| /* Swing Modulo Scheduling implementation. |
| Copyright (C) 2004-2022 Free Software Foundation, Inc. |
| Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "target.h" |
| #include "rtl.h" |
| #include "tree.h" |
| #include "cfghooks.h" |
| #include "df.h" |
| #include "memmodel.h" |
| #include "optabs.h" |
| #include "regs.h" |
| #include "emit-rtl.h" |
| #include "gcov-io.h" |
| #include "profile.h" |
| #include "insn-attr.h" |
| #include "cfgrtl.h" |
| #include "sched-int.h" |
| #include "cfgloop.h" |
| #include "expr.h" |
| #include "ddg.h" |
| #include "tree-pass.h" |
| #include "dbgcnt.h" |
| #include "loop-unroll.h" |
| #include "hard-reg-set.h" |
| |
| #ifdef INSN_SCHEDULING |
| |
| /* This file contains the implementation of the Swing Modulo Scheduler, |
| described in the following references: |
| [1] J. Llosa, A. Gonzalez, E. Ayguade, M. Valero., and J. Eckhardt. |
| Lifetime--sensitive modulo scheduling in a production environment. |
| IEEE Trans. on Comps., 50(3), March 2001 |
| [2] J. Llosa, A. Gonzalez, E. Ayguade, and M. Valero. |
| Swing Modulo Scheduling: A Lifetime Sensitive Approach. |
| PACT '96 , pages 80-87, October 1996 (Boston - Massachusetts - USA). |
| |
| The basic structure is: |
| 1. Build a data-dependence graph (DDG) for each loop. |
| 2. Use the DDG to order the insns of a loop (not in topological order |
| necessarily, but rather) trying to place each insn after all its |
| predecessors _or_ after all its successors. |
| 3. Compute MII: a lower bound on the number of cycles to schedule the loop. |
| 4. Use the ordering to perform list-scheduling of the loop: |
| 1. Set II = MII. We will try to schedule the loop within II cycles. |
| 2. Try to schedule the insns one by one according to the ordering. |
| For each insn compute an interval of cycles by considering already- |
| scheduled preds and succs (and associated latencies); try to place |
| the insn in the cycles of this window checking for potential |
| resource conflicts (using the DFA interface). |
| Note: this is different from the cycle-scheduling of schedule_insns; |
| here the insns are not scheduled monotonically top-down (nor bottom- |
| up). |
| 3. If failed in scheduling all insns - bump II++ and try again, unless |
| II reaches an upper bound MaxII, in which case report failure. |
| 5. If we succeeded in scheduling the loop within II cycles, we now |
| generate prolog and epilog, decrease the counter of the loop, and |
| perform modulo variable expansion for live ranges that span more than |
| II cycles (i.e. use register copies to prevent a def from overwriting |
| itself before reaching the use). |
| |
| SMS works with countable loops (1) whose control part can be easily |
| decoupled from the rest of the loop and (2) whose loop count can |
| be easily adjusted. This is because we peel a constant number of |
| iterations into a prologue and epilogue for which we want to avoid |
| emitting the control part, and a kernel which is to iterate that |
| constant number of iterations less than the original loop. So the |
| control part should be a set of insns clearly identified and having |
| its own iv, not otherwise used in the loop (at-least for now), which |
| initializes a register before the loop to the number of iterations. |
| Currently SMS relies on the do-loop pattern to recognize such loops, |
| where (1) the control part comprises of all insns defining and/or |
| using a certain 'count' register and (2) the loop count can be |
| adjusted by modifying this register prior to the loop. |
| TODO: Rely on cfgloop analysis instead. */ |
| |
| /* This page defines partial-schedule structures and functions for |
| modulo scheduling. */ |
