blob: 261a720858f03d0e546b97774909578b89743d0a [file] [log] [blame]
/* Interprocedural scalar replacement of aggregates
Copyright (C) 2019-2022 Free Software Foundation, Inc.
Contributed by Martin Jambor <mjambor@suse.cz>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* IPA-SRA is an interprocedural pass that removes unused function return
values (turning functions returning a value which is never used into void
functions) and removes unused function parameters. It can also replace an
aggregate parameter by a set of other parameters representing part of the
original, turning those passed by reference into new ones which pass the
value directly.
The pass is a true IPA one, which means that it works in three stages in
order to be able to take advantage of LTO. First, summaries about functions
and each calls are generated. Function summaries (often called call graph
node summaries) contain mainly information about which parameters are
potential transformation candidates and which bits of candidates are
accessed. We differentiate between accesses done as a part of a call
statement (which might be not necessary if the callee is also transformed)
and others (which are mandatory). Call summaries (often called call graph
edge summaries) contain information about which function formal parameters
feed into which actual call arguments so that if two parameters are only
used in a sum which is then passed to another function which then however
does not use this parameter, all three parameters of the two functions can
be eliminated. Edge summaries also have flags whether the return value is
used or if it is only returned in the caller too. In LTO mode these
summaries are then streamed to the object file in the compilation phase and
streamed back in in the WPA analysis stage.
The interprocedural analysis phase traverses the graph in topological order
in two sweeps, one in each direction. First, from callees to callers for
parameter removal and splitting. Each strongly-connected component is
processed iteratively until the situation in it stabilizes. The pass from
callers to callees is then carried out to remove unused return values in a
very similar fashion.
Because parameter manipulation has big implications for call redirection
which is done only after all call graph nodes materialize, the
transformation phase is not part of this patch but is carried out by the
clone materialization and edge redirection itself, see comments in
ipa-param-manipulation.h for more details. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "predict.h"
#include "tree-pass.h"
#include "ssa.h"
#include "cgraph.h"
#include "gimple-pretty-print.h"
#include "alias.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "tree-dfa.h"
#include "tree-sra.h"
#include "alloc-pool.h"
#include "symbol-summary.h"
#include "dbgcnt.h"
#include "tree-inline.h"
#include "ipa-utils.h"
#include "builtins.h"
#include "cfganal.h"
#include "tree-streamer.h"
#include "internal-fn.h"
#include "symtab-clones.h"
#include "attribs.h"
static void ipa_sra_summarize_function (cgraph_node *);
/* Bits used to track size of an aggregate in bytes interprocedurally. */
#define ISRA_ARG_SIZE_LIMIT_BITS 16
#define ISRA_ARG_SIZE_LIMIT (1 << ISRA_ARG_SIZE_LIMIT_BITS)
/* How many parameters can feed into a call actual argument and still be
tracked. */
#define IPA_SRA_MAX_PARAM_FLOW_LEN 7
/* Structure describing accesses to a specific portion of an aggregate
parameter, as given by the offset and size. Any smaller accesses that occur
within a function that fall within another access form a tree. The pass
cannot analyze parameters with only partially overlapping accesses. */
struct GTY(()) param_access
{
/* Type that a potential replacement should have. This field only has
meaning in the summary building and transformation phases, when it is
reconstructed from the body. Must not be touched in IPA analysis
stage. */
tree type;
/* Alias reference type to be used in MEM_REFs when adjusting caller
arguments. */
tree alias_ptr_type;
/* Values returned by get_ref_base_and_extent but converted to bytes and
stored as unsigned ints. */
unsigned unit_offset;
unsigned unit_size : ISRA_ARG_SIZE_LIMIT_BITS;
/* Set once we are sure that the access will really end up in a potentially
transformed function - initially not set for portions of formal parameters
that are only used as actual function arguments passed to callees. */
unsigned certain : 1;
/* Set if the access has reverse scalar storage order. */
unsigned reverse : 1;
};
/* This structure has the same purpose as the one above and additionally it
contains some fields that are only necessary in the summary generation
phase. */
struct gensum_param_access
{
/* Values returned by get_ref_base_and_extent. */
HOST_WIDE_INT offset;
HOST_WIDE_INT size;
/* if this access has any children (in terms of the definition above), this
points to the first one. */
struct gensum_param_access *first_child;
/* In intraprocedural SRA, pointer to the next sibling in the access tree as
described above. */
struct gensum_param_access *next_sibling;
/* Type that a potential replacement should have. This field only has
meaning in the summary building and transformation phases, when it is
reconstructed from the body. Must not be touched in IPA analysis
stage. */
tree type;
/* Alias reference type to be used in MEM_REFs when adjusting caller
arguments. */
tree alias_ptr_type;
/* Have there been writes to or reads from this exact location except for as
arguments to a function call that can be tracked. */
bool nonarg;
/* Set if the access has reverse scalar storage order. */
bool reverse;
};
/* Summary describing a parameter in the IPA stages. */
struct GTY(()) isra_param_desc
{
/* List of access representatives to the parameters, sorted according to
their offset. */
vec <param_access *, va_gc> *accesses;
/* Unit size limit of total size of all replacements. */
unsigned param_size_limit : ISRA_ARG_SIZE_LIMIT_BITS;
/* Sum of unit sizes of all certain replacements. */
unsigned size_reached : ISRA_ARG_SIZE_LIMIT_BITS;
/* A parameter that is used only in call arguments and can be removed if all
concerned actual arguments are removed. */
unsigned locally_unused : 1;
/* An aggregate that is a candidate for breaking up or complete removal. */
unsigned split_candidate : 1;
/* Is this a parameter passing stuff by reference? */
unsigned by_ref : 1;
};
/* Structure used when generating summaries that describes a parameter. */
struct gensum_param_desc
{
/* Roots of param_accesses. */
gensum_param_access *accesses;
/* Number of accesses in the access tree rooted in field accesses. */
unsigned access_count;
/* If the below is non-zero, this is the number of uses as actual arguments. */
int call_uses;
/* Number of times this parameter has been directly passed to. */
unsigned ptr_pt_count;
/* Size limit of total size of all replacements. */
unsigned param_size_limit;
/* Sum of sizes of nonarg accesses. */
unsigned nonarg_acc_size;
/* A parameter that is used only in call arguments and can be removed if all
concerned actual arguments are removed. */
bool locally_unused;
/* An aggregate that is a candidate for breaking up or a pointer passing data
by reference that is a candidate for being converted to a set of
parameters passing those data by value. */
bool split_candidate;
/* Is this a parameter passing stuff by reference? */
bool by_ref;
/* The number of this parameter as they are ordered in function decl. */
int param_number;
/* For parameters passing data by reference, this is parameter index to
compute indices to bb_dereferences. */
int deref_index;
};
/* Properly deallocate accesses of DESC. TODO: Since this data structure is
allocated in GC memory, this is not necessary and we can consider removing
the function. */
static void
free_param_decl_accesses (isra_param_desc *desc)
{
unsigned len = vec_safe_length (desc->accesses);
for (unsigned i = 0; i < len; ++i)
ggc_free ((*desc->accesses)[i]);
vec_free (desc->accesses);
}
/* Class used to convey information about functions from the
intra-procedural analysis stage to inter-procedural one. */
class GTY((for_user)) isra_func_summary
{
public:
/* initialize the object. */
isra_func_summary ()
: m_parameters (NULL), m_candidate (false), m_returns_value (false),
m_return_ignored (false), m_queued (false)
{}
/* Destroy m_parameters. */
~isra_func_summary ();
/* Mark the function as not a candidate for any IPA-SRA transformation.
Return true if it was a candidate until now. */
bool zap ();
/* Vector of parameter descriptors corresponding to the function being
analyzed. */
vec<isra_param_desc, va_gc> *m_parameters;
/* Whether the node is even a candidate for any IPA-SRA transformation at
all. */
unsigned m_candidate : 1;
/* Whether the original function returns any value. */
unsigned m_returns_value : 1;
/* Set to true if all call statements do not actually use the returned
value. */
unsigned m_return_ignored : 1;
/* Whether the node is already queued in IPA SRA stack during processing of
call graphs SCCs. */
unsigned m_queued : 1;
};
/* Deallocate the memory pointed to by isra_func_summary. TODO: Since this
data structure is allocated in GC memory, this is not necessary and we can
consider removing the destructor. */
isra_func_summary::~isra_func_summary ()
{
unsigned len = vec_safe_length (m_parameters);
for (unsigned i = 0; i < len; ++i)
free_param_decl_accesses (&(*m_parameters)[i]);
vec_free (m_parameters);
}
/* Mark the function as not a candidate for any IPA-SRA transformation. Return
true if it was a candidate until now. */
bool
isra_func_summary::zap ()
{
bool ret = m_candidate;
m_candidate = false;
/* TODO: see the destructor above. */
unsigned len = vec_safe_length (m_parameters);
for (unsigned i = 0; i < len; ++i)
free_param_decl_accesses (&(*m_parameters)[i]);
vec_free (m_parameters);
return ret;
}
/* Structure to describe which formal parameters feed into a particular actual
argument. */
struct isra_param_flow
{
/* Number of elements in array inputs that contain valid data. */
char length;
/* Indices of formal parameters that feed into the described actual argument.
