blob: 2249723540d11b96d3aa6dd82148c365e516fac9 [file] [log] [blame]
/* Intrinsic translation
Copyright (C) 2002-2022 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
and Steven Bosscher <s.bosscher@student.tudelft.nl>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* trans-intrinsic.cc-- generate GENERIC trees for calls to intrinsics. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "memmodel.h"
#include "tm.h" /* For UNITS_PER_WORD. */
#include "tree.h"
#include "gfortran.h"
#include "trans.h"
#include "stringpool.h"
#include "fold-const.h"
#include "internal-fn.h"
#include "tree-nested.h"
#include "stor-layout.h"
#include "toplev.h" /* For rest_of_decl_compilation. */
#include "arith.h"
#include "trans-const.h"
#include "trans-types.h"
#include "trans-array.h"
#include "dependency.h" /* For CAF array alias analysis. */
#include "attribs.h"
/* Only for gfc_trans_assign and gfc_trans_pointer_assign. */
/* This maps Fortran intrinsic math functions to external library or GCC
builtin functions. */
typedef struct GTY(()) gfc_intrinsic_map_t {
/* The explicit enum is required to work around inadequacies in the
garbage collection/gengtype parsing mechanism. */
enum gfc_isym_id id;
/* Enum value from the "language-independent", aka C-centric, part
of gcc, or END_BUILTINS of no such value set. */
enum built_in_function float_built_in;
enum built_in_function double_built_in;
enum built_in_function long_double_built_in;
enum built_in_function complex_float_built_in;
enum built_in_function complex_double_built_in;
enum built_in_function complex_long_double_built_in;
/* True if the naming pattern is to prepend "c" for complex and
append "f" for kind=4. False if the naming pattern is to
prepend "_gfortran_" and append "[rc](4|8|10|16)". */
bool libm_name;
/* True if a complex version of the function exists. */
bool complex_available;
/* True if the function should be marked const. */
bool is_constant;
/* The base library name of this function. */
const char *name;
/* Cache decls created for the various operand types. */
tree real4_decl;
tree real8_decl;
tree real10_decl;
tree real16_decl;
tree complex4_decl;
tree complex8_decl;
tree complex10_decl;
tree complex16_decl;
}
gfc_intrinsic_map_t;
/* ??? The NARGS==1 hack here is based on the fact that (c99 at least)
defines complex variants of all of the entries in mathbuiltins.def
except for atan2. */
#define DEFINE_MATH_BUILTIN(ID, NAME, ARGTYPE) \
{ GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
BUILT_IN_ ## ID ## L, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
true, false, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, \
NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE},
#define DEFINE_MATH_BUILTIN_C(ID, NAME, ARGTYPE) \
{ GFC_ISYM_ ## ID, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
BUILT_IN_ ## ID ## L, BUILT_IN_C ## ID ## F, BUILT_IN_C ## ID, \
BUILT_IN_C ## ID ## L, true, true, true, NAME, NULL_TREE, NULL_TREE, \
NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE},
#define LIB_FUNCTION(ID, NAME, HAVE_COMPLEX) \
{ GFC_ISYM_ ## ID, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
END_BUILTINS, END_BUILTINS, END_BUILTINS, \
false, HAVE_COMPLEX, true, NAME, NULL_TREE, NULL_TREE, NULL_TREE, \
NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE }
#define OTHER_BUILTIN(ID, NAME, TYPE, CONST) \
{ GFC_ISYM_NONE, BUILT_IN_ ## ID ## F, BUILT_IN_ ## ID, \
BUILT_IN_ ## ID ## L, END_BUILTINS, END_BUILTINS, END_BUILTINS, \
true, false, CONST, NAME, NULL_TREE, NULL_TREE, \
NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE, NULL_TREE},
static GTY(()) gfc_intrinsic_map_t gfc_intrinsic_map[] =
{
/* Functions built into gcc itself (DEFINE_MATH_BUILTIN and
DEFINE_MATH_BUILTIN_C), then the built-ins that don't correspond
to any GFC_ISYM id directly, which use the OTHER_BUILTIN macro. */
#include "mathbuiltins.def"
/* Functions in libgfortran. */
LIB_FUNCTION (ERFC_SCALED, "erfc_scaled", false),
LIB_FUNCTION (SIND, "sind", false),
LIB_FUNCTION (COSD, "cosd", false),
LIB_FUNCTION (TAND, "tand", false),
/* End the list. */
LIB_FUNCTION (NONE, NULL, false)
};
#undef OTHER_BUILTIN
#undef LIB_FUNCTION
#undef DEFINE_MATH_BUILTIN
#undef DEFINE_MATH_BUILTIN_C
enum rounding_mode { RND_ROUND, RND_TRUNC, RND_CEIL, RND_FLOOR };
/* Find the correct variant of a given builtin from its argument. */
static tree
builtin_decl_for_precision (enum built_in_function base_built_in,
int precision)
{
enum built_in_function i = END_BUILTINS;
gfc_intrinsic_map_t *m;
for (m = gfc_intrinsic_map; m->double_built_in != base_built_in ; m++)
;
if (precision == TYPE_PRECISION (float_type_node))
i = m->float_built_in;
else if (precision == TYPE_PRECISION (double_type_node))
i = m->double_built_in;
else if (precision == TYPE_PRECISION (long_double_type_node)
&& (!gfc_real16_is_float128
|| long_double_type_node != gfc_float128_type_node))
i = m->long_double_built_in;
else if (precision == TYPE_PRECISION (gfc_float128_type_node))
{
/* Special treatment, because it is not exactly a built-in, but
a library function. */
return m->real16_decl;
}
return (i == END_BUILTINS ? NULL_TREE : builtin_decl_explicit (i));
}
tree
gfc_builtin_decl_for_float_kind (enum built_in_function double_built_in,
int kind)
{
int i = gfc_validate_kind (BT_REAL, kind, false);
if (gfc_real_kinds[i].c_float128)
{
/* For _Float128, the story is a bit different, because we return
a decl to a library function rather than a built-in. */
gfc_intrinsic_map_t *m;
for (m = gfc_intrinsic_map; m->double_built_in != double_built_in ; m++)
;
return m->real16_decl;
}
return builtin_decl_for_precision (double_built_in,
gfc_real_kinds[i].mode_precision);
}
/* Evaluate the arguments to an intrinsic function. The value
of NARGS may be less than the actual number of arguments in EXPR
to allow optional "KIND" arguments that are not included in the
generated code to be ignored. */
static void
gfc_conv_intrinsic_function_args (gfc_se *se, gfc_expr *expr,
tree *argarray, int nargs)
{
gfc_actual_arglist *actual;
gfc_expr *e;
gfc_intrinsic_arg *formal;
gfc_se argse;
int curr_arg;
formal = expr->value.function.isym->formal;
actual = expr->value.function.actual;
for (curr_arg = 0; curr_arg < nargs; curr_arg++,
actual = actual->next,
formal = formal ? formal->next : NULL)
{
gcc_assert (actual);
e = actual->expr;
/* Skip omitted optional arguments. */
if (!e)
{
--curr_arg;
continue;
}
/* Evaluate the parameter. This will substitute scalarized
references automatically. */
gfc_init_se (&argse, se);
if (e->ts.type == BT_CHARACTER)
{
gfc_conv_expr (&argse, e);
gfc_conv_string_parameter (&argse);
argarray[curr_arg++] = argse.string_length;
gcc_assert (curr_arg < nargs);
}
else
gfc_conv_expr_val (&argse, e);
/* If an optional argument is itself an optional dummy argument,
check its presence and substitute a null if absent. */
if (e->expr_type == EXPR_VARIABLE
&& e->symtree->n.sym->attr.optional
&& formal
&& formal->optional)
gfc_conv_missing_dummy (&argse, e, formal->ts, 0);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
argarray[curr_arg] = argse.expr;
}
}
/* Count the number of actual arguments to the intrinsic function EXPR
including any "hidden" string length arguments. */
static unsigned int
gfc_intrinsic_argument_list_length (gfc_expr *expr)
{
int n = 0;
gfc_actual_arglist *actual;
for (actual = expr->value.function.actual; actual; actual = actual->next)
{
if (!actual->expr)
continue;
if (actual->expr->ts.type == BT_CHARACTER)
n += 2;
else
n++;
}
return n;
}
/* Conversions between different types are output by the frontend as
intrinsic functions. We implement these directly with inline code. */
static void
gfc_conv_intrinsic_conversion (gfc_se * se, gfc_expr * expr)
{
tree type;
tree *args;
int nargs;
nargs = gfc_intrinsic_argument_list_length (expr);
args = XALLOCAVEC (tree, nargs);
/* Evaluate all the arguments passed. Whilst we're only interested in the
first one here, there are other parts of the front-end that assume this
and will trigger an ICE if it's not the case. */
type = gfc_typenode_for_spec (&expr->ts);
gcc_assert (expr->value.function.actual->expr);
gfc_conv_intrinsic_function_args (se, expr, args, nargs);
/* Conversion between character kinds involves a call to a library
function. */
if (expr->ts.type == BT_CHARACTER)
{
tree fndecl, var, addr, tmp;
if (expr->ts.kind == 1
&& expr->value.function.actual->expr->ts.kind == 4)
fndecl = gfor_fndecl_convert_char4_to_char1;
else if (expr->ts.kind == 4
&& expr->value.function.actual->expr->ts.kind == 1)
fndecl = gfor_fndecl_convert_char1_to_char4;
else
gcc_unreachable ();
/* Create the variable storing the converted value. */
type = gfc_get_pchar_type (expr->ts.kind);
var = gfc_create_var (type, "str");
addr = gfc_build_addr_expr (build_pointer_type (type), var);
/* Call the library function that will perform the conversion. */
gcc_assert (nargs >= 2);
tmp = build_call_expr_loc (input_location,
fndecl, 3, addr, args[0], args[1]);
gfc_add_expr_to_block (&se->pre, tmp);
/* Free the temporary afterwards. */
tmp = gfc_call_free (var);
gfc_add_expr_to_block (&se->post, tmp);
se->expr = var;
se->string_length = args[0];
return;
}
/* Conversion from complex to non-complex involves taking the real
component of the value. */
if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE
&& expr->ts.type != BT_COMPLEX)
{
tree artype;
artype = TREE_TYPE (TREE_TYPE (args[0]));
args[0] = fold_build1_loc (input_location, REALPART_EXPR, artype,
args[0]);
}
se->expr = convert (type, args[0]);
}
/* This is needed because the gcc backend only implements
FIX_TRUNC_EXPR, which is the same as INT() in Fortran.
FLOOR(x) = INT(x) <= x ? INT(x) : INT(x) - 1
Similarly for CEILING. */
static tree
build_fixbound_expr (stmtblock_t * pblock, tree arg, tree type, int up)
{
tree tmp;
tree cond;
tree argtype;
tree intval;
argtype = TREE_TYPE (arg);
arg = gfc_evaluate_now (arg, pblock);
intval = convert (type, arg);
intval = gfc_evaluate_now (intval, pblock);
tmp = convert (argtype, intval);
cond = fold_build2_loc (input_location, up ? GE_EXPR : LE_EXPR,
logical_type_node, tmp, arg);
tmp = fold_build2_loc (input_location, up ? PLUS_EXPR : MINUS_EXPR, type,
intval, build_int_cst (type, 1));
tmp = fold_build3_loc (input_location, COND_EXPR, type, cond, intval, tmp);
return tmp;
}
/* Round to nearest integer, away from zero. */
static tree
build_round_expr (tree arg, tree restype)
{
tree argtype;
tree fn;
int argprec, resprec;
argtype = TREE_TYPE (arg);
argprec = TYPE_PRECISION (argtype);
resprec = TYPE_PRECISION (restype);
/* Depending on the type of the result, choose the int intrinsic (iround,
available only as a builtin, therefore cannot use it for _Float128), long
int intrinsic (lround family) or long long intrinsic (llround). If we
don't have an appropriate function that converts directly to the integer
type (such as kind == 16), just use ROUND, and then convert the result to
an integer. We might also need to convert the result afterwards. */
if (resprec <= INT_TYPE_SIZE && argprec <= LONG_DOUBLE_TYPE_SIZE)
fn = builtin_decl_for_precision (BUILT_IN_IROUND, argprec);
else if (resprec <= LONG_TYPE_SIZE)
fn = builtin_decl_for_precision (BUILT_IN_LROUND, argprec);
else if (resprec <= LONG_LONG_TYPE_SIZE)
fn = builtin_decl_for_precision (BUILT_IN_LLROUND, argprec);
else if (resprec >= argprec)
fn = builtin_decl_for_precision (BUILT_IN_ROUND, argprec);
else
gcc_unreachable ();
return convert (restype, build_call_expr_loc (input_location,
fn, 1, arg));
}
/* Convert a real to an integer using a specific rounding mode.