| |
| typedef struct partial_schedule *partial_schedule_ptr; |
| typedef struct ps_insn *ps_insn_ptr; |
| |
| /* The minimum (absolute) cycle that a node of ps was scheduled in. */ |
| #define PS_MIN_CYCLE(ps) (((partial_schedule_ptr)(ps))->min_cycle) |
| |
| /* The maximum (absolute) cycle that a node of ps was scheduled in. */ |
| #define PS_MAX_CYCLE(ps) (((partial_schedule_ptr)(ps))->max_cycle) |
| |
| /* Perform signed modulo, always returning a non-negative value. */ |
| #define SMODULO(x,y) ((x) % (y) < 0 ? ((x) % (y) + (y)) : (x) % (y)) |
| |
| /* The number of different iterations the nodes in ps span, assuming |
| the stage boundaries are placed efficiently. */ |
| #define CALC_STAGE_COUNT(max_cycle,min_cycle,ii) ((max_cycle - min_cycle \ |
| + 1 + ii - 1) / ii) |
| /* The stage count of ps. */ |
| #define PS_STAGE_COUNT(ps) (((partial_schedule_ptr)(ps))->stage_count) |
| |
| /* A single instruction in the partial schedule. */ |
| struct ps_insn |
| { |
| /* Identifies the instruction to be scheduled. Values smaller than |
| the ddg's num_nodes refer directly to ddg nodes. A value of |
| X - num_nodes refers to register move X. */ |
| int id; |
| |
| /* The (absolute) cycle in which the PS instruction is scheduled. |
| Same as SCHED_TIME (node). */ |
| int cycle; |
| |
| /* The next/prev PS_INSN in the same row. */ |
| ps_insn_ptr next_in_row, |
| prev_in_row; |
| |
| }; |
| |
| /* Information about a register move that has been added to a partial |
| schedule. */ |
| struct ps_reg_move_info |
| { |
| /* The source of the move is defined by the ps_insn with id DEF. |
| The destination is used by the ps_insns with the ids in USES. */ |
| int def; |
| sbitmap uses; |
| |
| /* The original form of USES' instructions used OLD_REG, but they |
| should now use NEW_REG. */ |
| rtx old_reg; |
| rtx new_reg; |
| |
| /* The number of consecutive stages that the move occupies. */ |
| int num_consecutive_stages; |
| |
| /* An instruction that sets NEW_REG to the correct value. The first |
| move associated with DEF will have an rhs of OLD_REG; later moves |
| use the result of the previous move. */ |
| rtx_insn *insn; |
| }; |
| |
| /* Holds the partial schedule as an array of II rows. Each entry of the |
| array points to a linked list of PS_INSNs, which represents the |
| instructions that are scheduled for that row. */ |
| struct partial_schedule |
| { |
| int ii; /* Number of rows in the partial schedule. */ |
| int history; /* Threshold for conflict checking using DFA. */ |
| |
| /* rows[i] points to linked list of insns scheduled in row i (0<=i<ii). */ |
| ps_insn_ptr *rows; |
| |
| /* All the moves added for this partial schedule. Index X has |
| a ps_insn id of X + g->num_nodes. */ |
| vec<ps_reg_move_info> reg_moves; |
| |
| /* rows_length[i] holds the number of instructions in the row. |
| It is used only (as an optimization) to back off quickly from |
| trying to schedule a node in a full row; that is, to avoid running |
| through futile DFA state transitions. */ |
| int *rows_length; |
| |
| /* The earliest absolute cycle of an insn in the partial schedule. */ |
| int min_cycle; |
| |
| /* The latest absolute cycle of an insn in the partial schedule. */ |
| int max_cycle; |
| |
| ddg_ptr g; /* The DDG of the insns in the partial schedule. */ |
| |
| int stage_count; /* The stage count of the partial schedule. */ |
| }; |
| |
| |
| static partial_schedule_ptr create_partial_schedule (int ii, ddg_ptr, int history); |
| static void free_partial_schedule (partial_schedule_ptr); |
| static void reset_partial_schedule (partial_schedule_ptr, int new_ii); |
| void print_partial_schedule (partial_schedule_ptr, FILE *); |
