;; Machine description for AArch64 processor synchronization primitives. ;; Copyright (C) 2009-2022 Free Software Foundation, Inc. ;; Contributed by ARM Ltd. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.
;; Instruction patterns.
(define_expand “@atomic_compare_and_swap” [(match_operand:SI 0 “register_operand” "") ;; bool out (match_operand:ALLI_TI 1 “register_operand” "") ;; val out (match_operand:ALLI_TI 2 “aarch64_sync_memory_operand” "") ;; memory (match_operand:ALLI_TI 3 “nonmemory_operand” "") ;; expected (match_operand:ALLI_TI 4 “aarch64_reg_or_zero” "") ;; desired (match_operand:SI 5 “const_int_operand”) ;; is_weak (match_operand:SI 6 “const_int_operand”) ;; mod_s (match_operand:SI 7 “const_int_operand”)] ;; mod_f "" { aarch64_expand_compare_and_swap (operands); DONE; } )
(define_mode_attr cas_short_expected_pred [(QI “aarch64_reg_or_imm”) (HI “aarch64_plushi_operand”)]) (define_mode_attr cas_short_expected_imm [(QI “n”) (HI “Uph”)])
(define_insn_and_split “@aarch64_compare_and_swap” [(set (reg:CC CC_REGNUM) ;; bool out (unspec_volatile:CC [(const_int 0)] UNSPECV_ATOMIC_CMPSW)) (set (match_operand:SI 0 “register_operand” “=&r”) ;; val out (zero_extend:SI (match_operand:SHORT 1 “aarch64_sync_memory_operand” “+Q”))) ;; memory (set (match_dup 1) (unspec_volatile:SHORT [(match_operand:SHORT 2 “<cas_short_expected_pred>” “r<cas_short_expected_imm>”) ;; expected (match_operand:SHORT 3 “aarch64_reg_or_zero” “rZ”) ;; desired (match_operand:SI 4 “const_int_operand”) ;; is_weak (match_operand:SI 5 “const_int_operand”) ;; mod_s (match_operand:SI 6 “const_int_operand”)] ;; mod_f UNSPECV_ATOMIC_CMPSW)) (clobber (match_scratch:SI 7 “=&r”))] "" “#” “&& epilogue_completed” [(const_int 0)] { aarch64_split_compare_and_swap (operands); DONE; } )
(define_insn_and_split “@aarch64_compare_and_swap” [(set (reg:CC CC_REGNUM) ;; bool out (unspec_volatile:CC [(const_int 0)] UNSPECV_ATOMIC_CMPSW)) (set (match_operand:GPI 0 “register_operand” “=&r”) ;; val out (match_operand:GPI 1 “aarch64_sync_memory_operand” “+Q”)) ;; memory (set (match_dup 1) (unspec_volatile:GPI [(match_operand:GPI 2 “aarch64_plus_operand” “rIJ”) ;; expect (match_operand:GPI 3 “aarch64_reg_or_zero” “rZ”) ;; desired (match_operand:SI 4 “const_int_operand”) ;; is_weak (match_operand:SI 5 “const_int_operand”) ;; mod_s (match_operand:SI 6 “const_int_operand”)] ;; mod_f UNSPECV_ATOMIC_CMPSW)) (clobber (match_scratch:SI 7 “=&r”))] "" “#” “&& epilogue_completed” [(const_int 0)] { aarch64_split_compare_and_swap (operands); DONE; } )
(define_insn_and_split “@aarch64_compare_and_swap” [(set (reg:CC CC_REGNUM) ;; bool out (unspec_volatile:CC [(const_int 0)] UNSPECV_ATOMIC_CMPSW)) (set (match_operand:JUST_TI 0 “register_operand” “=&r”) ;; val out (match_operand:JUST_TI 1 “aarch64_sync_memory_operand” “+Q”)) ;; memory (set (match_dup 1) (unspec_volatile:JUST_TI [(match_operand:JUST_TI 2 “aarch64_reg_or_zero” “rZ”) ;; expect (match_operand:JUST_TI 3 “aarch64_reg_or_zero” “rZ”) ;; desired (match_operand:SI 4 “const_int_operand”) ;; is_weak (match_operand:SI 5 “const_int_operand”) ;; mod_s (match_operand:SI 6 “const_int_operand”)] ;; mod_f UNSPECV_ATOMIC_CMPSW)) (clobber (match_scratch:SI 7 “=&r”))] "" “#” “&& epilogue_completed” [(const_int 0)] { aarch64_split_compare_and_swap (operands); DONE; } )