Ideally we would just build the corresponding GENERIC node,
however the RTL expander only actually supports FIX_TRUNC_EXPR. */
static tree
build_fix_expr (stmtblock_t * pblock, tree arg, tree type,
enum rounding_mode op)
{
switch (op)
{
case RND_FLOOR:
return build_fixbound_expr (pblock, arg, type, 0);
case RND_CEIL:
return build_fixbound_expr (pblock, arg, type, 1);
case RND_ROUND:
return build_round_expr (arg, type);
case RND_TRUNC:
return fold_build1_loc (input_location, FIX_TRUNC_EXPR, type, arg);
default:
gcc_unreachable ();
}
}
/* Round a real value using the specified rounding mode.
We use a temporary integer of that same kind size as the result.
Values larger than those that can be represented by this kind are
unchanged, as they will not be accurate enough to represent the
rounding.
huge = HUGE (KIND (a))
aint (a) = ((a > huge) || (a < -huge)) ? a : (real)(int)a
*/
static void
gfc_conv_intrinsic_aint (gfc_se * se, gfc_expr * expr, enum rounding_mode op)
{
tree type;
tree itype;
tree arg[2];
tree tmp;
tree cond;
tree decl;
mpfr_t huge;
int n, nargs;
int kind;
kind = expr->ts.kind;
nargs = gfc_intrinsic_argument_list_length (expr);
decl = NULL_TREE;
/* We have builtin functions for some cases. */
switch (op)
{
case RND_ROUND:
decl = gfc_builtin_decl_for_float_kind (BUILT_IN_ROUND, kind);
break;
case RND_TRUNC:
decl = gfc_builtin_decl_for_float_kind (BUILT_IN_TRUNC, kind);
break;
default:
gcc_unreachable ();
}
/* Evaluate the argument. */
gcc_assert (expr->value.function.actual->expr);
gfc_conv_intrinsic_function_args (se, expr, arg, nargs);
/* Use a builtin function if one exists. */
if (decl != NULL_TREE)
{
se->expr = build_call_expr_loc (input_location, decl, 1, arg[0]);
return;
}
/* This code is probably redundant, but we'll keep it lying around just
in case. */
type = gfc_typenode_for_spec (&expr->ts);
arg[0] = gfc_evaluate_now (arg[0], &se->pre);
/* Test if the value is too large to handle sensibly. */
gfc_set_model_kind (kind);
mpfr_init (huge);
n = gfc_validate_kind (BT_INTEGER, kind, false);
mpfr_set_z (huge, gfc_integer_kinds[n].huge, GFC_RND_MODE);
tmp = gfc_conv_mpfr_to_tree (huge, kind, 0);
cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node, arg[0],
tmp);
mpfr_neg (huge, huge, GFC_RND_MODE);
tmp = gfc_conv_mpfr_to_tree (huge, kind, 0);
tmp = fold_build2_loc (input_location, GT_EXPR, logical_type_node, arg[0],
tmp);
cond = fold_build2_loc (input_location, TRUTH_AND_EXPR, logical_type_node,
cond, tmp);
itype = gfc_get_int_type (kind);
tmp = build_fix_expr (&se->pre, arg[0], itype, op);
tmp = convert (type, tmp);
se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond, tmp,
arg[0]);
mpfr_clear (huge);
}
/* Convert to an integer using the specified rounding mode. */
static void
gfc_conv_intrinsic_int (gfc_se * se, gfc_expr * expr, enum rounding_mode op)
{
tree type;
tree *args;
int nargs;
nargs = gfc_intrinsic_argument_list_length (expr);
args = XALLOCAVEC (tree, nargs);
/* Evaluate the argument, we process all arguments even though we only
use the first one for code generation purposes. */
type = gfc_typenode_for_spec (&expr->ts);
gcc_assert (expr->value.function.actual->expr);
gfc_conv_intrinsic_function_args (se, expr, args, nargs);
if (TREE_CODE (TREE_TYPE (args[0])) == INTEGER_TYPE)
{
/* Conversion to a different integer kind. */
se->expr = convert (type, args[0]);
}
else
{
/* Conversion from complex to non-complex involves taking the real
component of the value. */
if (TREE_CODE (TREE_TYPE (args[0])) == COMPLEX_TYPE
&& expr->ts.type != BT_COMPLEX)
{
tree artype;
artype = TREE_TYPE (TREE_TYPE (args[0]));
args[0] = fold_build1_loc (input_location, REALPART_EXPR, artype,
args[0]);
}
se->expr = build_fix_expr (&se->pre, args[0], type, op);
}
}
/* Get the imaginary component of a value. */
static void
gfc_conv_intrinsic_imagpart (gfc_se * se, gfc_expr * expr)
{
tree arg;
gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
se->expr = fold_build1_loc (input_location, IMAGPART_EXPR,
TREE_TYPE (TREE_TYPE (arg)), arg);
}
/* Get the complex conjugate of a value. */
static void
gfc_conv_intrinsic_conjg (gfc_se * se, gfc_expr * expr)
{
tree arg;
gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
se->expr = fold_build1_loc (input_location, CONJ_EXPR, TREE_TYPE (arg), arg);
}
static tree
define_quad_builtin (const char *name, tree type, bool is_const)
{
tree fndecl;
fndecl = build_decl (input_location, FUNCTION_DECL, get_identifier (name),
type);
/* Mark the decl as external. */
DECL_EXTERNAL (fndecl) = 1;
TREE_PUBLIC (fndecl) = 1;
/* Mark it __attribute__((const)). */
TREE_READONLY (fndecl) = is_const;
rest_of_decl_compilation (fndecl, 1, 0);
return fndecl;
}
/* Add SIMD attribute for FNDECL built-in if the built-in
name is in VECTORIZED_BUILTINS. */
static void
add_simd_flag_for_built_in (tree fndecl)
{
if (gfc_vectorized_builtins == NULL
|| fndecl == NULL_TREE)
return;
const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
int *clauses = gfc_vectorized_builtins->get (name);
if (clauses)
{
for (unsigned i = 0; i < 3; i++)
if (*clauses & (1 << i))
{
gfc_simd_clause simd_type = (gfc_simd_clause)*clauses;
tree omp_clause = NULL_TREE;
if (simd_type == SIMD_NONE)
; /* No SIMD clause. */
else
{
omp_clause_code code
= (simd_type == SIMD_INBRANCH
? OMP_CLAUSE_INBRANCH : OMP_CLAUSE_NOTINBRANCH);
omp_clause = build_omp_clause (UNKNOWN_LOCATION, code);
omp_clause = build_tree_list (NULL_TREE, omp_clause);
}
DECL_ATTRIBUTES (fndecl)
= tree_cons (get_identifier ("omp declare simd"), omp_clause,
DECL_ATTRIBUTES (fndecl));
}
}
}
/* Set SIMD attribute to all built-in functions that are mentioned
in gfc_vectorized_builtins vector. */
void
gfc_adjust_builtins (void)
{
gfc_intrinsic_map_t *m;
for (m = gfc_intrinsic_map;
m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++)
{
add_simd_flag_for_built_in (m->real4_decl);
add_simd_flag_for_built_in (m->complex4_decl);
add_simd_flag_for_built_in (m->real8_decl);
add_simd_flag_for_built_in (m->complex8_decl);
add_simd_flag_for_built_in (m->real10_decl);
add_simd_flag_for_built_in (m->complex10_decl);
add_simd_flag_for_built_in (m->real16_decl);
add_simd_flag_for_built_in (m->complex16_decl);
add_simd_flag_for_built_in (m->real16_decl);
add_simd_flag_for_built_in (m->complex16_decl);
}
/* Release all strings. */
if (gfc_vectorized_builtins != NULL)
{
for (hash_map<nofree_string_hash, int>::iterator it
= gfc_vectorized_builtins->begin ();
it != gfc_vectorized_builtins->end (); ++it)
free (CONST_CAST (char *, (*it).first));
delete gfc_vectorized_builtins;
gfc_vectorized_builtins = NULL;
}
}
/* Initialize function decls for library functions. The external functions
are created as required. Builtin functions are added here. */
void
gfc_build_intrinsic_lib_fndecls (void)
{
gfc_intrinsic_map_t *m;
tree quad_decls[END_BUILTINS + 1];
if (gfc_real16_is_float128)
{
/* If we have soft-float types, we create the decls for their
C99-like library functions. For now, we only handle _Float128
q-suffixed functions. */
tree type, complex_type, func_1, func_2, func_cabs, func_frexp;
tree func_iround, func_lround, func_llround, func_scalbn, func_cpow;
memset (quad_decls, 0, sizeof(tree) * (END_BUILTINS + 1));
type = gfc_float128_type_node;
complex_type = gfc_complex_float128_type_node;
/* type (*) (type) */
func_1 = build_function_type_list (type, type, NULL_TREE);
/* int (*) (type) */
func_iround = build_function_type_list (integer_type_node,
type, NULL_TREE);
/* long (*) (type) */
func_lround = build_function_type_list (long_integer_type_node,
type, NULL_TREE);
/* long long (*) (type) */
func_llround = build_function_type_list (long_long_integer_type_node,
type, NULL_TREE);
/* type (*) (type, type) */
func_2 = build_function_type_list (type, type, type, NULL_TREE);
/* type (*) (type, &int) */
func_frexp
= build_function_type_list (type,
type,
build_pointer_type (integer_type_node),
NULL_TREE);
/* type (*) (type, int) */
func_scalbn = build_function_type_list (type,
type, integer_type_node, NULL_TREE);
/* type (*) (complex type) */
func_cabs = build_function_type_list (type, complex_type, NULL_TREE);
/* complex type (*) (complex type, complex type) */
func_cpow
= build_function_type_list (complex_type,
complex_type, complex_type, NULL_TREE);
#define DEFINE_MATH_BUILTIN(ID, NAME, ARGTYPE)
#define DEFINE_MATH_BUILTIN_C(ID, NAME, ARGTYPE)
#define LIB_FUNCTION(ID, NAME, HAVE_COMPLEX)
/* Only these built-ins are actually needed here. These are used directly
from the code, when calling builtin_decl_for_precision() or
builtin_decl_for_float_type(). The others are all constructed by
gfc_get_intrinsic_lib_fndecl(). */
#define OTHER_BUILTIN(ID, NAME, TYPE, CONST) \
quad_decls[BUILT_IN_ ## ID] = define_quad_builtin (NAME "q", func_ ## TYPE, CONST);
#include "mathbuiltins.def"
#undef OTHER_BUILTIN
#undef LIB_FUNCTION
#undef DEFINE_MATH_BUILTIN
#undef DEFINE_MATH_BUILTIN_C
/* There is one built-in we defined manually, because it gets called
with builtin_decl_for_precision() or builtin_decl_for_float_type()
even though it is not an OTHER_BUILTIN: it is SQRT. */
quad_decls[BUILT_IN_SQRT] = define_quad_builtin ("sqrtq", func_1, true);
}
/* Add GCC builtin functions. */
for (m = gfc_intrinsic_map;
m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++)
{
if (m->float_built_in != END_BUILTINS)
m->real4_decl = builtin_decl_explicit (m->float_built_in);
if (m->complex_float_built_in != END_BUILTINS)
m->complex4_decl = builtin_decl_explicit (m->complex_float_built_in);
if (m->double_built_in != END_BUILTINS)
m->real8_decl = builtin_decl_explicit (m->double_built_in);
if (m->complex_double_built_in != END_BUILTINS)
m->complex8_decl = builtin_decl_explicit (m->complex_double_built_in);
/* If real(kind=10) exists, it is always long double. */