| static void verify_partial_schedule (partial_schedule_ptr, sbitmap); |
| static ps_insn_ptr ps_add_node_check_conflicts (partial_schedule_ptr, |
| int, int, sbitmap, sbitmap); |
| static void rotate_partial_schedule (partial_schedule_ptr, int); |
| void set_row_column_for_ps (partial_schedule_ptr); |
| static void ps_insert_empty_row (partial_schedule_ptr, int, sbitmap); |
| static int compute_split_row (sbitmap, int, int, int, ddg_node_ptr); |
| |
| |
| /* This page defines constants and structures for the modulo scheduling |
| driver. */ |
| |
| static int sms_order_nodes (ddg_ptr, int, int *, int *); |
| static void set_node_sched_params (ddg_ptr); |
| static partial_schedule_ptr sms_schedule_by_order (ddg_ptr, int, int, int *); |
| static void permute_partial_schedule (partial_schedule_ptr, rtx_insn *); |
| static int calculate_stage_count (partial_schedule_ptr, int); |
| static void calculate_must_precede_follow (ddg_node_ptr, int, int, |
| int, int, sbitmap, sbitmap, sbitmap); |
| static int get_sched_window (partial_schedule_ptr, ddg_node_ptr, |
| sbitmap, int, int *, int *, int *); |
| static bool try_scheduling_node_in_cycle (partial_schedule_ptr, int, int, |
| sbitmap, int *, sbitmap, sbitmap); |
| static void remove_node_from_ps (partial_schedule_ptr, ps_insn_ptr); |
| |
| #define NODE_ASAP(node) ((node)->aux.count) |
| |
| #define SCHED_PARAMS(x) (&node_sched_param_vec[x]) |
| #define SCHED_TIME(x) (SCHED_PARAMS (x)->time) |
| #define SCHED_ROW(x) (SCHED_PARAMS (x)->row) |
| #define SCHED_STAGE(x) (SCHED_PARAMS (x)->stage) |
| #define SCHED_COLUMN(x) (SCHED_PARAMS (x)->column) |
| |
| /* The scheduling parameters held for each node. */ |
| typedef struct node_sched_params |
| { |
| int time; /* The absolute scheduling cycle. */ |
| |
| int row; /* Holds time % ii. */ |
| int stage; /* Holds time / ii. */ |
| |
| /* The column of a node inside the ps. If nodes u, v are on the same row, |
| u will precede v if column (u) < column (v). */ |
| int column; |
| } *node_sched_params_ptr; |
| |
| /* The following three functions are copied from the current scheduler |
| code in order to use sched_analyze() for computing the dependencies. |
| They are used when initializing the sched_info structure. */ |
| static const char * |
| sms_print_insn (const rtx_insn *insn, int aligned ATTRIBUTE_UNUSED) |
| { |
| static char tmp[80]; |
| |
| sprintf (tmp, "i%4d", INSN_UID (insn)); |
| return tmp; |
| } |
| |
| static void |
| compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED, |
| regset used ATTRIBUTE_UNUSED) |
| { |
| } |
| |
| static struct common_sched_info_def sms_common_sched_info; |
| |
| static struct sched_deps_info_def sms_sched_deps_info = |
| { |
| compute_jump_reg_dependencies, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, |
| NULL, |
| 0, 0, 0 |
| }; |
| |
| static struct haifa_sched_info sms_sched_info = |
| { |
| NULL, |
| NULL, |
| NULL, |
| NULL, |
| NULL, |
| sms_print_insn, |
| NULL, |
| NULL, /* insn_finishes_block_p */ |
| NULL, NULL, |
| NULL, NULL, |
| 0, 0, |
| |
| NULL, NULL, NULL, NULL, |
| NULL, NULL, |
| 0 |
| }; |
| |
| /* Partial schedule instruction ID in PS is a register move. Return |
| information about it. */ |
| static struct ps_reg_move_info * |
| ps_reg_move (partial_schedule_ptr ps, int id) |
| { |
| gcc_checking_assert (id >= ps->g->num_nodes); |
| return &ps->reg_moves[id - ps->g->num_nodes]; |
| } |
| |
| /* Return the rtl instruction that is being scheduled by partial schedule |
| instruction ID, which belongs to schedule PS. */ |
| static rtx_insn * |
| ps_rtl_insn (partial_schedule_ptr ps, int id) |
| { |
| if (id < ps->g->num_nodes) |
| return ps->g->nodes[id].insn; |
| else |