If aggregate_pass_through or pointer_pass_through below are true, it must
contain exactly one element which is passed through from a formal
parameter if the given number. Otherwise, the array contains indices of
callee's formal parameters which are used to calculate value of this
actual argument. */
unsigned char inputs[IPA_SRA_MAX_PARAM_FLOW_LEN];
/* Offset within the formal parameter. */
unsigned unit_offset;
/* Size of the portion of the formal parameter that is being passed. */
unsigned unit_size : ISRA_ARG_SIZE_LIMIT_BITS;
/* True when the value of this actual copy is a portion of a formal
parameter. */
unsigned aggregate_pass_through : 1;
/* True when the value of this actual copy is a verbatim pass through of an
obtained pointer. */
unsigned pointer_pass_through : 1;
/* True when it is safe to copy access candidates here from the callee, which
would mean introducing dereferences into callers of the caller. */
unsigned safe_to_import_accesses : 1;
};
/* Structure used to convey information about calls from the intra-procedural
analysis stage to inter-procedural one. */
class isra_call_summary
{
public:
isra_call_summary ()
: m_arg_flow (), m_return_ignored (false), m_return_returned (false),
m_bit_aligned_arg (false), m_before_any_store (false)
{}
void init_inputs (unsigned arg_count);
void dump (FILE *f);
/* Information about what formal parameters of the caller are used to compute
individual actual arguments of this call. */
auto_vec <isra_param_flow> m_arg_flow;
/* Set to true if the call statement does not have a LHS. */
unsigned m_return_ignored : 1;
/* Set to true if the LHS of call statement is only used to construct the
return value of the caller. */
unsigned m_return_returned : 1;
/* Set when any of the call arguments are not byte-aligned. */
unsigned m_bit_aligned_arg : 1;
/* Set to true if the call happend before any (other) store to memory in the
caller. */
unsigned m_before_any_store : 1;
};
/* Class to manage function summaries. */
class GTY((user)) ipa_sra_function_summaries
: public function_summary <isra_func_summary *>
{
public:
ipa_sra_function_summaries (symbol_table *table, bool ggc):
function_summary<isra_func_summary *> (table, ggc) { }
virtual void duplicate (cgraph_node *, cgraph_node *,
isra_func_summary *old_sum,
isra_func_summary *new_sum);
virtual void insert (cgraph_node *, isra_func_summary *);
};
/* Hook that is called by summary when a node is duplicated. */
void
ipa_sra_function_summaries::duplicate (cgraph_node *, cgraph_node *,
isra_func_summary *old_sum,
isra_func_summary *new_sum)
{
/* TODO: Somehow stop copying when ISRA is doing the cloning, it is
useless. */
new_sum->m_candidate = old_sum->m_candidate;
new_sum->m_returns_value = old_sum->m_returns_value;
new_sum->m_return_ignored = old_sum->m_return_ignored;
gcc_assert (!old_sum->m_queued);
new_sum->m_queued = false;
unsigned param_count = vec_safe_length (old_sum->m_parameters);
if (!param_count)
return;
vec_safe_reserve_exact (new_sum->m_parameters, param_count);
new_sum->m_parameters->quick_grow_cleared (param_count);
for (unsigned i = 0; i < param_count; i++)
{
isra_param_desc *s = &(*old_sum->m_parameters)[i];
isra_param_desc *d = &(*new_sum->m_parameters)[i];
d->param_size_limit = s->param_size_limit;
d->size_reached = s->size_reached;
d->locally_unused = s->locally_unused;
d->split_candidate = s->split_candidate;
d->by_ref = s->by_ref;
unsigned acc_count = vec_safe_length (s->accesses);
vec_safe_reserve_exact (d->accesses, acc_count);
for (unsigned j = 0; j < acc_count; j++)
{
param_access *from = (*s->accesses)[j];
param_access *to = ggc_cleared_alloc<param_access> ();
to->type = from->type;
to->alias_ptr_type = from->alias_ptr_type;
to->unit_offset = from->unit_offset;
to->unit_size = from->unit_size;
to->certain = from->certain;
to->reverse = from->reverse;
d->accesses->quick_push (to);
}
}
}
/* Pointer to the pass function summary holder. */
static GTY(()) ipa_sra_function_summaries *func_sums;
/* Hook that is called by summary when new node appears. */
void
ipa_sra_function_summaries::insert (cgraph_node *node, isra_func_summary *)
{
if (opt_for_fn (node->decl, flag_ipa_sra))
{
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
ipa_sra_summarize_function (node);
pop_cfun ();
}
else
func_sums->remove (node);
}
/* Class to manage call summaries. */
class ipa_sra_call_summaries: public call_summary <isra_call_summary *>
{
public:
ipa_sra_call_summaries (symbol_table *table):
call_summary<isra_call_summary *> (table) { }
/* Duplicate info when an edge is cloned. */
virtual void duplicate (cgraph_edge *, cgraph_edge *,
isra_call_summary *old_sum,
isra_call_summary *new_sum);
};
static ipa_sra_call_summaries *call_sums;
/* Initialize m_arg_flow of a particular instance of isra_call_summary.
ARG_COUNT is the number of actual arguments passed. */
void
isra_call_summary::init_inputs (unsigned arg_count)
{
if (arg_count == 0)
{
gcc_checking_assert (m_arg_flow.length () == 0);
return;
}
if (m_arg_flow.length () == 0)
{
m_arg_flow.reserve_exact (arg_count);
m_arg_flow.quick_grow_cleared (arg_count);
}
else
gcc_checking_assert (arg_count == m_arg_flow.length ());
}
/* Dump all information in call summary to F. */
void
isra_call_summary::dump (FILE *f)
{
if (m_return_ignored)
fprintf (f, " return value ignored\n");
if (m_return_returned)
fprintf (f, " return value used only to compute caller return value\n");
if (m_before_any_store)
fprintf (f, " happens before any store to memory\n");
for (unsigned i = 0; i < m_arg_flow.length (); i++)
{
fprintf (f, " Parameter %u:\n", i);
isra_param_flow *ipf = &m_arg_flow[i];
if (ipf->length)
{
bool first = true;
fprintf (f, " Scalar param sources: ");
for (int j = 0; j < ipf->length; j++)
{
if (!first)
fprintf (f, ", ");
else
first = false;
fprintf (f, "%i", (int) ipf->inputs[j]);
}
fprintf (f, "\n");
}
if (ipf->aggregate_pass_through)
fprintf (f, " Aggregate pass through from the param given above, "
"unit offset: %u , unit size: %u\n",
ipf->unit_offset, ipf->unit_size);
if (ipf->pointer_pass_through)
fprintf (f, " Pointer pass through from the param given above, "
"safe_to_import_accesses: %u\n", ipf->safe_to_import_accesses);
}
}
/* Duplicate edge summary when an edge is cloned. */
void
ipa_sra_call_summaries::duplicate (cgraph_edge *, cgraph_edge *,
isra_call_summary *old_sum,
isra_call_summary *new_sum)
{
unsigned arg_count = old_sum->m_arg_flow.length ();
new_sum->init_inputs (arg_count);
for (unsigned i = 0; i < arg_count; i++)
new_sum->m_arg_flow[i] = old_sum->m_arg_flow[i];
new_sum->m_return_ignored = old_sum->m_return_ignored;
new_sum->m_return_returned = old_sum->m_return_returned;
new_sum->m_bit_aligned_arg = old_sum->m_bit_aligned_arg;
new_sum->m_before_any_store = old_sum->m_before_any_store;
}
/* With all GTY stuff done, we can move to anonymous namespace. */
namespace {
/* Quick mapping from a decl to its param descriptor. */
hash_map<tree, gensum_param_desc *> *decl2desc;
/* Countdown of allowed Alias Analysis steps during summary building. */
int aa_walking_limit;
/* This is a table in which for each basic block and parameter there is a
distance (offset + size) in that parameter which is dereferenced and
accessed in that BB. */
HOST_WIDE_INT *bb_dereferences = NULL;
/* How many by-reference parameters there are in the current function. */
int by_ref_count;
/* Bitmap of BBs that can cause the function to "stop" progressing by
returning, throwing externally, looping infinitely or calling a function
which might abort etc.. */
bitmap final_bbs;
/* Obstack to allocate various small structures required only when generating
summary for a function. */
struct obstack gensum_obstack;
/* Return false the function is apparently unsuitable for IPA-SRA based on it's
attributes, return true otherwise. NODE is the cgraph node of the current
function. */
static bool
ipa_sra_preliminary_function_checks (cgraph_node *node)
{
if (!node->can_change_signature)
{
if (dump_file)
fprintf (dump_file, "Function cannot change signature.\n");
return false;
}
if (!tree_versionable_function_p (node->decl))
{
if (dump_file)
fprintf (dump_file, "Function is not versionable.\n");
return false;
}
if (!opt_for_fn (node->decl, optimize)
|| !opt_for_fn (node->decl, flag_ipa_sra))
{
if (dump_file)
fprintf (dump_file, "Not optimizing or IPA-SRA turned off for this "
"function.\n");
return false;
}
if (DECL_VIRTUAL_P (node->decl))
{
if (dump_file)
fprintf (dump_file, "Function is a virtual method.\n");
return false;
}
struct function *fun = DECL_STRUCT_FUNCTION (node->decl);
if (fun->stdarg)
{
if (dump_file)
fprintf (dump_file, "Function uses stdarg. \n");
return false;
}
if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
{
if (dump_file)
fprintf (dump_file, "Always inline function will be inlined "
"anyway. \n");
return false;
}
return true;
}
/* Print access tree starting at ACCESS to F. */
static void
dump_gensum_access (FILE *f, gensum_param_access *access, unsigned indent)
{
fprintf (f, " ");
for (unsigned i = 0; i < indent; i++)
fprintf (f, " ");
fprintf (f, " * Access to offset: " HOST_WIDE_INT_PRINT_DEC,
access->offset);
fprintf (f, ", size: " HOST_WIDE_INT_PRINT_DEC, access->size);
fprintf (f, ", type: ");
print_generic_expr (f, access->type);
fprintf (f, ", alias_ptr_type: ");
print_generic_expr (f, access->alias_ptr_type);
fprintf (f, ", nonarg: %u, reverse: %u\n", access->nonarg, access->reverse);
for (gensum_param_access *ch = access->first_child;
ch;
ch = ch->next_sibling)
dump_gensum_access (f, ch, indent + 2);
}
/* Print access tree starting at ACCESS to F. */
static void
dump_isra_access (FILE *f, param_access *access)
{
fprintf (f, " * Access to unit offset: %u", access->unit_offset);
fprintf (f, ", unit size: %u", access->unit_size);
fprintf (f, ", type: ");
print_generic_expr (f, access->type);
fprintf (f, ", alias_ptr_type: ");
print_generic_expr (f, access->alias_ptr_type);
if (access->certain)
fprintf (f, ", certain");
else
fprintf (f, ", not certain");
if (access->reverse)
fprintf (f, ", reverse");
fprintf (f, "\n");
}
/* Dump access tree starting at ACCESS to stderr. */
DEBUG_FUNCTION void
debug_isra_access (param_access *access)
{
dump_isra_access (stderr, access);
}
/* Dump DESC to F. */
static void
dump_gensum_param_descriptor (FILE *f, gensum_param_desc *desc)
{
if (desc->locally_unused)
fprintf (f, " unused with %i call_uses\n", desc->call_uses);
if (!desc->split_candidate)
{
fprintf (f, " not a candidate\n");
return;
}
if (desc->by_ref)
fprintf (f, " by_ref with %u pass throughs\n", desc->ptr_pt_count);