(define_insn “@aarch64_compare_and_swap_lse” [(set (match_operand:SI 0 “register_operand” “+r”) ;; val out (zero_extend:SI (match_operand:SHORT 1 “aarch64_sync_memory_operand” “+Q”))) ;; memory (set (match_dup 1) (unspec_volatile:SHORT [(match_dup 0) ;; expected (match_operand:SHORT 2 “aarch64_reg_or_zero” “rZ”) ;; desired (match_operand:SI 3 “const_int_operand”)] ;; mod_s UNSPECV_ATOMIC_CMPSW))] “TARGET_LSE” { enum memmodel model = memmodel_from_int (INTVAL (operands[3])); if (is_mm_relaxed (model)) return “cas<atomic_sfx>\t%0, %2, %1”; else if (is_mm_acquire (model) || is_mm_consume (model)) return “casa<atomic_sfx>\t%0, %2, %1”; else if (is_mm_release (model)) return “casl<atomic_sfx>\t%0, %2, %1”; else return “casal<atomic_sfx>\t%0, %2, %1”; })
(define_insn “@aarch64_compare_and_swap_lse” [(set (match_operand:GPI 0 “register_operand” “+r”) ;; val out (match_operand:GPI 1 “aarch64_sync_memory_operand” “+Q”)) ;; memory (set (match_dup 1) (unspec_volatile:GPI [(match_dup 0) ;; expected (match_operand:GPI 2 “aarch64_reg_or_zero” “rZ”) ;; desired (match_operand:SI 3 “const_int_operand”)] ;; mod_s UNSPECV_ATOMIC_CMPSW))] “TARGET_LSE” { enum memmodel model = memmodel_from_int (INTVAL (operands[3])); if (is_mm_relaxed (model)) return “cas<atomic_sfx>\t%0, %2, %1”; else if (is_mm_acquire (model) || is_mm_consume (model)) return “casa<atomic_sfx>\t%0, %2, %1”; else if (is_mm_release (model)) return “casl<atomic_sfx>\t%0, %2, %1”; else return “casal<atomic_sfx>\t%0, %2, %1”; })
(define_insn “@aarch64_compare_and_swap_lse” [(set (match_operand:JUST_TI 0 “register_operand” “+r”) ;; val out (match_operand:JUST_TI 1 “aarch64_sync_memory_operand” “+Q”)) ;; memory (set (match_dup 1) (unspec_volatile:JUST_TI [(match_dup 0) ;; expect (match_operand:JUST_TI 2 “register_operand” “r”) ;; desired (match_operand:SI 3 “const_int_operand”)] ;; mod_s UNSPECV_ATOMIC_CMPSW))] “TARGET_LSE” { enum memmodel model = memmodel_from_int (INTVAL (operands[3])); if (is_mm_relaxed (model)) return “casp\t%0, %R0, %2, %R2, %1”; else if (is_mm_acquire (model) || is_mm_consume (model)) return “caspa\t%0, %R0, %2, %R2, %1”; else if (is_mm_release (model)) return “caspl\t%0, %R0, %2, %R2, %1”; else return “caspal\t%0, %R0, %2, %R2, %1”; })
(define_expand “atomic_exchange” [(match_operand:ALLI 0 “register_operand”) (match_operand:ALLI 1 “aarch64_sync_memory_operand”) (match_operand:ALLI 2 “aarch64_reg_or_zero”) (match_operand:SI 3 “const_int_operand”)] "" { /* Use an atomic SWP when available. */ if (TARGET_LSE) { emit_insn (gen_aarch64_atomic_exchange_lse (operands[0], operands[1], operands[2], operands[3])); } else if (TARGET_OUTLINE_ATOMICS) { machine_mode mode = mode; rtx func = aarch64_atomic_ool_func (mode, operands[3], &aarch64_ool_swp_names); rtx rval = emit_library_call_value (func, operands[0], LCT_NORMAL, mode, operands[2], mode, XEXP (operands[1], 0), Pmode); emit_move_insn (operands[0], rval); } else { emit_insn (gen_aarch64_atomic_exchange (operands[0], operands[1], operands[2], operands[3])); } DONE; } )
(define_insn_and_split “aarch64_atomic_exchange” [(set (match_operand:ALLI 0 “register_operand” “=&r”) ;; output (match_operand:ALLI 1 “aarch64_sync_memory_operand” “+Q”)) ;; memory (set (match_dup 1) (unspec_volatile:ALLI [(match_operand:ALLI 2 “aarch64_reg_or_zero” “rZ”) ;; input (match_operand:SI 3 “const_int_operand” "")] ;; model UNSPECV_ATOMIC_EXCHG)) (clobber (reg:CC CC_REGNUM)) (clobber (match_scratch:SI 4 “=&r”))] "" “#” “&& epilogue_completed” [(const_int 0)] { aarch64_split_atomic_op (SET, operands[0], NULL, operands[1], operands[2], operands[3], operands[4]); DONE; } )