if (m->long_double_built_in != END_BUILTINS)
m->real10_decl = builtin_decl_explicit (m->long_double_built_in);
if (m->complex_long_double_built_in != END_BUILTINS)
m->complex10_decl
= builtin_decl_explicit (m->complex_long_double_built_in);
if (!gfc_real16_is_float128)
{
if (m->long_double_built_in != END_BUILTINS)
m->real16_decl = builtin_decl_explicit (m->long_double_built_in);
if (m->complex_long_double_built_in != END_BUILTINS)
m->complex16_decl
= builtin_decl_explicit (m->complex_long_double_built_in);
}
else if (quad_decls[m->double_built_in] != NULL_TREE)
{
/* Quad-precision function calls are constructed when first
needed by builtin_decl_for_precision(), except for those
that will be used directly (define by OTHER_BUILTIN). */
m->real16_decl = quad_decls[m->double_built_in];
}
else if (quad_decls[m->complex_double_built_in] != NULL_TREE)
{
/* Same thing for the complex ones. */
m->complex16_decl = quad_decls[m->double_built_in];
}
}
}
/* Create a fndecl for a simple intrinsic library function. */
static tree
gfc_get_intrinsic_lib_fndecl (gfc_intrinsic_map_t * m, gfc_expr * expr)
{
tree type;
vec<tree, va_gc> *argtypes;
tree fndecl;
gfc_actual_arglist *actual;
tree *pdecl;
gfc_typespec *ts;
char name[GFC_MAX_SYMBOL_LEN + 3];
ts = &expr->ts;
if (ts->type == BT_REAL)
{
switch (ts->kind)
{
case 4:
pdecl = &m->real4_decl;
break;
case 8:
pdecl = &m->real8_decl;
break;
case 10:
pdecl = &m->real10_decl;
break;
case 16:
pdecl = &m->real16_decl;
break;
default:
gcc_unreachable ();
}
}
else if (ts->type == BT_COMPLEX)
{
gcc_assert (m->complex_available);
switch (ts->kind)
{
case 4:
pdecl = &m->complex4_decl;
break;
case 8:
pdecl = &m->complex8_decl;
break;
case 10:
pdecl = &m->complex10_decl;
break;
case 16:
pdecl = &m->complex16_decl;
break;
default:
gcc_unreachable ();
}
}
else
gcc_unreachable ();
if (*pdecl)
return *pdecl;
if (m->libm_name)
{
int n = gfc_validate_kind (BT_REAL, ts->kind, false);
if (gfc_real_kinds[n].c_float)
snprintf (name, sizeof (name), "%s%s%s",
ts->type == BT_COMPLEX ? "c" : "", m->name, "f");
else if (gfc_real_kinds[n].c_double)
snprintf (name, sizeof (name), "%s%s",
ts->type == BT_COMPLEX ? "c" : "", m->name);
else if (gfc_real_kinds[n].c_long_double)
snprintf (name, sizeof (name), "%s%s%s",
ts->type == BT_COMPLEX ? "c" : "", m->name, "l");
else if (gfc_real_kinds[n].c_float128)
snprintf (name, sizeof (name), "%s%s%s",
ts->type == BT_COMPLEX ? "c" : "", m->name, "q");
else
gcc_unreachable ();
}
else
{
snprintf (name, sizeof (name), PREFIX ("%s_%c%d"), m->name,
ts->type == BT_COMPLEX ? 'c' : 'r',
gfc_type_abi_kind (ts));
}
argtypes = NULL;
for (actual = expr->value.function.actual; actual; actual = actual->next)
{
type = gfc_typenode_for_spec (&actual->expr->ts);
vec_safe_push (argtypes, type);
}
type = build_function_type_vec (gfc_typenode_for_spec (ts), argtypes);
fndecl = build_decl (input_location,
FUNCTION_DECL, get_identifier (name), type);
/* Mark the decl as external. */
DECL_EXTERNAL (fndecl) = 1;
TREE_PUBLIC (fndecl) = 1;
/* Mark it __attribute__((const)), if possible. */
TREE_READONLY (fndecl) = m->is_constant;
rest_of_decl_compilation (fndecl, 1, 0);
(*pdecl) = fndecl;
return fndecl;
}
/* Convert an intrinsic function into an external or builtin call. */
static void
gfc_conv_intrinsic_lib_function (gfc_se * se, gfc_expr * expr)
{
gfc_intrinsic_map_t *m;
tree fndecl;
tree rettype;
tree *args;
unsigned int num_args;
gfc_isym_id id;
id = expr->value.function.isym->id;
/* Find the entry for this function. */
for (m = gfc_intrinsic_map;
m->id != GFC_ISYM_NONE || m->double_built_in != END_BUILTINS; m++)
{
if (id == m->id)
break;
}
if (m->id == GFC_ISYM_NONE)
{
gfc_internal_error ("Intrinsic function %qs (%d) not recognized",
expr->value.function.name, id);
}
/* Get the decl and generate the call. */
num_args = gfc_intrinsic_argument_list_length (expr);
args = XALLOCAVEC (tree, num_args);
gfc_conv_intrinsic_function_args (se, expr, args, num_args);
fndecl = gfc_get_intrinsic_lib_fndecl (m, expr);
rettype = TREE_TYPE (TREE_TYPE (fndecl));
fndecl = build_addr (fndecl);
se->expr = build_call_array_loc (input_location, rettype, fndecl, num_args, args);
}
/* If bounds-checking is enabled, create code to verify at runtime that the
string lengths for both expressions are the same (needed for e.g. MERGE).
If bounds-checking is not enabled, does nothing. */
void
gfc_trans_same_strlen_check (const char* intr_name, locus* where,
tree a, tree b, stmtblock_t* target)
{
tree cond;
tree name;
/* If bounds-checking is disabled, do nothing. */
if (!(gfc_option.rtcheck & GFC_RTCHECK_BOUNDS))
return;
/* Compare the two string lengths. */
cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node, a, b);
/* Output the runtime-check. */
name = gfc_build_cstring_const (intr_name);
name = gfc_build_addr_expr (pchar_type_node, name);
gfc_trans_runtime_check (true, false, cond, target, where,
"Unequal character lengths (%ld/%ld) in %s",
fold_convert (long_integer_type_node, a),
fold_convert (long_integer_type_node, b), name);
}
/* The EXPONENT(X) intrinsic function is translated into
int ret;
return isfinite(X) ? (frexp (X, &ret) , ret) : huge
so that if X is a NaN or infinity, the result is HUGE(0).
*/
static void
gfc_conv_intrinsic_exponent (gfc_se *se, gfc_expr *expr)
{
tree arg, type, res, tmp, frexp, cond, huge;
int i;
frexp = gfc_builtin_decl_for_float_kind (BUILT_IN_FREXP,
expr->value.function.actual->expr->ts.kind);
gfc_conv_intrinsic_function_args (se, expr, &arg, 1);
arg = gfc_evaluate_now (arg, &se->pre);
i = gfc_validate_kind (BT_INTEGER, gfc_c_int_kind, false);
huge = gfc_conv_mpz_to_tree (gfc_integer_kinds[i].huge, gfc_c_int_kind);
cond = build_call_expr_loc (input_location,
builtin_decl_explicit (BUILT_IN_ISFINITE),
1, arg);
res = gfc_create_var (integer_type_node, NULL);
tmp = build_call_expr_loc (input_location, frexp, 2, arg,
gfc_build_addr_expr (NULL_TREE, res));
tmp = fold_build2_loc (input_location, COMPOUND_EXPR, integer_type_node,
tmp, res);
se->expr = fold_build3_loc (input_location, COND_EXPR, integer_type_node,
cond, tmp, huge);
type = gfc_typenode_for_spec (&expr->ts);
se->expr = fold_convert (type, se->expr);
}
/* Fill in the following structure
struct caf_vector_t {
size_t nvec; // size of the vector
union {
struct {
void *vector;
int kind;
} v;
struct {
ptrdiff_t lower_bound;
ptrdiff_t upper_bound;
ptrdiff_t stride;
} triplet;
} u;
} */
static void
conv_caf_vector_subscript_elem (stmtblock_t *block, int i, tree desc,
tree lower, tree upper, tree stride,
tree vector, int kind, tree nvec)
{
tree field, type, tmp;
desc = gfc_build_array_ref (desc, gfc_rank_cst[i], NULL_TREE);
type = TREE_TYPE (desc);
field = gfc_advance_chain (TYPE_FIELDS (type), 0);
tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
desc, field, NULL_TREE);
gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), nvec));
/* Access union. */
field = gfc_advance_chain (TYPE_FIELDS (type), 1);
desc = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
desc, field, NULL_TREE);
type = TREE_TYPE (desc);
/* Access the inner struct. */
field = gfc_advance_chain (TYPE_FIELDS (type), vector != NULL_TREE ? 0 : 1);
desc = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
desc, field, NULL_TREE);
type = TREE_TYPE (desc);
if (vector != NULL_TREE)
{
/* Set vector and kind. */
field = gfc_advance_chain (TYPE_FIELDS (type), 0);
tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
desc, field, NULL_TREE);
gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), vector));
field = gfc_advance_chain (TYPE_FIELDS (type), 1);
tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
desc, field, NULL_TREE);
gfc_add_modify (block, tmp, build_int_cst (integer_type_node, kind));
}
else
{
/* Set dim.lower/upper/stride. */
field = gfc_advance_chain (TYPE_FIELDS (type), 0);
tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
desc, field, NULL_TREE);
gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), lower));
field = gfc_advance_chain (TYPE_FIELDS (type), 1);
tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
desc, field, NULL_TREE);
gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), upper));
field = gfc_advance_chain (TYPE_FIELDS (type), 2);
tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
desc, field, NULL_TREE);
gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field), stride));
}
}
static tree
conv_caf_vector_subscript (stmtblock_t *block, tree desc, gfc_array_ref *ar)
{
gfc_se argse;
tree var, lower, upper = NULL_TREE, stride = NULL_TREE, vector, nvec;
tree lbound, ubound, tmp;
int i;
var = gfc_create_var (gfc_get_caf_vector_type (ar->dimen), "vector");
for (i = 0; i < ar->dimen; i++)
switch (ar->dimen_type[i])
{
case DIMEN_RANGE:
if (ar->end[i])
{
gfc_init_se (&argse, NULL);
gfc_conv_expr (&argse, ar->end[i]);
gfc_add_block_to_block (block, &argse.pre);
upper = gfc_evaluate_now (argse.expr, block);
}
else
upper = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[i]);
if (ar->stride[i])
{
gfc_init_se (&argse, NULL);
gfc_conv_expr (&argse, ar->stride[i]);
gfc_add_block_to_block (block, &argse.pre);
stride = gfc_evaluate_now (argse.expr, block);
}
else
stride = gfc_index_one_node;
/* Fall through. */
case DIMEN_ELEMENT:
if (ar->start[i])
{
gfc_init_se (&argse, NULL);
gfc_conv_expr (&argse, ar->start[i]);
gfc_add_block_to_block (block, &argse.pre);
lower = gfc_evaluate_now (argse.expr, block);
}
else
lower = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[i]);
if (ar->dimen_type[i] == DIMEN_ELEMENT)
{
upper = lower;
stride = gfc_index_one_node;
}
vector = NULL_TREE;
nvec = size_zero_node;
conv_caf_vector_subscript_elem (block, i, var, lower, upper, stride,
vector, 0, nvec);
break;
case DIMEN_VECTOR:
gfc_init_se (&argse, NULL);
