| /* Code for GIMPLE range related routines. |
| Copyright (C) 2019-2022 Free Software Foundation, Inc. |
| Contributed by Andrew MacLeod <amacleod@redhat.com> |
| and Aldy Hernandez <aldyh@redhat.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "insn-codes.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "ssa.h" |
| #include "gimple-pretty-print.h" |
| #include "optabs-tree.h" |
| #include "gimple-fold.h" |
| #include "wide-int.h" |
| #include "fold-const.h" |
| #include "case-cfn-macros.h" |
| #include "omp-general.h" |
| #include "cfgloop.h" |
| #include "tree-ssa-loop.h" |
| #include "tree-scalar-evolution.h" |
| #include "langhooks.h" |
| #include "vr-values.h" |
| #include "range.h" |
| #include "value-query.h" |
| #include "range-op.h" |
| #include "gimple-range.h" |
| // Construct a fur_source, and set the m_query field. |
| |
| fur_source::fur_source (range_query *q) |
| { |
| if (q) |
| m_query = q; |
| else if (cfun) |
| m_query = get_range_query (cfun); |
| else |
| m_query = get_global_range_query (); |
| m_gori = NULL; |
| } |
| |
| // Invoke range_of_expr on EXPR. |
| |
| bool |
| fur_source::get_operand (irange &r, tree expr) |
| { |
| return m_query->range_of_expr (r, expr); |
| } |
| |
| // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current |
| // range_query to get the range on the edge. |
| |
| bool |
| fur_source::get_phi_operand (irange &r, tree expr, edge e) |
| { |
| return m_query->range_on_edge (r, e, expr); |
| } |
| |
| // Default is no relation. |
| |
| relation_kind |
| fur_source::query_relation (tree op1 ATTRIBUTE_UNUSED, |
| tree op2 ATTRIBUTE_UNUSED) |
| { |
| return VREL_NONE; |
| } |
| |
| // Default registers nothing. |
| |
| void |
| fur_source::register_relation (gimple *s ATTRIBUTE_UNUSED, |
| relation_kind k ATTRIBUTE_UNUSED, |
| tree op1 ATTRIBUTE_UNUSED, |
| tree op2 ATTRIBUTE_UNUSED) |
| { |
| } |
| |
| // Default registers nothing. |
| |
| void |
| fur_source::register_relation (edge e ATTRIBUTE_UNUSED, |
| relation_kind k ATTRIBUTE_UNUSED, |
| tree op1 ATTRIBUTE_UNUSED, |
| tree op2 ATTRIBUTE_UNUSED) |
| { |
| } |
| |
| // This version of fur_source will pick a range up off an edge. |
| |
| class fur_edge : public fur_source |
| { |
| public: |
| fur_edge (edge e, range_query *q = NULL); |
| virtual bool get_operand (irange &r, tree expr) OVERRIDE; |
| virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE; |
| private: |
| edge m_edge; |
| }; |
| |
| // Instantiate an edge based fur_source. |
| |
| inline |
| fur_edge::fur_edge (edge e, range_query *q) : fur_source (q) |
| { |
| m_edge = e; |
| } |
| |
| // Get the value of EXPR on edge m_edge. |
| |
| bool |
| fur_edge::get_operand (irange &r, tree expr) |
| { |
| return m_query->range_on_edge (r, m_edge, expr); |
| } |
| |
| // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current |
| // range_query to get the range on the edge. |
| |
| bool |
| fur_edge::get_phi_operand (irange &r, tree expr, edge e) |
| { |
| // Edge to edge recalculations not supoprted yet, until we sort it out. |
| gcc_checking_assert (e == m_edge); |
| return m_query->range_on_edge (r, e, expr); |
| } |
| |
| // Instantiate a stmt based fur_source. |
| |
| fur_stmt::fur_stmt (gimple *s, range_query *q) : fur_source (q) |
| { |
| m_stmt = s; |
| } |
| |
| // Retreive range of EXPR as it occurs as a use on stmt M_STMT. |
| |
| bool |
| fur_stmt::get_operand (irange &r, tree expr) |
| { |
| return m_query->range_of_expr (r, expr, m_stmt); |
| } |
| |
| // Evaluate EXPR for this stmt as a PHI argument on edge E. Use the current |
| // range_query to get the range on the edge. |
| |
| bool |
| fur_stmt::get_phi_operand (irange &r, tree expr, edge e) |
| { |
| // Pick up the range of expr from edge E. |
| fur_edge e_src (e, m_query); |
| return e_src.get_operand (r, expr); |
| } |
| |
| // Return relation based from m_stmt. |
| |
| relation_kind |
| fur_stmt::query_relation (tree op1, tree op2) |
| { |
| return m_query->query_relation (m_stmt, op1, op2); |
| } |
| |
| // Instantiate a stmt based fur_source with a GORI object. |
| |
| |
| fur_depend::fur_depend (gimple *s, gori_compute *gori, range_query *q) |
| : fur_stmt (s, q) |
| { |
| gcc_checking_assert (gori); |
| m_gori = gori; |
| // Set relations if there is an oracle in the range_query. |
| // This will enable registering of relationships as they are discovered. |
| m_oracle = q->oracle (); |
| |
| } |
| |
| // Register a relation on a stmt if there is an oracle. |
| |
| void |
| fur_depend::register_relation (gimple *s, relation_kind k, tree op1, tree op2) |
| { |
| if (m_oracle) |
| m_oracle->register_stmt (s, k, op1, op2); |
| } |
| |
| // Register a relation on an edge if there is an oracle. |
| |
| void |
| fur_depend::register_relation (edge e, relation_kind k, tree op1, tree op2) |
| { |
| if (m_oracle) |
| m_oracle->register_edge (e, k, op1, op2); |
| } |
| |
| // This version of fur_source will pick a range up from a list of ranges |
| // supplied by the caller. |
| |
| class fur_list : public fur_source |
| { |
| public: |
| fur_list (irange &r1); |
| fur_list (irange &r1, irange &r2); |
| fur_list (unsigned num, irange *list); |
| virtual bool get_operand (irange &r, tree expr) OVERRIDE; |
| virtual bool get_phi_operand (irange &r, tree expr, edge e) OVERRIDE; |
| private: |
| int_range_max m_local[2]; |
| irange *m_list; |
| unsigned m_index; |
| unsigned m_limit; |
| }; |
| |
| // One range supplied for unary operations. |
| |
| fur_list::fur_list (irange &r1) : fur_source (NULL) |
| { |
| m_list = m_local; |
| m_index = 0; |