(define_insn “aarch64_atomic_exchange_lse” [(set (match_operand:ALLI 0 “register_operand” “=r”) (match_operand:ALLI 1 “aarch64_sync_memory_operand” “+Q”)) (set (match_dup 1) (unspec_volatile:ALLI [(match_operand:ALLI 2 “aarch64_reg_or_zero” “rZ”) (match_operand:SI 3 “const_int_operand” "")] UNSPECV_ATOMIC_EXCHG))] “TARGET_LSE” { enum memmodel model = memmodel_from_int (INTVAL (operands[3])); if (is_mm_relaxed (model)) return “swp<atomic_sfx>\t%2, %0, %1”; else if (is_mm_acquire (model) || is_mm_consume (model)) return “swpa<atomic_sfx>\t%2, %0, %1”; else if (is_mm_release (model)) return “swpl<atomic_sfx>\t%2, %0, %1”; else return “swpal<atomic_sfx>\t%2, %0, %1”; } )
(define_expand “atomic_<atomic_optab>” [(match_operand:ALLI 0 “aarch64_sync_memory_operand”) (atomic_op:ALLI (match_operand:ALLI 1 “<atomic_op_operand>”) (match_operand:SI 2 “const_int_operand”))] "" { rtx (*gen) (rtx, rtx, rtx);
/* Use an atomic load-operate instruction when possible. */ if (TARGET_LSE) { switch (<CODE>) { case MINUS: operands[1] = expand_simple_unop (<MODE>mode, NEG, operands[1], NULL, 1); /* fallthru */ case PLUS: gen = gen_aarch64_atomic_add<mode>_lse; break; case IOR: gen = gen_aarch64_atomic_ior<mode>_lse; break; case XOR: gen = gen_aarch64_atomic_xor<mode>_lse; break; case AND: operands[1] = expand_simple_unop (<MODE>mode, NOT, operands[1], NULL, 1); gen = gen_aarch64_atomic_bic<mode>_lse; break; default: gcc_unreachable (); } operands[1] = force_reg (<MODE>mode, operands[1]); } else if (TARGET_OUTLINE_ATOMICS) { const atomic_ool_names *names; switch (<CODE>) { case MINUS: operands[1] = expand_simple_unop (<MODE>mode, NEG, operands[1], NULL, 1); /* fallthru */ case PLUS: names = &aarch64_ool_ldadd_names; break; case IOR: names = &aarch64_ool_ldset_names; break; case XOR: names = &aarch64_ool_ldeor_names; break; case AND: operands[1] = expand_simple_unop (<MODE>mode, NOT, operands[1], NULL, 1); names = &aarch64_ool_ldclr_names; break; default: gcc_unreachable (); } machine_mode mode = <MODE>mode; rtx func = aarch64_atomic_ool_func (mode, operands[2], names); emit_library_call_value (func, NULL_RTX, LCT_NORMAL, mode, operands[1], mode, XEXP (operands[0], 0), Pmode); DONE; } else gen = gen_aarch64_atomic_<atomic_optab><mode>; emit_insn (gen (operands[0], operands[1], operands[2])); DONE;
} )
(define_insn_and_split “aarch64_atomic_<atomic_optab>” [(set (match_operand:ALLI 0 “aarch64_sync_memory_operand” “+Q”) (unspec_volatile:ALLI [(atomic_op:ALLI (match_dup 0) (match_operand:ALLI 1 “<atomic_op_operand>” “r<const_atomic>”)) (match_operand:SI 2 “const_int_operand”)] UNSPECV_ATOMIC_OP)) (clobber (reg:CC CC_REGNUM)) (clobber (match_scratch:ALLI 3 “=&r”)) (clobber (match_scratch:SI 4 “=&r”))] "" “#” “&& epilogue_completed” [(const_int 0)] { aarch64_split_atomic_op (, NULL, operands[3], operands[0], operands[1], operands[2], operands[4]); DONE; } )
;; It is tempting to want to use ST for relaxed and release ;; memory models here. However, that is incompatible with the ;; C++ memory model for the following case: ;; ;; atomic_fetch_add(ptr, 1, memory_order_relaxed); ;; atomic_thread_fence(memory_order_acquire); ;; ;; The problem is that the architecture says that ST (and LD ;; insns where the destination is XZR) are not regarded as a read. ;; However we also implement the acquire memory barrier with DMB LD, ;; and so the ST is not blocked by the barrier.