| return ps_reg_move (ps, id)->insn; |
| } |
| |
| /* Partial schedule instruction ID, which belongs to PS, occurred in |
| the original (unscheduled) loop. Return the first instruction |
| in the loop that was associated with ps_rtl_insn (PS, ID). |
| If the instruction had some notes before it, this is the first |
| of those notes. */ |
| static rtx_insn * |
| ps_first_note (partial_schedule_ptr ps, int id) |
| { |
| gcc_assert (id < ps->g->num_nodes); |
| return ps->g->nodes[id].first_note; |
| } |
| |
| /* Return the number of consecutive stages that are occupied by |
| partial schedule instruction ID in PS. */ |
| static int |
| ps_num_consecutive_stages (partial_schedule_ptr ps, int id) |
| { |
| if (id < ps->g->num_nodes) |
| return 1; |
| else |
| return ps_reg_move (ps, id)->num_consecutive_stages; |
| } |
| |
| /* Given HEAD and TAIL which are the first and last insns in a loop; |
| return the register which controls the loop. Return zero if it has |
| more than one occurrence in the loop besides the control part or the |
| do-loop pattern is not of the form we expect. */ |
| static rtx |
| doloop_register_get (rtx_insn *head, rtx_insn *tail) |
| { |
| rtx reg, condition; |
| rtx_insn *insn, *first_insn_not_to_check; |
| |
| if (!JUMP_P (tail)) |
| return NULL_RTX; |
| |
| if (!targetm.code_for_doloop_end) |
| return NULL_RTX; |
| |
| /* TODO: Free SMS's dependence on doloop_condition_get. */ |
| condition = doloop_condition_get (tail); |
| if (! condition) |
| return NULL_RTX; |
| |
| if (REG_P (XEXP (condition, 0))) |
| reg = XEXP (condition, 0); |
| else if (GET_CODE (XEXP (condition, 0)) == PLUS |
| && REG_P (XEXP (XEXP (condition, 0), 0))) |
| reg = XEXP (XEXP (condition, 0), 0); |
| else |
| gcc_unreachable (); |
| |
| /* Check that the COUNT_REG has no other occurrences in the loop |
| until the decrement. We assume the control part consists of |
| either a single (parallel) branch-on-count or a (non-parallel) |
| branch immediately preceded by a single (decrement) insn. */ |
| first_insn_not_to_check = (GET_CODE (PATTERN (tail)) == PARALLEL ? tail |
| : prev_nondebug_insn (tail)); |
| |
| for (insn = head; insn != first_insn_not_to_check; insn = NEXT_INSN (insn)) |
| if (NONDEBUG_INSN_P (insn) && reg_mentioned_p (reg, insn)) |
| { |
| if (dump_file) |
| { |
| fprintf (dump_file, "SMS count_reg found "); |
| print_rtl_single (dump_file, reg); |
| fprintf (dump_file, " outside control in insn:\n"); |
| print_rtl_single (dump_file, insn); |
| } |
| |
| return NULL_RTX; |
| } |
| |
| return reg; |
| } |
| |
| /* Check if COUNT_REG is set to a constant in the PRE_HEADER block, so |
| that the number of iterations is a compile-time constant. If so, |
| return the rtx_insn that sets COUNT_REG to a constant, and set COUNT to |
| this constant. Otherwise return 0. */ |
| static rtx_insn * |
| const_iteration_count (rtx count_reg, basic_block pre_header, |
| int64_t *count, bool* adjust_inplace) |
| { |
| rtx_insn *insn; |
| rtx_insn *head, *tail; |
| |
| *adjust_inplace = false; |
| bool read_after = false; |
| |
| if (! pre_header) |
| return NULL; |
| |
| get_ebb_head_tail (pre_header, pre_header, &head, &tail); |
| |
| for (insn = tail; insn != PREV_INSN (head); insn = PREV_INSN (insn)) |
| if (single_set (insn) && rtx_equal_p (count_reg, |
| SET_DEST (single_set (insn)))) |
| { |
| rtx pat = single_set (insn); |
| |
| if (CONST_INT_P (SET_SRC (pat))) |
| { |
| *count = INTVAL (SET_SRC (pat)); |
| *adjust_inplace = !read_after; |
| return insn; |
| } |
| |
| return NULL; |
| } |
| else if (NONDEBUG_INSN_P (insn) && reg_mentioned_p (count_reg, insn)) |
| { |
| read_after = true; |
| if (reg_set_p (count_reg, insn)) |
| break; |