argse.descriptor_only = 1;
gfc_conv_expr_descriptor (&argse, ar->start[i]);
gfc_add_block_to_block (block, &argse.pre);
vector = argse.expr;
lbound = gfc_conv_descriptor_lbound_get (vector, gfc_rank_cst[0]);
ubound = gfc_conv_descriptor_ubound_get (vector, gfc_rank_cst[0]);
nvec = gfc_conv_array_extent_dim (lbound, ubound, NULL);
tmp = gfc_conv_descriptor_stride_get (vector, gfc_rank_cst[0]);
nvec = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
TREE_TYPE (nvec), nvec, tmp);
lower = gfc_index_zero_node;
upper = gfc_index_zero_node;
stride = gfc_index_zero_node;
vector = gfc_conv_descriptor_data_get (vector);
conv_caf_vector_subscript_elem (block, i, var, lower, upper, stride,
vector, ar->start[i]->ts.kind, nvec);
break;
default:
gcc_unreachable();
}
return gfc_build_addr_expr (NULL_TREE, var);
}
static tree
compute_component_offset (tree field, tree type)
{
tree tmp;
if (DECL_FIELD_BIT_OFFSET (field) != NULL_TREE
&& !integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
{
tmp = fold_build2 (TRUNC_DIV_EXPR, type,
DECL_FIELD_BIT_OFFSET (field),
bitsize_unit_node);
return fold_build2 (PLUS_EXPR, type, DECL_FIELD_OFFSET (field), tmp);
}
else
return DECL_FIELD_OFFSET (field);
}
static tree
conv_expr_ref_to_caf_ref (stmtblock_t *block, gfc_expr *expr)
{
gfc_ref *ref = expr->ref, *last_comp_ref;
tree caf_ref = NULL_TREE, prev_caf_ref = NULL_TREE, reference_type, tmp, tmp2,
field, last_type, inner_struct, mode, mode_rhs, dim_array, dim, dim_type,
start, end, stride, vector, nvec;
gfc_se se;
bool ref_static_array = false;
tree last_component_ref_tree = NULL_TREE;
int i, last_type_n;
if (expr->symtree)
{
last_component_ref_tree = expr->symtree->n.sym->backend_decl;
ref_static_array = !expr->symtree->n.sym->attr.allocatable
&& !expr->symtree->n.sym->attr.pointer;
}
/* Prevent uninit-warning. */
reference_type = NULL_TREE;
/* Skip refs upto the first coarray-ref. */
last_comp_ref = NULL;
while (ref && (ref->type != REF_ARRAY || ref->u.ar.codimen == 0))
{
/* Remember the type of components skipped. */
if (ref->type == REF_COMPONENT)
last_comp_ref = ref;
ref = ref->next;
}
/* When a component was skipped, get the type information of the last
component ref, else get the type from the symbol. */
if (last_comp_ref)
{
last_type = gfc_typenode_for_spec (&last_comp_ref->u.c.component->ts);
last_type_n = last_comp_ref->u.c.component->ts.type;
}
else
{
last_type = gfc_typenode_for_spec (&expr->symtree->n.sym->ts);
last_type_n = expr->symtree->n.sym->ts.type;
}
while (ref)
{
if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0
&& ref->u.ar.dimen == 0)
{
/* Skip pure coindexes. */
ref = ref->next;
continue;
}
tmp = gfc_create_var (gfc_get_caf_reference_type (), "caf_ref");
reference_type = TREE_TYPE (tmp);
if (caf_ref == NULL_TREE)
caf_ref = tmp;
/* Construct the chain of refs. */
if (prev_caf_ref != NULL_TREE)
{
field = gfc_advance_chain (TYPE_FIELDS (reference_type), 0);
tmp2 = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), prev_caf_ref, field,
NULL_TREE);
gfc_add_modify (block, tmp2, gfc_build_addr_expr (TREE_TYPE (field),
tmp));
}
prev_caf_ref = tmp;
switch (ref->type)
{
case REF_COMPONENT:
last_type = gfc_typenode_for_spec (&ref->u.c.component->ts);
last_type_n = ref->u.c.component->ts.type;
/* Set the type of the ref. */
field = gfc_advance_chain (TYPE_FIELDS (reference_type), 1);
tmp = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), prev_caf_ref, field,
NULL_TREE);
gfc_add_modify (block, tmp, build_int_cst (integer_type_node,
GFC_CAF_REF_COMPONENT));
/* Ref the c in union u. */
field = gfc_advance_chain (TYPE_FIELDS (reference_type), 3);
tmp = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), prev_caf_ref, field,
NULL_TREE);
field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (field)), 0);
inner_struct = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), tmp, field,
NULL_TREE);
/* Set the offset. */
field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)), 0);
tmp = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), inner_struct, field,
NULL_TREE);
/* Computing the offset is somewhat harder. The bit_offset has to be
taken into account. When the bit_offset in the field_decl is non-
null, divide it by the bitsize_unit and add it to the regular
offset. */
tmp2 = compute_component_offset (ref->u.c.component->backend_decl,
TREE_TYPE (tmp));
gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (tmp), tmp2));
/* Set caf_token_offset. */
field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)), 1);
tmp = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), inner_struct, field,
NULL_TREE);
if ((ref->u.c.component->attr.allocatable
|| ref->u.c.component->attr.pointer)
&& ref->u.c.component->attr.dimension)
{
tree arr_desc_token_offset;
/* Get the token field from the descriptor. */
arr_desc_token_offset = TREE_OPERAND (
gfc_conv_descriptor_token (ref->u.c.component->backend_decl), 1);
arr_desc_token_offset
= compute_component_offset (arr_desc_token_offset,
TREE_TYPE (tmp));
tmp2 = fold_build2_loc (input_location, PLUS_EXPR,
TREE_TYPE (tmp2), tmp2,
arr_desc_token_offset);
}
else if (ref->u.c.component->caf_token)
tmp2 = compute_component_offset (ref->u.c.component->caf_token,
TREE_TYPE (tmp));
else
tmp2 = integer_zero_node;
gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (tmp), tmp2));
/* Remember whether this ref was to a non-allocatable/non-pointer
component so the next array ref can be tailored correctly. */
ref_static_array = !ref->u.c.component->attr.allocatable
&& !ref->u.c.component->attr.pointer;
last_component_ref_tree = ref_static_array
? ref->u.c.component->backend_decl : NULL_TREE;
break;
case REF_ARRAY:
if (ref_static_array && ref->u.ar.as->type == AS_DEFERRED)
ref_static_array = false;
/* Set the type of the ref. */
field = gfc_advance_chain (TYPE_FIELDS (reference_type), 1);
tmp = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), prev_caf_ref, field,
NULL_TREE);
gfc_add_modify (block, tmp, build_int_cst (integer_type_node,
ref_static_array
? GFC_CAF_REF_STATIC_ARRAY
: GFC_CAF_REF_ARRAY));
/* Ref the a in union u. */
field = gfc_advance_chain (TYPE_FIELDS (reference_type), 3);
tmp = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), prev_caf_ref, field,
NULL_TREE);
field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (field)), 1);
inner_struct = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), tmp, field,
NULL_TREE);
/* Set the static_array_type in a for static arrays. */
if (ref_static_array)
{
field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)),
1);
tmp = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), inner_struct, field,
NULL_TREE);
gfc_add_modify (block, tmp, build_int_cst (TREE_TYPE (tmp),
last_type_n));
}
/* Ref the mode in the inner_struct. */
field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)), 0);
mode = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), inner_struct, field,
NULL_TREE);
/* Ref the dim in the inner_struct. */
field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (inner_struct)), 2);
dim_array = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), inner_struct, field,
NULL_TREE);
for (i = 0; i < ref->u.ar.dimen; ++i)
{
/* Ref dim i. */
dim = gfc_build_array_ref (dim_array, gfc_rank_cst[i], NULL_TREE);
dim_type = TREE_TYPE (dim);
mode_rhs = start = end = stride = NULL_TREE;
switch (ref->u.ar.dimen_type[i])
{
case DIMEN_RANGE:
if (ref->u.ar.end[i])
{
gfc_init_se (&se, NULL);
gfc_conv_expr (&se, ref->u.ar.end[i]);
gfc_add_block_to_block (block, &se.pre);
if (ref_static_array)
{
/* Make the index zero-based, when reffing a static
array. */
end = se.expr;
gfc_init_se (&se, NULL);
gfc_conv_expr (&se, ref->u.ar.as->lower[i]);
gfc_add_block_to_block (block, &se.pre);
se.expr = fold_build2 (MINUS_EXPR,
gfc_array_index_type,
end, fold_convert (
gfc_array_index_type,
se.expr));
}
end = gfc_evaluate_now (fold_convert (
gfc_array_index_type,
se.expr),
block);
}
else if (ref_static_array)
end = fold_build2 (MINUS_EXPR,
gfc_array_index_type,
gfc_conv_array_ubound (
last_component_ref_tree, i),
gfc_conv_array_lbound (
last_component_ref_tree, i));
else
{
end = NULL_TREE;
mode_rhs = build_int_cst (unsigned_char_type_node,
GFC_CAF_ARR_REF_OPEN_END);
}
if (ref->u.ar.stride[i])
{
gfc_init_se (&se, NULL);
gfc_conv_expr (&se, ref->u.ar.stride[i]);
gfc_add_block_to_block (block, &se.pre);
stride = gfc_evaluate_now (fold_convert (
gfc_array_index_type,
se.expr),
block);
if (ref_static_array)
{
/* Make the index zero-based, when reffing a static
array. */
stride = fold_build2 (MULT_EXPR,
gfc_array_index_type,
gfc_conv_array_stride (
last_component_ref_tree,
i),
stride);
gcc_assert (end != NULL_TREE);
/* Multiply with the product of array's stride and
the step of the ref to a virtual upper bound.
We cannot compute the actual upper bound here or
the caflib would compute the extend
incorrectly. */
end = fold_build2 (MULT_EXPR, gfc_array_index_type,
end, gfc_conv_array_stride (
last_component_ref_tree,
i));
end = gfc_evaluate_now (end, block);
stride = gfc_evaluate_now (stride, block);
}
}
else if (ref_static_array)
{
stride = gfc_conv_array_stride (last_component_ref_tree,
i);
end = fold_build2 (MULT_EXPR, gfc_array_index_type,
end, stride);
end = gfc_evaluate_now (end, block);
}
else
/* Always set a ref stride of one to make caflib's
handling easier. */
stride = gfc_index_one_node;
/* Fall through. */
case DIMEN_ELEMENT:
if (ref->u.ar.start[i])
{
gfc_init_se (&se, NULL);
gfc_conv_expr (&se, ref->u.ar.start[i]);
gfc_add_block_to_block (block, &se.pre);
if (ref_static_array)
{
/* Make the index zero-based, when reffing a static
array. */
start = fold_convert (gfc_array_index_type, se.expr);
gfc_init_se (&se, NULL);
gfc_conv_expr (&se, ref->u.ar.as->lower[i]);
