;; GCC machine description for SH synchronization instructions. ;; Copyright (C) 2011-2022 Free Software Foundation, Inc. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/. ;; ;; ;; Atomic integer operations for the Renesas / SuperH SH CPUs. ;; ;; On SH CPUs atomic integer operations can be done either in ‘software’ or ;; in ‘hardware’ in various styles. True hardware support was introduced ;; with the SH4A. Some SH2A dual-core models (e.g. SH7205) also come with ;; ‘semaphore’ hardware registers, but these are currently unsupported. ;; All SH CPUs support the ‘tas.b’ instruction, which can be optionally used ;; to implement the ‘atomic_test_and_set’ builtin. ;; The following atomic options and models are supported. ;; ;; tas.b atomic_test_and_set (-mtas) ;; ;; Depending on the particular hardware configuration, usage of the ‘tas.b’ ;; instruction might be undesired or even unsafe. Thus, it has to be ;; enabled by the user explicitly. If it is not enabled, the ;; ‘atomic_test_and_set’ builtin is implemented either with hardware or with ;; software atomics, depending on which is enabled. It is also possible to ;; enable the ‘tas.b’ instruction only, without enabling support for the ;; other atomic operations. ;; ;; ;; Hardware Atomics (-matomic-model=hard-llcs; SH4A only) ;; ;; Hardware atomics implement all atomic operations using the ‘movli.l’ and ;; ‘movco.l’ instructions that are availble on SH4A. On multi-core hardware ;; configurations hardware atomics is the only safe mode. ;; However, it can also be safely used on single-core configurations. ;; Since these instructions operate on SImode memory only, QImode and HImode ;; have to be emulated with SImode and subreg masking, which results in ;; larger code. ;; ;; ;; gUSA Software Atomics (-matomic-model=soft-gusa; SH3*, SH4* only) ;; ;; On single-core systems there can only be one execution context running ;; at a given point in time. This allows the usage of rewindable atomic ;; sequences, which effectively emulate locked-load / conditional-store ;; operations. This requires complementary support in the interrupt / ;; exception handling code (e.g. kernel) and does not work safely on multi- ;; core configurations. ;; ;; When an execution context is interrupted while it is an atomic ;; sequence, the interrupted context's PC is rewound to the beginning of ;; the atomic sequence by the interrupt / exception handling code, before ;; transferring control to another execution context. This is done by ;; something like... ;; ;; if (interrupted_context_in_atomic_sequence ;; && interrupted_pc < atomic_exitpoint) ;; interrupted_pc = atomic_entrypoint; ;; ;; This method is also known as gUSA (“g” User Space Atomicity) and the ;; Linux kernel for SH3/SH4 implements support for such software atomic ;; sequences. It can also be implemented in freestanding environments. ;; ;; For this the following atomic sequence ABI is used. ;; ;; r15 >= 0: Execution context is not in an atomic sequence. ;; ;; r15 < 0: Execution context is in an atomic sequence and r15 ;; holds the negative byte length of the atomic sequence. ;; In this case the following applies: ;; ;; r0: PC of the first instruction after the atomic ;; write-back instruction (exit point). ;; The entry point PC of the atomic sequence can be ;; determined by doing r0 + r15. ;; ;; r1: Saved r15 stack pointer before entering the ;; atomic sequence. ;; ;; An example atomic add sequence would look like: ;; ;; mova .Lend,r0 ! .Lend must be 4-byte aligned. ;; mov r15,r1 ;; .align 2 ! Insert aligning nop if needed. ;; mov #(.Lstart - .Lend),r15 ! Enter atomic sequence ;;.Lstart: ;; mov.l @r4,r2 ! read value ;; add r2,r5 ! modify value ;; mov.l r5,@r4 ! write-back ;;.Lend: ;; mov r1,r15 ! Exit atomic sequence ;; ! r2 holds the previous value. ;; ! r5 holds the new value. ;; ;; Notice that due to the restrictions of the mova instruction, the .Lend ;; label must always be 4-byte aligned. Aligning the .Lend label would ;; potentially insert a nop after the write-back instruction which could ;; make the sequence to be rewound, although it has already passed the ;; write-back instruction. This would make it execute twice. ;; For correct operation the atomic sequences must not be rewound after ;; they have passed the write-back instruction. ;; ;; This is model works only on SH3* and SH4* because the stack pointer (r15) ;; is set to an invalid pointer temporarily. SH1* and SH2* CPUs will try ;; to push SR and PC registers on the stack when an interrupt / exception ;; occurs, and thus require the stack pointer (r15) always to be valid. ;; ;; ;; TCB Software Atomics (-matomic-model=soft-tcb) ;; ;; This model is a variation of the gUSA model. The concept of rewindable ;; atomic sequences is the same, but it does not use the stack pointer (r15) ;; for signaling the ‘is in atomic sequence’ condition. Instead, a variable ;; in the thread control block (TCB) is set to hold the exit point of the ;; atomic sequence. This assumes that the GBR is used as a thread pointer ;; register. The offset of the variable in the TCB to be used must be ;; specified with an additional option ‘gbr-offset’, such as: ;; -matomic-model=soft-tcb,gbr-offset=4 ;; ;; For this model the following atomic sequence ABI is used. ;; ;; @(#x,gbr) == 0: Execution context is not in an atomic sequence. ;; ;; @(#x,gbr) != 0: Execution context is in an atomic sequence. In this ;; case the following applies: ;; ;; @(#x,gbr): PC of the first instruction after the atomic ;; write-back instruction (exit point). ;; ;; r1: Negative byte length of the atomic sequence. ;; The entry point PC of the sequence can be ;; determined by doing @(#x,gbr) + r1 ;; ;; Note: #x is the user specified gbr-offset. ;; ;; ;; Interrupt-Flipping Software Atomics (-matomic-model=soft-imask) ;; ;; This model achieves atomicity by temporarily disabling interrupts for ;; the duration of the atomic sequence. This works only when the program ;; runs in privileged mode but does not require any support from the ;; interrupt / exception handling code. There is no particular ABI. ;; To disable interrupts the SR.IMASK bits are set to ‘1111’. ;; This method is not as efficient as the other software atomic models, ;; since loading and storing SR (in order to flip interrupts on / off) ;; requires using multi-cycle instructions. Moreover, it can potentially ;; increase the interrupt latency which might be important for hard-realtime ;; applications. ;; ;; ;; Compatibility Notes ;; ;; On single-core SH4A CPUs software atomic aware interrupt / exception code ;; is actually compatible with user code that utilizes hardware atomics. ;; Since SImode hardware atomic sequences are more compact on SH4A they are ;; always used, regardless of the selected atomic model. This atomic model ;; mixing can be disabled by setting the ‘strict’ flag, like: ;; -matomic-model=soft-gusa,strict ;; ;; The software atomic models are generally compatible with each other, ;; but the interrupt / exception handling code has to support both gUSA and ;; TCB models. ;; ;; The current atomic support is limited to QImode, HImode and SImode ;; atomic operations. DImode operations could also be implemented but ;; would require some ABI modifications to support multiple-instruction ;; write-back. This is because SH1/SH2/SH3/SH4 does not have a DImode ;; store instruction. DImode stores must be split into two SImode stores.
(define_c_enum “unspec” [ UNSPEC_ATOMIC ])
(define_c_enum “unspecv” [ UNSPECV_CMPXCHG_1 UNSPECV_CMPXCHG_2 UNSPECV_CMPXCHG_3 ])
(define_mode_attr i124extend_insn [(QI “exts.b”) (HI “exts.w”) (SI “mov”)])
(define_code_iterator FETCHOP [plus minus ior xor and]) (define_code_attr fetchop_name [(plus “add”) (minus “sub”) (ior “or”) (xor “xor”) (and “and”)])
;;------------------------------------------------------------------------------ ;; comapre and swap
;; Only the hard_llcs SImode patterns can use an I08 for the comparison ;; or for the new swapped in value. (define_predicate “atomic_arith_operand_0” (and (match_code “subreg,reg,const_int”) (ior (match_operand 0 “arith_reg_operand”) (and (match_test “satisfies_constraint_I08 (op)”) (match_test “mode == SImode”) (ior (match_test “TARGET_ATOMIC_HARD_LLCS”) (match_test “TARGET_ATOMIC_ANY && TARGET_SH4A && !TARGET_ATOMIC_STRICT”))))))