for (gensum_param_access *acc = desc->accesses; acc; acc = acc->next_sibling)
dump_gensum_access (f, acc, 2);
}
/* Dump all parameter descriptors in IFS, assuming it describes FNDECL, to
F. */
static void
dump_gensum_param_descriptors (FILE *f, tree fndecl,
vec<gensum_param_desc> *param_descriptions)
{
tree parm = DECL_ARGUMENTS (fndecl);
for (unsigned i = 0;
i < param_descriptions->length ();
++i, parm = DECL_CHAIN (parm))
{
fprintf (f, " Descriptor for parameter %i ", i);
print_generic_expr (f, parm, TDF_UID);
fprintf (f, "\n");
dump_gensum_param_descriptor (f, &(*param_descriptions)[i]);
}
}
/* Dump DESC to F. */
static void
dump_isra_param_descriptor (FILE *f, isra_param_desc *desc)
{
if (desc->locally_unused)
{
fprintf (f, " (locally) unused\n");
}
if (!desc->split_candidate)
{
fprintf (f, " not a candidate for splitting\n");
return;
}
fprintf (f, " param_size_limit: %u, size_reached: %u%s\n",
desc->param_size_limit, desc->size_reached,
desc->by_ref ? ", by_ref" : "");
for (unsigned i = 0; i < vec_safe_length (desc->accesses); ++i)
{
param_access *access = (*desc->accesses)[i];
dump_isra_access (f, access);
}
}
/* Dump all parameter descriptors in IFS, assuming it describes FNDECL, to
F. */
static void
dump_isra_param_descriptors (FILE *f, tree fndecl,
isra_func_summary *ifs)
{
tree parm = DECL_ARGUMENTS (fndecl);
if (!ifs->m_parameters)
{
fprintf (f, " parameter descriptors not available\n");
return;
}
for (unsigned i = 0;
i < ifs->m_parameters->length ();
++i, parm = DECL_CHAIN (parm))
{
fprintf (f, " Descriptor for parameter %i ", i);
print_generic_expr (f, parm, TDF_UID);
fprintf (f, "\n");
dump_isra_param_descriptor (f, &(*ifs->m_parameters)[i]);
}
}
/* Add SRC to inputs of PARAM_FLOW, unless it would exceed storage. If the
function fails return false, otherwise return true. SRC must fit into an
unsigned char. Used for purposes of transitive unused parameter
removal. */
static bool
add_src_to_param_flow (isra_param_flow *param_flow, int src)
{
gcc_checking_assert (src >= 0 && src <= UCHAR_MAX);
if (param_flow->length == IPA_SRA_MAX_PARAM_FLOW_LEN)
return false;
param_flow->inputs[(int) param_flow->length] = src;
param_flow->length++;
return true;
}
/* Add a SRC to the inputs of PARAM_FLOW unless it is already there and assert
it is the only input. Used for purposes of transitive parameter
splitting. */
static void
set_single_param_flow_source (isra_param_flow *param_flow, int src)
{
gcc_checking_assert (src >= 0 && src <= UCHAR_MAX);
if (param_flow->length == 0)
{
param_flow->inputs[0] = src;
param_flow->length = 1;
}
else if (param_flow->length == 1)
gcc_assert (param_flow->inputs[0] == src);
else
gcc_unreachable ();
}
/* Assert that there is only a single value in PARAM_FLOW's inputs and return
it. */
static unsigned
get_single_param_flow_source (const isra_param_flow *param_flow)
{
gcc_assert (param_flow->length == 1);
return param_flow->inputs[0];
}
/* Inspect all uses of NAME and simple arithmetic calculations involving NAME
in FUN represented with NODE and return a negative number if any of them is
used for something else than either an actual call argument, simple
arithmetic operation or debug statement. If there are no such uses, return
the number of actual arguments that this parameter eventually feeds to (or
zero if there is none). For any such parameter, mark PARM_NUM as one of its
sources. ANALYZED is a bitmap that tracks which SSA names we have already
started investigating. */
static int
isra_track_scalar_value_uses (function *fun, cgraph_node *node, tree name,
int parm_num, bitmap analyzed)
{
int res = 0;
imm_use_iterator imm_iter;
gimple *stmt;
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
{
if (is_gimple_debug (stmt))
continue;
/* TODO: We could handle at least const builtin functions like arithmetic
operations below. */
if (is_gimple_call (stmt))
{
int all_uses = 0;
use_operand_p use_p;
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
all_uses++;
gcall *call = as_a <gcall *> (stmt);
unsigned arg_count;
if (gimple_call_internal_p (call)
|| (arg_count = gimple_call_num_args (call)) == 0)
{
res = -1;
break;
}
cgraph_edge *cs = node->get_edge (stmt);
gcc_checking_assert (cs);
isra_call_summary *csum = call_sums->get_create (cs);
csum->init_inputs (arg_count);
int simple_uses = 0;
for (unsigned i = 0; i < arg_count; i++)
if (gimple_call_arg (call, i) == name)
{
if (!add_src_to_param_flow (&csum->m_arg_flow[i], parm_num))
{
simple_uses = -1;
break;
}
simple_uses++;
}
if (simple_uses < 0
|| all_uses != simple_uses)
{
res = -1;
break;
}
res += all_uses;
}
else if (!stmt_unremovable_because_of_non_call_eh_p (fun, stmt)
&& ((is_gimple_assign (stmt) && !gimple_has_volatile_ops (stmt))
|| gimple_code (stmt) == GIMPLE_PHI))
{
tree lhs;
if (gimple_code (stmt) == GIMPLE_PHI)
lhs = gimple_phi_result (stmt);
else
lhs = gimple_assign_lhs (stmt);
if (TREE_CODE (lhs) != SSA_NAME)
{
res = -1;
break;
}
gcc_assert (!gimple_vdef (stmt));
if (bitmap_set_bit (analyzed, SSA_NAME_VERSION (lhs)))
{
int tmp = isra_track_scalar_value_uses (fun, node, lhs, parm_num,
analyzed);
if (tmp < 0)
{
res = tmp;
break;
}
res += tmp;
}
}
else
{
res = -1;
break;
}
}
return res;
}
/* Inspect all uses of PARM, which must be a gimple register, in FUN (which is
also described by NODE) and simple arithmetic calculations involving PARM
and return false if any of them is used for something else than either an
actual call argument, simple arithmetic operation or debug statement. If
there are no such uses, return true and store the number of actual arguments
that this parameter eventually feeds to (or zero if there is none) to
*CALL_USES_P. For any such parameter, mark PARM_NUM as one of its
sources.
This function is similar to ptr_parm_has_nonarg_uses but its results are
meant for unused parameter removal, as opposed to splitting of parameters
passed by reference or converting them to passed by value. */
static bool
isra_track_scalar_param_local_uses (function *fun, cgraph_node *node, tree parm,
int parm_num, int *call_uses_p)
{
gcc_checking_assert (is_gimple_reg (parm));
tree name = ssa_default_def (fun, parm);
if (!name || has_zero_uses (name))
{
*call_uses_p = 0;
return false;
}
/* Edge summaries can only handle callers with fewer than 256 parameters. */
if (parm_num > UCHAR_MAX)
return true;
bitmap analyzed = BITMAP_ALLOC (NULL);
int call_uses = isra_track_scalar_value_uses (fun, node, name, parm_num,
analyzed);
BITMAP_FREE (analyzed);
if (call_uses < 0)
return true;
*call_uses_p = call_uses;
return false;
}
/* Scan immediate uses of a default definition SSA name of a parameter PARM and
examine whether there are any nonarg uses that are not actual arguments or
otherwise infeasible uses. If so, return true, otherwise return false.
Create pass-through IPA flow records for any direct uses as argument calls
and if returning false, store their number into *PT_COUNT_P. NODE and FUN
must represent the function that is currently analyzed, PARM_NUM must be the
index of the analyzed parameter.
This function is similar to isra_track_scalar_param_local_uses but its
results are meant for splitting of parameters passed by reference or turning
them into bits passed by value, as opposed to generic unused parameter
removal. */
static bool
ptr_parm_has_nonarg_uses (cgraph_node *node, function *fun, tree parm,
int parm_num, unsigned *pt_count_p)
{
imm_use_iterator ui;
gimple *stmt;
tree name = ssa_default_def (fun, parm);
bool ret = false;
unsigned pt_count = 0;
if (!name || has_zero_uses (name))
return false;
/* Edge summaries can only handle callers with fewer than 256 parameters. */
if (parm_num > UCHAR_MAX)
return true;
FOR_EACH_IMM_USE_STMT (stmt, ui, name)
{
unsigned uses_ok = 0;
use_operand_p use_p;
if (is_gimple_debug (stmt))
continue;
if (gimple_assign_single_p (stmt))
{
tree rhs = gimple_assign_rhs1 (stmt);
if (!TREE_THIS_VOLATILE (rhs))
{
while (handled_component_p (rhs))
rhs = TREE_OPERAND (rhs, 0);
if (TREE_CODE (rhs) == MEM_REF
&& TREE_OPERAND (rhs, 0) == name
&& integer_zerop (TREE_OPERAND (rhs, 1))
&& types_compatible_p (TREE_TYPE (rhs),
TREE_TYPE (TREE_TYPE (name))))
uses_ok++;
}
}
else if (is_gimple_call (stmt))
{
gcall *call = as_a <gcall *> (stmt);
unsigned arg_count;
if (gimple_call_internal_p (call)
|| (arg_count = gimple_call_num_args (call)) == 0)
{
ret = true;
break;
}
cgraph_edge *cs = node->get_edge (stmt);
gcc_checking_assert (cs);
isra_call_summary *csum = call_sums->get_create (cs);
csum->init_inputs (arg_count);
for (unsigned i = 0; i < arg_count; ++i)
{
tree arg = gimple_call_arg (stmt, i);
if (arg == name)
{
/* TODO: Allow &MEM_REF[name + offset] here,
ipa_param_body_adjustments::modify_call_stmt has to be
adjusted too. */
csum->m_arg_flow[i].pointer_pass_through = true;
set_single_param_flow_source (&csum->m_arg_flow[i], parm_num);
pt_count++;
uses_ok++;
continue;
}
if (!TREE_THIS_VOLATILE (arg))
{
while (handled_component_p (arg))
arg = TREE_OPERAND (arg, 0);
if (TREE_CODE (arg) == MEM_REF
&& TREE_OPERAND (arg, 0) == name
&& integer_zerop (TREE_OPERAND (arg, 1))
&& types_compatible_p (TREE_TYPE (arg),
TREE_TYPE (TREE_TYPE (name))))
uses_ok++;
}
}
}
/* If the number of valid uses does not match the number of
uses in this stmt there is an unhandled use. */
unsigned all_uses = 0;
FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
all_uses++;
gcc_checking_assert (uses_ok <= all_uses);
if (uses_ok != all_uses)
{
ret = true;
break;
}
}
*pt_count_p = pt_count;
return ret;
}
/* Initialize vector of parameter descriptors of NODE. Return true if there
are any candidates for splitting or unused aggregate parameter removal (the
function may return false if there are candidates for removal of register
parameters) and function body must be scanned. */
static bool
create_parameter_descriptors (cgraph_node *node,
vec<gensum_param_desc> *param_descriptions)
{
function *fun = DECL_STRUCT_FUNCTION (node->decl);
bool ret = false;
int num = 0;
for (tree parm = DECL_ARGUMENTS (node->decl);
parm;
parm = DECL_CHAIN (parm), num++)
{
const char *msg;
gensum_param_desc *desc = &(*param_descriptions)[num];
/* param_descriptions vector is grown cleared in the caller. */
desc->param_number = num;
decl2desc->put (parm, desc);
if (dump_file && (dump_flags & TDF_DETAILS))
print_generic_expr (dump_file, parm, TDF_UID);
int scalar_call_uses;
tree type = TREE_TYPE (parm);
if (TREE_THIS_VOLATILE (parm))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, is volatile\n");
continue;
}
if (!is_gimple_reg_type (type) && is_va_list_type (type))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, is a va_list type\n");