| m_limit = 1; |
| m_local[0] = r1; |
| } |
| |
| // Two ranges supplied for binary operations. |
| |
| fur_list::fur_list (irange &r1, irange &r2) : fur_source (NULL) |
| { |
| m_list = m_local; |
| m_index = 0; |
| m_limit = 2; |
| m_local[0] = r1; |
| m_local[1] = r2; |
| } |
| |
| // Arbitrary number of ranges in a vector. |
| |
| fur_list::fur_list (unsigned num, irange *list) : fur_source (NULL) |
| { |
| m_list = list; |
| m_index = 0; |
| m_limit = num; |
| } |
| |
| // Get the next operand from the vector, ensure types are compatible. |
| |
| bool |
| fur_list::get_operand (irange &r, tree expr) |
| { |
| if (m_index >= m_limit) |
| return m_query->range_of_expr (r, expr); |
| r = m_list[m_index++]; |
| gcc_checking_assert (range_compatible_p (TREE_TYPE (expr), r.type ())); |
| return true; |
| } |
| |
| // This will simply pick the next operand from the vector. |
| bool |
| fur_list::get_phi_operand (irange &r, tree expr, edge e ATTRIBUTE_UNUSED) |
| { |
| return get_operand (r, expr); |
| } |
| |
| // Fold stmt S into range R using R1 as the first operand. |
| |
| bool |
| fold_range (irange &r, gimple *s, irange &r1) |
| { |
| fold_using_range f; |
| fur_list src (r1); |
| return f.fold_stmt (r, s, src); |
| } |
| |
| // Fold stmt S into range R using R1 and R2 as the first two operands. |
| |
| bool |
| fold_range (irange &r, gimple *s, irange &r1, irange &r2) |
| { |
| fold_using_range f; |
| fur_list src (r1, r2); |
| return f.fold_stmt (r, s, src); |
| } |
| |
| // Fold stmt S into range R using NUM_ELEMENTS from VECTOR as the initial |
| // operands encountered. |
| |
| bool |
| fold_range (irange &r, gimple *s, unsigned num_elements, irange *vector) |
| { |
| fold_using_range f; |
| fur_list src (num_elements, vector); |
| return f.fold_stmt (r, s, src); |
| } |
| |
| // Fold stmt S into range R using range query Q. |
| |
| bool |
| fold_range (irange &r, gimple *s, range_query *q) |
| { |
| fold_using_range f; |
| fur_stmt src (s, q); |
| return f.fold_stmt (r, s, src); |
| } |
| |
| // Recalculate stmt S into R using range query Q as if it were on edge ON_EDGE. |
| |
| bool |
| fold_range (irange &r, gimple *s, edge on_edge, range_query *q) |
| { |
| fold_using_range f; |
| fur_edge src (on_edge, q); |
| return f.fold_stmt (r, s, src); |
| } |
| |
| // ------------------------------------------------------------------------- |
| |
| // Adjust the range for a pointer difference where the operands came |
| // from a memchr. |
| // |
| // This notices the following sequence: |
| // |
| // def = __builtin_memchr (arg, 0, sz) |
| // n = def - arg |
| // |
| // The range for N can be narrowed to [0, PTRDIFF_MAX - 1]. |
| |
| static void |
| adjust_pointer_diff_expr (irange &res, const gimple *diff_stmt) |
| { |
| tree op0 = gimple_assign_rhs1 (diff_stmt); |
| tree op1 = gimple_assign_rhs2 (diff_stmt); |
| tree op0_ptype = TREE_TYPE (TREE_TYPE (op0)); |
| tree op1_ptype = TREE_TYPE (TREE_TYPE (op1)); |
| gimple *call; |
| |
| if (TREE_CODE (op0) == SSA_NAME |
| && TREE_CODE (op1) == SSA_NAME |
| && (call = SSA_NAME_DEF_STMT (op0)) |
| && is_gimple_call (call) |
| && gimple_call_builtin_p (call, BUILT_IN_MEMCHR) |
| && TYPE_MODE (op0_ptype) == TYPE_MODE (char_type_node) |
| && TYPE_PRECISION (op0_ptype) == TYPE_PRECISION (char_type_node) |
| && TYPE_MODE (op1_ptype) == TYPE_MODE (char_type_node) |
| && TYPE_PRECISION (op1_ptype) == TYPE_PRECISION (char_type_node) |
| && gimple_call_builtin_p (call, BUILT_IN_MEMCHR) |
| && vrp_operand_equal_p (op1, gimple_call_arg (call, 0)) |
| && integer_zerop (gimple_call_arg (call, 1))) |
| { |
| tree max = vrp_val_max (ptrdiff_type_node); |
| unsigned prec = TYPE_PRECISION (TREE_TYPE (max)); |
| wide_int wmaxm1 = wi::to_wide (max, prec) - 1; |
| res.intersect (wi::zero (prec), wmaxm1); |
| } |
| } |
| |
| // Adjust the range for an IMAGPART_EXPR. |
| |
| static void |
| adjust_imagpart_expr (irange &res, const gimple *stmt) |
| { |
| tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); |
| |
| if (TREE_CODE (name) != SSA_NAME || !SSA_NAME_DEF_STMT (name)) |
| return; |
| |
| gimple *def_stmt = SSA_NAME_DEF_STMT (name); |
| if (is_gimple_call (def_stmt) && gimple_call_internal_p (def_stmt)) |
| { |
| switch (gimple_call_internal_fn (def_stmt)) |
| { |
| case IFN_ADD_OVERFLOW: |
| case IFN_SUB_OVERFLOW: |
| case IFN_MUL_OVERFLOW: |
| case IFN_ATOMIC_COMPARE_EXCHANGE: |
| { |
| int_range<2> r; |
| r.set_varying (boolean_type_node); |
| tree type = TREE_TYPE (gimple_assign_lhs (stmt)); |
| range_cast (r, type); |
| res.intersect (r); |
| } |
| default: |
| break; |
| } |
| return; |
| } |
| if (is_gimple_assign (def_stmt) |
| && gimple_assign_rhs_code (def_stmt) == COMPLEX_CST) |
| { |
| tree cst = gimple_assign_rhs1 (def_stmt); |
| if (TREE_CODE (cst) == COMPLEX_CST) |
| { |
| wide_int imag = wi::to_wide (TREE_IMAGPART (cst)); |
| res.intersect (imag, imag); |
| } |
| } |
| } |
| |
| // Adjust the range for a REALPART_EXPR. |
| |
| static void |
| adjust_realpart_expr (irange &res, const gimple *stmt) |
| { |
| tree name = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0); |
| |
| if (TREE_CODE (name) != SSA_NAME) |
| return; |
| |
| gimple *def_stmt = SSA_NAME_DEF_STMT (name); |
| if (!SSA_NAME_DEF_STMT (name)) |
| return; |
| |
| if (is_gimple_assign (def_stmt) |
| && gimple_assign_rhs_code (def_stmt) == COMPLEX_CST) |
| { |
| tree cst = gimple_assign_rhs1 (def_stmt); |
| if (TREE_CODE (cst) == COMPLEX_CST) |
| { |
| tree imag = TREE_REALPART (cst); |
| int_range<2> tmp (imag, imag); |
| res.intersect (tmp); |
| } |
