;; ARM Cortex-A5 pipeline description ;; Copyright (C) 2010-2022 Free Software Foundation, Inc. ;; Contributed by CodeSourcery. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.
(define_automaton “cortex_a5”)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Functional units. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; The integer (ALU) pipeline. There are five DPU pipeline ;; stages. However the decode/issue stages operate the same for all ;; instructions, so do not model them. We only need to model the ;; first execute stage because instructions always advance one stage ;; per cycle in order. Only branch instructions may dual-issue, so a ;; single unit covers all of the LS, ALU, MAC and FPU pipelines.
(define_cpu_unit “cortex_a5_ex1” “cortex_a5”)
;; The branch pipeline. Branches can dual-issue with other instructions ;; (except when those instructions take multiple cycles to issue).
(define_cpu_unit “cortex_a5_branch” “cortex_a5”)
;; Pseudo-unit for blocking the multiply pipeline when a double-precision ;; multiply is in progress.
(define_cpu_unit “cortex_a5_fpmul_pipe” “cortex_a5”)
;; The floating-point add pipeline (ex1/f1 stage), used to model the usage ;; of the add pipeline by fmac instructions, etc.
(define_cpu_unit “cortex_a5_fpadd_pipe” “cortex_a5”)
;; Floating-point div/sqrt (long latency, out-of-order completion).
(define_cpu_unit “cortex_a5_fp_div_sqrt” “cortex_a5”)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ALU instructions. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation “cortex_a5_alu” 2 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “alu_imm,alus_imm,logic_imm,logics_imm,
alu_sreg,alus_sreg,logic_reg,logics_reg,
adc_imm,adcs_imm,adc_reg,adcs_reg,
adr,bfm,clz,rbit,rev,alu_dsp_reg,
shift_imm,shift_reg,
mov_imm,mov_reg,mvn_imm,mvn_reg,
mrs,multiple”)) “cortex_a5_ex1”)
(define_insn_reservation “cortex_a5_alu_shift” 2 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “extend,
alu_shift_imm_lsl_1to4,alu_shift_imm_other,alus_shift_imm,
logic_shift_imm,logics_shift_imm,
alu_shift_reg,alus_shift_reg,
logic_shift_reg,logics_shift_reg,
mov_shift,mov_shift_reg,
mvn_shift,mvn_shift_reg”)) “cortex_a5_ex1”)
;; Forwarding path for unshifted operands.
(define_bypass 1 “cortex_a5_alu,cortex_a5_alu_shift” “cortex_a5_alu”)
(define_bypass 1 “cortex_a5_alu,cortex_a5_alu_shift” “cortex_a5_alu_shift” “arm_no_early_alu_shift_dep”)
;; The multiplier pipeline can forward results from wr stage only so ;; there's no need to specify bypasses).
(define_insn_reservation “cortex_a5_mul” 2 (and (eq_attr “tune” “cortexa5”) (ior (eq_attr “mul32” “yes”) (eq_attr “widen_mul64” “yes”))) “cortex_a5_ex1”)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Load/store instructions. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Address-generation happens in the issue stage, which is one stage behind ;; the ex1 stage (the first stage we care about for scheduling purposes). The ;; dc1 stage is parallel with ex1, dc2 with ex2 and rot with wr.
(define_insn_reservation “cortex_a5_load1” 2 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “load_byte,load_4”)) “cortex_a5_ex1”)
(define_insn_reservation “cortex_a5_store1” 0 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “store_4”)) “cortex_a5_ex1”)
(define_insn_reservation “cortex_a5_load2” 3 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “load_8”)) “cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1”)
(define_insn_reservation “cortex_a5_store2” 0 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “store_8”)) “cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1”)
(define_insn_reservation “cortex_a5_load3” 4 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “load_12”)) “cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,
cortex_a5_ex1”)
(define_insn_reservation “cortex_a5_store3” 0 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “store_12”)) “cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,
cortex_a5_ex1”)
(define_insn_reservation “cortex_a5_load4” 5 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “load_12”)) “cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,
cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1”)
(define_insn_reservation “cortex_a5_store4” 0 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “store_12”)) “cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1+cortex_a5_branch,
cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1”)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Branches. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Direct branches are the only instructions we can dual-issue (also IT and ;; nop, but those aren't very interesting for scheduling). (The latency here ;; is meant to represent when the branch actually takes place, but may not be ;; entirely correct.)
(define_insn_reservation “cortex_a5_branch” 3 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “branch,call”)) “cortex_a5_branch”)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Floating-point arithmetic. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation “cortex_a5_fpalu” 4 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “ffariths, fadds, ffarithd, faddd, fmov, fmuls,
f_cvt,f_cvtf2i,f_cvti2f,
fcmps, fcmpd”)) “cortex_a5_ex1+cortex_a5_fpadd_pipe”)
;; For fconsts and fconstd, 8-bit immediate data is passed directly from ;; f1 to f3 (which I think reduces the latency by one cycle).