;; Displacement addressing can be used for all SImode atomic patterns, except ;; llcs. (define_predicate “atomic_mem_operand_0” (and (match_code “mem”) (ior (match_operand 0 “simple_mem_operand”) (and (match_test “mode == SImode”) (and (match_test “!TARGET_ATOMIC_HARD_LLCS”) (match_test “!TARGET_SH4A || TARGET_ATOMIC_STRICT”)) (match_operand 0 “short_displacement_mem_operand”)))))
(define_expand “atomic_compare_and_swap” [(match_operand:SI 0 “arith_reg_dest”) ;; bool success output (match_operand:QIHISI 1 “arith_reg_dest”) ;; oldval output (match_operand:QIHISI 2 “atomic_mem_operand_0”) ;; memory (match_operand:QIHISI 3 “atomic_arith_operand_0”) ;; expected input (match_operand:QIHISI 4 “atomic_arith_operand_0”) ;; newval input (match_operand:SI 5 “const_int_operand”) ;; is_weak (match_operand:SI 6 “const_int_operand”) ;; success model (match_operand:SI 7 “const_int_operand”)] ;; failure model “TARGET_ATOMIC_ANY” { rtx mem = operands[2]; rtx old_val = gen_lowpart (SImode, operands[1]); rtx exp_val = operands[3]; rtx new_val = operands[4]; rtx atomic_insn;
if (TARGET_ATOMIC_HARD_LLCS || (TARGET_SH4A && mode == SImode && !TARGET_ATOMIC_STRICT)) atomic_insn = gen_atomic_compare_and_swap_hard (old_val, mem, exp_val, new_val); else if (TARGET_ATOMIC_SOFT_GUSA) atomic_insn = gen_atomic_compare_and_swap_soft_gusa (old_val, mem, exp_val, new_val); else if (TARGET_ATOMIC_SOFT_TCB) atomic_insn = gen_atomic_compare_and_swap_soft_tcb (old_val, mem, exp_val, new_val, TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX); else if (TARGET_ATOMIC_SOFT_IMASK) atomic_insn = gen_atomic_compare_and_swap_soft_imask (old_val, mem, exp_val, new_val); else FAIL;
emit_insn (atomic_insn);
if (mode == QImode) emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[1]), operands[1])); else if (mode == HImode) emit_insn (gen_zero_extendhisi2 (gen_lowpart (SImode, operands[1]), operands[1])); emit_insn (gen_movsi (operands[0], gen_rtx_REG (SImode, T_REG))); DONE; })
(define_insn_and_split “atomic_compare_and_swapsi_hard” [(set (match_operand:SI 0 “arith_reg_dest” “=&r”) (unspec_volatile:SI [(match_operand:SI 1 “atomic_mem_operand_0” “=Sra”) (match_operand:SI 2 “arith_operand” “rI08”) (match_operand:SI 3 “arith_operand” “rI08”)] UNSPECV_CMPXCHG_1)) (set (match_dup 1) (unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_2)) (set (reg:SI T_REG) (unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_3)) (clobber (reg:SI R0_REG))] “TARGET_ATOMIC_HARD_LLCS || (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)” { return “\r0: movli.l %1,r0” “\n” " cmp/eq %2,r0" “\n” " bf{.|/}s 0f" “\n” " mov r0,%0" “\n” " mov %3,r0" “\n” " movco.l r0,%1" “\n” " bf 0b" “\n” “0:”; } “&& can_create_pseudo_p () && !satisfies_constraint_I08 (operands[2])” [(const_int 0)] { /* FIXME: Sometimes the ‘expected value’ operand is not propagated as immediate value. See PR 64974. / set_of_reg op2 = sh_find_set_of_reg (operands[2], curr_insn, prev_nonnote_nondebug_insn_bb); if (op2.set_src != NULL && satisfies_constraint_I08 (op2.set_src)) { rtx r = &XVECEXP (XEXP (XVECEXP (PATTERN (curr_insn), 0, 0), 1), 0, 1); validate_change (curr_insn, r, op2.set_src, false); DONE; } else FAIL; } [(set_attr “length” “14”)])
;; The QIHImode llcs patterns modify the address register of the memory ;; operand. In order to express that, we have to open code the memory ;; operand. Initially the insn is expanded like every other atomic insn ;; using the memory operand. In split1 the insn is converted and the ;; memory operand's address register is exposed. (define_insn_and_split “atomic_compare_and_swap_hard” [(set (match_operand:SI 0 “arith_reg_dest”) (unspec_volatile:SI [(match_operand:QIHI 1 “atomic_mem_operand_0”) (match_operand:QIHI 2 “arith_reg_operand”) (match_operand:QIHI 3 “arith_reg_operand”)] UNSPECV_CMPXCHG_1)) (set (match_dup 1) (unspec_volatile:QIHI [(const_int 0)] UNSPECV_CMPXCHG_2)) (set (reg:SI T_REG) (unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_3)) (clobber (reg:SI R0_REG))] “TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()” “#” “&& 1” [(const_int 0)] { rtx i = gen_atomic_compare_and_swap_hard_1 ( operands[0], XEXP (operands[1], 0), operands[2], operands[3]);
/* Replace the new mems in the new insn with the old mem to preserve aliasing info. */ XVECEXP (XEXP (XVECEXP (i, 0, 0), 1), 0, 0) = operands[1]; XEXP (XVECEXP (i, 0, 1), 0) = operands[1]; emit_insn (i); })
(define_insn “atomic_compare_and_swap_hard_1” [(set (match_operand:SI 0 “arith_reg_dest” “=&r”) (unspec_volatile:SI [(mem:QIHI (match_operand:SI 1 “arith_reg_operand” “r”)) (match_operand:QIHI 2 “arith_reg_operand” “r”) (match_operand:QIHI 3 “arith_reg_operand” “r”)] UNSPECV_CMPXCHG_1)) (set (mem:QIHI (match_dup 1)) (unspec_volatile:QIHI [(const_int 0)] UNSPECV_CMPXCHG_2)) (set (reg:SI T_REG) (unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_3)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:SI 4 “=&r”)) (clobber (match_scratch:SI 5 “=&r”)) (clobber (match_scratch:SI 6 “=1”))] “TARGET_ATOMIC_HARD_LLCS” { return “\r mov #-4,%5” “\n” " <i124extend_insn> %2,%4" “\n” " and %1,%5" “\n” " xor %5,%1" “\n” " add r15,%1" “\n” " add #-4,%1" “\n” “0: movli.l @%5,r0” “\n” " mov.l r0,@-r15" “\n” " mov. @%1,%0" “\n” " mov. %3,@%1" “\n” " cmp/eq %4,%0" “\n” " bf{.|/}s 0f" “\n” " mov.l @r15+,r0" “\n” " movco.l r0,@%5" “\n” " bf 0b" “\n” “0:”; } [(set_attr “length” “30”)])
(define_insn “atomic_compare_and_swap_soft_gusa” [(set (match_operand:SI 0 “arith_reg_dest” “=&u”) (unspec_volatile:SI [(match_operand:QIHISI 1 “atomic_mem_operand_0” “=AraAdd”) (match_operand:QIHISI 2 “arith_reg_operand” “u”) (match_operand:QIHISI 3 “arith_reg_operand” “u”)] UNSPECV_CMPXCHG_1)) (set (match_dup 1) (unspec_volatile:QIHISI [(const_int 0)] UNSPECV_CMPXCHG_2)) (set (reg:SI T_REG) (unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_3)) (clobber (match_scratch:SI 4 “=&u”)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_GUSA” { return “\r mova 1f,r0” “\n” " <i124extend_insn> %2,%4" “\n” " .align 2" “\n” " mov r15,r1" “\n” " mov #(0f-1f),r15" “\n” “0: mov. %1,%0” “\n” " cmp/eq %0,%4" “\n” " bf 1f" “\n” " mov. %3,%1" “\n” “1: mov r1,r15”; } [(set_attr “length” “20”)])
(define_insn “atomic_compare_and_swap_soft_tcb” [(set (match_operand:SI 0 “arith_reg_dest” “=&r”) (unspec_volatile:SI [(match_operand:QIHISI 1 “atomic_mem_operand_0” “=SraSdd”) (match_operand:QIHISI 2 “arith_reg_operand” “r”) (match_operand:QIHISI 3 “arith_reg_operand” “r”)] UNSPECV_CMPXCHG_1)) (set (match_dup 1) (unspec_volatile:QIHISI [(const_int 0)] UNSPECV_CMPXCHG_2)) (set (reg:SI T_REG) (unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_3)) (use (match_operand:SI 4 “gbr_displacement”)) (clobber (match_scratch:SI 5 “=&r”)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_TCB” { return “\r mova 1f,r0” “\n” " .align 2" “\n” " <i124extend_insn> %2,%5" “\n” " mov #(0f-1f),r1" “\n” " mov.l r0,@(%O4,gbr)" “\n” “0: mov. %1,%0” “\n” " mov #0,r0" “\n” " cmp/eq %0,%5" “\n” " bf 1f" “\n” " mov. %3,%1" “\n” “1: mov.l r0,@(%O4,gbr)”; } [(set_attr “length” “22”)])
(define_insn “atomic_compare_and_swap_soft_imask” [(set (match_operand:SI 0 “arith_reg_dest” “=&z”) (unspec_volatile:SI [(match_operand:QIHISI 1 “atomic_mem_operand_0” “=SraSdd”) (match_operand:QIHISI 2 “arith_reg_operand” “r”) (match_operand:QIHISI 3 “arith_reg_operand” “r”)] UNSPECV_CMPXCHG_1)) (set (match_dup 1) (unspec_volatile:QIHISI [(const_int 0)] UNSPECV_CMPXCHG_2)) (set (reg:SI T_REG) (unspec_volatile:SI [(const_int 0)] UNSPECV_CMPXCHG_3)) (clobber (match_scratch:SI 4 “=&r”)) (clobber (match_scratch:SI 5 “=&r”))] “TARGET_ATOMIC_SOFT_IMASK” { /* The comparison result is supposed to be in T_REG. Notice that restoring SR will overwrite the T_REG. We handle this by rotating the T_REG into the saved SR before restoring SR. On SH2A we can do one insn shorter by using the bst insn. */ if (!TARGET_SH2A) return “\r stc sr,%0” “\n” " <i124extend_insn> %2,%4" “\n” " mov %0,%5" “\n” " or #0xF0,%0" “\n” " shlr %5" “\n” " ldc %0,sr" “\n” " mov. %1,%0" “\n” " cmp/eq %4,%0" “\n” " bf 1f" “\n” " mov. %3,%1" “\n” “1: rotcl %5” “\n” " ldc %5,sr"; else return “\r stc sr,%0” “\n” " <i124extend_insn> %2,%4" “\n” " mov %0,%5" “\n” " or #0xF0,%0" “\n” " ldc %0,sr" “\n” " mov. %1,%0" “\n” " cmp/eq %4,%0" “\n” " bst #0,%5" “\n” " bf 1f" “\n” " mov. %3,%1" “\n” “1: ldc %5,sr”; } [(set (attr “length”) (if_then_else (match_test “!TARGET_SH2A”) (const_string “24”) (const_string “22”)))])