| } |
| } |
| |
| // This function looks for situations when walking the use/def chains |
| // may provide additonal contextual range information not exposed on |
| // this statement. |
| |
| static void |
| gimple_range_adjustment (irange &res, const gimple *stmt) |
| { |
| switch (gimple_expr_code (stmt)) |
| { |
| case POINTER_DIFF_EXPR: |
| adjust_pointer_diff_expr (res, stmt); |
| return; |
| |
| case IMAGPART_EXPR: |
| adjust_imagpart_expr (res, stmt); |
| return; |
| |
| case REALPART_EXPR: |
| adjust_realpart_expr (res, stmt); |
| return; |
| |
| default: |
| break; |
| } |
| } |
| |
| // Return the base of the RHS of an assignment. |
| |
| static tree |
| gimple_range_base_of_assignment (const gimple *stmt) |
| { |
| gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN); |
| tree op1 = gimple_assign_rhs1 (stmt); |
| if (gimple_assign_rhs_code (stmt) == ADDR_EXPR) |
| return get_base_address (TREE_OPERAND (op1, 0)); |
| return op1; |
| } |
| |
| // Return the first operand of this statement if it is a valid operand |
| // supported by ranges, otherwise return NULL_TREE. Special case is |
| // &(SSA_NAME expr), return the SSA_NAME instead of the ADDR expr. |
| |
| tree |
| gimple_range_operand1 (const gimple *stmt) |
| { |
| gcc_checking_assert (gimple_range_handler (stmt)); |
| |
| switch (gimple_code (stmt)) |
| { |
| case GIMPLE_COND: |
| return gimple_cond_lhs (stmt); |
| case GIMPLE_ASSIGN: |
| { |
| tree base = gimple_range_base_of_assignment (stmt); |
| if (base && TREE_CODE (base) == MEM_REF) |
| { |
| // If the base address is an SSA_NAME, we return it |
| // here. This allows processing of the range of that |
| // name, while the rest of the expression is simply |
| // ignored. The code in range_ops will see the |
| // ADDR_EXPR and do the right thing. |
| tree ssa = TREE_OPERAND (base, 0); |
| if (TREE_CODE (ssa) == SSA_NAME) |
| return ssa; |
| } |
| return base; |
| } |
| default: |
| break; |
| } |
| return NULL; |
| } |
| |
| // Return the second operand of statement STMT, otherwise return NULL_TREE. |
| |
| tree |
| gimple_range_operand2 (const gimple *stmt) |
| { |
| gcc_checking_assert (gimple_range_handler (stmt)); |
| |
| switch (gimple_code (stmt)) |
| { |
| case GIMPLE_COND: |
| return gimple_cond_rhs (stmt); |
| case GIMPLE_ASSIGN: |
| if (gimple_num_ops (stmt) >= 3) |
| return gimple_assign_rhs2 (stmt); |
| default: |
| break; |
| } |
| return NULL_TREE; |
| } |
| |
| // Calculate a range for statement S and return it in R. If NAME is provided it |
| // represents the SSA_NAME on the LHS of the statement. It is only required |
| // if there is more than one lhs/output. If a range cannot |
| // be calculated, return false. |
| |
| bool |
| fold_using_range::fold_stmt (irange &r, gimple *s, fur_source &src, tree name) |
| { |
| bool res = false; |
| // If name and S are specified, make sure it is an LHS of S. |
| gcc_checking_assert (!name || !gimple_get_lhs (s) || |
| name == gimple_get_lhs (s)); |
| |
| if (!name) |
| name = gimple_get_lhs (s); |
| |
| // Process addresses. |
| if (gimple_code (s) == GIMPLE_ASSIGN |
| && gimple_assign_rhs_code (s) == ADDR_EXPR) |
| return range_of_address (r, s, src); |
| |
| if (gimple_range_handler (s)) |
| res = range_of_range_op (r, s, src); |
| else if (is_a<gphi *>(s)) |
| res = range_of_phi (r, as_a<gphi *> (s), src); |
| else if (is_a<gcall *>(s)) |
| res = range_of_call (r, as_a<gcall *> (s), src); |
| else if (is_a<gassign *> (s) && gimple_assign_rhs_code (s) == COND_EXPR) |
| res = range_of_cond_expr (r, as_a<gassign *> (s), src); |
| |
| if (!res) |
| { |
| // If no name specified or range is unsupported, bail. |
| if (!name || !gimple_range_ssa_p (name)) |
| return false; |
| // We don't understand the stmt, so return the global range. |
| r = gimple_range_global (name); |
| return true; |
| } |
| |
| if (r.undefined_p ()) |
| return true; |
| |
| // We sometimes get compatible types copied from operands, make sure |
| // the correct type is being returned. |
| if (name && TREE_TYPE (name) != r.type ()) |
| { |
| gcc_checking_assert (range_compatible_p (r.type (), TREE_TYPE (name))); |
| range_cast (r, TREE_TYPE (name)); |
| } |
| return true; |
| } |
| |
| // Calculate a range for range_op statement S and return it in R. If any |
| // If a range cannot be calculated, return false. |
| |
| bool |
| fold_using_range::range_of_range_op (irange &r, gimple *s, fur_source &src) |
| { |
| int_range_max range1, range2; |
| tree type = gimple_range_type (s); |
| if (!type) |
| return false; |
| range_operator *handler = gimple_range_handler (s); |
| gcc_checking_assert (handler); |
| |
| tree lhs = gimple_get_lhs (s); |
| tree op1 = gimple_range_operand1 (s); |
| tree op2 = gimple_range_operand2 (s); |
| |
| if (src.get_operand (range1, op1)) |
| { |
| if (!op2) |
| { |
| // Fold range, and register any dependency if available. |
| int_range<2> r2 (type); |
| handler->fold_range (r, type, range1, r2); |
| if (lhs && gimple_range_ssa_p (op1)) |
| { |
| if (src.gori ()) |
| src.gori ()->register_dependency (lhs, op1); |
| relation_kind rel; |
| rel = handler->lhs_op1_relation (r, range1, range1); |
| if (rel != VREL_NONE) |
| src.register_relation (s, rel, lhs, op1); |
| } |
| } |
| else if (src.get_operand (range2, op2)) |
| { |
| relation_kind rel = src.query_relation (op1, op2); |
| if (dump_file && (dump_flags & TDF_DETAILS) && rel != VREL_NONE) |
| { |
| fprintf (dump_file, " folding with relation "); |
| print_generic_expr (dump_file, op1, TDF_SLIM); |
| print_relation (dump_file, rel); |