(define_insn_reservation “cortex_a5_fconst” 3 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “fconsts,fconstd”)) “cortex_a5_ex1+cortex_a5_fpadd_pipe”)
;; We should try not to attempt to issue a single-precision multiplication in ;; the middle of a double-precision multiplication operation (the usage of ;; cortex_a5_fpmul_pipe).
(define_insn_reservation “cortex_a5_fpmuls” 4 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “fmuls”)) “cortex_a5_ex1+cortex_a5_fpmul_pipe”)
;; For single-precision multiply-accumulate, the add (accumulate) is issued ;; whilst the multiply is in F4. The multiply result can then be forwarded ;; from F5 to F1. The issue unit is only used once (when we first start ;; processing the instruction), but the usage of the FP add pipeline could ;; block other instructions attempting to use it simultaneously. We try to ;; avoid that using cortex_a5_fpadd_pipe.
(define_insn_reservation “cortex_a5_fpmacs” 8 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “fmacs,ffmas”)) “cortex_a5_ex1+cortex_a5_fpmul_pipe, nothing*3, cortex_a5_fpadd_pipe”)
;; Non-multiply instructions can issue in the middle two instructions of a ;; double-precision multiply. Note that it isn't entirely clear when a branch ;; can dual-issue when a multi-cycle multiplication is in progress; we ignore ;; that for now though.
(define_insn_reservation “cortex_a5_fpmuld” 7 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “fmuld”)) “cortex_a5_ex1+cortex_a5_fpmul_pipe, cortex_a5_fpmul_pipe*2,
cortex_a5_ex1+cortex_a5_fpmul_pipe”)
(define_insn_reservation “cortex_a5_fpmacd” 11 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “fmacd,ffmad”)) “cortex_a5_ex1+cortex_a5_fpmul_pipe, cortex_a5_fpmul_pipe2,
cortex_a5_ex1+cortex_a5_fpmul_pipe, nothing3, cortex_a5_fpadd_pipe”)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Floating-point divide/square root instructions. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ??? Not sure if the 14 cycles taken for single-precision divide to complete ;; includes the time taken for the special instruction used to collect the ;; result to travel down the multiply pipeline, or not. Assuming so. (If ;; that's wrong, the latency should be increased by a few cycles.)
;; fsqrt takes one cycle less, but that is not modelled, nor is the use of the ;; multiply pipeline to collect the divide/square-root result.
(define_insn_reservation “cortex_a5_fdivs” 14 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “fdivs, fsqrts”)) “cortex_a5_ex1, cortex_a5_fp_div_sqrt * 13”)
;; ??? Similarly for fdivd.
(define_insn_reservation “cortex_a5_fdivd” 29 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “fdivd, fsqrtd”)) “cortex_a5_ex1, cortex_a5_fp_div_sqrt * 28”)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; VFP to/from core transfers. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; FP loads take data from wr/rot/f3.
;; Core-to-VFP transfers use the multiply pipeline.
(define_insn_reservation “cortex_a5_r2f” 4 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “f_mcr,f_mcrr”)) “cortex_a5_ex1”)
(define_insn_reservation “cortex_a5_f2r” 2 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “f_mrc,f_mrrc”)) “cortex_a5_ex1”)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; VFP flag transfer. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; ??? The flag forwarding from fmstat to the ex2 stage of the second ;; instruction is not modeled at present.
(define_insn_reservation “cortex_a5_f_flags” 4 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “f_flag”)) “cortex_a5_ex1”)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; VFP load/store. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define_insn_reservation “cortex_a5_f_loads” 4 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “f_loads”)) “cortex_a5_ex1”)
(define_insn_reservation “cortex_a5_f_loadd” 5 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “f_loadd”)) “cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1”)
(define_insn_reservation “cortex_a5_f_stores” 0 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “f_stores”)) “cortex_a5_ex1”)
(define_insn_reservation “cortex_a5_f_stored” 0 (and (eq_attr “tune” “cortexa5”) (eq_attr “type” “f_stored”)) “cortex_a5_ex1+cortex_a5_branch, cortex_a5_ex1”)
;; Load-to-use for floating-point values has a penalty of one cycle, ;; i.e. a latency of two.
(define_bypass 2 “cortex_a5_f_loads” “cortex_a5_fpalu, cortex_a5_fpmacs, cortex_a5_fpmuld,
cortex_a5_fpmacd, cortex_a5_fdivs, cortex_a5_fdivd,
cortex_a5_f2r”)
(define_bypass 3 “cortex_a5_f_loadd” “cortex_a5_fpalu, cortex_a5_fpmacs, cortex_a5_fpmuld,
cortex_a5_fpmacd, cortex_a5_fdivs, cortex_a5_fdivd,
cortex_a5_f2r”)