;;------------------------------------------------------------------------------ ;; read - write - return old value
(define_expand “atomic_exchange” [(match_operand:QIHISI 0 “arith_reg_dest”) ;; oldval output (match_operand:QIHISI 1 “atomic_mem_operand_0”) ;; memory (match_operand:QIHISI 2 “atomic_arith_operand_0”) ;; newval input (match_operand:SI 3 “const_int_operand”)] ;; memory model “TARGET_ATOMIC_ANY” { rtx mem = operands[1]; rtx val = operands[2]; rtx atomic_insn;
if (TARGET_ATOMIC_HARD_LLCS || (TARGET_SH4A && mode == SImode && !TARGET_ATOMIC_STRICT)) atomic_insn = gen_atomic_exchange_hard (operands[0], mem, val); else if (TARGET_ATOMIC_SOFT_GUSA) atomic_insn = gen_atomic_exchange_soft_gusa (operands[0], mem, val); else if (TARGET_ATOMIC_SOFT_TCB) atomic_insn = gen_atomic_exchange_soft_tcb (operands[0], mem, val, TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX); else if (TARGET_ATOMIC_SOFT_IMASK) atomic_insn = gen_atomic_exchange_soft_imask (operands[0], mem, val); else FAIL;
emit_insn (atomic_insn);
if (mode == QImode) emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]), operands[0])); else if (mode == HImode) emit_insn (gen_zero_extendhisi2 (gen_lowpart (SImode, operands[0]), operands[0])); DONE; })
(define_insn “atomic_exchangesi_hard” [(set (match_operand:SI 0 “arith_reg_dest” “=&r”) (match_operand:SI 1 “atomic_mem_operand_0” “=Sra”)) (set (match_dup 1) (unspec:SI [(match_operand:SI 2 “arith_operand” “rI08”)] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG))] “TARGET_ATOMIC_HARD_LLCS || (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)” { return “\r0: movli.l %1,r0” “\n” " mov r0,%0" “\n” " mov %2,r0" “\n” " movco.l r0,%1" “\n” " bf 0b"; } [(set_attr “length” “10”)])
;; The QIHImode llcs patterns modify the address register of the memory ;; operand. In order to express that, we have to open code the memory ;; operand. Initially the insn is expanded like every other atomic insn ;; using the memory operand. In split1 the insn is converted and the ;; memory operand's address register is exposed. (define_insn_and_split “atomic_exchange_hard” [(set (match_operand:QIHI 0 “arith_reg_dest”) (match_operand:QIHI 1 “atomic_mem_operand_0”)) (set (match_dup 1) (unspec:QIHI [(match_operand:QIHI 2 “arith_reg_operand”)] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG))] “TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()” “#” “&& 1” [(const_int 0)] { rtx i = gen_atomic_exchange_hard_1 (operands[0], XEXP (operands[1], 0), operands[2]);
/* Replace the new mems in the new insn with the old mem to preserve aliasing info. */ XEXP (XVECEXP (i, 0, 0), 1) = operands[1]; XEXP (XVECEXP (i, 0, 1), 0) = operands[1]; emit_insn (i); })
(define_insn “atomic_exchange_hard_1” [(set (match_operand:QIHI 0 “arith_reg_dest” “=&r”) (mem:QIHI (match_operand:SI 1 “arith_reg_operand” “r”))) (set (mem:QIHI (match_dup 1)) (unspec:QIHI [(match_operand:QIHI 2 “arith_reg_operand” “r”)] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:SI 3 “=&r”)) (clobber (match_scratch:SI 4 “=1”))] “TARGET_ATOMIC_HARD_LLCS” { return “\r mov #-4,%3” “\n” " and %1,%3" “\n” " xor %3,%1" “\n” " add r15,%1" “\n” " add #-4,%1" “\n” “0: movli.l @%3,r0” “\n” " mov.l r0,@-r15" “\n” " mov. @%1,%0" “\n” " mov. %2,@%1" “\n” " mov.l @r15+,r0" “\n” " movco.l r0,@%3" “\n” " bf 0b"; } [(set_attr “length” “24”)])
(define_insn “atomic_exchange_soft_gusa” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&u”) (match_operand:QIHISI 1 “atomic_mem_operand_0” “=AraAdd”)) (set (match_dup 1) (unspec:QIHISI [(match_operand:QIHISI 2 “arith_reg_operand” “u”)] UNSPEC_ATOMIC)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_GUSA” { return “\r mova 1f,r0” “\n” " .align 2" “\n” " mov r15,r1" “\n” " mov #(0f-1f),r15" “\n” “0: mov. %1,%0” “\n” " mov. %2,%1" “\n” “1: mov r1,r15”; } [(set_attr “length” “14”)])
(define_insn “atomic_exchange_soft_tcb” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&r”) (match_operand:QIHISI 1 “atomic_mem_operand_0” “=SraSdd”)) (set (match_dup 1) (unspec:QIHISI [(match_operand:QIHISI 2 “arith_reg_operand” “r”)] UNSPEC_ATOMIC)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG)) (use (match_operand:SI 3 “gbr_displacement”))] “TARGET_ATOMIC_SOFT_TCB” { return “\r mova 1f,r0” “\n” " mov #(0f-1f),r1" “\n” " .align 2" “\n” " mov.l r0,@(%O3,gbr)" “\n” “0: mov. %1,%0” “\n” " mov #0,r0" “\n” " mov. %2,%1" “\n” “1: mov.l r0,@(%O3,gbr)”; } [(set_attr “length” “16”)])
(define_insn “atomic_exchange_soft_imask” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&z”) (match_operand:QIHISI 1 “atomic_mem_operand_0” “=SraSdd”)) (set (match_dup 1) (unspec:QIHISI [(match_operand:QIHISI 2 “arith_reg_operand” “r”)] UNSPEC_ATOMIC)) (clobber (match_scratch:SI 3 “=&r”))] “TARGET_ATOMIC_SOFT_IMASK” { return “\r stc sr,%0” “\n” " mov %0,%3" “\n” " or #0xF0,%0" “\n” " ldc %0,sr" “\n” " mov. %1,%0" “\n” " mov. %2,%1" “\n” " ldc %3,sr"; } [(set_attr “length” “14”)])
;;------------------------------------------------------------------------------ ;; read - add|sub|or|and|xor|nand - write - return old value
;; atomic_arith_operand_1 can be used by any atomic type for a plus op, ;; since there's no r0 restriction. (define_predicate “atomic_arith_operand_1” (and (match_code “subreg,reg,const_int”) (ior (match_operand 0 “arith_reg_operand”) (match_test “satisfies_constraint_I08 (op)”))))
;; atomic_logic_operand_1 can be used by the hard_llcs, tcb and soft_imask ;; patterns only due to its r0 restriction. (define_predicate “atomic_logical_operand_1” (and (match_code “subreg,reg,const_int”) (ior (match_operand 0 “arith_reg_operand”) (and (match_test “satisfies_constraint_K08 (op)”) (ior (match_test “TARGET_ATOMIC_HARD_LLCS”) (match_test “TARGET_ATOMIC_SOFT_IMASK”) (match_test “TARGET_ATOMIC_SOFT_TCB”) (match_test “TARGET_ATOMIC_ANY && TARGET_SH4A && mode == SImode && !TARGET_ATOMIC_STRICT”))))))
(define_code_attr fetchop_predicate_1 [(plus “atomic_arith_operand_1”) (minus “arith_reg_operand”) (ior “atomic_logical_operand_1”) (xor “atomic_logical_operand_1”) (and “atomic_logical_operand_1”)])
(define_code_attr fetchop_constraint_1_llcs [(plus “rI08”) (minus “r”) (ior “rK08”) (xor “rK08”) (and “rK08”)])
(define_code_attr fetchop_constraint_1_gusa [(plus “uI08”) (minus “u”) (ior “u”) (xor “u”) (and “u”)])
(define_code_attr fetchop_constraint_1_tcb [(plus “rI08”) (minus “r”) (ior “rK08”) (xor “rK08”) (and “rK08”)])
(define_code_attr fetchop_constraint_1_imask [(plus “rI08”) (minus “r”) (ior “rK08”) (xor “rK08”) (and “rK08”)])
;; Displacement addressing mode (incl. GBR relative) can be used by tcb and ;; imask atomic patterns in any mode, since all the patterns use R0 as the ;; register operand for memory loads/stores. gusa and llcs patterns can only ;; use displacement addressing for SImode. (define_predicate “atomic_mem_operand_1” (and (match_code “mem”) (ior (match_operand 0 “simple_mem_operand”) (and (match_test “mode == SImode”) (match_test “TARGET_ATOMIC_SOFT_GUSA && (!TARGET_SH4A || TARGET_ATOMIC_STRICT)”) (match_operand 0 “short_displacement_mem_operand”)) (and (ior (match_test “(TARGET_ATOMIC_SOFT_TCB || TARGET_ATOMIC_SOFT_IMASK) && (!TARGET_SH4A || TARGET_ATOMIC_STRICT)”) (match_test “(TARGET_ATOMIC_SOFT_TCB || TARGET_ATOMIC_SOFT_IMASK) && TARGET_SH4A && !TARGET_ATOMIC_STRICT && mode != SImode”)) (ior (match_operand 0 “short_displacement_mem_operand”) (match_operand 0 “gbr_address_mem”))))))
(define_expand “atomic_fetch_<fetchop_name>” [(set (match_operand:QIHISI 0 “arith_reg_dest”) (match_operand:QIHISI 1 “atomic_mem_operand_1”)) (set (match_dup 1) (unspec:QIHISI [(FETCHOP:QIHISI (match_dup 1) (match_operand:QIHISI 2 “<fetchop_predicate_1>”))] UNSPEC_ATOMIC)) (match_operand:SI 3 “const_int_operand”)] “TARGET_ATOMIC_ANY” { rtx mem = operands[1]; rtx atomic_insn;
