) = N);
Style.Missing_Overriding (N, Body_Id);
end if;
end Verify_Overriding_Indicator;
-- Local variables
Saved_GM : constant Ghost_Mode_Type := Ghost_Mode;
Saved_IGR : constant Node_Id := Ignored_Ghost_Region;
Saved_EA : constant Boolean := Expander_Active;
Saved_ISMP : constant Boolean :=
Ignore_SPARK_Mode_Pragmas_In_Instance;
-- Save the Ghost and SPARK mode-related data to restore on exit
-- Start of processing for Analyze_Subprogram_Body_Helper
begin
-- A [generic] subprogram body freezes the contract of the nearest
-- enclosing package body and all other contracts encountered in the
-- same declarative part up to and excluding the subprogram body:
-- package body Nearest_Enclosing_Package
-- with Refined_State => (State => Constit)
-- is
-- Constit : ...;
-- procedure Freezes_Enclosing_Package_Body
-- with Refined_Depends => (Input => Constit) ...
-- This ensures that any annotations referenced by the contract of the
-- [generic] subprogram body are available. This form of freezing is
-- decoupled from the usual Freeze_xxx mechanism because it must also
-- work in the context of generics where normal freezing is disabled.
-- Only bodies coming from source should cause this type of freezing.
-- Expression functions that act as bodies and complete an initial
-- declaration must be included in this category, hence the use of
-- Original_Node.
if Comes_From_Source (Original_Node (N)) then
Freeze_Previous_Contracts (N);
end if;
-- Generic subprograms are handled separately. They always have a
-- generic specification. Determine whether current scope has a
-- previous declaration.
-- If the subprogram body is defined within an instance of the same
-- name, the instance appears as a package renaming, and will be hidden
-- within the subprogram.
if Present (Prev_Id)
and then not Is_Overloadable (Prev_Id)
and then (Nkind (Parent (Prev_Id)) /= N_Package_Renaming_Declaration
or else Comes_From_Source (Prev_Id))
then
if Is_Generic_Subprogram (Prev_Id) then
Spec_Id := Prev_Id;
-- A subprogram body is Ghost when it is stand-alone and subject
-- to pragma Ghost or when the corresponding spec is Ghost. Set
-- the mode now to ensure that any nodes generated during analysis
-- and expansion are properly marked as Ghost.
Mark_And_Set_Ghost_Body (N, Spec_Id);
-- If the body completes the initial declaration of a compilation
-- unit which is subject to pragma Elaboration_Checks, set the
-- model specified by the pragma because it applies to all parts
-- of the unit.
Install_Elaboration_Model (Spec_Id);
Set_Is_Compilation_Unit (Body_Id, Is_Compilation_Unit (Spec_Id));
Set_Is_Child_Unit (Body_Id, Is_Child_Unit (Spec_Id));
Analyze_Generic_Subprogram_Body (N, Spec_Id);
if Nkind (N) = N_Subprogram_Body then
HSS := Handled_Statement_Sequence (N);
Check_Missing_Return;
end if;
goto Leave;
-- Otherwise a previous entity conflicts with the subprogram name.
-- Attempting to enter name will post error.
else
Enter_Name (Body_Id);
goto Leave;
end if;
-- Non-generic case, find the subprogram declaration, if one was seen,
-- or enter new overloaded entity in the current scope. If the
-- Current_Entity is the Body_Id itself, the unit is being analyzed as
-- part of the context of one of its subunits. No need to redo the
-- analysis.
elsif Prev_Id = Body_Id and then Has_Completion (Body_Id) then
goto Leave;
else
Body_Id := Analyze_Subprogram_Specification (Body_Spec);
if Nkind (N) = N_Subprogram_Body_Stub
or else No (Corresponding_Spec (N))
then
if Is_Private_Concurrent_Primitive (Body_Id) then
Spec_Id := Disambiguate_Spec;
-- A subprogram body is Ghost when it is stand-alone and
-- subject to pragma Ghost or when the corresponding spec is
-- Ghost. Set the mode now to ensure that any nodes generated
-- during analysis and expansion are properly marked as Ghost.
Mark_And_Set_Ghost_Body (N, Spec_Id);
-- If the body completes a compilation unit which is subject
-- to pragma Elaboration_Checks, set the model specified by
-- the pragma because it applies to all parts of the unit.
Install_Elaboration_Model (Spec_Id);
else
Spec_Id := Find_Corresponding_Spec (N);
-- A subprogram body is Ghost when it is stand-alone and
-- subject to pragma Ghost or when the corresponding spec is
-- Ghost. Set the mode now to ensure that any nodes generated
-- during analysis and expansion are properly marked as Ghost.
Mark_And_Set_Ghost_Body (N, Spec_Id);
-- If the body completes a compilation unit which is subject
-- to pragma Elaboration_Checks, set the model specified by
-- the pragma because it applies to all parts of the unit.
Install_Elaboration_Model (Spec_Id);