| print_generic_expr (dump_file, op2, TDF_SLIM); |
| fputc ('\n', dump_file); |
| } |
| // Fold range, and register any dependency if available. |
| handler->fold_range (r, type, range1, range2, rel); |
| relation_fold_and_or (r, s, src); |
| if (lhs) |
| { |
| if (src.gori ()) |
| { |
| src.gori ()->register_dependency (lhs, op1); |
| src.gori ()->register_dependency (lhs, op2); |
| } |
| if (gimple_range_ssa_p (op1)) |
| { |
| rel = handler->lhs_op1_relation (r, range1, range2); |
| if (rel != VREL_NONE) |
| src.register_relation (s, rel, lhs, op1); |
| } |
| if (gimple_range_ssa_p (op2)) |
| { |
| rel= handler->lhs_op2_relation (r, range1, range2); |
| if (rel != VREL_NONE) |
| src.register_relation (s, rel, lhs, op2); |
| } |
| } |
| // Check for an existing BB, as we maybe asked to fold an |
| // artificial statement not in the CFG. |
| else if (is_a<gcond *> (s) && gimple_bb (s)) |
| { |
| basic_block bb = gimple_bb (s); |
| edge e0 = EDGE_SUCC (bb, 0); |
| edge e1 = EDGE_SUCC (bb, 1); |
| |
| if (!single_pred_p (e0->dest)) |
| e0 = NULL; |
| if (!single_pred_p (e1->dest)) |
| e1 = NULL; |
| src.register_outgoing_edges (as_a<gcond *> (s), r, e0, e1); |
| } |
| } |
| else |
| r.set_varying (type); |
| } |
| else |
| r.set_varying (type); |
| // Make certain range-op adjustments that aren't handled any other way. |
| gimple_range_adjustment (r, s); |
| return true; |
| } |
| |
| // Calculate the range of an assignment containing an ADDR_EXPR. |
| // Return the range in R. |
| // If a range cannot be calculated, set it to VARYING and return true. |
| |
| bool |
| fold_using_range::range_of_address (irange &r, gimple *stmt, fur_source &src) |
| { |
| gcc_checking_assert (gimple_code (stmt) == GIMPLE_ASSIGN); |
| gcc_checking_assert (gimple_assign_rhs_code (stmt) == ADDR_EXPR); |
| |
| bool strict_overflow_p; |
| tree expr = gimple_assign_rhs1 (stmt); |
| poly_int64 bitsize, bitpos; |
| tree offset; |
| machine_mode mode; |
| int unsignedp, reversep, volatilep; |
| tree base = get_inner_reference (TREE_OPERAND (expr, 0), &bitsize, |
| &bitpos, &offset, &mode, &unsignedp, |
| &reversep, &volatilep); |
| |
| |
| if (base != NULL_TREE |
| && TREE_CODE (base) == MEM_REF |
| && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME) |
| { |
| tree ssa = TREE_OPERAND (base, 0); |
| tree lhs = gimple_get_lhs (stmt); |
| if (lhs && gimple_range_ssa_p (ssa) && src.gori ()) |
| src.gori ()->register_dependency (lhs, ssa); |
| gcc_checking_assert (irange::supports_type_p (TREE_TYPE (ssa))); |
| src.get_operand (r, ssa); |
| range_cast (r, TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| |
| poly_offset_int off = 0; |
| bool off_cst = false; |
| if (offset == NULL_TREE || TREE_CODE (offset) == INTEGER_CST) |
| { |
| off = mem_ref_offset (base); |
| if (offset) |
| off += poly_offset_int::from (wi::to_poly_wide (offset), |
| SIGNED); |
| off <<= LOG2_BITS_PER_UNIT; |
| off += bitpos; |
| off_cst = true; |
| } |
| /* If &X->a is equal to X, the range of X is the result. */ |
| if (off_cst && known_eq (off, 0)) |
| return true; |
| else if (flag_delete_null_pointer_checks |
| && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr))) |
| { |
| /* For -fdelete-null-pointer-checks -fno-wrapv-pointer we don't |
| allow going from non-NULL pointer to NULL. */ |
| if (!range_includes_zero_p (&r)) |
| { |
| /* We could here instead adjust r by off >> LOG2_BITS_PER_UNIT |
| using POINTER_PLUS_EXPR if off_cst and just fall back to |
| this. */ |
| r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| return true; |
| } |
| } |
| /* If MEM_REF has a "positive" offset, consider it non-NULL |
| always, for -fdelete-null-pointer-checks also "negative" |
| ones. Punt for unknown offsets (e.g. variable ones). */ |
| if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)) |
| && off_cst |
| && known_ne (off, 0) |
| && (flag_delete_null_pointer_checks || known_gt (off, 0))) |
| { |
| r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| return true; |
| } |
| r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| return true; |
| } |
| |
| // Handle "= &a". |
| if (tree_single_nonzero_warnv_p (expr, &strict_overflow_p)) |
| { |
| r = range_nonzero (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| return true; |
| } |
| |
| // Otherwise return varying. |
| r = int_range<2> (TREE_TYPE (gimple_assign_rhs1 (stmt))); |
| return true; |
| } |
| |
| // Calculate a range for phi statement S and return it in R. |
| // If a range cannot be calculated, return false. |
| |
| bool |
| fold_using_range::range_of_phi (irange &r, gphi *phi, fur_source &src) |
| { |
| tree phi_def = gimple_phi_result (phi); |
| tree type = gimple_range_type (phi); |
| int_range_max arg_range; |
| int_range_max equiv_range; |
| unsigned x; |
| |
| if (!type) |
| return false; |
| |
| // Track if all executable arguments are the same. |
| tree single_arg = NULL_TREE; |
| bool seen_arg = false; |
| |
| // Start with an empty range, unioning in each argument's range. |
| r.set_undefined (); |
| for (x = 0; x < gimple_phi_num_args (phi); x++) |
| { |
| tree arg = gimple_phi_arg_def (phi, x); |
| // An argument that is the same as the def provides no new range. |
| if (arg == phi_def) |
| continue; |
| |
| edge e = gimple_phi_arg_edge (phi, x); |
| |
| // Get the range of the argument on its edge. |
| src.get_phi_operand (arg_range, arg, e); |
| |
| if (!arg_range.undefined_p ()) |
| { |
| // Register potential dependencies for stale value tracking. |
| // Likewise, if the incoming PHI argument is equivalent to this |