gfc_add_block_to_block (block, &se.pre);
se.expr = fold_build2 (MINUS_EXPR,
gfc_array_index_type,
start, fold_convert (
gfc_array_index_type,
se.expr));
/* Multiply with the stride. */
se.expr = fold_build2 (MULT_EXPR,
gfc_array_index_type,
se.expr,
gfc_conv_array_stride (
last_component_ref_tree,
i));
}
start = gfc_evaluate_now (fold_convert (
gfc_array_index_type,
se.expr),
block);
if (mode_rhs == NULL_TREE)
mode_rhs = build_int_cst (unsigned_char_type_node,
ref->u.ar.dimen_type[i]
== DIMEN_ELEMENT
? GFC_CAF_ARR_REF_SINGLE
: GFC_CAF_ARR_REF_RANGE);
}
else if (ref_static_array)
{
start = integer_zero_node;
mode_rhs = build_int_cst (unsigned_char_type_node,
ref->u.ar.start[i] == NULL
? GFC_CAF_ARR_REF_FULL
: GFC_CAF_ARR_REF_RANGE);
}
else if (end == NULL_TREE)
mode_rhs = build_int_cst (unsigned_char_type_node,
GFC_CAF_ARR_REF_FULL);
else
mode_rhs = build_int_cst (unsigned_char_type_node,
GFC_CAF_ARR_REF_OPEN_START);
/* Ref the s in dim. */
field = gfc_advance_chain (TYPE_FIELDS (dim_type), 0);
tmp = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), dim, field,
NULL_TREE);
/* Set start in s. */
if (start != NULL_TREE)
{
field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)),
0);
tmp2 = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), tmp, field,
NULL_TREE);
gfc_add_modify (block, tmp2,
fold_convert (TREE_TYPE (tmp2), start));
}
/* Set end in s. */
if (end != NULL_TREE)
{
field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)),
1);
tmp2 = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), tmp, field,
NULL_TREE);
gfc_add_modify (block, tmp2,
fold_convert (TREE_TYPE (tmp2), end));
}
/* Set end in s. */
if (stride != NULL_TREE)
{
field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)),
2);
tmp2 = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), tmp, field,
NULL_TREE);
gfc_add_modify (block, tmp2,
fold_convert (TREE_TYPE (tmp2), stride));
}
break;
case DIMEN_VECTOR:
/* TODO: In case of static array. */
gcc_assert (!ref_static_array);
mode_rhs = build_int_cst (unsigned_char_type_node,
GFC_CAF_ARR_REF_VECTOR);
gfc_init_se (&se, NULL);
se.descriptor_only = 1;
gfc_conv_expr_descriptor (&se, ref->u.ar.start[i]);
gfc_add_block_to_block (block, &se.pre);
vector = se.expr;
tmp = gfc_conv_descriptor_lbound_get (vector,
gfc_rank_cst[0]);
tmp2 = gfc_conv_descriptor_ubound_get (vector,
gfc_rank_cst[0]);
nvec = gfc_conv_array_extent_dim (tmp, tmp2, NULL);
tmp = gfc_conv_descriptor_stride_get (vector,
gfc_rank_cst[0]);
nvec = fold_build2_loc (input_location, TRUNC_DIV_EXPR,
TREE_TYPE (nvec), nvec, tmp);
vector = gfc_conv_descriptor_data_get (vector);
/* Ref the v in dim. */
field = gfc_advance_chain (TYPE_FIELDS (dim_type), 1);
tmp = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), dim, field,
NULL_TREE);
/* Set vector in v. */
field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)), 0);
tmp2 = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), tmp, field,
NULL_TREE);
gfc_add_modify (block, tmp2, fold_convert (TREE_TYPE (tmp2),
vector));
/* Set nvec in v. */
field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)), 1);
tmp2 = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), tmp, field,
NULL_TREE);
gfc_add_modify (block, tmp2, fold_convert (TREE_TYPE (tmp2),
nvec));
/* Set kind in v. */
field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)), 2);
tmp2 = fold_build3_loc (input_location, COMPONENT_REF,
TREE_TYPE (field), tmp, field,
NULL_TREE);
gfc_add_modify (block, tmp2, build_int_cst (integer_type_node,
ref->u.ar.start[i]->ts.kind));
break;
default:
gcc_unreachable ();
}
/* Set the mode for dim i. */
tmp = gfc_build_array_ref (mode, gfc_rank_cst[i], NULL_TREE);
gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (tmp),
mode_rhs));
}
/* Set the mode for dim i+1 to GFC_ARR_REF_NONE. */
if (i < GFC_MAX_DIMENSIONS)
{
tmp = gfc_build_array_ref (mode, gfc_rank_cst[i], NULL_TREE);
gfc_add_modify (block, tmp,
build_int_cst (unsigned_char_type_node,
GFC_CAF_ARR_REF_NONE));
}
break;
default:
gcc_unreachable ();
}
/* Set the size of the current type. */
field = gfc_advance_chain (TYPE_FIELDS (reference_type), 2);
tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
prev_caf_ref, field, NULL_TREE);
gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field),
TYPE_SIZE_UNIT (last_type)));
ref = ref->next;
}
if (prev_caf_ref != NULL_TREE)
{
field = gfc_advance_chain (TYPE_FIELDS (reference_type), 0);
tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field),
prev_caf_ref, field, NULL_TREE);
gfc_add_modify (block, tmp, fold_convert (TREE_TYPE (field),
null_pointer_node));
}
return caf_ref != NULL_TREE ? gfc_build_addr_expr (NULL_TREE, caf_ref)
: NULL_TREE;
}
/* Get data from a remote coarray. */
static void
gfc_conv_intrinsic_caf_get (gfc_se *se, gfc_expr *expr, tree lhs, tree lhs_kind,
tree may_require_tmp, bool may_realloc,
symbol_attribute *caf_attr)
{
gfc_expr *array_expr, *tmp_stat;
gfc_se argse;
tree caf_decl, token, offset, image_index, tmp;
tree res_var, dst_var, type, kind, vec, stat;
tree caf_reference;
symbol_attribute caf_attr_store;
gcc_assert (flag_coarray == GFC_FCOARRAY_LIB);
if (se->ss && se->ss->info->useflags)
{
/* Access the previously obtained result. */
gfc_conv_tmp_array_ref (se);
return;
}
/* If lhs is set, the CAF_GET intrinsic has already been stripped. */
array_expr = (lhs == NULL_TREE) ? expr->value.function.actual->expr : expr;
type = gfc_typenode_for_spec (&array_expr->ts);
if (caf_attr == NULL)
{
caf_attr_store = gfc_caf_attr (array_expr);
caf_attr = &caf_attr_store;
}
res_var = lhs;
dst_var = lhs;
vec = null_pointer_node;
tmp_stat = gfc_find_stat_co (expr);
if (tmp_stat)
{
gfc_se stat_se;
gfc_init_se (&stat_se, NULL);
gfc_conv_expr_reference (&stat_se, tmp_stat);
stat = stat_se.expr;
gfc_add_block_to_block (&se->pre, &stat_se.pre);
gfc_add_block_to_block (&se->post, &stat_se.post);
}
else
stat = null_pointer_node;
/* Only use the new get_by_ref () where it is necessary. I.e., when the lhs
is reallocatable or the right-hand side has allocatable components. */
if (caf_attr->alloc_comp || caf_attr->pointer_comp || may_realloc)
{
/* Get using caf_get_by_ref. */
caf_reference = conv_expr_ref_to_caf_ref (&se->pre, array_expr);
if (caf_reference != NULL_TREE)
{
if (lhs == NULL_TREE)
{
if (array_expr->ts.type == BT_CHARACTER)
gfc_init_se (&argse, NULL);
if (array_expr->rank == 0)
{
symbol_attribute attr;
gfc_clear_attr (&attr);
if (array_expr->ts.type == BT_CHARACTER)
{
res_var = gfc_conv_string_tmp (se,
build_pointer_type (type),
array_expr->ts.u.cl->backend_decl);
argse.string_length = array_expr->ts.u.cl->backend_decl;
}
else
res_var = gfc_create_var (type, "caf_res");
dst_var = gfc_conv_scalar_to_descriptor (se, res_var, attr);
dst_var = gfc_build_addr_expr (NULL_TREE, dst_var);
}
else
{
/* Create temporary. */
if (array_expr->ts.type == BT_CHARACTER)
gfc_conv_expr_descriptor (&argse, array_expr);
may_realloc = gfc_trans_create_temp_array (&se->pre,
&se->post,
se->ss, type,
NULL_TREE, false,
false, false,
&array_expr->where)
== NULL_TREE;
res_var = se->ss->info->data.array.descriptor;
dst_var = gfc_build_addr_expr (NULL_TREE, res_var);
if (may_realloc)
{
tmp = gfc_conv_descriptor_data_get (res_var);
tmp = gfc_deallocate_with_status (tmp, NULL_TREE,
NULL_TREE, NULL_TREE,
NULL_TREE, true,
NULL,
GFC_CAF_COARRAY_NOCOARRAY);
gfc_add_expr_to_block (&se->post, tmp);
}
}
}
kind = build_int_cst (integer_type_node, expr->ts.kind);
if (lhs_kind == NULL_TREE)
lhs_kind = kind;
caf_decl = gfc_get_tree_for_caf_expr (array_expr);
if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE)
caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl);
image_index = gfc_caf_get_image_index (&se->pre, array_expr,
caf_decl);
gfc_get_caf_token_offset (se, &token, NULL, caf_decl, NULL,
array_expr);
/* No overlap possible as we have generated a temporary. */
if (lhs == NULL_TREE)
may_require_tmp = boolean_false_node;
/* It guarantees memory consistency within the same segment. */
tmp = gfc_build_string_const (strlen ("memory") + 1, "memory");
tmp = build5_loc (input_location, ASM_EXPR, void_type_node,
gfc_build_string_const (1, ""), NULL_TREE,
NULL_TREE, tree_cons (NULL_TREE, tmp, NULL_TREE),
NULL_TREE);
ASM_VOLATILE_P (tmp) = 1;
gfc_add_expr_to_block (&se->pre, tmp);
tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_get_by_ref,
10, token, image_index, dst_var,
caf_reference, lhs_kind, kind,
may_require_tmp,
may_realloc ? boolean_true_node :
boolean_false_node,
stat, build_int_cst (integer_type_node,
array_expr->ts.type));
gfc_add_expr_to_block (&se->pre, tmp);
if (se->ss)
gfc_advance_se_ss_chain (se);
se->expr = res_var;
if (array_expr->ts.type == BT_CHARACTER)
se->string_length = argse.string_length;
return;
}
}
gfc_init_se (&argse, NULL);
if (array_expr->rank == 0)
{
symbol_attribute attr;
gfc_clear_attr (&attr);
gfc_conv_expr (&argse, array_expr);
if (lhs == NULL_TREE)
{
gfc_clear_attr (&attr);
if (array_expr->ts.type == BT_CHARACTER)
res_var = gfc_conv_string_tmp (se, build_pointer_type (type),
argse.string_length);
else
res_var = gfc_create_var (type, "caf_res");
dst_var = gfc_conv_scalar_to_descriptor (&argse, res_var, attr);
dst_var = gfc_build_addr_expr (NULL_TREE, dst_var);
}
argse.expr = gfc_conv_scalar_to_descriptor (&argse, argse.expr, attr);
argse.expr = gfc_build_addr_expr (NULL_TREE, argse.expr);
}
else
{
/* If has_vector, pass descriptor for whole array and the
vector bounds separately. */
gfc_array_ref *ar, ar2;
bool has_vector = false;
if (gfc_is_coindexed (expr) && gfc_has_vector_subscript (expr))
{
has_vector = true;
ar = gfc_find_array_ref (expr);
ar2 = *ar;
memset (ar, '\0', sizeof (*ar));
ar->as = ar2.as;
ar->type = AR_FULL;
}
// TODO: Check whether argse.want_coarray = 1 can help with the below.