continue;
}
if (TREE_ADDRESSABLE (parm))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, is addressable\n");
continue;
}
if (TREE_ADDRESSABLE (type))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, type cannot be split\n");
continue;
}
if (is_gimple_reg (parm)
&& !isra_track_scalar_param_local_uses (fun, node, parm, num,
&scalar_call_uses))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " is a scalar with only %i call uses\n",
scalar_call_uses);
desc->locally_unused = true;
desc->call_uses = scalar_call_uses;
}
if (POINTER_TYPE_P (type))
{
type = TREE_TYPE (type);
if (TREE_CODE (type) == FUNCTION_TYPE
|| TREE_CODE (type) == METHOD_TYPE)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, reference to "
"a function\n");
continue;
}
if (TYPE_VOLATILE (type))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, reference to "
"a volatile type\n");
continue;
}
if (TREE_CODE (type) == ARRAY_TYPE
&& TYPE_NONALIASED_COMPONENT (type))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, reference to "
"a nonaliased component array\n");
continue;
}
if (!is_gimple_reg (parm))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, a reference which is "
"not a gimple register (probably addressable)\n");
continue;
}
if (is_va_list_type (type))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, reference to "
"a va list\n");
continue;
}
if (ptr_parm_has_nonarg_uses (node, fun, parm, num,
&desc->ptr_pt_count))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, reference has "
"nonarg uses\n");
continue;
}
desc->by_ref = true;
}
else if (!AGGREGATE_TYPE_P (type))
{
/* This is in an else branch because scalars passed by reference are
still candidates to be passed by value. */
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, not an aggregate\n");
continue;
}
if (!COMPLETE_TYPE_P (type))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, not a complete type\n");
continue;
}
if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, size not representable\n");
continue;
}
unsigned HOST_WIDE_INT type_size
= tree_to_uhwi (TYPE_SIZE (type)) / BITS_PER_UNIT;
if (type_size == 0
|| type_size >= ISRA_ARG_SIZE_LIMIT)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, has zero or huge size\n");
continue;
}
if (type_internals_preclude_sra_p (type, &msg))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " not a candidate, %s\n", msg);
continue;
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " is a candidate\n");
ret = true;
desc->split_candidate = true;
if (desc->by_ref)
desc->deref_index = by_ref_count++;
}
return ret;
}
/* Return pointer to descriptor of parameter DECL or NULL if it cannot be
found, which happens if DECL is for a static chain. */
static gensum_param_desc *
get_gensum_param_desc (tree decl)
{
gcc_checking_assert (TREE_CODE (decl) == PARM_DECL);
gensum_param_desc **slot = decl2desc->get (decl);
if (!slot)
/* This can happen for static chains which we cannot handle so far. */
return NULL;
gcc_checking_assert (*slot);
return *slot;
}
/* Remove parameter described by DESC from candidates for IPA-SRA splitting and
write REASON to the dump file if there is one. */
static void
disqualify_split_candidate (gensum_param_desc *desc, const char *reason)
{
if (!desc->split_candidate)
return;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "! Disqualifying parameter number %i - %s\n",
desc->param_number, reason);
desc->split_candidate = false;
}
/* Remove DECL from candidates for IPA-SRA and write REASON to the dump file if
there is one. */
static void
disqualify_split_candidate (tree decl, const char *reason)
{
gensum_param_desc *desc = get_gensum_param_desc (decl);
if (desc)
disqualify_split_candidate (desc, reason);
}
/* Allocate a new access to DESC and fill it in with OFFSET and SIZE. But
first, check that there are not too many of them already. If so, do not
allocate anything and return NULL. */
static gensum_param_access *
allocate_access (gensum_param_desc *desc,
HOST_WIDE_INT offset, HOST_WIDE_INT size)
{
if (desc->access_count
== (unsigned) param_ipa_sra_max_replacements)
{
disqualify_split_candidate (desc, "Too many replacement candidates");
return NULL;
}
gensum_param_access *access
= (gensum_param_access *) obstack_alloc (&gensum_obstack,
sizeof (gensum_param_access));
memset (access, 0, sizeof (*access));
access->offset = offset;
access->size = size;
return access;
}
/* In what context scan_expr_access has been called, whether it deals with a
load, a function argument, or a store. Please note that in rare
circumstances when it is not clear if the access is a load or store,
ISRA_CTX_STORE is used too. */
enum isra_scan_context {ISRA_CTX_LOAD, ISRA_CTX_ARG, ISRA_CTX_STORE};
/* Return an access describing memory access to the variable described by DESC
at OFFSET with SIZE in context CTX, starting at pointer to the linked list
at a certain tree level FIRST. Attempt to create it and put into the
appropriate place in the access tree if does not exist, but fail and return
NULL if there are already too many accesses, if it would create a partially
overlapping access or if an access would end up within a pre-existing
non-call access. */
static gensum_param_access *
get_access_1 (gensum_param_desc *desc, gensum_param_access **first,
HOST_WIDE_INT offset, HOST_WIDE_INT size, isra_scan_context ctx)
{
gensum_param_access *access = *first, **ptr = first;
if (!access)
{
/* No pre-existing access at this level, just create it. */
gensum_param_access *a = allocate_access (desc, offset, size);
if (!a)
return NULL;
*first = a;
return *first;
}
if (access->offset >= offset + size)
{
/* We want to squeeze it in front of the very first access, just do
it. */
gensum_param_access *r = allocate_access (desc, offset, size);
if (!r)
return NULL;
r->next_sibling = access;
*first = r;
return r;
}
/* Skip all accesses that have to come before us until the next sibling is
already too far. */
while (offset >= access->offset + access->size
&& access->next_sibling
&& access->next_sibling->offset < offset + size)
{
ptr = &access->next_sibling;
access = access->next_sibling;
}
/* At this point we know we do not belong before access. */
gcc_assert (access->offset < offset + size);
if (access->offset == offset && access->size == size)
/* We found what we were looking for. */
return access;
if (access->offset <= offset
&& access->offset + access->size >= offset + size)
{
/* We fit into access which is larger than us. We need to find/create
something below access. But we only allow nesting in call
arguments. */
if (access->nonarg)
return NULL;
return get_access_1 (desc, &access->first_child, offset, size, ctx);
}
if (offset <= access->offset
&& offset + size >= access->offset + access->size)
/* We are actually bigger than access, which fully fits into us, take its
place and make all accesses fitting into it its children. */
{
/* But first, we only allow nesting in call arguments so check if that is
what we are trying to represent. */
if (ctx != ISRA_CTX_ARG)
return NULL;
gensum_param_access *r = allocate_access (desc, offset, size);
if (!r)
return NULL;
r->first_child = access;
while (access->next_sibling
&& access->next_sibling->offset < offset + size)
access = access->next_sibling;
if (access->offset + access->size > offset + size)
{
/* This must be a different access, which are sorted, so the
following must be true and this signals a partial overlap. */
gcc_assert (access->offset > offset);
return NULL;
}
r->next_sibling = access->next_sibling;
access->next_sibling = NULL;
*ptr = r;
return r;
}
if (offset >= access->offset + access->size)
{
/* We belong after access. */
gensum_param_access *r = allocate_access (desc, offset, size);
if (!r)
return NULL;
r->next_sibling = access->next_sibling;
access->next_sibling = r;
return r;
}
if (offset < access->offset)
{
/* We know the following, otherwise we would have created a
super-access. */
gcc_checking_assert (offset + size < access->offset + access->size);
return NULL;
}
if (offset + size > access->offset + access->size)
{
/* Likewise. */
gcc_checking_assert (offset > access->offset);
return NULL;
}
gcc_unreachable ();
}
/* Return an access describing memory access to the variable described by DESC
at OFFSET with SIZE in context CTX, mark it as used in context CTX. Attempt
to create if it does not exist, but fail and return NULL if there are
already too many accesses, if it would create a partially overlapping access
or if an access would end up in a non-call access. */
static gensum_param_access *
get_access (gensum_param_desc *desc, HOST_WIDE_INT offset, HOST_WIDE_INT size,
isra_scan_context ctx)
{
gcc_checking_assert (desc->split_candidate);
gensum_param_access *access = get_access_1 (desc, &desc->accesses, offset,
size, ctx);
if (!access)
{
disqualify_split_candidate (desc,
"Bad access overlap or too many accesses");
return NULL;
}
switch (ctx)
{
case ISRA_CTX_STORE:
gcc_assert (!desc->by_ref);
/* Fall-through */
case ISRA_CTX_LOAD:
access->nonarg = true;
break;
case ISRA_CTX_ARG:
break;
}
return access;
}
/* Verify that parameter access tree starting with ACCESS is in good shape.
PARENT_OFFSET and PARENT_SIZE are the corresponding fields of parent of
ACCESS or zero if there is none. */
static bool
verify_access_tree_1 (gensum_param_access *access, HOST_WIDE_INT parent_offset,
HOST_WIDE_INT parent_size)
{
while (access)
{
gcc_assert (access->offset >= 0 && access->size >= 0);
if (parent_size != 0)
{
if (access->offset < parent_offset)
{
error ("Access offset before parent offset");
return true;
}
if (access->size >= parent_size)
{
error ("Access size greater or equal to its parent size");
return true;
}
if (access->offset + access->size > parent_offset + parent_size)
{
error ("Access terminates outside of its parent");
return true;
}
}
if (verify_access_tree_1 (access->first_child, access->offset,
access->size))
return true;
if (access->next_sibling
&& (access->next_sibling->offset < access->offset + access->size))
{
error ("Access overlaps with its sibling");
return true;
}
access = access->next_sibling;
}
return false;
}
/* Verify that parameter access tree starting with ACCESS is in good shape,
halt compilation and dump the tree to stderr if not. */
DEBUG_FUNCTION void
isra_verify_access_tree (gensum_param_access *access)
{
if (verify_access_tree_1 (access, 0, 0))
{
for (; access; access = access->next_sibling)
dump_gensum_access (stderr, access, 2);
internal_error ("IPA-SRA access verification failed");
}
}
/* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