if (TARGET_ATOMIC_HARD_LLCS || (TARGET_SH4A && mode == SImode && !TARGET_ATOMIC_STRICT)) atomic_insn = gen_atomic_fetch_<fetchop_name>hard (operands[0], mem, operands[2]); else if (TARGET_ATOMIC_SOFT_GUSA) atomic_insn = gen_atomic_fetch<fetchop_name>soft_gusa (operands[0], mem, operands[2]); else if (TARGET_ATOMIC_SOFT_TCB) atomic_insn = gen_atomic_fetch<fetchop_name>soft_tcb (operands[0], mem, operands[2], TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX); else if (TARGET_ATOMIC_SOFT_IMASK) atomic_insn = gen_atomic_fetch<fetchop_name>_soft_imask (operands[0], mem, operands[2]); else FAIL;
emit_insn (atomic_insn);
if (mode == QImode) emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]), operands[0])); else if (mode == HImode) emit_insn (gen_zero_extendhisi2 (gen_lowpart (SImode, operands[0]), operands[0])); DONE; })
(define_insn_and_split “atomic_fetch_<fetchop_name>si_hard” [(set (match_operand:SI 0 “arith_reg_dest” “=&r”) (match_operand:SI 1 “atomic_mem_operand_1” “=Sra”)) (set (match_dup 1) (unspec:SI [(FETCHOP:SI (match_dup 1) (match_operand:SI 2 “<fetchop_predicate_1>” “<fetchop_constraint_1_llcs>”))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG))] “TARGET_ATOMIC_HARD_LLCS || (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)” { return “\r0: movli.l %1,r0” “\n” " mov r0,%0" “\n” " <fetchop_name> %2,r0" “\n” " movco.l r0,%1" “\n” " bf 0b"; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_<fetchop_name>_fetchsi_hard (gen_reg_rtx (SImode), operands[1], operands[2])); } [(set_attr “length” “10”)])
;; Combine pattern for xor (val, -1) / nand (val, -1). (define_insn_and_split “atomic_fetch_notsi_hard” [(set (match_operand:SI 0 “arith_reg_dest” “=&r”) (match_operand:SI 1 “atomic_mem_operand_1” “=Sra”)) (set (match_dup 1) (unspec:SI [(not:SI (match_dup 1))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG))] “TARGET_ATOMIC_HARD_LLCS || (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)” { return “\r0: movli.l %1,r0” “\n” " mov r0,%0" “\n” " not r0,r0" “\n” " movco.l r0,%1" “\n” " bf 0b"; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_not_fetchsi_hard (gen_reg_rtx (SImode), operands[1])); } [(set_attr “length” “10”)])
;; The QIHImode llcs patterns modify the address register of the memory ;; operand. In order to express that, we have to open code the memory ;; operand. Initially the insn is expanded like every other atomic insn ;; using the memory operand. In split1 the insn is converted and the ;; memory operand's address register is exposed. (define_insn_and_split “atomic_fetch_<fetchop_name>_hard” [(set (match_operand:QIHI 0 “arith_reg_dest”) (match_operand:QIHI 1 “atomic_mem_operand_1”)) (set (match_dup 1) (unspec:QIHI [(FETCHOP:QIHI (match_dup 1) (match_operand:QIHI 2 “<fetchop_predicate_1>”))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG))] “TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()” “#” “&& 1” [(const_int 0)] { if (optimize && sh_reg_dead_or_unused_after_insn (curr_insn, REGNO (operands[0]))) emit_insn (gen_atomic_<fetchop_name>hard (operands[1], operands[2])); else { rtx i = gen_atomic_fetch<fetchop_name>_hard_1 ( operands[0], XEXP (operands[1], 0), operands[2]);
/* Replace the new mems in the new insn with the old mem to preserve aliasing info. */ XEXP (XVECEXP (i, 0, 0), 1) = operands[1]; XEXP (XVECEXP (i, 0, 1), 0) = operands[1]; XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 1), 1), 0, 0), 0) = operands[1]; emit_insn (i); }
})
(define_insn “atomic_fetch_<fetchop_name>_hard_1” [(set (match_operand:QIHI 0 “arith_reg_dest” “=&r”) (mem:QIHI (match_operand:SI 1 “arith_reg_operand” “r”))) (set (mem:QIHI (match_dup 1)) (unspec:QIHI [(FETCHOP:QIHI (mem:QIHI (match_dup 1)) (match_operand:QIHI 2 “<fetchop_predicate_1>” “<fetchop_constraint_1_llcs>”))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:SI 3 “=&r”)) (clobber (match_scratch:SI 4 “=1”))] “TARGET_ATOMIC_HARD_LLCS” { return “\r mov #-4,%3” “\n” " and %1,%3" “\n” " xor %3,%1" “\n” " add r15,%1" “\n” " add #-4,%1" “\n” “0: movli.l @%3,r0” “\n” " mov.l r0,@-r15" “\n” " mov. @%1,r0" “\n” " mov r0,%0" “\n” " <fetchop_name> %2,r0" “\n” " mov. r0,@%1" “\n” " mov.l @r15+,r0" “\n” " movco.l r0,@%3" “\n” " bf 0b"; } [(set_attr “length” “28”)])
;; The QIHImode llcs patterns modify the address register of the memory ;; operand. In order to express that, we have to open code the memory ;; operand. Initially the insn is expanded like every other atomic insn ;; using the memory operand. In split1 the insn is converted and the ;; memory operand's address register is exposed. (define_insn_and_split “atomic_<fetchop_name>_hard” [(set (match_operand:QIHI 0 “atomic_mem_operand_1”) (unspec:QIHI [(FETCHOP:QIHI (match_dup 0) (match_operand:QIHI 1 “<fetchop_predicate_1>”))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG))] “TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()” “#” “&& 1” [(const_int 0)] { rtx i = gen_atomic_<fetchop_name>_hard_1 (XEXP (operands[0], 0), operands[1]); /* Replace the new mems in the new insn with the old mem to preserve aliasing info. */ XEXP (XVECEXP (i, 0, 0), 0) = operands[0]; XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 0), 1), 0, 0), 0) = operands[0]; emit_insn (i); })
(define_insn “atomic_<fetchop_name>_hard_1” [(set (mem:QIHI (match_operand:SI 0 “arith_reg_operand” “r”)) (unspec:QIHI [(FETCHOP:QIHI (mem:QIHI (match_dup 0)) (match_operand:QIHI 1 “<fetchop_predicate_1>” “<fetchop_constraint_1_llcs>”))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:SI 2 “=&r”)) (clobber (match_scratch:SI 3 “=0”))] “TARGET_ATOMIC_HARD_LLCS” { return “\r mov #-4,%2” “\n” " and %0,%2" “\n” " xor %2,%0" “\n” " add r15,%0" “\n” " add #-4,%0" “\n” “0: movli.l @%2,r0” “\n” " mov.l r0,@-r15" “\n” " mov. @%0,r0" “\n” " <fetchop_name> %1,r0" “\n” " mov. r0,@%0" “\n” " mov.l @r15+,r0" “\n” " movco.l r0,@%2" “\n” " bf 0b"; } [(set_attr “length” “26”)])
;; Combine pattern for xor (val, -1) / nand (val, -1). (define_insn_and_split “atomic_fetch_not_hard” [(set (match_operand:QIHI 0 “arith_reg_dest” “=&r”) (mem:QIHI (match_operand:SI 1 “arith_reg_operand” “r”))) (set (mem:QIHI (match_dup 1)) (unspec:QIHI [(not:QIHI (mem:QIHI (match_dup 1)))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:SI 2 “=&r”)) (clobber (match_scratch:SI 3 “=1”))] “TARGET_ATOMIC_HARD_LLCS” { return “\r mov #-4,%2” “\n” " and %1,%2" “\n” " xor %2,%1" “\n” " add r15,%1" “\n” " add #-4,%1" “\n” “0: movli.l @%2,r0” “\n” " mov.l r0,@-r15" “\n” " mov. @%1,%0" “\n” " not %0,r0" “\n” " mov. r0,@%1" “\n” " mov.l @r15+,r0" “\n” " movco.l r0,@%2" “\n” " bf 0b"; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { rtx i = gen_atomic_not_hard (operands[1]);
/* Replace the new mems in the new insn with the old mem to preserve aliasing info. */ rtx m = XEXP (XVECEXP (PATTERN (curr_insn), 0, 0), 1); XEXP (XVECEXP (i, 0, 0), 0) = m; XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 0), 1), 0, 0), 0) = m; emit_insn (i); } [(set_attr “length” “26”)])
(define_insn “atomic_not_hard” [(set (mem:QIHI (match_operand:SI 0 “arith_reg_operand” “r”)) (unspec:QIHI [(not:QIHI (mem:QIHI (match_dup 0)))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:SI 1 “=&r”)) (clobber (match_scratch:SI 2 “=0”))] “TARGET_ATOMIC_HARD_LLCS” { return “\r mov #-4,%1” “\n” " and %0,%1" “\n” " xor %1,%0" “\n” " add r15,%0" “\n” " add #-4,%0" “\n” “0: movli.l @%1,r0” “\n” " mov.l r0,@-r15" “\n” " mov. @%0,r0" “\n” " not r0,r0" “\n” " mov. r0,@%0" “\n” " mov.l @r15+,r0" “\n” " movco.l r0,@%1" “\n” " bf 0b"; } [(set_attr “length” “26”)])
(define_insn_and_split “atomic_fetch_<fetchop_name>_soft_gusa” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&u”) (match_operand:QIHISI 1 “atomic_mem_operand_1” “=AraAdd”)) (set (match_dup 1) (unspec:QIHISI [(FETCHOP:QIHISI (match_dup 1) (match_operand:QIHISI 2 “<fetchop_predicate_1>” “<fetchop_constraint_1_gusa>”))] UNSPEC_ATOMIC)) (clobber (match_scratch:QIHISI 3 “=&u”)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_GUSA” { return “\r mova 1f,r0” “\n” " .align 2" “\n” " mov r15,r1" “\n” " mov #(0f-1f),r15" “\n” “0: mov. %1,%0” “\n” " mov %0,%3" “\n” " <fetchop_name> %2,%3" “\n” " mov. %3,%1" “\n” “1: mov r1,r15”; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_<fetchop_name>_fetch_soft_gusa ( gen_reg_rtx (mode), operands[1], operands[2])); } [(set_attr “length” “18”)])