gfc_conv_expr_descriptor (&argse, array_expr);
/* Using gfc_conv_expr_descriptor, we only get the descriptor, but that
has the wrong type if component references are done. */
gfc_add_modify (&argse.pre, gfc_conv_descriptor_dtype (argse.expr),
gfc_get_dtype_rank_type (has_vector ? ar2.dimen
: array_expr->rank,
type));
if (has_vector)
{
vec = conv_caf_vector_subscript (&argse.pre, argse.expr, &ar2);
*ar = ar2;
}
if (lhs == NULL_TREE)
{
/* Create temporary. */
for (int n = 0; n < se->ss->loop->dimen; n++)
if (se->loop->to[n] == NULL_TREE)
{
se->loop->from[n] = gfc_conv_descriptor_lbound_get (argse.expr,
gfc_rank_cst[n]);
se->loop->to[n] = gfc_conv_descriptor_ubound_get (argse.expr,
gfc_rank_cst[n]);
}
gfc_trans_create_temp_array (&argse.pre, &argse.post, se->ss, type,
NULL_TREE, false, true, false,
&array_expr->where);
res_var = se->ss->info->data.array.descriptor;
dst_var = gfc_build_addr_expr (NULL_TREE, res_var);
}
argse.expr = gfc_build_addr_expr (NULL_TREE, argse.expr);
}
kind = build_int_cst (integer_type_node, expr->ts.kind);
if (lhs_kind == NULL_TREE)
lhs_kind = kind;
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
caf_decl = gfc_get_tree_for_caf_expr (array_expr);
if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE)
caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl);
image_index = gfc_caf_get_image_index (&se->pre, array_expr, caf_decl);
gfc_get_caf_token_offset (se, &token, &offset, caf_decl, argse.expr,
array_expr);
/* No overlap possible as we have generated a temporary. */
if (lhs == NULL_TREE)
may_require_tmp = boolean_false_node;
/* It guarantees memory consistency within the same segment. */
tmp = gfc_build_string_const (strlen ("memory") + 1, "memory");
tmp = build5_loc (input_location, ASM_EXPR, void_type_node,
gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE,
tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE);
ASM_VOLATILE_P (tmp) = 1;
gfc_add_expr_to_block (&se->pre, tmp);
tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_get, 10,
token, offset, image_index, argse.expr, vec,
dst_var, kind, lhs_kind, may_require_tmp, stat);
gfc_add_expr_to_block (&se->pre, tmp);
if (se->ss)
gfc_advance_se_ss_chain (se);
se->expr = res_var;
if (array_expr->ts.type == BT_CHARACTER)
se->string_length = argse.string_length;
}
/* Send data to a remote coarray. */
static tree
conv_caf_send (gfc_code *code) {
gfc_expr *lhs_expr, *rhs_expr, *tmp_stat, *tmp_team;
gfc_se lhs_se, rhs_se;
stmtblock_t block;
tree caf_decl, token, offset, image_index, tmp, lhs_kind, rhs_kind;
tree may_require_tmp, src_stat, dst_stat, dst_team;
tree lhs_type = NULL_TREE;
tree vec = null_pointer_node, rhs_vec = null_pointer_node;
symbol_attribute lhs_caf_attr, rhs_caf_attr;
gcc_assert (flag_coarray == GFC_FCOARRAY_LIB);
lhs_expr = code->ext.actual->expr;
rhs_expr = code->ext.actual->next->expr;
may_require_tmp = gfc_check_dependency (lhs_expr, rhs_expr, true) == 0
? boolean_false_node : boolean_true_node;
gfc_init_block (&block);
lhs_caf_attr = gfc_caf_attr (lhs_expr);
rhs_caf_attr = gfc_caf_attr (rhs_expr);
src_stat = dst_stat = null_pointer_node;
dst_team = null_pointer_node;
/* LHS. */
gfc_init_se (&lhs_se, NULL);
if (lhs_expr->rank == 0)
{
if (lhs_expr->ts.type == BT_CHARACTER && lhs_expr->ts.deferred)
{
lhs_se.expr = gfc_get_tree_for_caf_expr (lhs_expr);
lhs_se.expr = gfc_build_addr_expr (NULL_TREE, lhs_se.expr);
}
else
{
symbol_attribute attr;
gfc_clear_attr (&attr);
gfc_conv_expr (&lhs_se, lhs_expr);
lhs_type = TREE_TYPE (lhs_se.expr);
lhs_se.expr = gfc_conv_scalar_to_descriptor (&lhs_se, lhs_se.expr,
attr);
lhs_se.expr = gfc_build_addr_expr (NULL_TREE, lhs_se.expr);
}
}
else if ((lhs_caf_attr.alloc_comp || lhs_caf_attr.pointer_comp)
&& lhs_caf_attr.codimension)
{
lhs_se.want_pointer = 1;
gfc_conv_expr_descriptor (&lhs_se, lhs_expr);
/* Using gfc_conv_expr_descriptor, we only get the descriptor, but that
has the wrong type if component references are done. */
lhs_type = gfc_typenode_for_spec (&lhs_expr->ts);
tmp = build_fold_indirect_ref_loc (input_location, lhs_se.expr);
gfc_add_modify (&lhs_se.pre, gfc_conv_descriptor_dtype (tmp),
gfc_get_dtype_rank_type (
gfc_has_vector_subscript (lhs_expr)
? gfc_find_array_ref (lhs_expr)->dimen
: lhs_expr->rank,
lhs_type));
}
else
{
bool has_vector = gfc_has_vector_subscript (lhs_expr);
if (gfc_is_coindexed (lhs_expr) || !has_vector)
{
/* If has_vector, pass descriptor for whole array and the
vector bounds separately. */
gfc_array_ref *ar, ar2;
bool has_tmp_lhs_array = false;
if (has_vector)
{
has_tmp_lhs_array = true;
ar = gfc_find_array_ref (lhs_expr);
ar2 = *ar;
memset (ar, '\0', sizeof (*ar));
ar->as = ar2.as;
ar->type = AR_FULL;
}
lhs_se.want_pointer = 1;
gfc_conv_expr_descriptor (&lhs_se, lhs_expr);
/* Using gfc_conv_expr_descriptor, we only get the descriptor, but
that has the wrong type if component references are done. */
lhs_type = gfc_typenode_for_spec (&lhs_expr->ts);
tmp = build_fold_indirect_ref_loc (input_location, lhs_se.expr);
gfc_add_modify (&lhs_se.pre, gfc_conv_descriptor_dtype (tmp),
gfc_get_dtype_rank_type (has_vector ? ar2.dimen
: lhs_expr->rank,
lhs_type));
if (has_tmp_lhs_array)
{
vec = conv_caf_vector_subscript (&block, lhs_se.expr, &ar2);
*ar = ar2;
}
}
else
{
/* Special casing for arr1 ([...]) = arr2[...], i.e. caf_get to
indexed array expression. This is rewritten to:
tmp_array = arr2[...]
arr1 ([...]) = tmp_array
because using the standard gfc_conv_expr (lhs_expr) did the
assignment with lhs and rhs exchanged. */
gfc_ss *lss_for_tmparray, *lss_real;
gfc_loopinfo loop;
gfc_se se;
stmtblock_t body;
tree tmparr_desc, src;
tree index = gfc_index_zero_node;
tree stride = gfc_index_zero_node;
int n;
/* Walk both sides of the assignment, once to get the shape of the
temporary array to create right. */
lss_for_tmparray = gfc_walk_expr (lhs_expr);
/* And a second time to be able to create an assignment of the
temporary to the lhs_expr. gfc_trans_create_temp_array replaces
the tree in the descriptor with the one for the temporary
array. */
lss_real = gfc_walk_expr (lhs_expr);
gfc_init_loopinfo (&loop);
gfc_add_ss_to_loop (&loop, lss_for_tmparray);
gfc_add_ss_to_loop (&loop, lss_real);
gfc_conv_ss_startstride (&loop);
gfc_conv_loop_setup (&loop, &lhs_expr->where);
lhs_type = gfc_typenode_for_spec (&lhs_expr->ts);
gfc_trans_create_temp_array (&lhs_se.pre, &lhs_se.post,
lss_for_tmparray, lhs_type, NULL_TREE,
false, true, false,
&lhs_expr->where);
tmparr_desc = lss_for_tmparray->info->data.array.descriptor;
gfc_start_scalarized_body (&loop, &body);
gfc_init_se (&se, NULL);
gfc_copy_loopinfo_to_se (&se, &loop);
se.ss = lss_real;
gfc_conv_expr (&se, lhs_expr);
gfc_add_block_to_block (&body, &se.pre);
/* Walk over all indexes of the loop. */
for (n = loop.dimen - 1; n > 0; --n)
{
tmp = loop.loopvar[n];
tmp = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, tmp, loop.from[n]);
tmp = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, tmp, index);
stride = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
loop.to[n - 1], loop.from[n - 1]);
stride = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type,
stride, gfc_index_one_node);
index = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, tmp, stride);
}
index = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type,
index, loop.from[0]);
index = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type,
loop.loopvar[0], index);
src = build_fold_indirect_ref (gfc_conv_array_data (tmparr_desc));
src = gfc_build_array_ref (src, index, NULL);
/* Now create the assignment of lhs_expr = tmp_array. */
gfc_add_modify (&body, se.expr, src);
gfc_add_block_to_block (&body, &se.post);
lhs_se.expr = gfc_build_addr_expr (NULL_TREE, tmparr_desc);
gfc_trans_scalarizing_loops (&loop, &body);
gfc_add_block_to_block (&loop.pre, &loop.post);
gfc_add_expr_to_block (&lhs_se.post, gfc_finish_block (&loop.pre));
gfc_free_ss (lss_for_tmparray);
gfc_free_ss (lss_real);
}
}
lhs_kind = build_int_cst (integer_type_node, lhs_expr->ts.kind);
/* Special case: RHS is a coarray but LHS is not; this code path avoids a
temporary and a loop. */
if (!gfc_is_coindexed (lhs_expr)
&& (!lhs_caf_attr.codimension
|| !(lhs_expr->rank > 0
&& (lhs_caf_attr.allocatable || lhs_caf_attr.pointer))))
{
bool lhs_may_realloc = lhs_expr->rank > 0 && lhs_caf_attr.allocatable;
gcc_assert (gfc_is_coindexed (rhs_expr));
gfc_init_se (&rhs_se, NULL);
if (lhs_expr->rank == 0 && lhs_caf_attr.allocatable)
{
gfc_se scal_se;
gfc_init_se (&scal_se, NULL);
scal_se.want_pointer = 1;
gfc_conv_expr (&scal_se, lhs_expr);
/* Ensure scalar on lhs is allocated. */
gfc_add_block_to_block (&block, &scal_se.pre);
gfc_allocate_using_malloc (&scal_se.pre, scal_se.expr,
TYPE_SIZE_UNIT (
gfc_typenode_for_spec (&lhs_expr->ts)),
NULL_TREE);
tmp = fold_build2 (EQ_EXPR, logical_type_node, scal_se.expr,
null_pointer_node);
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node,
tmp, gfc_finish_block (&scal_se.pre),
build_empty_stmt (input_location));
gfc_add_expr_to_block (&block, tmp);
}
else
lhs_may_realloc = lhs_may_realloc
&& gfc_full_array_ref_p (lhs_expr->ref, NULL);
gfc_add_block_to_block (&block, &lhs_se.pre);
gfc_conv_intrinsic_caf_get (&rhs_se, rhs_expr, lhs_se.expr, lhs_kind,
may_require_tmp, lhs_may_realloc,
&rhs_caf_attr);
gfc_add_block_to_block (&block, &rhs_se.pre);
gfc_add_block_to_block (&block, &rhs_se.post);
gfc_add_block_to_block (&block, &lhs_se.post);
return gfc_finish_block (&block);
}
gfc_add_block_to_block (&block, &lhs_se.pre);
/* Obtain token, offset and image index for the LHS. */
caf_decl = gfc_get_tree_for_caf_expr (lhs_expr);
if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE)
caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl);
image_index = gfc_caf_get_image_index (&block, lhs_expr, caf_decl);
tmp = lhs_se.expr;
if (lhs_caf_attr.alloc_comp)
gfc_get_caf_token_offset (&lhs_se, &token, NULL, caf_decl, NULL_TREE,
NULL);
else
gfc_get_caf_token_offset (&lhs_se, &token, &offset, caf_decl, tmp,
lhs_expr);
lhs_se.expr = tmp;
/* RHS. */
gfc_init_se (&rhs_se, NULL);
if (rhs_expr->expr_type == EXPR_FUNCTION && rhs_expr->value.function.isym
&& rhs_expr->value.function.isym->id == GFC_ISYM_CONVERSION)
rhs_expr = rhs_expr->value.function.actual->expr;
if (rhs_expr->rank == 0)
{
symbol_attribute attr;
gfc_clear_attr (&attr);
gfc_conv_expr (&rhs_se, rhs_expr);
rhs_se.expr = gfc_conv_scalar_to_descriptor (&rhs_se, rhs_se.expr, attr);
rhs_se.expr = gfc_build_addr_expr (NULL_TREE, rhs_se.expr);
}
else if ((rhs_caf_attr.alloc_comp || rhs_caf_attr.pointer_comp)
&& rhs_caf_attr.codimension)
{
tree tmp2;
rhs_se.want_pointer = 1;
gfc_conv_expr_descriptor (&rhs_se, rhs_expr);
/* Using gfc_conv_expr_descriptor, we only get the descriptor, but that
has the wrong type if component references are done. */
tmp2 = gfc_typenode_for_spec (&rhs_expr->ts);
tmp = build_fold_indirect_ref_loc (input_location, rhs_se.expr);
gfc_add_modify (&rhs_se.pre, gfc_conv_descriptor_dtype (tmp),
gfc_get_dtype_rank_type (
gfc_has_vector_subscript (rhs_expr)
? gfc_find_array_ref (rhs_expr)->dimen
: rhs_expr->rank,
tmp2));
}
else
{
/* If has_vector, pass descriptor for whole array and the
vector bounds separately. */
gfc_array_ref *ar, ar2;
bool has_vector = false;
tree tmp2;
if (gfc_is_coindexed (rhs_expr) && gfc_has_vector_subscript (rhs_expr))
{
has_vector = true;