| // PHI definition, it provides no new info. Accumulate these ranges |
| // in case all arguments are equivalences. |
| if (src.query ()->query_relation (e, arg, phi_def, false) == EQ_EXPR) |
| equiv_range.union_(arg_range); |
| else |
| r.union_ (arg_range); |
| |
| if (gimple_range_ssa_p (arg) && src.gori ()) |
| src.gori ()->register_dependency (phi_def, arg); |
| |
| // Track if all arguments are the same. |
| if (!seen_arg) |
| { |
| seen_arg = true; |
| single_arg = arg; |
| } |
| else if (single_arg != arg) |
| single_arg = NULL_TREE; |
| } |
| |
| // Once the value reaches varying, stop looking. |
| if (r.varying_p () && single_arg == NULL_TREE) |
| break; |
| } |
| |
| // If all arguments were equivalences, use the equivalence ranges as no |
| // arguments were processed. |
| if (r.undefined_p () && !equiv_range.undefined_p ()) |
| r = equiv_range; |
| |
| // If the PHI boils down to a single effective argument, look at it. |
| if (single_arg) |
| { |
| // Symbolic arguments are equivalences. |
| if (gimple_range_ssa_p (single_arg)) |
| src.register_relation (phi, EQ_EXPR, phi_def, single_arg); |
| else if (src.get_operand (arg_range, single_arg) |
| && arg_range.singleton_p ()) |
| { |
| // Numerical arguments that are a constant can be returned as |
| // the constant. This can help fold later cases where even this |
| // constant might have been UNDEFINED via an unreachable edge. |
| r = arg_range; |
| return true; |
| } |
| } |
| |
| // If SCEV is available, query if this PHI has any knonwn values. |
| if (scev_initialized_p () && !POINTER_TYPE_P (TREE_TYPE (phi_def))) |
| { |
| value_range loop_range; |
| class loop *l = loop_containing_stmt (phi); |
| if (l && loop_outer (l)) |
| { |
| range_of_ssa_name_with_loop_info (loop_range, phi_def, l, phi, src); |
| if (!loop_range.varying_p ()) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " Loops range found for "); |
| print_generic_expr (dump_file, phi_def, TDF_SLIM); |
| fprintf (dump_file, ": "); |
| loop_range.dump (dump_file); |
| fprintf (dump_file, " and calculated range :"); |
| r.dump (dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| r.intersect (loop_range); |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| // Calculate a range for call statement S and return it in R. |
| // If a range cannot be calculated, return false. |
| |
| bool |
| fold_using_range::range_of_call (irange &r, gcall *call, fur_source &src) |
| { |
| tree type = gimple_range_type (call); |
| if (!type) |
| return false; |
| |
| tree lhs = gimple_call_lhs (call); |
| bool strict_overflow_p; |
| |
| if (range_of_builtin_call (r, call, src)) |
| ; |
| else if (gimple_stmt_nonnegative_warnv_p (call, &strict_overflow_p)) |
| r.set (build_int_cst (type, 0), TYPE_MAX_VALUE (type)); |
| else if (gimple_call_nonnull_result_p (call) |
| || gimple_call_nonnull_arg (call)) |
| r = range_nonzero (type); |
| else |
| r.set_varying (type); |
| |
| // If there is an LHS, intersect that with what is known. |
| if (lhs) |
| { |
| value_range def; |
| def = gimple_range_global (lhs); |
| r.intersect (def); |
| } |
| return true; |
| } |
| |
| // Return the range of a __builtin_ubsan* in CALL and set it in R. |
| // CODE is the type of ubsan call (PLUS_EXPR, MINUS_EXPR or |
| // MULT_EXPR). |
| |
| void |
| fold_using_range::range_of_builtin_ubsan_call (irange &r, gcall *call, |
| tree_code code, fur_source &src) |
| { |
| gcc_checking_assert (code == PLUS_EXPR || code == MINUS_EXPR |
| || code == MULT_EXPR); |
| tree type = gimple_range_type (call); |
| range_operator *op = range_op_handler (code, type); |
| gcc_checking_assert (op); |
| int_range_max ir0, ir1; |
| tree arg0 = gimple_call_arg (call, 0); |
| tree arg1 = gimple_call_arg (call, 1); |
| src.get_operand (ir0, arg0); |
| src.get_operand (ir1, arg1); |
| // Check for any relation between arg0 and arg1. |
| relation_kind relation = src.query_relation (arg0, arg1); |
| |
| bool saved_flag_wrapv = flag_wrapv; |
| // Pretend the arithmetic is wrapping. If there is any overflow, |
| // we'll complain, but will actually do wrapping operation. |
| flag_wrapv = 1; |
| op->fold_range (r, type, ir0, ir1, relation); |
| flag_wrapv = saved_flag_wrapv; |
| |
| // If for both arguments vrp_valueize returned non-NULL, this should |
| // have been already folded and if not, it wasn't folded because of |
| // overflow. Avoid removing the UBSAN_CHECK_* calls in that case. |
| if (r.singleton_p ()) |
| r.set_varying (type); |
| } |
| |
| // Return TRUE if we recognize the target character set and return the |
| // range for lower case and upper case letters. |
| |
| static bool |
| get_letter_range (tree type, irange &lowers, irange &uppers) |
| { |
| // ASCII |
| int a = lang_hooks.to_target_charset ('a'); |
| int z = lang_hooks.to_target_charset ('z'); |
| int A = lang_hooks.to_target_charset ('A'); |
| int Z = lang_hooks.to_target_charset ('Z'); |
| |
| if ((z - a == 25) && (Z - A == 25)) |
| { |
| lowers = int_range<2> (build_int_cst (type, a), build_int_cst (type, z)); |
| uppers = int_range<2> (build_int_cst (type, A), build_int_cst (type, Z)); |
| return true; |
| } |
| // Unknown character set. |
| return false; |
| } |
| |
| // For a builtin in CALL, return a range in R if known and return |
| // TRUE. Otherwise return FALSE. |
| |
| bool |
| fold_using_range::range_of_builtin_call (irange &r, gcall *call, |
| fur_source &src) |
| { |
| combined_fn func = gimple_call_combined_fn (call); |
| if (func == CFN_LAST) |
| return false; |
| |
| tree type = gimple_range_type (call); |
| tree arg; |
| int mini, maxi, zerov = 0, prec; |