;; Combine pattern for xor (val, -1) / nand (val, -1). (define_insn_and_split “atomic_fetch_not_soft_gusa” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&u”) (match_operand:QIHISI 1 “atomic_mem_operand_1” “=AraAdd”)) (set (match_dup 1) (unspec:QIHISI [(not:QIHISI (match_dup 1))] UNSPEC_ATOMIC)) (clobber (match_scratch:QIHISI 2 “=&u”)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_GUSA” { return “\r mova 1f,r0” “\n” " mov r15,r1" “\n” " .align 2" “\n” " mov #(0f-1f),r15" “\n” “0: mov. %1,%0” “\n” " not %0,%2" “\n” " mov. %2,%1" “\n” “1: mov r1,r15”; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_not_fetch_soft_gusa (gen_reg_rtx (mode), operands[1])); } [(set_attr “length” “16”)])
(define_insn_and_split “atomic_fetch_<fetchop_name>_soft_tcb” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&r”) (match_operand:QIHISI 1 “atomic_mem_operand_1” “=SraSdd”)) (set (match_dup 1) (unspec:QIHISI [(FETCHOP:QIHISI (match_dup 1) (match_operand:QIHISI 2 “<fetchop_predicate_1>” “<fetchop_constraint_1_tcb>”))] UNSPEC_ATOMIC)) (use (match_operand:SI 3 “gbr_displacement”)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_TCB” { return “\r mova 1f,r0” “\n” " .align 2" “\n” " mov #(0f-1f),r1" “\n” " mov.l r0,@(%O3,gbr)" “\n” “0: mov. %1,r0” “\n” " mov r0,%0" “\n” " <fetchop_name> %2,r0" “\n” " mov. r0,%1" “\n” “1: mov #0,r0” “\n” " mov.l r0,@(%O3,gbr)"; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_<fetchop_name>_soft_tcb ( operands[1], operands[2], operands[3])); } [(set_attr “length” “20”)])
(define_insn “atomic_<fetchop_name>_soft_tcb” [(set (match_operand:QIHISI 0 “atomic_mem_operand_1” “=SraSdd”) (unspec:QIHISI [(FETCHOP:QIHISI (match_dup 0) (match_operand:QIHISI 1 “<fetchop_predicate_1>” “<fetchop_constraint_1_tcb>”))] UNSPEC_ATOMIC)) (use (match_operand:SI 2 “gbr_displacement”)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_TCB” { return “\r mova 1f,r0” “\n” " mov #(0f-1f),r1" “\n” " .align 2" “\n” " mov.l r0,@(%O2,gbr)" “\n” “0: mov. %0,r0” “\n” " <fetchop_name> %1,r0" “\n” " mov. r0,%0" “\n” “1: mov #0,r0” “\n” " mov.l r0,@(%O2,gbr)"; } [(set_attr “length” “18”)])
;; Combine pattern for xor (val, -1) / nand (val, -1). (define_insn_and_split “atomic_fetch_not_soft_tcb” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&r”) (match_operand:QIHISI 1 “atomic_mem_operand_1” “=SraSdd”)) (set (match_dup 1) (unspec:QIHISI [(not:QIHISI (match_dup 1))] UNSPEC_ATOMIC)) (use (match_operand:SI 2 “gbr_displacement”)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_TCB” { return “\r mova 1f,r0” “\n” " .align 2" “\n” " mov #(0f-1f),r1" “\n” " mov.l r0,@(%O2,gbr)" “\n” “0: mov. %1,r0” “\n” " mov r0,%0" “\n” " not r0,r0" “\n” " mov. r0,%1" “\n” “1: mov #0,r0” “\n” " mov.l r0,@(%O2,gbr)"; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_not_soft_tcb (operands[1], operands[2])); } [(set_attr “length” “20”)])
(define_insn “atomic_not_soft_tcb” [(set (match_operand:QIHISI 0 “atomic_mem_operand_1” “=SraSdd”) (unspec:QIHISI [(not:QIHISI (match_dup 0))] UNSPEC_ATOMIC)) (use (match_operand:SI 1 “gbr_displacement”)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_TCB” { return “\r mova 1f,r0” “\n” " mov #(0f-1f),r1" “\n” " .align 2" “\n” " mov.l r0,@(%O1,gbr)" “\n” “0: mov. %0,r0” “\n” " not r0,r0" “\n” " mov. r0,%0" “\n” “1: mov #0,r0” “\n” " mov.l r0,@(%O1,gbr)"; } [(set_attr “length” “18”)])
(define_insn_and_split “atomic_fetch_<fetchop_name>_soft_imask” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&r”) (match_operand:QIHISI 1 “atomic_mem_operand_1” “=SraSdd”)) (set (match_dup 1) (unspec:QIHISI [(FETCHOP:QIHISI (match_dup 1) (match_operand:QIHISI 2 “<fetchop_predicate_1>” “<fetchop_constraint_1_imask>”))] UNSPEC_ATOMIC)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:QIHISI 3 “=&r”))] “TARGET_ATOMIC_SOFT_IMASK” { return “\r stc sr,r0” “\n” " mov r0,%3" “\n” " or #0xF0,r0" “\n” " ldc r0,sr" “\n” " mov. %1,r0" “\n” " mov r0,%0" “\n” " <fetchop_name> %2,r0" “\n” " mov. r0,%1" “\n” " ldc %3,sr"; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_<fetchop_name>_fetch_soft_imask ( gen_reg_rtx (mode), operands[1], operands[2])); } [(set_attr “length” “18”)])
;; Combine pattern for xor (val, -1) / nand (val, -1). (define_insn_and_split “atomic_fetch_not_soft_imask” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&r”) (match_operand:QIHISI 1 “atomic_mem_operand_1” “=SraSdd”)) (set (match_dup 1) (unspec:QIHISI [(not:QIHISI (match_dup 1))] UNSPEC_ATOMIC)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:QIHISI 2 “=&r”))] “TARGET_ATOMIC_SOFT_IMASK” { return “\r stc sr,r0” “\n” " mov r0,%2" “\n” " or #0xF0,r0" “\n” " ldc r0,sr" “\n” " mov. %1,r0" “\n” " mov r0,%0" “\n” " not r0,r0" “\n” " mov. r0,%1" “\n” " ldc %2,sr"; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_not_fetch_soft_imask (gen_reg_rtx (mode), operands[1])); } [(set_attr “length” “18”)])
(define_expand “atomic_fetch_nand” [(set (match_operand:QIHISI 0 “arith_reg_dest”) (match_operand:QIHISI 1 “atomic_mem_operand_1”)) (set (match_dup 1) (unspec:QIHISI [(not:QIHISI (and:QIHISI (match_dup 1) (match_operand:QIHISI 2 “atomic_logical_operand_1”)))] UNSPEC_ATOMIC)) (match_operand:SI 3 “const_int_operand”)] “TARGET_ATOMIC_ANY” { rtx mem = operands[1]; rtx atomic_insn;
if (TARGET_ATOMIC_HARD_LLCS || (TARGET_SH4A && mode == SImode && !TARGET_ATOMIC_STRICT)) atomic_insn = gen_atomic_fetch_nand_hard (operands[0], mem, operands[2]); else if (TARGET_ATOMIC_SOFT_GUSA) atomic_insn = gen_atomic_fetch_nand_soft_gusa (operands[0], mem, operands[2]); else if (TARGET_ATOMIC_SOFT_TCB) atomic_insn = gen_atomic_fetch_nand_soft_tcb (operands[0], mem, operands[2], TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX); else if (TARGET_ATOMIC_SOFT_IMASK) atomic_insn = gen_atomic_fetch_nand_soft_imask (operands[0], mem, operands[2]); else FAIL;
emit_insn (atomic_insn);
if (mode == QImode) emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]), operands[0])); else if (mode == HImode) emit_insn (gen_zero_extendhisi2 (gen_lowpart (SImode, operands[0]), operands[0])); DONE; })
(define_insn_and_split “atomic_fetch_nandsi_hard” [(set (match_operand:SI 0 “arith_reg_dest” “=&r”) (match_operand:SI 1 “atomic_mem_operand_1” “=Sra”)) (set (match_dup 1) (unspec:SI [(not:SI (and:SI (match_dup 1) (match_operand:SI 2 “logical_operand” “rK08”)))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG))] “TARGET_ATOMIC_HARD_LLCS || (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)” { return “\r0: movli.l %1,r0” “\n” " mov r0,%0" “\n” " and %2,r0" “\n” " not r0,r0" “\n” " movco.l r0,%1" “\n” " bf 0b"; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_nand_fetchsi_hard (gen_reg_rtx (SImode), operands[1], operands[2])); } [(set_attr “length” “12”)])
;; The QIHImode llcs patterns modify the address register of the memory ;; operand. In order to express that, we have to open code the memory ;; operand. Initially the insn is expanded like every other atomic insn ;; using the memory operand. In split1 the insn is converted and the ;; memory operand's address register is exposed. (define_insn_and_split “atomic_fetch_nand_hard” [(set (match_operand:QIHI 0 “arith_reg_dest”) (match_operand:QIHI 1 “atomic_mem_operand_1”)) (set (match_dup 1) (unspec:QIHI [(not:QIHI (and:QIHI (match_dup 1) (match_operand:QIHI 2 “logical_operand” “rK08”)))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG))] “TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()” “#” “&& 1” [(const_int 0)] { if (optimize && sh_reg_dead_or_unused_after_insn (curr_insn, REGNO (operands[0]))) emit_insn (gen_atomic_nand_hard (operands[1], operands[2])); else { rtx i = gen_atomic_fetch_nand_hard_1 ( operands[0], XEXP (operands[1], 0), operands[2]);
/* Replace the new mems in the new insn with the old mem to preserve aliasing info. */ XEXP (XVECEXP (i, 0, 0), 1) = operands[1]; XEXP (XVECEXP (i, 0, 1), 0) = operands[1]; XEXP (XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 1), 1), 0, 0), 0), 0) = operands[1]; emit_insn (i); }
})