| } |
| |
| return NULL; |
| } |
| |
| /* A very simple resource-based lower bound on the initiation interval. |
| ??? Improve the accuracy of this bound by considering the |
| utilization of various units. */ |
| static int |
| res_MII (ddg_ptr g) |
| { |
| if (targetm.sched.sms_res_mii) |
| return targetm.sched.sms_res_mii (g); |
| |
| return g->num_nodes / issue_rate; |
| } |
| |
| |
| /* A vector that contains the sched data for each ps_insn. */ |
| static vec<node_sched_params> node_sched_param_vec; |
| |
| /* Allocate sched_params for each node and initialize it. */ |
| static void |
| set_node_sched_params (ddg_ptr g) |
| { |
| node_sched_param_vec.truncate (0); |
| node_sched_param_vec.safe_grow_cleared (g->num_nodes, true); |
| } |
| |
| /* Make sure that node_sched_param_vec has an entry for every move in PS. */ |
| static void |
| extend_node_sched_params (partial_schedule_ptr ps) |
| { |
| node_sched_param_vec.safe_grow_cleared (ps->g->num_nodes |
| + ps->reg_moves.length (), true); |
| } |
| |
| /* Update the sched_params (time, row and stage) for node U using the II, |
| the CYCLE of U and MIN_CYCLE. |
| We're not simply taking the following |
| SCHED_STAGE (u) = CALC_STAGE_COUNT (SCHED_TIME (u), min_cycle, ii); |
| because the stages may not be aligned on cycle 0. */ |
| static void |
| update_node_sched_params (int u, int ii, int cycle, int min_cycle) |
| { |
| int sc_until_cycle_zero; |
| int stage; |
| |
| SCHED_TIME (u) = cycle; |
| SCHED_ROW (u) = SMODULO (cycle, ii); |
| |
| /* The calculation of stage count is done adding the number |
| of stages before cycle zero and after cycle zero. */ |
| sc_until_cycle_zero = CALC_STAGE_COUNT (-1, min_cycle, ii); |
| |
| if (SCHED_TIME (u) < 0) |
| { |
| stage = CALC_STAGE_COUNT (-1, SCHED_TIME (u), ii); |
| SCHED_STAGE (u) = sc_until_cycle_zero - stage; |
| } |
| else |
| { |
| stage = CALC_STAGE_COUNT (SCHED_TIME (u), 0, ii); |
| SCHED_STAGE (u) = sc_until_cycle_zero + stage - 1; |
| } |
| } |
| |
| static void |
| print_node_sched_params (FILE *file, int num_nodes, partial_schedule_ptr ps) |
| { |
| int i; |
| |
| if (! file) |
| return; |
| for (i = 0; i < num_nodes; i++) |
| { |
| node_sched_params_ptr nsp = SCHED_PARAMS (i); |
| |
| fprintf (file, "Node = %d; INSN = %d\n", i, |
| INSN_UID (ps_rtl_insn (ps, i))); |
| fprintf (file, " asap = %d:\n", NODE_ASAP (&ps->g->nodes[i])); |
| fprintf (file, " time = %d:\n", nsp->time); |
| fprintf (file, " stage = %d:\n", nsp->stage); |
| } |
| } |
| |
| /* Set SCHED_COLUMN for each instruction in row ROW of PS. */ |
| static void |
| set_columns_for_row (partial_schedule_ptr ps, int row) |
| { |
| ps_insn_ptr cur_insn; |
| int column; |
| |
| column = 0; |
| for (cur_insn = ps->rows[row]; cur_insn; cur_insn = cur_insn->next_in_row) |
| SCHED_COLUMN (cur_insn->id) = column++; |
| } |
| |
| /* Set SCHED_COLUMN for each instruction in PS. */ |
| static void |
| set_columns_for_ps (partial_schedule_ptr ps) |
| { |
| int row; |
| |
| for (row = 0; row < ps->ii; row++) |
| set_columns_for_row (ps, row); |
| } |
| |
| /* Try to schedule the move with ps_insn identifier I_REG_MOVE in PS. |
| Its single predecessor has already been scheduled, as has its |
| ddg node successors. (The move may have also another move as its |
| successor, in which case that successor will be scheduled later.) |
| |
| The move is part of a chain that satisfies register dependencies |
| between a producing ddg node and various consuming ddg nodes. |
| If some of these dependencies have a distance of 1 (meaning that |
| the use is upward-exposed) then DISTANCE1_USES is nonnull and |
| contains the set of uses with distance-1 dependencies. |