| scalar_int_mode mode; |
| |
| switch (func) |
| { |
| case CFN_BUILT_IN_CONSTANT_P: |
| arg = gimple_call_arg (call, 0); |
| if (src.get_operand (r, arg) && r.singleton_p ()) |
| { |
| r.set (build_one_cst (type), build_one_cst (type)); |
| return true; |
| } |
| if (cfun->after_inlining) |
| { |
| r.set_zero (type); |
| // r.equiv_clear (); |
| return true; |
| } |
| break; |
| |
| case CFN_BUILT_IN_TOUPPER: |
| { |
| arg = gimple_call_arg (call, 0); |
| // If the argument isn't compatible with the LHS, do nothing. |
| if (!range_compatible_p (type, TREE_TYPE (arg))) |
| return false; |
| if (!src.get_operand (r, arg)) |
| return false; |
| |
| int_range<3> lowers; |
| int_range<3> uppers; |
| if (!get_letter_range (type, lowers, uppers)) |
| return false; |
| |
| // Return the range passed in without any lower case characters, |
| // but including all the upper case ones. |
| lowers.invert (); |
| r.intersect (lowers); |
| r.union_ (uppers); |
| return true; |
| } |
| |
| case CFN_BUILT_IN_TOLOWER: |
| { |
| arg = gimple_call_arg (call, 0); |
| // If the argument isn't compatible with the LHS, do nothing. |
| if (!range_compatible_p (type, TREE_TYPE (arg))) |
| return false; |
| if (!src.get_operand (r, arg)) |
| return false; |
| |
| int_range<3> lowers; |
| int_range<3> uppers; |
| if (!get_letter_range (type, lowers, uppers)) |
| return false; |
| |
| // Return the range passed in without any upper case characters, |
| // but including all the lower case ones. |
| uppers.invert (); |
| r.intersect (uppers); |
| r.union_ (lowers); |
| return true; |
| } |
| |
| CASE_CFN_FFS: |
| CASE_CFN_POPCOUNT: |
| // __builtin_ffs* and __builtin_popcount* return [0, prec]. |
| arg = gimple_call_arg (call, 0); |
| prec = TYPE_PRECISION (TREE_TYPE (arg)); |
| mini = 0; |
| maxi = prec; |
| src.get_operand (r, arg); |
| // If arg is non-zero, then ffs or popcount are non-zero. |
| if (!range_includes_zero_p (&r)) |
| mini = 1; |
| // If some high bits are known to be zero, decrease the maximum. |
| if (!r.undefined_p ()) |
| { |
| if (TYPE_SIGN (r.type ()) == SIGNED) |
| range_cast (r, unsigned_type_for (r.type ())); |
| wide_int max = r.upper_bound (); |
| maxi = wi::floor_log2 (max) + 1; |
| } |
| r.set (build_int_cst (type, mini), build_int_cst (type, maxi)); |
| return true; |
| |
| CASE_CFN_PARITY: |
| r.set (build_zero_cst (type), build_one_cst (type)); |
| return true; |
| |
| CASE_CFN_CLZ: |
| // __builtin_c[lt]z* return [0, prec-1], except when the |
| // argument is 0, but that is undefined behavior. |
| // |
| // For __builtin_c[lt]z* consider argument of 0 always undefined |
| // behavior, for internal fns depending on C?Z_DEFINED_VALUE_AT_ZERO. |
| arg = gimple_call_arg (call, 0); |
| prec = TYPE_PRECISION (TREE_TYPE (arg)); |
| mini = 0; |
| maxi = prec - 1; |
| mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg)); |
| if (gimple_call_internal_p (call)) |
| { |
| if (optab_handler (clz_optab, mode) != CODE_FOR_nothing |
| && CLZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2) |
| { |
| // Only handle the single common value. |
| if (zerov == prec) |
| maxi = prec; |
| else |
| // Magic value to give up, unless we can prove arg is non-zero. |
| mini = -2; |
| } |
| } |
| |
| src.get_operand (r, arg); |
| // From clz of minimum we can compute result maximum. |
| if (!r.undefined_p ()) |
| { |
| // From clz of minimum we can compute result maximum. |
| if (wi::gt_p (r.lower_bound (), 0, TYPE_SIGN (r.type ()))) |
| { |
| maxi = prec - 1 - wi::floor_log2 (r.lower_bound ()); |
| if (mini == -2) |
| mini = 0; |
| } |
| else if (!range_includes_zero_p (&r)) |
| { |
| mini = 0; |
| maxi = prec - 1; |
| } |
| if (mini == -2) |
| break; |
| // From clz of maximum we can compute result minimum. |
| wide_int max = r.upper_bound (); |
| int newmini = prec - 1 - wi::floor_log2 (max); |
| if (max == 0) |
| { |
| // If CLZ_DEFINED_VALUE_AT_ZERO is 2 with VALUE of prec, |
| // return [prec, prec], otherwise ignore the range. |
| if (maxi == prec) |
| mini = prec; |
| } |
| else |
| mini = newmini; |
| } |
| if (mini == -2) |
| break; |
| r.set (build_int_cst (type, mini), build_int_cst (type, maxi)); |
| return true; |
| |
| CASE_CFN_CTZ: |
| // __builtin_ctz* return [0, prec-1], except for when the |
| // argument is 0, but that is undefined behavior. |
| // |
| // For __builtin_ctz* consider argument of 0 always undefined |
| // behavior, for internal fns depending on CTZ_DEFINED_VALUE_AT_ZERO. |
| arg = gimple_call_arg (call, 0); |
| prec = TYPE_PRECISION (TREE_TYPE (arg)); |
| mini = 0; |
| maxi = prec - 1; |
| mode = SCALAR_INT_TYPE_MODE (TREE_TYPE (arg)); |
| if (gimple_call_internal_p (call)) |
| { |
| if (optab_handler (ctz_optab, mode) != CODE_FOR_nothing |
| && CTZ_DEFINED_VALUE_AT_ZERO (mode, zerov) == 2) |
| { |
| // Handle only the two common values. |
| if (zerov == -1) |
| mini = -1; |
| else if (zerov == prec) |
| maxi = prec; |
| else |
| // Magic value to give up, unless we can prove arg is non-zero. |
| mini = -2; |
| } |
| } |
| src.get_operand (r, arg); |
| if (!r.undefined_p ()) |
| { |
| // If arg is non-zero, then use [0, prec - 1]. |
| if (!range_includes_zero_p (&r)) |
| { |
| mini = 0; |
| maxi = prec - 1; |
| } |
| // If some high bits are known to be zero, we can decrease |
| // the maximum. |
| wide_int max = r.upper_bound (); |
| if (max == 0) |
| { |
| // Argument is [0, 0]. If CTZ_DEFINED_VALUE_AT_ZERO |
| // is 2 with value -1 or prec, return [-1, -1] or [prec, prec]. |
| // Otherwise ignore the range. |
| if (mini == -1) |
| maxi = -1; |