(define_insn “atomic_fetch_nand_hard_1” [(set (match_operand:QIHI 0 “arith_reg_dest” “=&r”) (mem:QIHI (match_operand:SI 1 “arith_reg_operand” “r”))) (set (mem:QIHI (match_dup 1)) (unspec:QIHI [(not:QIHI (and:QIHI (mem:QIHI (match_dup 1)) (match_operand:QIHI 2 “logical_operand” “rK08”)))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:SI 3 “=&r”)) (clobber (match_scratch:SI 4 “=1”))] “TARGET_ATOMIC_HARD_LLCS” { return “\r mov #-4,%3” “\n” " and %1,%3" “\n” " xor %3,%1" “\n” " add r15,%1" “\n” " add #-4,%1" “\n” “0: movli.l @%3,r0” “\n” " mov.l r0,@-r15" “\n” " mov. @%1,r0" “\n” " mov r0,%0" “\n” " and %2,r0" “\n” " not r0,r0" “\n” " mov. r0,@%1" “\n” " mov.l @r15+,r0" “\n” " movco.l r0,@%3" “\n” " bf 0b"; } [(set_attr “length” “30”)])
;; The QIHImode llcs patterns modify the address register of the memory ;; operand. In order to express that, we have to open code the memory ;; operand. Initially the insn is expanded like every other atomic insn ;; using the memory operand. In split1 the insn is converted and the ;; memory operand's address register is exposed. (define_insn_and_split “atomic_nand_hard” [(set (match_operand:QIHI 0 “atomic_mem_operand_1”) (unspec:QIHI [(not:QIHI (and:QIHI (match_dup 0) (match_operand:QIHI 1 “logical_operand”)))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG))] “TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()” “#” “&& 1” [(const_int 0)] { rtx i = gen_atomic_nand_hard_1 (XEXP (operands[0], 0), operands[1]);
/* Replace the new mems in the new insn with the old mem to preserve aliasing info. */ XEXP (XVECEXP (i, 0, 0), 0) = operands[0]; XEXP (XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 0), 1), 0, 0), 0), 0) = operands[0]; emit_insn (i); })
(define_insn “atomic_nand_hard_1” [(set (mem:QIHI (match_operand:SI 0 “arith_reg_operand” “r”)) (unspec:QIHI [(not:QIHI (and:QIHI (mem:QIHI (match_dup 0)) (match_operand:QIHI 1 “logical_operand” “rK08”)))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:SI 2 “=&r”)) (clobber (match_scratch:SI 3 “=0”))] “TARGET_ATOMIC_HARD_LLCS” { return “\r mov #-4,%2” “\n” " and %0,%2" “\n” " xor %2,%0" “\n” " add r15,%0" “\n” " add #-4,%0" “\n” “0: movli.l @%2,r0” “\n” " mov.l r0,@-r15" “\n” " mov. @%0,r0" “\n” " and %1,r0" “\n” " not r0,r0" “\n” " mov. r0,@%0" “\n” " mov.l @r15+,r0" “\n” " movco.l r0,@%2" “\n” " bf 0b"; } [(set_attr “length” “28”)])
(define_insn_and_split “atomic_fetch_nand_soft_gusa” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&u”) (match_operand:QIHISI 1 “atomic_mem_operand_1” “=AraAdd”)) (set (match_dup 1) (unspec:QIHISI [(not:QIHISI (and:QIHISI (match_dup 1) (match_operand:QIHISI 2 “arith_reg_operand” “u”)))] UNSPEC_ATOMIC)) (clobber (match_scratch:QIHISI 3 “=&u”)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_GUSA” { return “\r mova 1f,r0” “\n” " mov r15,r1" “\n” " .align 2" “\n” " mov #(0f-1f),r15" “\n” “0: mov. %1,%0” “\n” " mov %2,%3" “\n” " and %0,%3" “\n” " not %3,%3" “\n” " mov. %3,%1" “\n” “1: mov r1,r15”; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_nand_fetch_soft_gusa (gen_reg_rtx (mode), operands[1], operands[2])); } [(set_attr “length” “20”)])
(define_insn_and_split “atomic_fetch_nand_soft_tcb” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&r”) (match_operand:QIHISI 1 “atomic_mem_operand_1” “=SraSdd”)) (set (match_dup 1) (unspec:QIHISI [(not:QIHISI (and:QIHISI (match_dup 1) (match_operand:QIHISI 2 “logical_operand” “rK08”)))] UNSPEC_ATOMIC)) (use (match_operand:SI 3 “gbr_displacement”)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_TCB” { return “\r mova 1f,r0” “\n” " mov #(0f-1f),r1" “\n” " .align 2" “\n” " mov.l r0,@(%O3,gbr)" “\n” “0: mov. %1,r0” “\n” " mov r0,%0" “\n” " and %2,r0" “\n” " not r0,r0" “\n” " mov. r0,%1" “\n” “1: mov #0,r0” “\n” " mov.l r0,@(%O3,gbr)"; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_nand_soft_tcb (operands[1], operands[2], operands[3])); } [(set_attr “length” “22”)])
(define_insn “atomic_nand_soft_tcb” [(set (match_operand:QIHISI 0 “atomic_mem_operand_1” “=SraSdd”) (unspec:QIHISI [(not:QIHISI (and:QIHISI (match_dup 0) (match_operand:QIHISI 1 “logical_operand” “rK08”)))] UNSPEC_ATOMIC)) (use (match_operand:SI 2 “gbr_displacement”)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_TCB” { return “\r mova 1f,r0” “\n” " .align 2" “\n” " mov #(0f-1f),r1" “\n” " mov.l r0,@(%O2,gbr)" “\n” “0: mov. %0,r0” “\n” " and %1,r0" “\n” " not r0,r0" “\n” " mov. r0,%0" “\n” “1: mov #0,r0” “\n” " mov.l r0,@(%O2,gbr)"; } [(set_attr “length” “20”)])
(define_insn_and_split “atomic_fetch_nand_soft_imask” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&r”) (match_operand:QIHISI 1 “atomic_mem_operand_1” “=SraSdd”)) (set (match_dup 1) (unspec:QIHISI [(not:QIHISI (and:QIHISI (match_dup 1) (match_operand:QIHISI 2 “logical_operand” “rK08”)))] UNSPEC_ATOMIC)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:SI 3 “=&r”))] “TARGET_ATOMIC_SOFT_IMASK” { return “\r stc sr,r0” “\n” " mov r0,%3" “\n” " or #0xF0,r0" “\n” " ldc r0,sr" “\n” " mov. %1,r0" “\n” " mov r0,%0" “\n” " and %2,r0" “\n” " not r0,r0" “\n” " mov. r0,%1" “\n” " ldc %3,sr"; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_nand_fetch_soft_imask (gen_reg_rtx (mode), operands[1], operands[2])); } [(set_attr “length” “20”)])
;;------------------------------------------------------------------------------ ;; read - add|sub|or|and|xor|nand - write - return new value
(define_expand “atomic_<fetchop_name>_fetch” [(set (match_operand:QIHISI 0 “arith_reg_dest”) (FETCHOP:QIHISI (match_operand:QIHISI 1 “atomic_mem_operand_1”) (match_operand:QIHISI 2 “<fetchop_predicate_1>”))) (set (match_dup 1) (unspec:QIHISI [(FETCHOP:QIHISI (match_dup 1) (match_dup 2))] UNSPEC_ATOMIC)) (match_operand:SI 3 “const_int_operand” "")] “TARGET_ATOMIC_ANY” { rtx mem = operands[1]; rtx atomic_insn;
if (TARGET_ATOMIC_HARD_LLCS || (TARGET_SH4A && mode == SImode && !TARGET_ATOMIC_STRICT)) atomic_insn = gen_atomic_<fetchop_name>_fetchhard (operands[0], mem, operands[2]); else if (TARGET_ATOMIC_SOFT_GUSA) atomic_insn = gen_atomic<fetchop_name>_fetchsoft_gusa (operands[0], mem, operands[2]); else if (TARGET_ATOMIC_SOFT_TCB) atomic_insn = gen_atomic<fetchop_name>_fetchsoft_tcb (operands[0], mem, operands[2], TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX); else if (TARGET_ATOMIC_SOFT_IMASK) atomic_insn = gen_atomic<fetchop_name>_fetch_soft_imask (operands[0], mem, operands[2]); else FAIL;
emit_insn (atomic_insn);
if (mode == QImode) emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]), operands[0])); else if (mode == HImode) emit_insn (gen_zero_extendhisi2 (gen_lowpart (SImode, operands[0]), operands[0])); DONE; })
(define_insn “atomic_<fetchop_name>_fetchsi_hard” [(set (match_operand:SI 0 “arith_reg_dest” “=&z”) (FETCHOP:SI (match_operand:SI 1 “atomic_mem_operand_1” “=Sra”) (match_operand:SI 2 “<fetchop_predicate_1>” “<fetchop_constraint_1_llcs>”))) (set (match_dup 1) (unspec:SI [(FETCHOP:SI (match_dup 1) (match_dup 2))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1))] “TARGET_ATOMIC_HARD_LLCS || (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)” { return “\r0: movli.l %1,%0” “\n” " <fetchop_name> %2,%0" “\n” " movco.l %0,%1" “\n” " bf 0b"; } [(set_attr “length” “8”)])
;; Combine pattern for xor (val, -1) / nand (val, -1). (define_insn “atomic_not_fetchsi_hard” [(set (match_operand:SI 0 “arith_reg_dest” “=&z”) (not:SI (match_operand:SI 1 “atomic_mem_operand_1” “=Sra”))) (set (match_dup 1) (unspec:SI [(not:SI (match_dup 1))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1))] “TARGET_ATOMIC_HARD_LLCS || (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)” { return “\r0: movli.l %1,%0” “\n” " not %0,%0" “\n” " movco.l %0,%1" “\n” " bf 0b"; } [(set_attr “length” “8”)])
;; The QIHImode llcs patterns modify the address register of the memory ;; operand. In order to express that, we have to open code the memory ;; operand. Initially the insn is expanded like every other atomic insn ;; using the memory operand. In split1 the insn is converted and the ;; memory operand's address register is exposed. (define_insn_and_split “atomic_<fetchop_name>_fetch_hard” [(set (match_operand:QIHI 0 “arith_reg_dest” “=&r”) (FETCHOP:QIHI (match_operand:QIHI 1 “atomic_mem_operand_1”) (match_operand:QIHI 2 “<fetchop_predicate_1>”))) (set (match_dup 1) (unspec:QIHI [(FETCHOP:QIHI (match_dup 1) (match_dup 2))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG))] “TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()” “#” “&& 1” [(const_int 0)] { if (optimize && sh_reg_dead_or_unused_after_insn (curr_insn, REGNO (operands[0]))) emit_insn (gen_atomic_<fetchop_name>hard (operands[1], operands[2])); else { rtx i = gen_atomic<fetchop_name>_fetch_hard_1 ( operands[0], XEXP (operands[1], 0), operands[2]);