ar = gfc_find_array_ref (rhs_expr);
ar2 = *ar;
memset (ar, '\0', sizeof (*ar));
ar->as = ar2.as;
ar->type = AR_FULL;
}
rhs_se.want_pointer = 1;
gfc_conv_expr_descriptor (&rhs_se, rhs_expr);
/* Using gfc_conv_expr_descriptor, we only get the descriptor, but that
has the wrong type if component references are done. */
tmp = build_fold_indirect_ref_loc (input_location, rhs_se.expr);
tmp2 = gfc_typenode_for_spec (&rhs_expr->ts);
gfc_add_modify (&rhs_se.pre, gfc_conv_descriptor_dtype (tmp),
gfc_get_dtype_rank_type (has_vector ? ar2.dimen
: rhs_expr->rank,
tmp2));
if (has_vector)
{
rhs_vec = conv_caf_vector_subscript (&block, rhs_se.expr, &ar2);
*ar = ar2;
}
}
gfc_add_block_to_block (&block, &rhs_se.pre);
rhs_kind = build_int_cst (integer_type_node, rhs_expr->ts.kind);
tmp_stat = gfc_find_stat_co (lhs_expr);
if (tmp_stat)
{
gfc_se stat_se;
gfc_init_se (&stat_se, NULL);
gfc_conv_expr_reference (&stat_se, tmp_stat);
dst_stat = stat_se.expr;
gfc_add_block_to_block (&block, &stat_se.pre);
gfc_add_block_to_block (&block, &stat_se.post);
}
tmp_team = gfc_find_team_co (lhs_expr);
if (tmp_team)
{
gfc_se team_se;
gfc_init_se (&team_se, NULL);
gfc_conv_expr_reference (&team_se, tmp_team);
dst_team = team_se.expr;
gfc_add_block_to_block (&block, &team_se.pre);
gfc_add_block_to_block (&block, &team_se.post);
}
if (!gfc_is_coindexed (rhs_expr))
{
if (lhs_caf_attr.alloc_comp || lhs_caf_attr.pointer_comp)
{
tree reference, dst_realloc;
reference = conv_expr_ref_to_caf_ref (&block, lhs_expr);
dst_realloc = lhs_caf_attr.allocatable ? boolean_true_node
: boolean_false_node;
tmp = build_call_expr_loc (input_location,
gfor_fndecl_caf_send_by_ref,
10, token, image_index, rhs_se.expr,
reference, lhs_kind, rhs_kind,
may_require_tmp, dst_realloc, src_stat,
build_int_cst (integer_type_node,
lhs_expr->ts.type));
}
else
tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_send, 11,
token, offset, image_index, lhs_se.expr, vec,
rhs_se.expr, lhs_kind, rhs_kind,
may_require_tmp, src_stat, dst_team);
}
else
{
tree rhs_token, rhs_offset, rhs_image_index;
/* It guarantees memory consistency within the same segment. */
tmp = gfc_build_string_const (strlen ("memory") + 1, "memory");
tmp = build5_loc (input_location, ASM_EXPR, void_type_node,
gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE,
tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE);
ASM_VOLATILE_P (tmp) = 1;
gfc_add_expr_to_block (&block, tmp);
caf_decl = gfc_get_tree_for_caf_expr (rhs_expr);
if (TREE_CODE (TREE_TYPE (caf_decl)) == REFERENCE_TYPE)
caf_decl = build_fold_indirect_ref_loc (input_location, caf_decl);
rhs_image_index = gfc_caf_get_image_index (&block, rhs_expr, caf_decl);
tmp = rhs_se.expr;
if (rhs_caf_attr.alloc_comp || rhs_caf_attr.pointer_comp)
{
tmp_stat = gfc_find_stat_co (lhs_expr);
if (tmp_stat)
{
gfc_se stat_se;
gfc_init_se (&stat_se, NULL);
gfc_conv_expr_reference (&stat_se, tmp_stat);
src_stat = stat_se.expr;
gfc_add_block_to_block (&block, &stat_se.pre);
gfc_add_block_to_block (&block, &stat_se.post);
}
gfc_get_caf_token_offset (&rhs_se, &rhs_token, NULL, caf_decl,
NULL_TREE, NULL);
tree lhs_reference, rhs_reference;
lhs_reference = conv_expr_ref_to_caf_ref (&block, lhs_expr);
rhs_reference = conv_expr_ref_to_caf_ref (&block, rhs_expr);
tmp = build_call_expr_loc (input_location,
gfor_fndecl_caf_sendget_by_ref, 13,
token, image_index, lhs_reference,
rhs_token, rhs_image_index, rhs_reference,
lhs_kind, rhs_kind, may_require_tmp,
dst_stat, src_stat,
build_int_cst (integer_type_node,
lhs_expr->ts.type),
build_int_cst (integer_type_node,
rhs_expr->ts.type));
}
else
{
gfc_get_caf_token_offset (&rhs_se, &rhs_token, &rhs_offset, caf_decl,
tmp, rhs_expr);
tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_sendget,
14, token, offset, image_index,
lhs_se.expr, vec, rhs_token, rhs_offset,
rhs_image_index, tmp, rhs_vec, lhs_kind,
rhs_kind, may_require_tmp, src_stat);
}
}
gfc_add_expr_to_block (&block, tmp);
gfc_add_block_to_block (&block, &lhs_se.post);
gfc_add_block_to_block (&block, &rhs_se.post);
/* It guarantees memory consistency within the same segment. */
tmp = gfc_build_string_const (strlen ("memory") + 1, "memory");
tmp = build5_loc (input_location, ASM_EXPR, void_type_node,
gfc_build_string_const (1, ""), NULL_TREE, NULL_TREE,
tree_cons (NULL_TREE, tmp, NULL_TREE), NULL_TREE);
ASM_VOLATILE_P (tmp) = 1;
gfc_add_expr_to_block (&block, tmp);
return gfc_finish_block (&block);
}
static void
trans_this_image (gfc_se * se, gfc_expr *expr)
{
stmtblock_t loop;
tree type, desc, dim_arg, cond, tmp, m, loop_var, exit_label, min_var,
lbound, ubound, extent, ml;
gfc_se argse;
int rank, corank;
gfc_expr *distance = expr->value.function.actual->next->next->expr;
if (expr->value.function.actual->expr
&& !gfc_is_coarray (expr->value.function.actual->expr))
distance = expr->value.function.actual->expr;
/* The case -fcoarray=single is handled elsewhere. */
gcc_assert (flag_coarray != GFC_FCOARRAY_SINGLE);
/* Argument-free version: THIS_IMAGE(). */
if (distance || expr->value.function.actual->expr == NULL)
{
if (distance)
{
gfc_init_se (&argse, NULL);
gfc_conv_expr_val (&argse, distance);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
tmp = fold_convert (integer_type_node, argse.expr);
}
else
tmp = integer_zero_node;
tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_this_image, 1,
tmp);
se->expr = fold_convert (gfc_get_int_type (gfc_default_integer_kind),
tmp);
return;
}
/* Coarray-argument version: THIS_IMAGE(coarray [, dim]). */
type = gfc_get_int_type (gfc_default_integer_kind);
corank = gfc_get_corank (expr->value.function.actual->expr);
rank = expr->value.function.actual->expr->rank;
/* Obtain the descriptor of the COARRAY. */
gfc_init_se (&argse, NULL);
argse.want_coarray = 1;
gfc_conv_expr_descriptor (&argse, expr->value.function.actual->expr);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
desc = argse.expr;
if (se->ss)
{
/* Create an implicit second parameter from the loop variable. */
gcc_assert (!expr->value.function.actual->next->expr);
gcc_assert (corank > 0);
gcc_assert (se->loop->dimen == 1);
gcc_assert (se->ss->info->expr == expr);
dim_arg = se->loop->loopvar[0];
dim_arg = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, dim_arg,
build_int_cst (TREE_TYPE (dim_arg), 1));
gfc_advance_se_ss_chain (se);
}
else
{
/* Use the passed DIM= argument. */
gcc_assert (expr->value.function.actual->next->expr);
gfc_init_se (&argse, NULL);
gfc_conv_expr_type (&argse, expr->value.function.actual->next->expr,
gfc_array_index_type);
gfc_add_block_to_block (&se->pre, &argse.pre);
dim_arg = argse.expr;
if (INTEGER_CST_P (dim_arg))
{
if (wi::ltu_p (wi::to_wide (dim_arg), 1)
|| wi::gtu_p (wi::to_wide (dim_arg),
GFC_TYPE_ARRAY_CORANK (TREE_TYPE (desc))))
gfc_error ("%<dim%> argument of %s intrinsic at %L is not a valid "
"dimension index", expr->value.function.isym->name,
&expr->where);
}
else if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)
{
dim_arg = gfc_evaluate_now (dim_arg, &se->pre);
cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node,
dim_arg,
build_int_cst (TREE_TYPE (dim_arg), 1));
tmp = gfc_rank_cst[GFC_TYPE_ARRAY_CORANK (TREE_TYPE (desc))];
tmp = fold_build2_loc (input_location, GT_EXPR, logical_type_node,
dim_arg, tmp);
cond = fold_build2_loc (input_location, TRUTH_ORIF_EXPR,
logical_type_node, cond, tmp);
gfc_trans_runtime_check (true, false, cond, &se->pre, &expr->where,
gfc_msg_fault);
}
}
/* Used algorithm; cf. Fortran 2008, C.10. Note, due to the scalarizer,
one always has a dim_arg argument.
m = this_image() - 1
if (corank == 1)
{
sub(1) = m + lcobound(corank)
return;
}
i = rank
min_var = min (rank + corank - 2, rank + dim_arg - 1)
for (;;)
{
extent = gfc_extent(i)
ml = m
m = m/extent
if (i >= min_var)
goto exit_label
i++
}
exit_label:
sub(dim_arg) = (dim_arg < corank) ? ml - m*extent + lcobound(dim_arg)
: m + lcobound(corank)
*/
/* this_image () - 1. */
tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_this_image, 1,
integer_zero_node);
tmp = fold_build2_loc (input_location, MINUS_EXPR, type,
fold_convert (type, tmp), build_int_cst (type, 1));
if (corank == 1)
{
/* sub(1) = m + lcobound(corank). */
lbound = gfc_conv_descriptor_lbound_get (desc,
build_int_cst (TREE_TYPE (gfc_array_index_type),
corank+rank-1));
lbound = fold_convert (type, lbound);
tmp = fold_build2_loc (input_location, PLUS_EXPR, type, tmp, lbound);
se->expr = tmp;
return;
}
m = gfc_create_var (type, NULL);
ml = gfc_create_var (type, NULL);
loop_var = gfc_create_var (integer_type_node, NULL);
min_var = gfc_create_var (integer_type_node, NULL);
/* m = this_image () - 1. */
gfc_add_modify (&se->pre, m, tmp);
/* min_var = min (rank + corank-2, rank + dim_arg - 1). */
tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node,
fold_convert (integer_type_node, dim_arg),
build_int_cst (integer_type_node, rank - 1));
tmp = fold_build2_loc (input_location, MIN_EXPR, integer_type_node,
build_int_cst (integer_type_node, rank + corank - 2),
tmp);
gfc_add_modify (&se->pre, min_var, tmp);
/* i = rank. */
tmp = build_int_cst (integer_type_node, rank);
gfc_add_modify (&se->pre, loop_var, tmp);
exit_label = gfc_build_label_decl (NULL_TREE);
TREE_USED (exit_label) = 1;
/* Loop body. */
gfc_init_block (&loop);
/* ml = m. */
gfc_add_modify (&loop, ml, m);
/* extent = ... */
lbound = gfc_conv_descriptor_lbound_get (desc, loop_var);
ubound = gfc_conv_descriptor_ubound_get (desc, loop_var);
extent = gfc_conv_array_extent_dim (lbound, ubound, NULL);
extent = fold_convert (type, extent);
/* m = m/extent. */
gfc_add_modify (&loop, m,
fold_build2_loc (input_location, TRUNC_DIV_EXPR, type,
m, extent));
/* Exit condition: if (i >= min_var) goto exit_label. */
cond = fold_build2_loc (input_location, GE_EXPR, logical_type_node, loop_var,
min_var);
tmp = build1_v (GOTO_EXPR, exit_label);
tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, tmp,
build_empty_stmt (input_location));
gfc_add_expr_to_block (&loop, tmp);
/* Increment loop variable: i++. */
gfc_add_modify (&loop, loop_var,
fold_build2_loc (input_location, PLUS_EXPR, integer_type_node,
loop_var,
build_int_cst (integer_type_node, 1)));
/* Making the loop... actually loop! */
tmp = gfc_finish_block (&loop);
tmp = build1_v (LOOP_EXPR, tmp);
gfc_add_expr_to_block (&se->pre, tmp);
/* The exit label. */
tmp = build1_v (LABEL_EXPR, exit_label);
gfc_add_expr_to_block (&se->pre, tmp);
/* sub(co_dim) = (co_dim < corank) ? ml - m*extent + lcobound(dim_arg)
: m + lcobound(corank) */
cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node, dim_arg,
build_int_cst (TREE_TYPE (dim_arg), corank));
lbound = gfc_conv_descriptor_lbound_get (desc,
fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, dim_arg,
build_int_cst (TREE_TYPE (dim_arg), rank-1)));
lbound = fold_convert (type, lbound);
tmp = fold_build2_loc (input_location, MINUS_EXPR, type, ml,
fold_build2_loc (input_location, MULT_EXPR, type,
m, extent));
tmp = fold_build2_loc (input_location, PLUS_EXPR, type, tmp, lbound);
se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond, tmp,
fold_build2_loc (input_location, PLUS_EXPR, type,
m, lbound));
}
/* Convert a call to image_status. */
static void
conv_intrinsic_image_status (gfc_se *se, gfc_expr *expr)
{
unsigned int num_args;
tree *args, tmp;
num_args = gfc_intrinsic_argument_list_length (expr);
args = XALLOCAVEC (tree, num_args);