| else if (maxi == prec) |
| mini = prec; |
| } |
| // If value at zero is prec and 0 is in the range, we can't lower |
| // the upper bound. We could create two separate ranges though, |
| // [0,floor_log2(max)][prec,prec] though. |
| else if (maxi != prec) |
| maxi = wi::floor_log2 (max); |
| } |
| if (mini == -2) |
| break; |
| r.set (build_int_cst (type, mini), build_int_cst (type, maxi)); |
| return true; |
| |
| CASE_CFN_CLRSB: |
| arg = gimple_call_arg (call, 0); |
| prec = TYPE_PRECISION (TREE_TYPE (arg)); |
| r.set (build_int_cst (type, 0), build_int_cst (type, prec - 1)); |
| return true; |
| case CFN_UBSAN_CHECK_ADD: |
| range_of_builtin_ubsan_call (r, call, PLUS_EXPR, src); |
| return true; |
| case CFN_UBSAN_CHECK_SUB: |
| range_of_builtin_ubsan_call (r, call, MINUS_EXPR, src); |
| return true; |
| case CFN_UBSAN_CHECK_MUL: |
| range_of_builtin_ubsan_call (r, call, MULT_EXPR, src); |
| return true; |
| |
| case CFN_GOACC_DIM_SIZE: |
| case CFN_GOACC_DIM_POS: |
| // Optimizing these two internal functions helps the loop |
| // optimizer eliminate outer comparisons. Size is [1,N] |
| // and pos is [0,N-1]. |
| { |
| bool is_pos = func == CFN_GOACC_DIM_POS; |
| int axis = oacc_get_ifn_dim_arg (call); |
| int size = oacc_get_fn_dim_size (current_function_decl, axis); |
| if (!size) |
| // If it's dynamic, the backend might know a hardware limitation. |
| size = targetm.goacc.dim_limit (axis); |
| |
| r.set (build_int_cst (type, is_pos ? 0 : 1), |
| size |
| ? build_int_cst (type, size - is_pos) : vrp_val_max (type)); |
| return true; |
| } |
| |
| case CFN_BUILT_IN_STRLEN: |
| if (tree lhs = gimple_call_lhs (call)) |
| if (ptrdiff_type_node |
| && (TYPE_PRECISION (ptrdiff_type_node) |
| == TYPE_PRECISION (TREE_TYPE (lhs)))) |
| { |
| tree type = TREE_TYPE (lhs); |
| tree max = vrp_val_max (ptrdiff_type_node); |
| wide_int wmax |
| = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max))); |
| tree range_min = build_zero_cst (type); |
| // To account for the terminating NULL, the maximum length |
| // is one less than the maximum array size, which in turn |
| // is one less than PTRDIFF_MAX (or SIZE_MAX where it's |
| // smaller than the former type). |
| // FIXME: Use max_object_size() - 1 here. |
| tree range_max = wide_int_to_tree (type, wmax - 2); |
| r.set (range_min, range_max); |
| return true; |
| } |
| break; |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| |
| // Calculate a range for COND_EXPR statement S and return it in R. |
| // If a range cannot be calculated, return false. |
| |
| bool |
| fold_using_range::range_of_cond_expr (irange &r, gassign *s, fur_source &src) |
| { |
| int_range_max cond_range, range1, range2; |
| tree cond = gimple_assign_rhs1 (s); |
| tree op1 = gimple_assign_rhs2 (s); |
| tree op2 = gimple_assign_rhs3 (s); |
| |
| tree type = gimple_range_type (s); |
| if (!type) |
| return false; |
| |
| gcc_checking_assert (gimple_assign_rhs_code (s) == COND_EXPR); |
| gcc_checking_assert (range_compatible_p (TREE_TYPE (op1), TREE_TYPE (op2))); |
| src.get_operand (cond_range, cond); |
| src.get_operand (range1, op1); |
| src.get_operand (range2, op2); |
| |
| // Try to see if there is a dependence between the COND and either operand |
| if (src.gori ()) |
| if (src.gori ()->condexpr_adjust (range1, range2, s, cond, op1, op2, src)) |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Possible COND_EXPR adjustment. Range op1 : "); |
| range1.dump(dump_file); |
| fprintf (dump_file, " and Range op2: "); |
| range2.dump(dump_file); |
| fprintf (dump_file, "\n"); |
| } |
| |
| // If the condition is known, choose the appropriate expression. |
| if (cond_range.singleton_p ()) |
| { |
| // False, pick second operand. |
| if (cond_range.zero_p ()) |
| r = range2; |
| else |
| r = range1; |
| } |
| else |
| { |
| r = range1; |
| r.union_ (range2); |
| } |
| gcc_checking_assert (r.undefined_p () |
| || range_compatible_p (r.type (), type)); |
| return true; |
| } |
| |
| // If SCEV has any information about phi node NAME, return it as a range in R. |
| |
| void |
| fold_using_range::range_of_ssa_name_with_loop_info (irange &r, tree name, |
| class loop *l, gphi *phi, |
| fur_source &src) |
| { |
| gcc_checking_assert (TREE_CODE (name) == SSA_NAME); |
| tree min, max, type = TREE_TYPE (name); |
| if (bounds_of_var_in_loop (&min, &max, src.query (), l, phi, name)) |
| { |
| if (TREE_CODE (min) != INTEGER_CST) |
| { |
| if (src.query ()->range_of_expr (r, min, phi) && !r.undefined_p ()) |
| min = wide_int_to_tree (type, r.lower_bound ()); |
| else |
| min = vrp_val_min (type); |
| } |
| if (TREE_CODE (max) != INTEGER_CST) |
| { |
| if (src.query ()->range_of_expr (r, max, phi) && !r.undefined_p ()) |
| max = wide_int_to_tree (type, r.upper_bound ()); |
| else |
| max = vrp_val_max (type); |
| } |
| r.set (min, max); |
| } |
| else |
| r.set_varying (type); |
| } |
| |
| // ----------------------------------------------------------------------- |
| |
| // Check if an && or || expression can be folded based on relations. ie |
| // c_2 = a_6 > b_7 |
| // c_3 = a_6 < b_7 |
| // c_4 = c_2 && c_3 |
| // c_2 and c_3 can never be true at the same time, |
| // Therefore c_4 can always resolve to false based purely on the relations. |
| |
| void |
| fold_using_range::relation_fold_and_or (irange& lhs_range, gimple *s, |
| fur_source &src) |
| { |
| // No queries or already folded. |
| if (!src.gori () || !src.query ()->oracle () || lhs_range.singleton_p ()) |
| return; |
| |
| // Only care about AND and OR expressions. |
| enum tree_code code = gimple_expr_code (s); |