static bool
asm_visit_addr (gimple *, tree op, tree, void *)
{
op = get_base_address (op);
if (op
&& TREE_CODE (op) == PARM_DECL)
disqualify_split_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
return false;
}
/* Mark a dereference of parameter identified by DESC of distance DIST in a
basic block BB, unless the BB has already been marked as a potentially
final. */
static void
mark_param_dereference (gensum_param_desc *desc, HOST_WIDE_INT dist,
basic_block bb)
{
gcc_assert (desc->by_ref);
gcc_checking_assert (desc->split_candidate);
if (bitmap_bit_p (final_bbs, bb->index))
return;
int idx = bb->index * by_ref_count + desc->deref_index;
if (bb_dereferences[idx] < dist)
bb_dereferences[idx] = dist;
}
/* Return true, if any potential replacements should use NEW_TYPE as opposed to
previously recorded OLD_TYPE. */
static bool
type_prevails_p (tree old_type, tree new_type)
{
if (old_type == new_type)
return false;
/* Non-aggregates are always better. */
if (!is_gimple_reg_type (old_type)
&& is_gimple_reg_type (new_type))
return true;
if (is_gimple_reg_type (old_type)
&& !is_gimple_reg_type (new_type))
return false;
/* Prefer any complex or vector type over any other scalar type. */
if (TREE_CODE (old_type) != COMPLEX_TYPE
&& TREE_CODE (old_type) != VECTOR_TYPE
&& (TREE_CODE (new_type) == COMPLEX_TYPE
|| TREE_CODE (new_type) == VECTOR_TYPE))
return true;
if ((TREE_CODE (old_type) == COMPLEX_TYPE
|| TREE_CODE (old_type) == VECTOR_TYPE)
&& TREE_CODE (new_type) != COMPLEX_TYPE
&& TREE_CODE (new_type) != VECTOR_TYPE)
return false;
/* Use the integral type with the bigger precision. */
if (INTEGRAL_TYPE_P (old_type)
&& INTEGRAL_TYPE_P (new_type))
return (TYPE_PRECISION (new_type) > TYPE_PRECISION (old_type));
/* Attempt to disregard any integral type with non-full precision. */
if (INTEGRAL_TYPE_P (old_type)
&& (TREE_INT_CST_LOW (TYPE_SIZE (old_type))
!= TYPE_PRECISION (old_type)))
return true;
if (INTEGRAL_TYPE_P (new_type)
&& (TREE_INT_CST_LOW (TYPE_SIZE (new_type))
!= TYPE_PRECISION (new_type)))
return false;
/* Stabilize the selection. */
return TYPE_UID (old_type) < TYPE_UID (new_type);
}
/* When scanning an expression which is a call argument, this structure
specifies the call and the position of the argument. */
struct scan_call_info
{
/* Call graph edge representing the call. */
cgraph_edge *cs;
/* Total number of arguments in the call. */
unsigned argument_count;
/* Number of the actual argument being scanned. */
unsigned arg_idx;
};
/* Record use of ACCESS which belongs to a parameter described by DESC in a
call argument described by CALL_INFO. */
static void
record_nonregister_call_use (gensum_param_desc *desc,
scan_call_info *call_info,
unsigned unit_offset, unsigned unit_size)
{
isra_call_summary *csum = call_sums->get_create (call_info->cs);
csum->init_inputs (call_info->argument_count);
isra_param_flow *param_flow = &csum->m_arg_flow[call_info->arg_idx];
param_flow->aggregate_pass_through = true;
set_single_param_flow_source (param_flow, desc->param_number);
param_flow->unit_offset = unit_offset;
param_flow->unit_size = unit_size;
desc->call_uses++;
}
/* Callback of walk_aliased_vdefs, just mark that there was a possible
modification. */
static bool
mark_maybe_modified (ao_ref *, tree, void *data)
{
bool *maybe_modified = (bool *) data;
*maybe_modified = true;
return true;
}
/* Analyze expression EXPR from GIMPLE for accesses to parameters. CTX
specifies whether EXPR is used in a load, store or as an argument call. BB
must be the basic block in which expr resides. If CTX specifies call
argument context, CALL_INFO must describe that call and argument position,
otherwise it is ignored. */
static void
scan_expr_access (tree expr, gimple *stmt, isra_scan_context ctx,
basic_block bb, scan_call_info *call_info = NULL)
{
poly_int64 poffset, psize, pmax_size;
HOST_WIDE_INT offset, size, max_size;
tree base;
bool deref = false;
bool reverse;
if (TREE_CODE (expr) == BIT_FIELD_REF
|| TREE_CODE (expr) == IMAGPART_EXPR
|| TREE_CODE (expr) == REALPART_EXPR)
expr = TREE_OPERAND (expr, 0);
base = get_ref_base_and_extent (expr, &poffset, &psize, &pmax_size, &reverse);
if (TREE_CODE (base) == MEM_REF)
{
tree op = TREE_OPERAND (base, 0);
if (TREE_CODE (op) != SSA_NAME
|| !SSA_NAME_IS_DEFAULT_DEF (op))
return;
base = SSA_NAME_VAR (op);
if (!base)
return;
deref = true;
}
if (TREE_CODE (base) != PARM_DECL)
return;
gensum_param_desc *desc = get_gensum_param_desc (base);
if (!desc || !desc->split_candidate)
return;
if (!poffset.is_constant (&offset)
|| !psize.is_constant (&size)
|| !pmax_size.is_constant (&max_size))
{
disqualify_split_candidate (desc, "Encountered a polynomial-sized "
"access.");
return;
}
if (size < 0 || size != max_size)
{
disqualify_split_candidate (desc, "Encountered a variable sized access.");
return;
}
if (TREE_CODE (expr) == COMPONENT_REF
&& DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
{
disqualify_split_candidate (desc, "Encountered a bit-field access.");
return;
}
if (offset < 0)
{
disqualify_split_candidate (desc, "Encountered an access at a "
"negative offset.");
return;
}
gcc_assert ((offset % BITS_PER_UNIT) == 0);
gcc_assert ((size % BITS_PER_UNIT) == 0);
if ((offset / BITS_PER_UNIT) >= (UINT_MAX - ISRA_ARG_SIZE_LIMIT)
|| (size / BITS_PER_UNIT) >= ISRA_ARG_SIZE_LIMIT)
{
disqualify_split_candidate (desc, "Encountered an access with too big "
"offset or size");
return;
}
tree type = TREE_TYPE (expr);
unsigned int exp_align = get_object_alignment (expr);
if (exp_align < TYPE_ALIGN (type))
{
disqualify_split_candidate (desc, "Underaligned access.");
return;
}
if (deref)
{
if (!desc->by_ref)
{
disqualify_split_candidate (desc, "Dereferencing a non-reference.");
return;
}
else if (ctx == ISRA_CTX_STORE)
{
disqualify_split_candidate (desc, "Storing to data passed by "
"reference.");
return;
}
if (!aa_walking_limit)
{
disqualify_split_candidate (desc, "Out of alias analysis step "
"limit.");
return;
}
gcc_checking_assert (gimple_vuse (stmt));
bool maybe_modified = false;
ao_ref ar;
ao_ref_init (&ar, expr);
bitmap visited = BITMAP_ALLOC (NULL);
int walked = walk_aliased_vdefs (&ar, gimple_vuse (stmt),
mark_maybe_modified, &maybe_modified,
&visited, NULL, aa_walking_limit);
BITMAP_FREE (visited);
if (walked > 0)
{
gcc_assert (aa_walking_limit > walked);
aa_walking_limit = aa_walking_limit - walked;
}
if (walked < 0)
aa_walking_limit = 0;
if (maybe_modified || walked < 0)
{
disqualify_split_candidate (desc, "Data passed by reference possibly "
"modified through an alias.");
return;
}
else
mark_param_dereference (desc, offset + size, bb);
}
else
/* Pointer parameters with direct uses should have been ruled out by
analyzing SSA default def when looking at the parameters. */
gcc_assert (!desc->by_ref);
gensum_param_access *access = get_access (desc, offset, size, ctx);
if (!access)
return;
if (ctx == ISRA_CTX_ARG)
{
gcc_checking_assert (call_info);
if (!deref)
record_nonregister_call_use (desc, call_info, offset / BITS_PER_UNIT,
size / BITS_PER_UNIT);
else
/* This is not a pass-through of a pointer, this is a use like any
other. */
access->nonarg = true;
}
if (!access->type)
{
access->type = type;
access->alias_ptr_type = reference_alias_ptr_type (expr);
access->reverse = reverse;
}
else
{
if (exp_align < TYPE_ALIGN (access->type))
{
disqualify_split_candidate (desc, "Reference has lower alignment "
"than a previous one.");
return;
}
if (access->alias_ptr_type != reference_alias_ptr_type (expr))
{
disqualify_split_candidate (desc, "Multiple alias pointer types.");
return;
}
if (access->reverse != reverse)
{
disqualify_split_candidate (desc, "Both normal and reverse "
"scalar storage order.");
return;
}
if (!deref
&& (AGGREGATE_TYPE_P (type) || AGGREGATE_TYPE_P (access->type))
&& (TYPE_MAIN_VARIANT (access->type) != TYPE_MAIN_VARIANT (type)))
{
/* We need the same aggregate type on all accesses to be able to
distinguish transformation spots from pass-through arguments in
the transformation phase. */
disqualify_split_candidate (desc, "We do not support aggregate "
"type punning.");
return;
}
if (type_prevails_p (access->type, type))
access->type = type;
}
}
/* Scan body function described by NODE and FUN and create access trees for
parameters. */
static void
scan_function (cgraph_node *node, struct function *fun)
{
basic_block bb;
FOR_EACH_BB_FN (bb, fun)
{
gimple_stmt_iterator gsi;
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (stmt_can_throw_external (fun, stmt))
bitmap_set_bit (final_bbs, bb->index);
switch (gimple_code (stmt))
{
case GIMPLE_RETURN:
{
tree t = gimple_return_retval (as_a <greturn *> (stmt));
if (t != NULL_TREE)
scan_expr_access (t, stmt, ISRA_CTX_LOAD, bb);
bitmap_set_bit (final_bbs, bb->index);
}
break;
case GIMPLE_ASSIGN:
if (gimple_assign_single_p (stmt)
&& !gimple_clobber_p (stmt))
{
tree rhs = gimple_assign_rhs1 (stmt);
scan_expr_access (rhs, stmt, ISRA_CTX_LOAD, bb);
tree lhs = gimple_assign_lhs (stmt);
scan_expr_access (lhs, stmt, ISRA_CTX_STORE, bb);
}
break;
case GIMPLE_CALL:
{
unsigned argument_count = gimple_call_num_args (stmt);
isra_scan_context ctx = ISRA_CTX_ARG;
scan_call_info call_info, *call_info_p = &call_info;
if (gimple_call_internal_p (stmt))
{
call_info_p = NULL;
ctx = ISRA_CTX_LOAD;
internal_fn ifn = gimple_call_internal_fn (stmt);
if (internal_store_fn_p (ifn))
ctx = ISRA_CTX_STORE;
}
else
{
call_info.cs = node->get_edge (stmt);
call_info.argument_count = argument_count;
}
for (unsigned i = 0; i < argument_count; i++)
{
call_info.arg_idx = i;
scan_expr_access (gimple_call_arg (stmt, i), stmt,
ctx, bb, call_info_p);
}
tree lhs = gimple_call_lhs (stmt);
if (lhs)
scan_expr_access (lhs, stmt, ISRA_CTX_STORE, bb);
int flags = gimple_call_flags (stmt);
if (((flags & (ECF_CONST | ECF_PURE)) == 0)
|| (flags & ECF_LOOPING_CONST_OR_PURE))
bitmap_set_bit (final_bbs, bb->index);
}
break;
case GIMPLE_ASM:
{
gasm *asm_stmt = as_a <gasm *> (stmt);
walk_stmt_load_store_addr_ops (asm_stmt, NULL, NULL, NULL,
asm_visit_addr);
bitmap_set_bit (final_bbs, bb->index);
for (unsigned i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
{
tree t = TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
scan_expr_access (t, stmt, ISRA_CTX_LOAD, bb);
}
for (unsigned i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
{
tree t = TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
scan_expr_access (t, stmt, ISRA_CTX_STORE, bb);
}
}
break;
default:
break;
}
}
}
}
/* Return true if SSA_NAME NAME of function described by FUN is only used in
return statements, or if results of any operations it is involved in are