gfc_conv_intrinsic_function_args (se, expr, args, num_args);
/* In args[0] the number of the image the status is desired for has to be
given. */
if (flag_coarray == GFC_FCOARRAY_SINGLE)
{
tree arg;
arg = gfc_evaluate_now (args[0], &se->pre);
tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node,
fold_convert (integer_type_node, arg),
integer_one_node);
tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node,
tmp, integer_zero_node,
build_int_cst (integer_type_node,
GFC_STAT_STOPPED_IMAGE));
}
else if (flag_coarray == GFC_FCOARRAY_LIB)
tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_image_status, 2,
args[0], build_int_cst (integer_type_node, -1));
else
gcc_unreachable ();
se->expr = fold_convert (gfc_get_int_type (gfc_default_integer_kind), tmp);
}
static void
conv_intrinsic_team_number (gfc_se *se, gfc_expr *expr)
{
unsigned int num_args;
tree *args, tmp;
num_args = gfc_intrinsic_argument_list_length (expr);
args = XALLOCAVEC (tree, num_args);
gfc_conv_intrinsic_function_args (se, expr, args, num_args);
if (flag_coarray ==
GFC_FCOARRAY_SINGLE && expr->value.function.actual->expr)
{
tree arg;
arg = gfc_evaluate_now (args[0], &se->pre);
tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node,
fold_convert (integer_type_node, arg),
integer_one_node);
tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node,
tmp, integer_zero_node,
build_int_cst (integer_type_node,
GFC_STAT_STOPPED_IMAGE));
}
else if (flag_coarray == GFC_FCOARRAY_SINGLE)
{
// the value -1 represents that no team has been created yet
tmp = build_int_cst (integer_type_node, -1);
}
else if (flag_coarray == GFC_FCOARRAY_LIB && expr->value.function.actual->expr)
tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_team_number, 1,
args[0], build_int_cst (integer_type_node, -1));
else if (flag_coarray == GFC_FCOARRAY_LIB)
tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_team_number, 1,
integer_zero_node, build_int_cst (integer_type_node, -1));
else
gcc_unreachable ();
se->expr = fold_convert (gfc_get_int_type (gfc_default_integer_kind), tmp);
}
static void
trans_image_index (gfc_se * se, gfc_expr *expr)
{
tree num_images, cond, coindex, type, lbound, ubound, desc, subdesc,
tmp, invalid_bound;
gfc_se argse, subse;
int rank, corank, codim;
type = gfc_get_int_type (gfc_default_integer_kind);
corank = gfc_get_corank (expr->value.function.actual->expr);
rank = expr->value.function.actual->expr->rank;
/* Obtain the descriptor of the COARRAY. */
gfc_init_se (&argse, NULL);
argse.want_coarray = 1;
gfc_conv_expr_descriptor (&argse, expr->value.function.actual->expr);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
desc = argse.expr;
/* Obtain a handle to the SUB argument. */
gfc_init_se (&subse, NULL);
gfc_conv_expr_descriptor (&subse, expr->value.function.actual->next->expr);
gfc_add_block_to_block (&se->pre, &subse.pre);
gfc_add_block_to_block (&se->post, &subse.post);
subdesc = build_fold_indirect_ref_loc (input_location,
gfc_conv_descriptor_data_get (subse.expr));
/* Fortran 2008 does not require that the values remain in the cobounds,
thus we need explicitly check this - and return 0 if they are exceeded. */
lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[rank+corank-1]);
tmp = gfc_build_array_ref (subdesc, gfc_rank_cst[corank-1], NULL);
invalid_bound = fold_build2_loc (input_location, LT_EXPR, logical_type_node,
fold_convert (gfc_array_index_type, tmp),
lbound);
for (codim = corank + rank - 2; codim >= rank; codim--)
{
lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[codim]);
ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[codim]);
tmp = gfc_build_array_ref (subdesc, gfc_rank_cst[codim-rank], NULL);
cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node,
fold_convert (gfc_array_index_type, tmp),
lbound);
invalid_bound = fold_build2_loc (input_location, TRUTH_OR_EXPR,
logical_type_node, invalid_bound, cond);
cond = fold_build2_loc (input_location, GT_EXPR, logical_type_node,
fold_convert (gfc_array_index_type, tmp),
ubound);
invalid_bound = fold_build2_loc (input_location, TRUTH_OR_EXPR,
logical_type_node, invalid_bound, cond);
}
invalid_bound = gfc_unlikely (invalid_bound, PRED_FORTRAN_INVALID_BOUND);
/* See Fortran 2008, C.10 for the following algorithm. */
/* coindex = sub(corank) - lcobound(n). */
coindex = fold_convert (gfc_array_index_type,
gfc_build_array_ref (subdesc, gfc_rank_cst[corank-1],
NULL));
lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[rank+corank-1]);
coindex = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type,
fold_convert (gfc_array_index_type, coindex),
lbound);
for (codim = corank + rank - 2; codim >= rank; codim--)
{
tree extent, ubound;
/* coindex = coindex*extent(codim) + sub(codim) - lcobound(codim). */
lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[codim]);
ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[codim]);
extent = gfc_conv_array_extent_dim (lbound, ubound, NULL);
/* coindex *= extent. */
coindex = fold_build2_loc (input_location, MULT_EXPR,
gfc_array_index_type, coindex, extent);
/* coindex += sub(codim). */
tmp = gfc_build_array_ref (subdesc, gfc_rank_cst[codim-rank], NULL);
coindex = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, coindex,
fold_convert (gfc_array_index_type, tmp));
/* coindex -= lbound(codim). */
lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[codim]);
coindex = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, coindex, lbound);
}
coindex = fold_build2_loc (input_location, PLUS_EXPR, type,
fold_convert(type, coindex),
build_int_cst (type, 1));
/* Return 0 if "coindex" exceeds num_images(). */
if (flag_coarray == GFC_FCOARRAY_SINGLE)
num_images = build_int_cst (type, 1);
else
{
tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_num_images, 2,
integer_zero_node,
build_int_cst (integer_type_node, -1));
num_images = fold_convert (type, tmp);
}
tmp = gfc_create_var (type, NULL);
gfc_add_modify (&se->pre, tmp, coindex);
cond = fold_build2_loc (input_location, GT_EXPR, logical_type_node, tmp,
num_images);
cond = fold_build2_loc (input_location, TRUTH_OR_EXPR, logical_type_node,
cond,
fold_convert (logical_type_node, invalid_bound));
se->expr = fold_build3_loc (input_location, COND_EXPR, type, cond,
build_int_cst (type, 0), tmp);
}
static void
trans_num_images (gfc_se * se, gfc_expr *expr)
{
tree tmp, distance, failed;
gfc_se argse;
if (expr->value.function.actual->expr)
{
gfc_init_se (&argse, NULL);
gfc_conv_expr_val (&argse, expr->value.function.actual->expr);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
distance = fold_convert (integer_type_node, argse.expr);
}
else
distance = integer_zero_node;
if (expr->value.function.actual->next->expr)
{
gfc_init_se (&argse, NULL);
gfc_conv_expr_val (&argse, expr->value.function.actual->next->expr);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
failed = fold_convert (integer_type_node, argse.expr);
}
else
failed = build_int_cst (integer_type_node, -1);
tmp = build_call_expr_loc (input_location, gfor_fndecl_caf_num_images, 2,
distance, failed);
se->expr = fold_convert (gfc_get_int_type (gfc_default_integer_kind), tmp);
}
static void
gfc_conv_intrinsic_rank (gfc_se *se, gfc_expr *expr)
{
gfc_se argse;
gfc_init_se (&argse, NULL);
argse.data_not_needed = 1;
argse.descriptor_only = 1;
gfc_conv_expr_descriptor (&argse, expr->value.function.actual->expr);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
se->expr = gfc_conv_descriptor_rank (argse.expr);
se->expr = fold_convert (gfc_get_int_type (gfc_default_integer_kind),
se->expr);
}
static void
gfc_conv_intrinsic_is_contiguous (gfc_se * se, gfc_expr * expr)
{
gfc_expr *arg;
arg = expr->value.function.actual->expr;
gfc_conv_is_contiguous_expr (se, arg);
se->expr = fold_convert (gfc_typenode_for_spec (&expr->ts), se->expr);
}
/* This function does the work for gfc_conv_intrinsic_is_contiguous,
plus it can be called directly. */
void
gfc_conv_is_contiguous_expr (gfc_se *se, gfc_expr *arg)
{
gfc_ss *ss;
gfc_se argse;
tree desc, tmp, stride, extent, cond;
int i;
tree fncall0;
gfc_array_spec *as;
if (arg->ts.type == BT_CLASS)
gfc_add_class_array_ref (arg);
ss = gfc_walk_expr (arg);
gcc_assert (ss != gfc_ss_terminator);
gfc_init_se (&argse, NULL);
argse.data_not_needed = 1;
gfc_conv_expr_descriptor (&argse, arg);
as = gfc_get_full_arrayspec_from_expr (arg);
/* Create: stride[0] == 1 && stride[1] == extend[0]*stride[0] && ...
Note in addition that zero-sized arrays don't count as contiguous. */
if (as && as->type == AS_ASSUMED_RANK)
{
/* Build the call to is_contiguous0. */
argse.want_pointer = 1;
gfc_conv_expr_descriptor (&argse, arg);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
desc = gfc_evaluate_now (argse.expr, &se->pre);
fncall0 = build_call_expr_loc (input_location,
gfor_fndecl_is_contiguous0, 1, desc);
se->expr = fncall0;
se->expr = convert (logical_type_node, se->expr);
}
else
{
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);
desc = gfc_evaluate_now (argse.expr, &se->pre);
stride = gfc_conv_descriptor_stride_get (desc, gfc_rank_cst[0]);
cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
stride, build_int_cst (TREE_TYPE (stride), 1));
for (i = 0; i < arg->rank - 1; i++)
{
tmp = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[i]);
extent = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[i]);
extent = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, extent, tmp);
extent = fold_build2_loc (input_location, PLUS_EXPR,
gfc_array_index_type, extent,
gfc_index_one_node);
tmp = gfc_conv_descriptor_stride_get (desc, gfc_rank_cst[i]);
tmp = fold_build2_loc (input_location, MULT_EXPR, TREE_TYPE (tmp),
tmp, extent);
stride = gfc_conv_descriptor_stride_get (desc, gfc_rank_cst[i+1]);
tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node,
stride, tmp);
cond = fold_build2_loc (input_location, TRUTH_AND_EXPR,
boolean_type_node, cond, tmp);
}
se->expr = cond;
}
}
/* Evaluate a single upper or lower bound. */
/* TODO: bound intrinsic generates way too much unnecessary code. */
static void
gfc_conv_intrinsic_bound (gfc_se * se, gfc_expr * expr, enum gfc_isym_id op)
{
gfc_actual_arglist *arg;
gfc_actual_arglist *arg2;
tree desc;
tree type;
tree bound;
tree tmp;
tree cond, cond1;
tree ubound;
tree lbound;
tree size;
gfc_se argse;
gfc_array_spec * as;
bool assumed_rank_lb_one;
arg = expr->value.function.actual;
arg2 = arg->next;
if (se->ss)
{
/* Create an implicit second parameter from the loop variable. */
gcc_assert (!arg2->expr || op == GFC_ISYM_SHAPE);
gcc_assert (se->loop->dimen == 1);
gcc_assert (se->ss->info->expr == expr);
gfc_advance_se_ss_chain (se);
bound = se->loop->loopvar[0];
bound = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, bound,
se->loop->from[0]);
}
else
{
/* use the passed argument. */
gcc_assert (arg2->expr);
gfc_init_se (&argse, NULL);
gfc_conv_expr_type (&argse, arg2->expr, gfc_array_index_type);
gfc_add_block_to_block (&se->pre, &argse.pre);
bound = argse.expr;
/* Convert from one based to zero based. */
bound = fold_build2_loc (input_location, MINUS_EXPR,
gfc_array_index_type, bound,
gfc_index_one_node);
}
/* TODO: don't re-evaluate the descriptor on each iteration. */
/* Get a descriptor for the first parameter. */
gfc_init_se (&argse, NULL);
gfc_conv_expr_descriptor (&argse, arg->expr);
gfc_add_block_to_block (&se->pre, &argse.pre);
gfc_add_block_to_block (&se->post, &argse.post);