| bool is_and = false; |
| if (code == BIT_AND_EXPR || code == TRUTH_AND_EXPR) |
| is_and = true; |
| else if (code != BIT_IOR_EXPR && code != TRUTH_OR_EXPR) |
| return; |
| |
| tree lhs = gimple_get_lhs (s); |
| tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s)); |
| tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s)); |
| |
| // Deal with || and && only when there is a full set of symbolics. |
| if (!lhs || !ssa1 || !ssa2 |
| || (TREE_CODE (TREE_TYPE (lhs)) != BOOLEAN_TYPE) |
| || (TREE_CODE (TREE_TYPE (ssa1)) != BOOLEAN_TYPE) |
| || (TREE_CODE (TREE_TYPE (ssa2)) != BOOLEAN_TYPE)) |
| return; |
| |
| // Now we know its a boolean AND or OR expression with boolean operands. |
| // Ideally we search dependencies for common names, and see what pops out. |
| // until then, simply try to resolve direct dependencies. |
| |
| // Both names will need to have 2 direct dependencies. |
| tree ssa1_dep2 = src.gori ()->depend2 (ssa1); |
| tree ssa2_dep2 = src.gori ()->depend2 (ssa2); |
| if (!ssa1_dep2 || !ssa2_dep2) |
| return; |
| |
| tree ssa1_dep1 = src.gori ()->depend1 (ssa1); |
| tree ssa2_dep1 = src.gori ()->depend1 (ssa2); |
| // Make sure they are the same dependencies, and detect the order of the |
| // relationship. |
| bool reverse_op2 = true; |
| if (ssa1_dep1 == ssa2_dep1 && ssa1_dep2 == ssa2_dep2) |
| reverse_op2 = false; |
| else if (ssa1_dep1 != ssa2_dep2 || ssa1_dep2 != ssa2_dep1) |
| return; |
| |
| range_operator *handler1 = gimple_range_handler (SSA_NAME_DEF_STMT (ssa1)); |
| range_operator *handler2 = gimple_range_handler (SSA_NAME_DEF_STMT (ssa2)); |
| |
| // If either handler is not present, no relation is found. |
| if (!handler1 || !handler2) |
| return; |
| |
| int_range<2> bool_one (boolean_true_node, boolean_true_node); |
| |
| relation_kind relation1 = handler1->op1_op2_relation (bool_one); |
| relation_kind relation2 = handler2->op1_op2_relation (bool_one); |
| if (relation1 == VREL_NONE || relation2 == VREL_NONE) |
| return; |
| |
| if (reverse_op2) |
| relation2 = relation_negate (relation2); |
| |
| // x && y is false if the relation intersection of the true cases is NULL. |
| if (is_and && relation_intersect (relation1, relation2) == VREL_EMPTY) |
| lhs_range = int_range<2> (boolean_false_node, boolean_false_node); |
| // x || y is true if the union of the true cases is NO-RELATION.. |
| // ie, one or the other being true covers the full range of possibilties. |
| else if (!is_and && relation_union (relation1, relation2) == VREL_NONE) |
| lhs_range = bool_one; |
| else |
| return; |
| |
| range_cast (lhs_range, TREE_TYPE (lhs)); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, " Relation adjustment: "); |
| print_generic_expr (dump_file, ssa1, TDF_SLIM); |
| fprintf (dump_file, " and "); |
| print_generic_expr (dump_file, ssa2, TDF_SLIM); |
| fprintf (dump_file, " combine to produce "); |
| lhs_range.dump (dump_file); |
| fputc ('\n', dump_file); |
| } |
| |
| return; |
| } |
| |
| // Register any outgoing edge relations from a conditional branch. |
| |
| void |
| fur_source::register_outgoing_edges (gcond *s, irange &lhs_range, edge e0, edge e1) |
| { |
| int_range_max r; |
| int_range<2> e0_range, e1_range; |
| tree name; |
| range_operator *handler; |
| basic_block bb = gimple_bb (s); |
| |
| if (e0) |
| { |
| // If this edge is never taken, ignore it. |
| gcond_edge_range (e0_range, e0); |
| e0_range.intersect (lhs_range); |
| if (e0_range.undefined_p ()) |
| e0 = NULL; |
| } |
| |
| |
| if (e1) |
| { |
| // If this edge is never taken, ignore it. |
| gcond_edge_range (e1_range, e1); |
| e1_range.intersect (lhs_range); |
| if (e1_range.undefined_p ()) |
| e1 = NULL; |
| } |
| |
| if (!e0 && !e1) |
| return; |
| |
| // First, register the gcond itself. This will catch statements like |
| // if (a_2 < b_5) |
| tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (s)); |
| tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (s)); |
| if (ssa1 && ssa2) |
| { |
| handler = gimple_range_handler (s); |
| gcc_checking_assert (handler); |
| if (e0) |
| { |
| relation_kind relation = handler->op1_op2_relation (e0_range); |
| if (relation != VREL_NONE) |
| register_relation (e0, relation, ssa1, ssa2); |
| } |
| if (e1) |
| { |
| relation_kind relation = handler->op1_op2_relation (e1_range); |
| if (relation != VREL_NONE) |
| register_relation (e1, relation, ssa1, ssa2); |
| } |
| } |
| |
| // Outgoing relations of GORI exports require a gori engine. |
| if (!gori ()) |
| return; |
| |
| // Now look for other relations in the exports. This will find stmts |
| // leading to the condition such as: |
| // c_2 = a_4 < b_7 |
| // if (c_2) |
| FOR_EACH_GORI_EXPORT_NAME (*(gori ()), bb, name) |
| { |
| if (TREE_CODE (TREE_TYPE (name)) != BOOLEAN_TYPE) |
| continue; |
| gimple *stmt = SSA_NAME_DEF_STMT (name); |
| handler = gimple_range_handler (stmt); |
| if (!handler) |
| continue; |
| tree ssa1 = gimple_range_ssa_p (gimple_range_operand1 (stmt)); |
| tree ssa2 = gimple_range_ssa_p (gimple_range_operand2 (stmt)); |
| if (ssa1 && ssa2) |
| { |
| if (e0 && gori ()->outgoing_edge_range_p (r, e0, name, *m_query) |
| && r.singleton_p ()) |
| { |
| relation_kind relation = handler->op1_op2_relation (r); |
| if (relation != VREL_NONE) |
| register_relation (e0, relation, ssa1, ssa2); |
| } |
| if (e1 && gori ()->outgoing_edge_range_p (r, e1, name, *m_query) |
| && r.singleton_p ()) |
| { |
| relation_kind relation = handler->op1_op2_relation (r); |
| if (relation != VREL_NONE) |
| register_relation (e1, relation, ssa1, ssa2); |
| } |
| } |
| } |
| } |