(define_insn “aarch64_atomic_<atomic_ldoptab>_lse” [(set (match_operand:ALLI 0 “aarch64_sync_memory_operand” “+Q”) (unspec_volatile:ALLI [(match_dup 0) (match_operand:ALLI 1 “register_operand” “r”) (match_operand:SI 2 “const_int_operand”)] ATOMIC_LDOP)) (clobber (match_scratch:ALLI 3 “=r”))] “TARGET_LSE” { enum memmodel model = memmodel_from_int (INTVAL (operands[2])); if (is_mm_relaxed (model)) return “ld<atomic_ldop><atomic_sfx>\t%1, %3, %0”; else if (is_mm_release (model)) return “ld<atomic_ldop>l<atomic_sfx>\t%1, %3, %0”; else if (is_mm_acquire (model) || is_mm_consume (model)) return “ld<atomic_ldop>a<atomic_sfx>\t%1, %3, %0”; else return “ld<atomic_ldop>al<atomic_sfx>\t%1, %3, %0”; } )
(define_insn_and_split “atomic_nand” [(set (match_operand:ALLI 0 “aarch64_sync_memory_operand” “+Q”) (unspec_volatile:ALLI [(not:ALLI (and:ALLI (match_dup 0) (match_operand:ALLI 1 “aarch64_logical_operand” “r<lconst_atomic>”))) (match_operand:SI 2 “const_int_operand”)] ;; model UNSPECV_ATOMIC_OP)) (clobber (reg:CC CC_REGNUM)) (clobber (match_scratch:ALLI 3 “=&r”)) (clobber (match_scratch:SI 4 “=&r”))] "" “#” “&& epilogue_completed” [(const_int 0)] { aarch64_split_atomic_op (NOT, NULL, operands[3], operands[0], operands[1], operands[2], operands[4]); DONE; } )
;; Load-operate-store, returning the original memory data.