only used in return statements. ANALYZED is a bitmap that tracks which SSA
names we have already started investigating. */
static bool
ssa_name_only_returned_p (function *fun, tree name, bitmap analyzed)
{
bool res = true;
imm_use_iterator imm_iter;
gimple *stmt;
FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
{
if (is_gimple_debug (stmt))
continue;
if (gimple_code (stmt) == GIMPLE_RETURN)
{
tree t = gimple_return_retval (as_a <greturn *> (stmt));
if (t != name)
{
res = false;
break;
}
}
else if (!stmt_unremovable_because_of_non_call_eh_p (fun, stmt)
&& ((is_gimple_assign (stmt) && !gimple_has_volatile_ops (stmt))
|| gimple_code (stmt) == GIMPLE_PHI))
{
/* TODO: And perhaps for const function calls too? */
tree lhs;
if (gimple_code (stmt) == GIMPLE_PHI)
lhs = gimple_phi_result (stmt);
else
lhs = gimple_assign_lhs (stmt);
if (TREE_CODE (lhs) != SSA_NAME)
{
res = false;
break;
}
gcc_assert (!gimple_vdef (stmt));
if (bitmap_set_bit (analyzed, SSA_NAME_VERSION (lhs))
&& !ssa_name_only_returned_p (fun, lhs, analyzed))
{
res = false;
break;
}
}
else
{
res = false;
break;
}
}
return res;
}
/* Inspect the uses of the return value of the call associated with CS, and if
it is not used or if it is only used to construct the return value of the
caller, mark it as such in call or caller summary. Also check for
misaligned arguments. */
static void
isra_analyze_call (cgraph_edge *cs)
{
gcall *call_stmt = cs->call_stmt;
unsigned count = gimple_call_num_args (call_stmt);
isra_call_summary *csum = call_sums->get_create (cs);
for (unsigned i = 0; i < count; i++)
{
tree arg = gimple_call_arg (call_stmt, i);
if (is_gimple_reg (arg))
continue;
tree offset;
poly_int64 bitsize, bitpos;
machine_mode mode;
int unsignedp, reversep, volatilep = 0;
get_inner_reference (arg, &bitsize, &bitpos, &offset, &mode,
&unsignedp, &reversep, &volatilep);
if (!multiple_p (bitpos, BITS_PER_UNIT))
{
csum->m_bit_aligned_arg = true;
break;
}
}
tree lhs = gimple_call_lhs (call_stmt);
if (lhs)
{
/* TODO: Also detect aggregates on a LHS of a call that are only returned
from this function (without being read anywhere). */
if (TREE_CODE (lhs) == SSA_NAME)
{
bitmap analyzed = BITMAP_ALLOC (NULL);
if (ssa_name_only_returned_p (DECL_STRUCT_FUNCTION (cs->caller->decl),
lhs, analyzed))
csum->m_return_returned = true;
BITMAP_FREE (analyzed);
}
}
else
csum->m_return_ignored = true;
}
/* Look at all calls going out of NODE, described also by IFS and perform all
analyses necessary for IPA-SRA that are not done at body scan time or done
even when body is not scanned because the function is not a candidate. */
static void
isra_analyze_all_outgoing_calls (cgraph_node *node)
{
for (cgraph_edge *cs = node->callees; cs; cs = cs->next_callee)
isra_analyze_call (cs);
for (cgraph_edge *cs = node->indirect_calls; cs; cs = cs->next_callee)
isra_analyze_call (cs);
}
/* Dump a dereferences table with heading STR to file F. */
static void
dump_dereferences_table (FILE *f, struct function *fun, const char *str)
{
basic_block bb;
fprintf (dump_file, "%s", str);
FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (fun),
EXIT_BLOCK_PTR_FOR_FN (fun), next_bb)
{
fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
if (bb != EXIT_BLOCK_PTR_FOR_FN (fun))
{
int i;
for (i = 0; i < by_ref_count; i++)
{
int idx = bb->index * by_ref_count + i;
fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", bb_dereferences[idx]);
}
}
fprintf (f, "\n");
}
fprintf (dump_file, "\n");
}
/* Propagate distances in bb_dereferences in the opposite direction than the
control flow edges, in each step storing the maximum of the current value
and the minimum of all successors. These steps are repeated until the table
stabilizes. Note that BBs which might terminate the functions (according to
final_bbs bitmap) never updated in this way. */
static void
propagate_dereference_distances (struct function *fun)
{
basic_block bb;
if (dump_file && (dump_flags & TDF_DETAILS))
dump_dereferences_table (dump_file, fun,
"Dereference table before propagation:\n");
auto_vec<basic_block> queue (last_basic_block_for_fn (fun));
queue.quick_push (ENTRY_BLOCK_PTR_FOR_FN (fun));
FOR_EACH_BB_FN (bb, fun)
{
queue.quick_push (bb);
bb->aux = bb;
}
while (!queue.is_empty ())
{
edge_iterator ei;
edge e;
bool change = false;
int i;
bb = queue.pop ();
bb->aux = NULL;
if (bitmap_bit_p (final_bbs, bb->index))
continue;
for (i = 0; i < by_ref_count; i++)
{
int idx = bb->index * by_ref_count + i;
bool first = true;
HOST_WIDE_INT inh = 0;
FOR_EACH_EDGE (e, ei, bb->succs)
{
int succ_idx = e->dest->index * by_ref_count + i;
if (e->dest == EXIT_BLOCK_PTR_FOR_FN (fun))
continue;
if (first)
{
first = false;
inh = bb_dereferences [succ_idx];
}
else if (bb_dereferences [succ_idx] < inh)
inh = bb_dereferences [succ_idx];
}
if (!first && bb_dereferences[idx] < inh)
{
bb_dereferences[idx] = inh;
change = true;
}
}
if (change)
FOR_EACH_EDGE (e, ei, bb->preds)
{
if (e->src->aux)
continue;
e->src->aux = e->src;
queue.quick_push (e->src);
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
dump_dereferences_table (dump_file, fun,
"Dereference table after propagation:\n");
}
/* Perform basic checks on ACCESS to PARM described by DESC and all its
children, return true if the parameter cannot be split, otherwise return
true and update *TOTAL_SIZE and *ONLY_CALLS. ENTRY_BB_INDEX must be the
index of the entry BB in the function of PARM. */
static bool
check_gensum_access (tree parm, gensum_param_desc *desc,
gensum_param_access *access,
HOST_WIDE_INT *nonarg_acc_size, bool *only_calls,
int entry_bb_index)
{
if (access->nonarg)
{
*only_calls = false;
*nonarg_acc_size += access->size;
if (access->first_child)
{
disqualify_split_candidate (desc, "Overlapping non-call uses.");
return true;
}
}
/* Do not decompose a non-BLKmode param in a way that would create
BLKmode params. Especially for by-reference passing (thus,
pointer-type param) this is hardly worthwhile. */
if (DECL_MODE (parm) != BLKmode
&& TYPE_MODE (access->type) == BLKmode)
{
disqualify_split_candidate (desc, "Would convert a non-BLK to a BLK.");
return true;
}
if (desc->by_ref)
{
int idx = (entry_bb_index * by_ref_count + desc->deref_index);
if ((access->offset + access->size) > bb_dereferences[idx])
{
disqualify_split_candidate (desc, "Would create a possibly "
"illegal dereference in a caller.");
return true;
}
}
for (gensum_param_access *ch = access->first_child;
ch;
ch = ch->next_sibling)
if (check_gensum_access (parm, desc, ch, nonarg_acc_size, only_calls,
entry_bb_index))
return true;
return false;
}
/* Copy data from FROM and all of its children to a vector of accesses in IPA
descriptor DESC. */
static void
copy_accesses_to_ipa_desc (gensum_param_access *from, isra_param_desc *desc)
{
param_access *to = ggc_cleared_alloc<param_access> ();
gcc_checking_assert ((from->offset % BITS_PER_UNIT) == 0);
gcc_checking_assert ((from->size % BITS_PER_UNIT) == 0);
to->unit_offset = from->offset / BITS_PER_UNIT;
to->unit_size = from->size / BITS_PER_UNIT;
to->type = from->type;
to->alias_ptr_type = from->alias_ptr_type;
to->certain = from->nonarg;
to->reverse = from->reverse;
vec_safe_push (desc->accesses, to);
for (gensum_param_access *ch = from->first_child;
ch;
ch = ch->next_sibling)
copy_accesses_to_ipa_desc (ch, desc);
}
/* Analyze function body scan results stored in param_accesses and
param_accesses, detect possible transformations and store information of
those in function summary. NODE, FUN and IFS are all various structures
describing the currently analyzed function. */
static void
process_scan_results (cgraph_node *node, struct function *fun,
isra_func_summary *ifs,
vec<gensum_param_desc> *param_descriptions)
{
bool check_pass_throughs = false;
bool dereferences_propagated = false;
tree parm = DECL_ARGUMENTS (node->decl);
unsigned param_count = param_descriptions->length();
for (unsigned desc_index = 0;
desc_index < param_count;
desc_index++, parm = DECL_CHAIN (parm))
{
gensum_param_desc *desc = &(*param_descriptions)[desc_index];
if (!desc->split_candidate)
continue;
if (flag_checking)
isra_verify_access_tree (desc->accesses);
if (!dereferences_propagated
&& desc->by_ref
&& desc->accesses)
{
propagate_dereference_distances (fun);
dereferences_propagated = true;
}
HOST_WIDE_INT nonarg_acc_size = 0;
bool only_calls = true;
bool check_failed = false;
int entry_bb_index = ENTRY_BLOCK_PTR_FOR_FN (fun)->index;
for (gensum_param_access *acc = desc->accesses;
acc;
acc = acc->next_sibling)
if (check_gensum_access (parm, desc, acc, &nonarg_acc_size, &only_calls,
entry_bb_index))
{
check_failed = true;
break;
}
if (check_failed)
continue;
if (only_calls)
desc->locally_unused = true;
HOST_WIDE_INT cur_param_size
= tree_to_uhwi (TYPE_SIZE (TREE_TYPE (parm)));
HOST_WIDE_INT param_size_limit;
if (!desc->by_ref || optimize_function_for_size_p (fun))
param_size_limit = cur_param_size;
else
param_size_limit
= opt_for_fn (node->decl,
param_ipa_sra_ptr_growth_factor) * cur_param_size;
if (nonarg_acc_size > param_size_limit
|| (!desc->by_ref && nonarg_acc_size == param_size_limit))
{
disqualify_split_candidate (desc, "Would result into a too big set "
"of replacements.");
}
else
{
/* create_parameter_descriptors makes sure unit sizes of all
candidate parameters fit unsigned integers restricted to
ISRA_ARG_SIZE_LIMIT. */
desc->param_size_limit = param_size_limit / BITS_PER_UNIT;
desc->nonarg_acc_size = nonarg_acc_size / BITS_PER_UNIT;
if (desc->split_candidate && desc->ptr_pt_count)
{
gcc_assert (desc->by_ref);
check_pass_throughs = true;
}
}
}
/* When a pointer parameter is passed-through to a callee, in which it is
only used to read only one or a few items, we can attempt to transform it
to obtaining and passing through the items instead of the pointer. But we
must take extra care that 1) we do not introduce any segfault by moving
dereferences above control flow and that 2) the data is not modified
through an alias in this function. The IPA analysis must not introduce
any accesses candidates unless it can prove both.
The current solution is very crude as it consists of ensuring that the
call postdominates entry BB and that the definition of VUSE of the call is
default definition. TODO: For non-recursive callees in the same
compilation unit we could do better by doing analysis in topological order
an looking into access candidates of callees, using their alias_ptr_types
to attempt real AA. We could also use the maximum known dereferenced
offset in this function at IPA level.
TODO: Measure the overhead and the effect of just being pessimistic.