/* Replace the new mems in the new insn with the old mem to preserve aliasing info. */ XEXP (XEXP (XVECEXP (i, 0, 0), 1), 0) = operands[1]; XEXP (XVECEXP (i, 0, 1), 0) = operands[1]; XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 1), 1), 0, 0), 0) = operands[1]; emit_insn (i); }
})
(define_insn “atomic_<fetchop_name>_fetch_hard_1” [(set (match_operand:QIHI 0 “arith_reg_dest” “=&r”) (FETCHOP:QIHI (mem:QIHI (match_operand:SI 1 “arith_reg_operand” “r”)) (match_operand:QIHI 2 “<fetchop_predicate_1>” “<fetchop_constraint_1_llcs>”))) (set (mem:QIHI (match_dup 1)) (unspec:QIHI [(FETCHOP:QIHI (mem:QIHI (match_dup 1)) (match_dup 2))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:SI 3 “=&r”)) (clobber (match_scratch:SI 4 “=1”))] “TARGET_ATOMIC_HARD_LLCS” { return “\r mov #-4,%3” “\n” " and %1,%3" “\n” " xor %3,%1" “\n” " add r15,%1" “\n” " add #-4,%1" “\n” “0: movli.l @%3,r0” “\n” " mov.l r0,@-r15" “\n” " mov. @%1,r0" “\n” " <fetchop_name> %2,r0" “\n” " mov. r0,@%1" “\n” " mov r0,%0" “\n” " mov.l @r15+,r0" “\n” " movco.l r0,@%3" “\n” " bf 0b"; } [(set_attr “length” “28”)])
;; Combine pattern for xor (val, -1) / nand (val, -1). (define_insn_and_split “atomic_not_fetch_hard” [(set (match_operand:QIHI 0 “arith_reg_dest” “=&r”) (not:QIHI (mem:QIHI (match_operand:SI 1 “arith_reg_operand” “r”)))) (set (mem:QIHI (match_dup 1)) (unspec:QIHI [(not:QIHI (mem:QIHI (match_dup 1)))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:SI 2 “=&r”)) (clobber (match_scratch:SI 3 “=1”))] “TARGET_ATOMIC_HARD_LLCS” { return “\r mov #-4,%2” “\n” " and %1,%2" “\n” " xor %2,%1" “\n” " add r15,%1" “\n” " add #-4,%1" “\n” “0: movli.l @%2,r0” “\n” " mov.l r0,@-r15" “\n” " mov. @%1,r0" “\n” " not r0,r0" “\n” " mov. r0,@%1" “\n” " mov r0,%0" “\n” " mov.l @r15+,r0" “\n” " movco.l r0,@%2" “\n” " bf 0b"; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { rtx i = gen_atomic_not_hard (operands[1]);
/* Replace the new mems in the new insn with the old mem to preserve aliasing info. */ rtx m = XEXP (XEXP (XVECEXP (PATTERN (curr_insn), 0, 0), 1), 0); XEXP (XVECEXP (i, 0, 0), 0) = m; XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 0), 1), 0, 0), 0) = m; emit_insn (i); } [(set_attr “length” “28”)])
(define_insn “atomic_<fetchop_name>_fetch_soft_gusa” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&u”) (FETCHOP:QIHISI (match_operand:QIHISI 1 “atomic_mem_operand_1” “=AraAdd”) (match_operand:QIHISI 2 “<fetchop_predicate_1>” “<fetchop_constraint_1_gusa>”))) (set (match_dup 1) (unspec:QIHISI [(FETCHOP:QIHISI (match_dup 1) (match_dup 2))] UNSPEC_ATOMIC)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_GUSA” { return “\r mova 1f,r0” “\n” " mov r15,r1" “\n” " .align 2" “\n” " mov #(0f-1f),r15" “\n” “0: mov. %1,%0” “\n” " <fetchop_name> %2,%0" “\n” " mov. %0,%1" “\n” “1: mov r1,r15”; } [(set_attr “length” “16”)])
;; Combine pattern for xor (val, -1) / nand (val, -1). (define_insn “atomic_not_fetch_soft_gusa” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&u”) (not:QIHISI (match_operand:QIHISI 1 “atomic_mem_operand_1” “=AraAdd”))) (set (match_dup 1) (unspec:QIHISI [(not:QIHISI (match_dup 1))] UNSPEC_ATOMIC)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_GUSA” { return “\r mova 1f,r0” “\n” " mov r15,r1" “\n” " .align 2" “\n” " mov #(0f-1f),r15" “\n” “0: mov. %1,%0” “\n” " not %0,%0" “\n” " mov. %0,%1" “\n” “1: mov r1,r15”; } [(set_attr “length” “16”)])
(define_insn_and_split “atomic_<fetchop_name>_fetch_soft_tcb” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&r”) (FETCHOP:QIHISI (match_operand:QIHISI 1 “atomic_mem_operand_1” “=SraSdd”) (match_operand:QIHISI 2 “<fetchop_predicate_1>” “<fetchop_constraint_1_tcb>”))) (set (match_dup 1) (unspec:QIHISI [(FETCHOP:QIHISI (match_dup 1) (match_dup 2))] UNSPEC_ATOMIC)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG)) (use (match_operand:SI 3 “gbr_displacement”))] “TARGET_ATOMIC_SOFT_TCB” { return “\r mova 1f,r0” “\n” " mov #(0f-1f),r1" “\n” " .align 2" “\n” " mov.l r0,@(%O3,gbr)" “\n” “0: mov. %1,r0” “\n” " <fetchop_name> %2,r0" “\n” " mov. r0,%1" “\n” “1: mov r0,%0” “\n” " mov #0,r0" “\n” " mov.l r0,@(%O3,gbr)"; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_<fetchop_name>_soft_tcb ( operands[1], operands[2], operands[3])); } [(set_attr “length” “20”)])
;; Combine pattern for xor (val, -1) / nand (val, -1). (define_insn_and_split “atomic_not_fetch_soft_tcb” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&r”) (not:QIHISI (match_operand:QIHISI 1 “atomic_mem_operand_1” “=SraSdd”))) (set (match_dup 1) (unspec:QIHISI [(not:QIHISI (match_dup 1))] UNSPEC_ATOMIC)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG)) (use (match_operand:SI 2 “gbr_displacement”))] “TARGET_ATOMIC_SOFT_TCB” { return “\r mova 1f,r0” “\n” " mov #(0f-1f),r1" “\n” " .align 2" “\n” " mov.l r0,@(%O2,gbr)" “\n” “0: mov. %1,r0” “\n” " not r0,r0" “\n” " mov. r0,%1" “\n” “1: mov r0,%0” “\n” " mov #0,r0" “\n” " mov.l r0,@(%O2,gbr)"; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_not_soft_tcb (operands[1], operands[2])); } [(set_attr “length” “20”)])
(define_insn “atomic_<fetchop_name>_fetch_soft_imask” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&z”) (FETCHOP:QIHISI (match_operand:QIHISI 1 “atomic_mem_operand_1” “=SraSdd”) (match_operand:QIHISI 2 “<fetchop_predicate_1>” “<fetchop_constraint_1_imask>”))) (set (match_dup 1) (unspec:QIHISI [(FETCHOP:QIHISI (match_dup 1) (match_dup 2))] UNSPEC_ATOMIC)) (clobber (match_scratch:SI 3 “=&r”))] “TARGET_ATOMIC_SOFT_IMASK” { return “\r stc sr,%0” “\n” " mov %0,%3" “\n” " or #0xF0,%0" “\n” " ldc %0,sr" “\n” " mov. %1,%0" “\n” " <fetchop_name> %2,%0" “\n” " mov. %0,%1" “\n” " ldc %3,sr"; } [(set_attr “length” “16”)])
;; Combine pattern for xor (val, -1) / nand (val, -1). (define_insn “atomic_not_fetch_soft_imask” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&z”) (not:QIHISI (match_operand:QIHISI 1 “atomic_mem_operand_1” “=SraSdd”))) (set (match_dup 1) (unspec:QIHISI [(not:QIHISI (match_dup 1))] UNSPEC_ATOMIC)) (clobber (match_scratch:SI 2 “=&r”))] “TARGET_ATOMIC_SOFT_IMASK” { return “\r stc sr,%0” “\n” " mov %0,%2" “\n” " or #0xF0,%0" “\n” " ldc %0,sr" “\n” " mov. %1,%0" “\n” " not %0,%0" “\n” " mov. %0,%1" “\n” " ldc %2,sr"; } [(set_attr “length” “16”)])
(define_expand “atomic_nand_fetch” [(set (match_operand:QIHISI 0 “arith_reg_dest”) (not:QIHISI (and:QIHISI (match_operand:QIHISI 1 “atomic_mem_operand_1”) (match_operand:QIHISI 2 “atomic_logical_operand_1”)))) (set (match_dup 1) (unspec:QIHISI [(not:QIHISI (and:QIHISI (match_dup 1) (match_dup 2)))] UNSPEC_ATOMIC)) (match_operand:SI 3 “const_int_operand”)] “TARGET_ATOMIC_ANY” { rtx mem = operands[1]; rtx atomic_insn;
if (TARGET_ATOMIC_HARD_LLCS || (TARGET_SH4A && mode == SImode && !TARGET_ATOMIC_STRICT)) atomic_insn = gen_atomic_nand_fetch_hard (operands[0], mem, operands[2]); else if (TARGET_ATOMIC_SOFT_GUSA) atomic_insn = gen_atomic_nand_fetch_soft_gusa (operands[0], mem, operands[2]); else if (TARGET_ATOMIC_SOFT_TCB) atomic_insn = gen_atomic_nand_fetch_soft_tcb (operands[0], mem, operands[2], TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX); else if (TARGET_ATOMIC_SOFT_IMASK) atomic_insn = gen_atomic_nand_fetch_soft_imask (operands[0], mem, operands[2]); else FAIL;
emit_insn (atomic_insn);
if (mode == QImode) emit_insn (gen_zero_extendqisi2 (gen_lowpart (SImode, operands[0]), operands[0])); else if (mode == HImode) emit_insn (gen_zero_extendhisi2 (gen_lowpart (SImode, operands[0]), operands[0])); DONE; })
(define_insn “atomic_nand_fetchsi_hard” [(set (match_operand:SI 0 “arith_reg_dest” “=&z”) (not:SI (and:SI (match_operand:SI 1 “atomic_mem_operand_1” “=Sra”) (match_operand:SI 2 “logical_operand” “rK08”)))) (set (match_dup 1) (unspec:SI [(not:SI (and:SI (match_dup 1) (match_dup 2)))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1))] “TARGET_ATOMIC_HARD_LLCS || (TARGET_SH4A && TARGET_ATOMIC_ANY && !TARGET_ATOMIC_STRICT)” { return “\r0: movli.l %1,%0” “\n” " and %2,%0" “\n” " not %0,%0" “\n” " movco.l %0,%1" “\n” " bf 0b"; } [(set_attr “length” “10”)])