(define_expand “atomic_fetch_<atomic_optab>” [(match_operand:ALLI 0 “register_operand”) (match_operand:ALLI 1 “aarch64_sync_memory_operand”) (atomic_op:ALLI (match_operand:ALLI 2 “<atomic_op_operand>”) (match_operand:SI 3 “const_int_operand”))] "" { rtx (*gen) (rtx, rtx, rtx, rtx);
/* Use an atomic load-operate instruction when possible. / if (TARGET_LSE) { switch () { case MINUS: operands[2] = expand_simple_unop (mode, NEG, operands[2], NULL, 1); / fallthru */ case PLUS: gen = gen_aarch64_atomic_fetch_add_lse; break; case IOR: gen = gen_aarch64_atomic_fetch_ior_lse; break; case XOR: gen = gen_aarch64_atomic_fetch_xor_lse; break; case AND: operands[2] = expand_simple_unop (mode, NOT, operands[2], NULL, 1); gen = gen_aarch64_atomic_fetch_biclse; break; default: gcc_unreachable (); } operands[2] = force_reg (mode, operands[2]); } else if (TARGET_OUTLINE_ATOMICS) { const atomic_ool_names names; switch () { case MINUS: operands[2] = expand_simple_unop (mode, NEG, operands[2], NULL, 1); / fallthru */ case PLUS: names = &aarch64_ool_ldadd_names; break; case IOR: names = &aarch64_ool_ldset_names; break; case XOR: names = &aarch64_ool_ldeor_names; break; case AND: operands[2] = expand_simple_unop (mode, NOT, operands[2], NULL, 1); names = &aarch64_ool_ldclr_names; break; default: gcc_unreachable (); } machine_mode mode = mode; rtx func = aarch64_atomic_ool_func (mode, operands[3], names); rtx rval = emit_library_call_value (func, operands[0], LCT_NORMAL, mode, operands[2], mode, XEXP (operands[1], 0), Pmode); emit_move_insn (operands[0], rval); DONE; } else gen = gen_aarch64_atomic_fetch<atomic_optab>;
emit_insn (gen (operands[0], operands[1], operands[2], operands[3])); DONE; })
(define_insn_and_split “aarch64_atomic_fetch_<atomic_optab>” [(set (match_operand:ALLI 0 “register_operand” “=&r”) (match_operand:ALLI 1 “aarch64_sync_memory_operand” “+Q”)) (set (match_dup 1) (unspec_volatile:ALLI [(atomic_op:ALLI (match_dup 1) (match_operand:ALLI 2 “<atomic_op_operand>” “r<const_atomic>”)) (match_operand:SI 3 “const_int_operand”)] ;; model UNSPECV_ATOMIC_OP)) (clobber (reg:CC CC_REGNUM)) (clobber (match_scratch:ALLI 4 “=&r”)) (clobber (match_scratch:SI 5 “=&r”))] "" “#” “&& epilogue_completed” [(const_int 0)] { aarch64_split_atomic_op (, operands[0], operands[4], operands[1], operands[2], operands[3], operands[5]); DONE; } )
(define_insn “aarch64_atomic_fetch_<atomic_ldoptab>_lse” [(set (match_operand:ALLI 0 “register_operand” “=r”) (match_operand:ALLI 1 “aarch64_sync_memory_operand” “+Q”)) (set (match_dup 1) (unspec_volatile:ALLI [(match_dup 1) (match_operand:ALLI 2 “register_operand” “r”) (match_operand:SI 3 “const_int_operand”)] ATOMIC_LDOP))] “TARGET_LSE” { enum memmodel model = memmodel_from_int (INTVAL (operands[3])); if (is_mm_relaxed (model)) return “ld<atomic_ldop><atomic_sfx>\t%2, %0, %1”; else if (is_mm_acquire (model) || is_mm_consume (model)) return “ld<atomic_ldop>a<atomic_sfx>\t%2, %0, %1”; else if (is_mm_release (model)) return “ld<atomic_ldop>l<atomic_sfx>\t%2, %0, %1”; else return “ld<atomic_ldop>al<atomic_sfx>\t%2, %0, %1”; } )
(define_insn_and_split “atomic_fetch_nand” [(set (match_operand:ALLI 0 “register_operand” “=&r”) (match_operand:ALLI 1 “aarch64_sync_memory_operand” “+Q”)) (set (match_dup 1) (unspec_volatile:ALLI [(not:ALLI (and:ALLI (match_dup 1) (match_operand:ALLI 2 “aarch64_logical_operand” “r<lconst_atomic>”))) (match_operand:SI 3 “const_int_operand”)] ;; model UNSPECV_ATOMIC_OP)) (clobber (reg:CC CC_REGNUM)) (clobber (match_scratch:ALLI 4 “=&r”)) (clobber (match_scratch:SI 5 “=&r”))] "" “#” “&& epilogue_completed” [(const_int 0)] { aarch64_split_atomic_op (NOT, operands[0], operands[4], operands[1], operands[2], operands[3], operands[5]); DONE; } )
;; Load-operate-store, returning the updated memory data.