Maybe this is only -O3 material? */
bool pdoms_calculated = false;
if (check_pass_throughs)
for (cgraph_edge *cs = node->callees; cs; cs = cs->next_callee)
{
gcall *call_stmt = cs->call_stmt;
tree vuse = gimple_vuse (call_stmt);
/* If the callee is a const function, we don't get a VUSE. In such
case there will be no memory accesses in the called function (or the
const attribute is wrong) and then we just don't care. */
bool uses_memory_as_obtained = vuse && SSA_NAME_IS_DEFAULT_DEF (vuse);
unsigned count = gimple_call_num_args (call_stmt);
isra_call_summary *csum = call_sums->get_create (cs);
csum->init_inputs (count);
csum->m_before_any_store = uses_memory_as_obtained;
for (unsigned argidx = 0; argidx < count; argidx++)
{
if (!csum->m_arg_flow[argidx].pointer_pass_through)
continue;
unsigned pidx
= get_single_param_flow_source (&csum->m_arg_flow[argidx]);
gensum_param_desc *desc = &(*param_descriptions)[pidx];
if (!desc->split_candidate)
{
csum->m_arg_flow[argidx].pointer_pass_through = false;
continue;
}
if (!uses_memory_as_obtained)
continue;
/* Post-dominator check placed last, hoping that it usually won't
be needed. */
if (!pdoms_calculated)
{
gcc_checking_assert (cfun);
connect_infinite_loops_to_exit ();
calculate_dominance_info (CDI_POST_DOMINATORS);
pdoms_calculated = true;
}
if (dominated_by_p (CDI_POST_DOMINATORS,
gimple_bb (call_stmt),
single_succ (ENTRY_BLOCK_PTR_FOR_FN (fun))))
csum->m_arg_flow[argidx].safe_to_import_accesses = true;
}
}
if (pdoms_calculated)
{
free_dominance_info (CDI_POST_DOMINATORS);
remove_fake_exit_edges ();
}
/* TODO: Add early exit if we disqualified everything. This also requires
that we either relax the restriction that
ipa_param_adjustments.m_always_copy_start must be the number of PARM_DECLs
or store the number of parameters to IPA-SRA function summary and use that
when just removing params. */
vec_safe_reserve_exact (ifs->m_parameters, param_count);
ifs->m_parameters->quick_grow_cleared (param_count);
for (unsigned desc_index = 0; desc_index < param_count; desc_index++)
{
gensum_param_desc *s = &(*param_descriptions)[desc_index];
isra_param_desc *d = &(*ifs->m_parameters)[desc_index];
d->param_size_limit = s->param_size_limit;
d->size_reached = s->nonarg_acc_size;
d->locally_unused = s->locally_unused;
d->split_candidate = s->split_candidate;
d->by_ref = s->by_ref;
for (gensum_param_access *acc = s->accesses;
acc;
acc = acc->next_sibling)
copy_accesses_to_ipa_desc (acc, d);
}
if (dump_file)
dump_isra_param_descriptors (dump_file, node->decl, ifs);
}
/* Return true if there are any overlaps among certain accesses of DESC. If
non-NULL, set *CERTAIN_ACCESS_PRESENT_P upon encountering a certain access
too. DESC is assumed to be a split candidate that is not locally
unused. */
static bool
overlapping_certain_accesses_p (isra_param_desc *desc,
bool *certain_access_present_p)
{
unsigned pclen = vec_safe_length (desc->accesses);
for (unsigned i = 0; i < pclen; i++)
{
param_access *a1 = (*desc->accesses)[i];
if (!a1->certain)
continue;
if (certain_access_present_p)
*certain_access_present_p = true;
for (unsigned j = i + 1; j < pclen; j++)
{
param_access *a2 = (*desc->accesses)[j];
if (a2->certain
&& a1->unit_offset < a2->unit_offset + a2->unit_size
&& a1->unit_offset + a1->unit_size > a2->unit_offset)
return true;
}
}
return false;
}
/* Check for any overlaps of certain param accesses among splitting candidates
and signal an ICE if there are any. If CERTAIN_MUST_EXIST is set, also
check that used splitting candidates have at least one certain access. */
static void
verify_splitting_accesses (cgraph_node *node, bool certain_must_exist)
{
isra_func_summary *ifs = func_sums->get (node);
if (!ifs || !ifs->m_candidate)
return;
unsigned param_count = vec_safe_length (ifs->m_parameters);
for (unsigned pidx = 0; pidx < param_count; pidx++)
{
isra_param_desc *desc = &(*ifs->m_parameters)[pidx];
if (!desc->split_candidate || desc->locally_unused)
continue;
bool certain_access_present = !certain_must_exist;
if (overlapping_certain_accesses_p (desc, &certain_access_present))
internal_error ("function %qs, parameter %u, has IPA-SRA accesses "
"which overlap", node->dump_name (), pidx);
if (!certain_access_present)
internal_error ("function %qs, parameter %u, is used but does not "
"have any certain IPA-SRA access",
node->dump_name (), pidx);
}
}
/* Intraprocedural part of IPA-SRA analysis. Scan bodies of all functions in
this compilation unit and create summary structures describing IPA-SRA
opportunities and constraints in them. */
static void
ipa_sra_generate_summary (void)
{
struct cgraph_node *node;
gcc_checking_assert (!func_sums);
gcc_checking_assert (!call_sums);
func_sums
= (new (ggc_alloc_no_dtor <ipa_sra_function_summaries> ())
ipa_sra_function_summaries (symtab, true));
call_sums = new ipa_sra_call_summaries (symtab);
FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
ipa_sra_summarize_function (node);
return;
}
/* Write intraprocedural analysis information about E and all of its outgoing
edges into a stream for LTO WPA. */
static void
isra_write_edge_summary (output_block *ob, cgraph_edge *e)
{
isra_call_summary *csum = call_sums->get (e);
unsigned input_count = csum->m_arg_flow.length ();
streamer_write_uhwi (ob, input_count);
for (unsigned i = 0; i < input_count; i++)
{
isra_param_flow *ipf = &csum->m_arg_flow[i];
streamer_write_hwi (ob, ipf->length);
bitpack_d bp = bitpack_create (ob->main_stream);
for (int j = 0; j < ipf->length; j++)
bp_pack_value (&bp, ipf->inputs[j], 8);
bp_pack_value (&bp, ipf->aggregate_pass_through, 1);
bp_pack_value (&bp, ipf->pointer_pass_through, 1);
bp_pack_value (&bp, ipf->safe_to_import_accesses, 1);
streamer_write_bitpack (&bp);
streamer_write_uhwi (ob, ipf->unit_offset);
streamer_write_uhwi (ob, ipf->unit_size);
}
bitpack_d bp = bitpack_create (ob->main_stream);
bp_pack_value (&bp, csum->m_return_ignored, 1);
bp_pack_value (&bp, csum->m_return_returned, 1);
bp_pack_value (&bp, csum->m_bit_aligned_arg, 1);
bp_pack_value (&bp, csum->m_before_any_store, 1);
streamer_write_bitpack (&bp);
}
/* Write intraprocedural analysis information about NODE and all of its outgoing
edges into a stream for LTO WPA. */
static void
isra_write_node_summary (output_block *ob, cgraph_node *node)
{
isra_func_summary *ifs = func_sums->get (node);
lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
int node_ref = lto_symtab_encoder_encode (encoder, node);
streamer_write_uhwi (ob, node_ref);
unsigned param_desc_count = vec_safe_length (ifs->m_parameters);
streamer_write_uhwi (ob, param_desc_count);
for (unsigned i = 0; i < param_desc_count; i++)
{
isra_param_desc *desc = &(*ifs->m_parameters)[i];
unsigned access_count = vec_safe_length (desc->accesses);
streamer_write_uhwi (ob, access_count);
for (unsigned j = 0; j < access_count; j++)
{
param_access *acc = (*desc->accesses)[j];
stream_write_tree (ob, acc->type, true);
stream_write_tree (ob, acc->alias_ptr_type, true);
streamer_write_uhwi (ob, acc->unit_offset);
streamer_write_uhwi (ob, acc->unit_size);
bitpack_d bp = bitpack_create (ob->main_stream);
bp_pack_value (&bp, acc->certain, 1);
bp_pack_value (&bp, acc->reverse, 1);
streamer_write_bitpack (&bp);
}
streamer_write_uhwi (ob, desc->param_size_limit);
streamer_write_uhwi (ob, desc->size_reached);
bitpack_d bp = bitpack_create (ob->main_stream);
bp_pack_value (&bp, desc->locally_unused, 1);
bp_pack_value (&bp, desc->split_candidate, 1);
bp_pack_value (&bp, desc->by_ref, 1);
streamer_write_bitpack (&bp);
}
bitpack_d bp = bitpack_create (ob->main_stream);
bp_pack_value (&bp, ifs->m_candidate, 1);
bp_pack_value (&bp, ifs->m_returns_value, 1);
bp_pack_value (&bp, ifs->m_return_ignored, 1);
gcc_assert (!ifs->m_queued);
streamer_write_bitpack (&bp);
for (cgraph_edge *e = node->callees; e; e = e->next_callee)
isra_write_edge_summary (ob, e);
for (cgraph_edge *e = node->indirect_calls; e; e = e->next_callee)
isra_write_edge_summary (ob, e);
}
/* Write intraprocedural analysis information into a stream for LTO WPA. */
static void
ipa_sra_write_summary (void)
{
if (!func_sums || !call_sums)
return;
struct output_block *ob = create_output_block (LTO_section_ipa_sra);
lto_symtab_encoder_t encoder = ob->decl_state->symtab_node_encoder;
ob->symbol = NULL;
unsigned int count = 0;
lto_symtab_encoder_iterator lsei;
for (lsei = lsei_start_function_in_partition (encoder);
!lsei_end_p (lsei);
lsei_next_function_in_partition (&lsei))
{
cgraph_node *node = lsei_cgraph_node (lsei);
if (node->has_gimple_body_p ()
&& func_sums->get (node) != NULL)
count++;
}
streamer_write_uhwi (ob, count);
/* Process all of the functions. */
for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
lsei_next_function_in_partition (&lsei))
{
cgraph_node *node = lsei_cgraph_node (lsei);
if (node->has_gimple_body_p ()
&& func_sums->get (node) != NULL)
isra_write_node_summary (ob, node);
}
streamer_write_char_stream (ob->main_stream, 0);
produce_asm (ob, NULL);
destroy_output_block (ob);
}
/* Read intraprocedural analysis information about E and all of its outgoing
edges into a stream for LTO WPA. */
static void
isra_read_edge_summary (struct lto_input_block *ib, cgraph_edge *cs)
{
isra_call_summary *csum = call_sums->get_create (cs);
unsigned input_count = streamer_read_uhwi (ib);
csum->init_inputs (input_count);
for (unsigned i = 0; i < input_count; i++)
{
isra_param_flow *ipf = &csum->m_arg_flow[i];
ipf->length = streamer_read_hwi (ib);
bitpack_d bp = streamer_read_bitpack (ib);
for (int j = 0; j < ipf->length; j++)
ipf->inputs[j] = bp_unpack_value (&bp, 8);
ipf->aggregate_pass_through = bp_unpack_value (&bp, 1);
ipf->pointer_pass_through = bp_unpack_value (&bp, 1);
ipf->safe_to_import_accesses = bp_unpack_value (&bp, 1);
ipf->unit_offset = streamer_read_uhwi (ib);
ipf->unit_size = streamer_read_uhwi (ib);
}
bitpack_d bp = streamer_read_bitpack (ib);
csum->m_return_ignored = bp_unpack_value (&bp, 1);
csum->m_return_returned = bp_unpack_value (&bp, 1);
csum->m_bit_aligned_arg = bp_unpack_value (&bp, 1);
csum->m_before_any_store = bp_unpack_value (&bp, 1);
}
/* Read intraprocedural analysis information about NODE and all of its outgoing
edges into a stream for LTO WPA. */
static void
isra_read_node_info (struct lto_input_block *ib, cgraph_node *node,
struct data_in *data_in)
{
isra_func_summary *ifs = func_sums->get_create (node);
unsigned param_desc_count = streamer_read_uhwi (ib);
if (param_desc_count > 0)
{
vec_safe_reserve_exact (ifs->m_parameters, param_desc_count);
ifs->m_parameters->quick_grow_cleared (param_desc_count);
}
for (unsigned i = 0; i < param_desc_count; i++)
{
isra_param_desc *desc = &(*ifs->m_parameters)[i];
unsigned access_count = streamer_read_uhwi (ib);
for (unsigned j = 0; j < access_count; j++)
{
param_access *acc = ggc_cleared_alloc<param_access> ();
acc->type = stream_read_tree (ib, data_in);
acc->alias_ptr_type = stream_read_tree (ib, data_in);
acc->unit_offset = streamer_read_uhwi (ib);
acc->unit_size = streamer_read_uhwi (ib);
bitpack_d bp = streamer_read_bitpack (ib);
acc->certain = bp_unpack_value (&bp, 1);
acc->reverse = bp_unpack_value (&bp, 1);
vec_safe_push (desc->accesses, acc);
}
desc->param_size_limit = streamer_read_uhwi (ib);
desc->size_reached = streamer_read_uhwi (ib);
bitpack_d bp = streamer_read_bitpack (ib);
desc->locally_unused = bp_unpack_value (&bp, 1);
desc->split_candidate = bp_unpack_value (&bp, 1);
desc->by_ref = bp_unpack_value (&bp, 1);
}
bitpack_d bp = streamer_read_bitpack (ib);
ifs->m_candidate = bp_unpack_value (&bp, 1);