| DISTANCE1_USES is null otherwise. |
| |
| MUST_FOLLOW is a scratch bitmap that is big enough to hold |
| all current ps_insn ids. |
| |
| Return true on success. */ |
| static bool |
| schedule_reg_move (partial_schedule_ptr ps, int i_reg_move, |
| sbitmap distance1_uses, sbitmap must_follow) |
| { |
| unsigned int u; |
| int this_time, this_distance, this_start, this_end, this_latency; |
| int start, end, c, ii; |
| sbitmap_iterator sbi; |
| ps_reg_move_info *move; |
| rtx_insn *this_insn; |
| ps_insn_ptr psi; |
| |
| move = ps_reg_move (ps, i_reg_move); |
| ii = ps->ii; |
| if (dump_file) |
| { |
| fprintf (dump_file, "Scheduling register move INSN %d; ii = %d" |
| ", min cycle = %d\n\n", INSN_UID (move->insn), ii, |
| PS_MIN_CYCLE (ps)); |
| print_rtl_single (dump_file, move->insn); |
| fprintf (dump_file, "\n%11s %11s %5s\n", "start", "end", "time"); |
| fprintf (dump_file, "=========== =========== =====\n"); |
| } |
| |
| start = INT_MIN; |
| end = INT_MAX; |
| |
| /* For dependencies of distance 1 between a producer ddg node A |
| and consumer ddg node B, we have a chain of dependencies: |
| |
| A --(T,L1,1)--> M1 --(T,L2,0)--> M2 ... --(T,Ln,0)--> B |
| |
| where Mi is the ith move. For dependencies of distance 0 between |
| a producer ddg node A and consumer ddg node C, we have a chain of |
| dependencies: |
| |
| A --(T,L1',0)--> M1' --(T,L2',0)--> M2' ... --(T,Ln',0)--> C |
| |
| where Mi' occupies the same position as Mi but occurs a stage later. |
| We can only schedule each move once, so if we have both types of |
| chain, we model the second as: |
| |
| A --(T,L1',1)--> M1 --(T,L2',0)--> M2 ... --(T,Ln',-1)--> C |
| |
| First handle the dependencies between the previously-scheduled |
| predecessor and the move. */ |
| this_insn = ps_rtl_insn (ps, move->def); |
| this_latency = insn_latency (this_insn, move->insn); |
| this_distance = distance1_uses && move->def < ps->g->num_nodes ? 1 : 0; |
| this_time = SCHED_TIME (move->def) - this_distance * ii; |
| this_start = this_time + this_latency; |
| this_end = this_time + ii; |
| if (dump_file) |
| fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n", |
| this_start, this_end, SCHED_TIME (move->def), |
| INSN_UID (this_insn), this_latency, this_distance, |
| INSN_UID (move->insn)); |
| |
| if (start < this_start) |
| start = this_start; |
| if (end > this_end) |
| end = this_end; |
| |
| /* Handle the dependencies between the move and previously-scheduled |
| successors. */ |
| EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, u, sbi) |
| { |
| this_insn = ps_rtl_insn (ps, u); |
| this_latency = insn_latency (move->insn, this_insn); |
| if (distance1_uses && !bitmap_bit_p (distance1_uses, u)) |
| this_distance = -1; |
| else |
| this_distance = 0; |
| this_time = SCHED_TIME (u) + this_distance * ii; |
| this_start = this_time - ii; |
| this_end = this_time - this_latency; |
| if (dump_file) |
| fprintf (dump_file, "%11d %11d %5d %d --(T,%d,%d)--> %d\n", |
| this_start, this_end, SCHED_TIME (u), INSN_UID (move->insn), |
| this_latency, this_distance, INSN_UID (this_insn)); |
| |
| if (start < this_start) |
| start = this_start; |
| if (end > this_end) |
| end = this_end; |
| } |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "----------- ----------- -----\n"); |
| fprintf (dump_file, "%11d %11d %5s %s\n", start, end, "", "(max, min)"); |
| } |
| |
| bitmap_clear (must_follow); |
| bitmap_set_bit (must_follow, move->def); |
| |
| start = MAX (start, end - (ii - 1)); |
| for (c = end; c >= start; c--) |
| { |
| psi = ps_add_node_check_conflicts (ps, i_reg_move, c, |
| move->uses, must_follow); |
| if (psi) |
| { |
| update_node_sched_params (i_reg_move, ii, c, PS_MIN_CYCLE (ps)); |