(define_expand “atomic_<atomic_optab>_fetch” [(match_operand:ALLI 0 “register_operand”) (atomic_op:ALLI (match_operand:ALLI 1 “aarch64_sync_memory_operand”) (match_operand:ALLI 2 “<atomic_op_operand>”)) (match_operand:SI 3 “const_int_operand”)] "" { /* Use an atomic load-operate instruction when possible. In this case we will re-compute the result from the original mem value. */ if (TARGET_LSE || TARGET_OUTLINE_ATOMICS) { rtx tmp = gen_reg_rtx (mode); operands[2] = force_reg (mode, operands[2]); emit_insn (gen_atomic_fetch_<atomic_optab> (tmp, operands[1], operands[2], operands[3])); tmp = expand_simple_binop (mode, , tmp, operands[2], operands[0], 1, OPTAB_WIDEN); emit_move_insn (operands[0], tmp); } else { emit_insn (gen_aarch64_atomic_<atomic_optab>_fetch (operands[0], operands[1], operands[2], operands[3])); } DONE; })
(define_insn_and_split “aarch64_atomic_<atomic_optab>_fetch” [(set (match_operand:ALLI 0 “register_operand” “=&r”) (atomic_op:ALLI (match_operand:ALLI 1 “aarch64_sync_memory_operand” “+Q”) (match_operand:ALLI 2 “<atomic_op_operand>” “r<const_atomic>”))) (set (match_dup 1) (unspec_volatile:ALLI [(match_dup 1) (match_dup 2) (match_operand:SI 3 “const_int_operand”)] ;; model UNSPECV_ATOMIC_OP)) (clobber (reg:CC CC_REGNUM)) (clobber (match_scratch:SI 4 “=&r”))] "" “#” “&& epilogue_completed” [(const_int 0)] { aarch64_split_atomic_op (, NULL, operands[0], operands[1], operands[2], operands[3], operands[4]); DONE; } )
(define_insn_and_split “atomic_nand_fetch” [(set (match_operand:ALLI 0 “register_operand” “=&r”) (not:ALLI (and:ALLI (match_operand:ALLI 1 “aarch64_sync_memory_operand” “+Q”) (match_operand:ALLI 2 “aarch64_logical_operand” “r<lconst_atomic>”)))) (set (match_dup 1) (unspec_volatile:ALLI [(match_dup 1) (match_dup 2) (match_operand:SI 3 “const_int_operand”)] ;; model UNSPECV_ATOMIC_OP)) (clobber (reg:CC CC_REGNUM)) (clobber (match_scratch:SI 4 “=&r”))] "" “#” “&& epilogue_completed” [(const_int 0)] { aarch64_split_atomic_op (NOT, NULL, operands[0], operands[1], operands[2], operands[3], operands[4]); DONE; } )
(define_insn “atomic_load” [(set (match_operand:ALLI 0 “register_operand” “=r”) (unspec_volatile:ALLI [(match_operand:ALLI 1 “aarch64_sync_memory_operand” “Q”) (match_operand:SI 2 “const_int_operand”)] ;; model UNSPECV_LDA))] "" { enum memmodel model = memmodel_from_int (INTVAL (operands[2])); if (is_mm_relaxed (model) || is_mm_consume (model) || is_mm_release (model)) return “ldr<atomic_sfx>\t%0, %1”; else return “ldar<atomic_sfx>\t%0, %1”; } )
(define_insn “atomic_store” [(set (match_operand:ALLI 0 “aarch64_rcpc_memory_operand” “=Q,Ust”) (unspec_volatile:ALLI [(match_operand:ALLI 1 “general_operand” “rZ,rZ”) (match_operand:SI 2 “const_int_operand”)] ;; model UNSPECV_STL))] "" { enum memmodel model = memmodel_from_int (INTVAL (operands[2])); if (is_mm_relaxed (model) || is_mm_consume (model) || is_mm_acquire (model)) return “str<atomic_sfx>\t%1, %0”; else if (which_alternative == 0) return “stlr<atomic_sfx>\t%1, %0”; else return “stlur<atomic_sfx>\t%1, %0”; } [(set_attr “arch” “*,rcpc8_4”)] )