ifs->m_returns_value = bp_unpack_value (&bp, 1);
ifs->m_return_ignored = bp_unpack_value (&bp, 1);
ifs->m_queued = 0;
for (cgraph_edge *e = node->callees; e; e = e->next_callee)
isra_read_edge_summary (ib, e);
for (cgraph_edge *e = node->indirect_calls; e; e = e->next_callee)
isra_read_edge_summary (ib, e);
}
/* Read IPA-SRA summaries from a section in file FILE_DATA of length LEN with
data DATA. TODO: This function was copied almost verbatim from ipa-prop.cc,
it should be possible to unify them somehow. */
static void
isra_read_summary_section (struct lto_file_decl_data *file_data,
const char *data, size_t len)
{
const struct lto_function_header *header =
(const struct lto_function_header *) data;
const int cfg_offset = sizeof (struct lto_function_header);
const int main_offset = cfg_offset + header->cfg_size;
const int string_offset = main_offset + header->main_size;
struct data_in *data_in;
unsigned int i;
unsigned int count;
lto_input_block ib_main ((const char *) data + main_offset,
header->main_size, file_data->mode_table);
data_in =
lto_data_in_create (file_data, (const char *) data + string_offset,
header->string_size, vNULL);
count = streamer_read_uhwi (&ib_main);
for (i = 0; i < count; i++)
{
unsigned int index;
struct cgraph_node *node;
lto_symtab_encoder_t encoder;
index = streamer_read_uhwi (&ib_main);
encoder = file_data->symtab_node_encoder;
node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
index));
gcc_assert (node->definition);
isra_read_node_info (&ib_main, node, data_in);
}
lto_free_section_data (file_data, LTO_section_ipa_sra, NULL, data,
len);
lto_data_in_delete (data_in);
}
/* Read intraprocedural analysis information into a stream for LTO WPA. */
static void
ipa_sra_read_summary (void)
{
struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
struct lto_file_decl_data *file_data;
unsigned int j = 0;
gcc_checking_assert (!func_sums);
gcc_checking_assert (!call_sums);
func_sums
= (new (ggc_alloc_no_dtor <ipa_sra_function_summaries> ())
ipa_sra_function_summaries (symtab, true));
call_sums = new ipa_sra_call_summaries (symtab);
while ((file_data = file_data_vec[j++]))
{
size_t len;
const char *data
= lto_get_summary_section_data (file_data, LTO_section_ipa_sra, &len);
if (data)
isra_read_summary_section (file_data, data, len);
}
}
/* Dump all IPA-SRA summary data for all cgraph nodes and edges to file F. */
static void
ipa_sra_dump_all_summaries (FILE *f)
{
cgraph_node *node;
FOR_EACH_FUNCTION_WITH_GIMPLE_BODY (node)
{
fprintf (f, "\nSummary for node %s:\n", node->dump_name ());
isra_func_summary *ifs = func_sums->get (node);
if (!ifs)
fprintf (f, " Function does not have any associated IPA-SRA "
"summary\n");
else
{
if (!ifs->m_candidate)
{
fprintf (f, " Not a candidate function\n");
continue;
}
if (ifs->m_returns_value)
fprintf (f, " Returns value\n");
if (vec_safe_is_empty (ifs->m_parameters))
fprintf (f, " No parameter information. \n");
else
for (unsigned i = 0; i < ifs->m_parameters->length (); ++i)
{
fprintf (f, " Descriptor for parameter %i:\n", i);
dump_isra_param_descriptor (f, &(*ifs->m_parameters)[i]);
}
fprintf (f, "\n");
}
struct cgraph_edge *cs;
for (cs = node->callees; cs; cs = cs->next_callee)
{
fprintf (f, " Summary for edge %s->%s:\n", cs->caller->dump_name (),
cs->callee->dump_name ());
isra_call_summary *csum = call_sums->get (cs);
if (csum)
csum->dump (f);
else
fprintf (f, " Call summary is MISSING!\n");
}
}
fprintf (f, "\n\n");
}
/* Perform function-scope viability tests that can be only made at IPA level
and return false if the function is deemed unsuitable for IPA-SRA. */
static bool
ipa_sra_ipa_function_checks (cgraph_node *node)
{
if (!node->can_be_local_p ())
{
if (dump_file)
fprintf (dump_file, "Function %s disqualified because it cannot be "
"made local.\n", node->dump_name ());
return false;
}
if (!node->can_change_signature)
{
if (dump_file)
fprintf (dump_file, "Function can not change signature.\n");
return false;
}
return true;
}
/* Issues found out by check_callers_for_issues. */
struct caller_issues
{
/* The candidate being considered. */
cgraph_node *candidate;
/* There is a thunk among callers. */
bool thunk;
/* Call site with no available information. */
bool unknown_callsite;
/* Call from outside the candidate's comdat group. */
bool call_from_outside_comdat;
/* There is a bit-aligned load into one of non-gimple-typed arguments. */
bool bit_aligned_aggregate_argument;
};
/* Worker for call_for_symbol_and_aliases, set any flags of passed caller_issues
that apply. */
static bool
check_for_caller_issues (struct cgraph_node *node, void *data)
{
struct caller_issues *issues = (struct caller_issues *) data;
for (cgraph_edge *cs = node->callers; cs; cs = cs->next_caller)
{
if (cs->caller->thunk)
{
issues->thunk = true;
/* TODO: We should be able to process at least some types of
thunks. */
return true;
}
if (issues->candidate->calls_comdat_local
&& issues->candidate->same_comdat_group
&& !issues->candidate->in_same_comdat_group_p (cs->caller))
{
issues->call_from_outside_comdat = true;
return true;
}
isra_call_summary *csum = call_sums->get (cs);
if (!csum)
{
issues->unknown_callsite = true;
return true;
}
if (csum->m_bit_aligned_arg)
issues->bit_aligned_aggregate_argument = true;
}
return false;
}
/* Look at all incoming edges to NODE, including aliases and thunks and look
for problems. Return true if NODE type should not be modified at all. */
static bool
check_all_callers_for_issues (cgraph_node *node)
{
struct caller_issues issues;
memset (&issues, 0, sizeof (issues));
issues.candidate = node;
node->call_for_symbol_and_aliases (check_for_caller_issues, &issues, true);
if (issues.unknown_callsite)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "A call of %s has not been analyzed. Disabling "
"all modifications.\n", node->dump_name ());
return true;
}
/* TODO: We should be able to process at least some types of thunks. */
if (issues.thunk)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "A call of %s is through thunk, which are not"
" handled yet. Disabling all modifications.\n",
node->dump_name ());
return true;
}
if (issues.call_from_outside_comdat)
{
if (dump_file)
fprintf (dump_file, "Function would become private comdat called "
"outside of its comdat group.\n");
return true;
}
if (issues.bit_aligned_aggregate_argument)
{
/* Let's only remove parameters/return values from such functions.
TODO: We could only prevent splitting the problematic parameters if
anybody thinks it is worth it. */
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "A call of %s has bit-aligned aggregate argument,"
" disabling parameter splitting.\n", node->dump_name ());
isra_func_summary *ifs = func_sums->get (node);
gcc_checking_assert (ifs);
unsigned param_count = vec_safe_length (ifs->m_parameters);
for (unsigned i = 0; i < param_count; i++)
(*ifs->m_parameters)[i].split_candidate = false;
}
return false;
}
/* Find the access with corresponding OFFSET and SIZE among accesses in
PARAM_DESC and return it or NULL if such an access is not there. */
static param_access *
find_param_access (isra_param_desc *param_desc, unsigned offset, unsigned size)
{
unsigned pclen = vec_safe_length (param_desc->accesses);
/* The search is linear but the number of stored accesses is bound by
PARAM_IPA_SRA_MAX_REPLACEMENTS, so most probably 8. */
for (unsigned i = 0; i < pclen; i++)
if ((*param_desc->accesses)[i]->unit_offset == offset
&& (*param_desc->accesses)[i]->unit_size == size)
return (*param_desc->accesses)[i];
return NULL;
}
/* Return iff the total size of definite replacement SIZE would violate the
limit set for it in PARAM. */
static bool
size_would_violate_limit_p (isra_param_desc *desc, unsigned size)
{
unsigned limit = desc->param_size_limit;
if (size > limit
|| (!desc->by_ref && size == limit))
return true;
return false;
}
/* Increase reached size of DESC by SIZE or disqualify it if it would violate
the set limit. IDX is the parameter number which is dumped when
disqualifying. */
static void
bump_reached_size (isra_param_desc *desc, unsigned size, unsigned idx)
{
unsigned after = desc->size_reached + size;
if (size_would_violate_limit_p (desc, after))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " ...size limit reached, disqualifying "
"candidate parameter %u\n", idx);
desc->split_candidate = false;
return;
}
desc->size_reached = after;
}
/* Take all actions required to deal with an edge CS that represents a call to
an unknown or un-analyzed function, for both parameter removal and
splitting. */
static void
process_edge_to_unknown_caller (cgraph_edge *cs)
{
isra_func_summary *from_ifs = func_sums->get (cs->caller);
gcc_checking_assert (from_ifs);
isra_call_summary *csum = call_sums->get (cs);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Processing an edge to an unknown caller from %s:\n",
cs->caller->dump_name ());
unsigned args_count = csum->m_arg_flow.length ();
for (unsigned i = 0; i < args_count; i++)
{
isra_param_flow *ipf = &csum->m_arg_flow[i];
if (ipf->pointer_pass_through)
{
isra_param_desc *param_desc
= &(*from_ifs->m_parameters)[get_single_param_flow_source (ipf)];
param_desc->locally_unused = false;
param_desc->split_candidate = false;
continue;
}
if (ipf->aggregate_pass_through)
{
unsigned idx = get_single_param_flow_source (ipf);
isra_param_desc *param_desc = &(*from_ifs->m_parameters)[idx];
param_desc->locally_unused = false;
if (!param_desc->split_candidate)
continue;
gcc_assert (!param_desc->by_ref);
param_access *pacc = find_param_access (param_desc, ipf->unit_offset,
ipf->unit_size);
gcc_checking_assert (pacc);
pacc->certain = true;
if (overlapping_certain_accesses_p (param_desc, NULL))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " ...leading to overlap, "
" disqualifying candidate parameter %u\n",
idx);
param_desc->split_candidate = false;
}
else
bump_reached_size (param_desc, pacc->unit_size, idx);
ipf->aggregate_pass_through = false;
continue;
}
for (int j = 0; j < ipf->length; j++)
{
int input_idx = ipf->inputs[j];
(*from_ifs->m_parameters)[input_idx].locally_unused = false;
}
}
}
/* Propagate parameter removal information through cross-SCC edge CS,
i.e. decrease the use count in the caller parameter descriptor for each use
in this call. */
static void
param_removal_cross_scc_edge (cgraph_edge *cs)
{
enum availability availability;
cgraph_node *callee = cs->callee->function_symbol (&availability);
isra_func_summary *to_ifs = func_sums->get (callee);
if (!to_ifs || !to_ifs->m_candidate
|| (availability < AVAIL_AVAILABLE)
|| vec_safe_is_empty (to_ifs->m_parameters))
{
process_edge_to_unknown_caller (cs);
return;
}
isra_func_summary *from_ifs = func_sums->get (cs->caller);
gcc_checking_assert (from_ifs);
isra_call_summary *csum = call_sums->get (cs);
unsigned args_count = csum->m_arg_flow.length ();
unsigned param_count = vec_safe_length (to_ifs->m_parameters);
for (unsigned i = 0; i < args_count; i++)
{
bool unused_in_callee;
if (i < param_count)
unused_in_callee = (*to_ifs->m_parameters)[i].locally_unused;
else
unused_in_callee = false;
if (!unused_in_callee)
{
isra_param_flow *ipf = &csum->m_arg_flow[i];
for (int j = 0; j < ipf->length; j++)
{
int input_idx = ipf->inputs[j];
(*from_ifs->m_parameters)[input_idx].locally_unused = false;
}
}
}
}
/* Unless it is already there, push NODE which is also described by IFS to
STACK. */
static void
isra_push_node_to_stack (cgraph_node *node, isra_func_summary *ifs,
vec<cgraph_node *> *stack)
{
if (!ifs->m_queued)
{
ifs->m_queued = true;
s