;; The QIHImode llcs patterns modify the address register of the memory ;; operand. In order to express that, we have to open code the memory ;; operand. Initially the insn is expanded like every other atomic insn ;; using the memory operand. In split1 the insn is converted and the ;; memory operand's address register is exposed. (define_insn_and_split “atomic_nand_fetch_hard” [(set (match_operand:QIHI 0 “arith_reg_dest” “=&r”) (not:QIHI (and:QIHI (match_operand:QIHI 1 “atomic_mem_operand_1”) (match_operand:QIHI 2 “logical_operand”)))) (set (match_dup 1) (unspec:QIHI [(not:QIHI (and:QIHI (match_dup 1) (match_dup 2)))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG))] “TARGET_ATOMIC_HARD_LLCS && can_create_pseudo_p ()” “#” “&& 1” [(const_int 0)] { if (optimize && sh_reg_dead_or_unused_after_insn (curr_insn, REGNO (operands[0]))) emit_insn (gen_atomic_nand_hard (operands[1], operands[2])); else { rtx i = gen_atomic_nand_fetch_hard_1 ( operands[0], XEXP (operands[1], 0), operands[2]);
/* Replace the new mems in the new insn with the old mem to preserve aliasing info. */ XEXP (XEXP (XEXP (XVECEXP (i, 0, 0), 1), 0), 0) = operands[1]; XEXP (XVECEXP (i, 0, 1), 0) = operands[1]; XEXP (XEXP (XVECEXP (XEXP (XVECEXP (i, 0, 1), 1), 0, 0), 0), 0) = operands[1]; emit_insn (i); }
})
(define_insn “atomic_nand_fetch_hard_1” [(set (match_operand:QIHI 0 “arith_reg_dest” “=&r”) (not:QIHI (and:QIHI (mem:QIHI (match_operand:SI 1 “arith_reg_operand” “r”)) (match_operand:QIHI 2 “logical_operand” “rK08”)))) (set (mem:QIHI (match_dup 1)) (unspec:QIHI [(not:QIHI (and:QIHI (mem:QIHI (match_dup 1)) (match_dup 2)))] UNSPEC_ATOMIC)) (set (reg:SI T_REG) (const_int 1)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:SI 3 “=&r”)) (clobber (match_scratch:SI 4 “=1”))] “TARGET_ATOMIC_HARD_LLCS” { return “\r mov #-4,%3” “\n” " and %1,%3" “\n” " xor %3,%1" “\n” " add r15,%1" “\n” " add #-4,%1" “\n” “0: movli.l @%3,r0” “\n” " mov.l r0,@-r15" “\n” " mov. @%1,r0" “\n” " and %2,r0" “\n” " not r0,%0" “\n” " mov. %0,@%1" “\n” " mov.l @r15+,r0" “\n” " movco.l r0,@%3" “\n” " bf 0b"; } [(set_attr “length” “28”)])
(define_insn “atomic_nand_fetch_soft_gusa” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&u”) (not:QIHISI (and:QIHISI (match_operand:QIHISI 1 “atomic_mem_operand_1” “=AraAdd”) (match_operand:QIHISI 2 “arith_reg_operand” “u”)))) (set (match_dup 1) (unspec:QIHISI [(not:QIHISI (and:QIHISI (match_dup 1) (match_dup 2)))] UNSPEC_ATOMIC)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_GUSA” { return “\r mova 1f,r0” “\n” " .align 2" “\n” " mov r15,r1" “\n” " mov #(0f-1f),r15" “\n” “0: mov. %1,%0” “\n” " and %2,%0" “\n” " not %0,%0" “\n” " mov. %0,%1" “\n” “1: mov r1,r15”; } [(set_attr “length” “18”)])
(define_insn_and_split “atomic_nand_fetch_soft_tcb” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&r”) (not:QIHISI (and:QIHISI (match_operand:QIHISI 1 “atomic_mem_operand_1” “=SraSdd”) (match_operand:QIHISI 2 “logical_operand” “rK08”)))) (set (match_dup 1) (unspec:QIHISI [(not:QIHISI (and:QIHISI (match_dup 1) (match_dup 2)))] UNSPEC_ATOMIC)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG)) (use (match_operand:SI 3 “gbr_displacement”))] “TARGET_ATOMIC_SOFT_TCB” { return “\r mova 1f,r0” “\n” " mov #(0f-1f),r1" “\n” " .align 2" “\n” " mov.l r0,@(%O3,gbr)" “\n” “0: mov. %1,r0” “\n” " and %2,r0" “\n” " not r0,r0" “\n” " mov r0,%0" “\n” " mov. r0,%1" “\n” “1: mov #0,r0” “\n” " mov.l r0,@(%O3,gbr)"; } “&& can_create_pseudo_p () && optimize && sh_reg_dead_or_unused_after_insn (insn, REGNO (operands[0]))” [(const_int 0)] { emit_insn (gen_atomic_nand_soft_tcb (operands[1], operands[2], operands[3])); } [(set_attr “length” “22”)])
(define_insn “atomic_nand_fetch_soft_imask” [(set (match_operand:QIHISI 0 “arith_reg_dest” “=&z”) (not:QIHISI (and:QIHISI (match_operand:QIHISI 1 “atomic_mem_operand_1” “=SraSdd”) (match_operand:QIHISI 2 “logical_operand” “rK08”)))) (set (match_dup 1) (unspec:QIHISI [(not:QIHISI (and:QIHISI (match_dup 1) (match_dup 2)))] UNSPEC_ATOMIC)) (clobber (match_scratch:SI 3 “=&r”))] “TARGET_ATOMIC_SOFT_IMASK” { return “\r stc sr,%0” “\n” " mov %0,%3" “\n” " or #0xF0,%0" “\n” " ldc %0,sr" “\n” " mov. %1,%0" “\n” " and %2,%0" “\n” " not %0,%0" “\n” " mov. %0,%1" “\n” " ldc %3,sr"; } [(set_attr “length” “18”)])
;;------------------------------------------------------------------------------ ;; read - test against zero - or with 0x80 - write - return test result
(define_expand “atomic_test_and_set” [(match_operand:SI 0 “register_operand” "") ;; bool result output (match_operand:QI 1 “memory_operand” "") ;; memory (match_operand:SI 2 “const_int_operand” "")] ;; model “TARGET_ATOMIC_ANY || TARGET_ENABLE_TAS” { rtx addr = force_reg (Pmode, XEXP (operands[1], 0));
if (TARGET_ENABLE_TAS) emit_insn (gen_tasb (addr)); else { rtx val = gen_int_mode (targetm.atomic_test_and_set_trueval, QImode); val = force_reg (QImode, val);
if (TARGET_ATOMIC_HARD_LLCS) emit_insn (gen_atomic_test_and_set_hard (addr, val)); else if (TARGET_ATOMIC_SOFT_GUSA) emit_insn (gen_atomic_test_and_set_soft_gusa (addr, val)); else if (TARGET_ATOMIC_SOFT_TCB) emit_insn (gen_atomic_test_and_set_soft_tcb (addr, val, TARGET_ATOMIC_SOFT_TCB_GBR_OFFSET_RTX)); else if (TARGET_ATOMIC_SOFT_IMASK) emit_insn (gen_atomic_test_and_set_soft_imask (addr, val)); else FAIL; }
/* The result of the test op is the inverse of what we are supposed to return. Thus invert the T bit. The inversion will be potentially optimized away and integrated into surrounding code. */ emit_insn (gen_movnegt (operands[0], get_t_reg_rtx ())); DONE; })
(define_insn “tasb” [(set (reg:SI T_REG) (eq:SI (mem:QI (match_operand:SI 0 “register_operand” “r”)) (const_int 0))) (set (mem:QI (match_dup 0)) (unspec:QI [(const_int 128)] UNSPEC_ATOMIC))] “TARGET_ENABLE_TAS” “tas.b @%0” [(set_attr “insn_class” “co_group”)])
(define_insn “atomic_test_and_set_soft_gusa” [(set (reg:SI T_REG) (eq:SI (mem:QI (match_operand:SI 0 “register_operand” “u”)) (const_int 0))) (set (mem:QI (match_dup 0)) (unspec:QI [(match_operand:QI 1 “register_operand” “u”)] UNSPEC_ATOMIC)) (clobber (match_scratch:QI 2 “=&u”)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_GUSA && !TARGET_ENABLE_TAS” { return “\r mova 1f,r0” “\n” " .align 2" “\n” " mov r15,r1" “\n” " mov #(0f-1f),r15" “\n” “0: mov.b @%0,%2” “\n” " mov.b %1,@%0" “\n” “1: mov r1,r15” “\n” " tst %2,%2"; } [(set_attr “length” “16”)])
(define_insn “atomic_test_and_set_soft_tcb” [(set (reg:SI T_REG) (eq:SI (mem:QI (match_operand:SI 0 “register_operand” “r”)) (const_int 0))) (set (mem:QI (match_dup 0)) (unspec:QI [(match_operand:QI 1 “register_operand” “r”)] UNSPEC_ATOMIC)) (use (match_operand:SI 2 “gbr_displacement”)) (clobber (match_scratch:QI 3 “=&r”)) (clobber (reg:SI R0_REG)) (clobber (reg:SI R1_REG))] “TARGET_ATOMIC_SOFT_TCB && !TARGET_ENABLE_TAS” { return “\r mova 1f,r0” “\n” " mov #(0f-1f),r1" “\n” " .align 2" “\n” " mov.l r0,@(%O2,gbr)" “\n” “0: mov.b @%0,%3” “\n” " mov #0,r0" “\n” " mov.b %1,@%0" “\n” “1: mov.l r0,@(%O2,gbr)” “\n” " tst %3,%3"; } [(set_attr “length” “18”)])
(define_insn “atomic_test_and_set_soft_imask” [(set (reg:SI T_REG) (eq:SI (mem:QI (match_operand:SI 0 “register_operand” “r”)) (const_int 0))) (set (mem:QI (match_dup 0)) (unspec:QI [(match_operand:QI 1 “register_operand” “r”)] UNSPEC_ATOMIC)) (clobber (match_scratch:SI 2 “=&r”)) (clobber (reg:SI R0_REG))] “TARGET_ATOMIC_SOFT_IMASK && !TARGET_ENABLE_TAS” { return “\r stc sr,r0” “\n” " mov r0,%2" “\n” " or #0xF0,r0" “\n” " ldc r0,sr" “\n” " mov.b @%0,r0" “\n” " mov.b %1,@%0" “\n” " ldc %2,sr" “\n” " tst r0,r0"; } [(set_attr “length” “16”)])
(define_insn “atomic_test_and_set_hard” [(set (reg:SI T_REG) (eq:SI (mem:QI (match_operand:SI 0 “register_operand” “r”)) (const_int 0))) (set (mem:QI (match_dup 0)) (unspec:QI [(match_operand:QI 1 “register_operand” “r”)] UNSPEC_ATOMIC)) (clobber (reg:SI R0_REG)) (clobber (match_scratch:SI 2 “=&r”)) (clobber (match_scratch:SI 3 “=&r”)) (clobber (match_scratch:SI 4 “=0”))] “TARGET_ATOMIC_HARD_LLCS && !TARGET_ENABLE_TAS” { return “\r mov #-4,%2” “\n” " and %0,%2" “\n” " xor %2,%0" “\n” " add r15,%0" “\n” " add #-4,%0" “\n” “0: movli.l @%2,r0” “\n” " mov.l r0,@-r15" “\n” " mov.b @%0,%3" “\n” " mov.b %1,@%0" “\n” " mov.l @r15+,r0" “\n” " movco.l r0,@%2" “\n” " bf 0b" “\n” " tst %3,%3"; } [(set_attr “length” “26”)])