(define_insn “@aarch64_load_exclusive” [(set (match_operand:SI 0 “register_operand” “=r”) (zero_extend:SI (unspec_volatile:SHORT [(match_operand:SHORT 1 “aarch64_sync_memory_operand” “Q”) (match_operand:SI 2 “const_int_operand”)] UNSPECV_LX)))] "" { enum memmodel model = memmodel_from_int (INTVAL (operands[2])); if (is_mm_relaxed (model) || is_mm_consume (model) || is_mm_release (model)) return “ldxr<atomic_sfx>\t%w0, %1”; else return “ldaxr<atomic_sfx>\t%w0, %1”; } )
(define_insn “@aarch64_load_exclusive” [(set (match_operand:GPI 0 “register_operand” “=r”) (unspec_volatile:GPI [(match_operand:GPI 1 “aarch64_sync_memory_operand” “Q”) (match_operand:SI 2 “const_int_operand”)] UNSPECV_LX))] "" { enum memmodel model = memmodel_from_int (INTVAL (operands[2])); if (is_mm_relaxed (model) || is_mm_consume (model) || is_mm_release (model)) return “ldxr\t%0, %1”; else return “ldaxr\t%0, %1”; } )
(define_insn “aarch64_load_exclusive_pair” [(set (match_operand:DI 0 “register_operand” “=r”) (unspec_volatile:DI [(match_operand:TI 2 “aarch64_sync_memory_operand” “Q”) (match_operand:SI 3 “const_int_operand”)] UNSPECV_LX)) (set (match_operand:DI 1 “register_operand” “=r”) (unspec_volatile:DI [(match_dup 2) (match_dup 3)] UNSPECV_LX))] "" { enum memmodel model = memmodel_from_int (INTVAL (operands[3])); if (is_mm_relaxed (model) || is_mm_consume (model) || is_mm_release (model)) return “ldxp\t%0, %1, %2”; else return “ldaxp\t%0, %1, %2”; } )
(define_insn “@aarch64_store_exclusive” [(set (match_operand:SI 0 “register_operand” “=&r”) (unspec_volatile:SI [(const_int 0)] UNSPECV_SX)) (set (match_operand:ALLI 1 “aarch64_sync_memory_operand” “=Q”) (unspec_volatile:ALLI [(match_operand:ALLI 2 “aarch64_reg_or_zero” “rZ”) (match_operand:SI 3 “const_int_operand”)] UNSPECV_SX))] "" { enum memmodel model = memmodel_from_int (INTVAL (operands[3])); if (is_mm_relaxed (model) || is_mm_consume (model) || is_mm_acquire (model)) return “stxr<atomic_sfx>\t%w0, %2, %1”; else return “stlxr<atomic_sfx>\t%w0, %2, %1”; } )
(define_insn “aarch64_store_exclusive_pair” [(set (match_operand:SI 0 “register_operand” “=&r”) (unspec_volatile:SI [(const_int 0)] UNSPECV_SX)) (set (match_operand:TI 1 “aarch64_sync_memory_operand” “=Q”) (unspec_volatile:TI [(match_operand:DI 2 “aarch64_reg_or_zero” “rZ”) (match_operand:DI 3 “aarch64_reg_or_zero” “rZ”) (match_operand:SI 4 “const_int_operand”)] UNSPECV_SX))] "" { enum memmodel model = memmodel_from_int (INTVAL (operands[4])); if (is_mm_relaxed (model) || is_mm_consume (model) || is_mm_acquire (model)) return “stxp\t%w0, %x2, %x3, %1”; else return “stlxp\t%w0, %x2, %x3, %1”; } )
(define_expand “mem_thread_fence” [(match_operand:SI 0 “const_int_operand”)] "" { enum memmodel model = memmodel_from_int (INTVAL (operands[0])); if (!(is_mm_relaxed (model) || is_mm_consume (model))) emit_insn (gen_dmb (operands[0])); DONE; } )
(define_expand “dmb” [(set (match_dup 1) (unspec:BLK [(match_dup 1) (match_operand:SI 0 “const_int_operand”)] UNSPEC_MB))] "" { operands[1] = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)); MEM_VOLATILE_P (operands[1]) = 1; } )
(define_insn “*dmb” [(set (match_operand:BLK 0 "" "") (unspec:BLK [(match_dup 0) (match_operand:SI 1 “const_int_operand”)] UNSPEC_MB))] "" { enum memmodel model = memmodel_from_int (INTVAL (operands[1])); if (is_mm_acquire (model)) return “dmb\tishld”; else return “dmb\tish”; } )