| if (dump_file) |
| fprintf (dump_file, "\nScheduled register move INSN %d at" |
| " time %d, row %d\n\n", INSN_UID (move->insn), c, |
| SCHED_ROW (i_reg_move)); |
| return true; |
| } |
| } |
| |
| if (dump_file) |
| fprintf (dump_file, "\nNo available slot\n\n"); |
| |
| return false; |
| } |
| |
| /* |
| Breaking intra-loop register anti-dependences: |
| Each intra-loop register anti-dependence implies a cross-iteration true |
| dependence of distance 1. Therefore, we can remove such false dependencies |
| and figure out if the partial schedule broke them by checking if (for a |
| true-dependence of distance 1): SCHED_TIME (def) < SCHED_TIME (use) and |
| if so generate a register move. The number of such moves is equal to: |
| SCHED_TIME (use) - SCHED_TIME (def) { 0 broken |
| nreg_moves = ----------------------------------- + 1 - { dependence. |
| ii { 1 if not. |
| */ |
| static bool |
| schedule_reg_moves (partial_schedule_ptr ps) |
| { |
| ddg_ptr g = ps->g; |
| int ii = ps->ii; |
| int i; |
| |
| for (i = 0; i < g->num_nodes; i++) |
| { |
| ddg_node_ptr u = &g->nodes[i]; |
| ddg_edge_ptr e; |
| int nreg_moves = 0, i_reg_move; |
| rtx prev_reg, old_reg; |
| int first_move; |
| int distances[2]; |
| sbitmap distance1_uses; |
| rtx set = single_set (u->insn); |
| |
| /* Skip instructions that do not set a register. */ |
| if (set && !REG_P (SET_DEST (set))) |
| continue; |
| |
| /* Compute the number of reg_moves needed for u, by looking at life |
| ranges started at u (excluding self-loops). */ |
| distances[0] = distances[1] = false; |
| for (e = u->out; e; e = e->next_out) |
| if (e->type == TRUE_DEP && e->dest != e->src) |
| { |
| int nreg_moves4e = (SCHED_TIME (e->dest->cuid) |
| - SCHED_TIME (e->src->cuid)) / ii; |
| |
| if (e->distance == 1) |
| nreg_moves4e = (SCHED_TIME (e->dest->cuid) |
| - SCHED_TIME (e->src->cuid) + ii) / ii; |
| |
| /* If dest precedes src in the schedule of the kernel, then dest |
| will read before src writes and we can save one reg_copy. */ |
| if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid) |
| && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid)) |
| nreg_moves4e--; |
| |
| if (nreg_moves4e >= 1) |
| { |
| /* !single_set instructions are not supported yet and |
| thus we do not except to encounter them in the loop |
| except from the doloop part. For the latter case |
| we assume no regmoves are generated as the doloop |
| instructions are tied to the branch with an edge. */ |
| gcc_assert (set); |
| /* If the instruction contains auto-inc register then |
| validate that the regmov is being generated for the |
| target regsiter rather then the inc'ed register. */ |
| gcc_assert (!autoinc_var_is_used_p (u->insn, e->dest->insn)); |
| } |
| |
| if (nreg_moves4e) |
| { |
| gcc_assert (e->distance < 2); |
| distances[e->distance] = true; |
| } |
| nreg_moves = MAX (nreg_moves, nreg_moves4e); |
| } |
| |
| if (nreg_moves == 0) |
| continue; |
| |
| /* Create NREG_MOVES register moves. */ |
| first_move = ps->reg_moves.length (); |
| ps->reg_moves.safe_grow_cleared (first_move + nreg_moves, true); |
| extend_node_sched_params (ps); |
| |
| /* Record the moves associated with this node. */ |
| first_move += ps->g->num_nodes; |
| |
| /* Generate each move. */ |
| old_reg = prev_reg = SET_DEST (set); |
| if (HARD_REGISTER_P (old_reg)) |
| return false; |
| |
| for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++) |
| { |
| ps_reg_move_info *move = ps_reg_move (ps, first_move + i_reg_move); |
| |
| move->def = i_reg_move > 0 ? first_move + i_reg_move - 1 : i; |
| move->uses = sbitmap_alloc (first_move + nreg_moves); |
| move->old_reg = old_reg; |
| move->new_reg = gen_reg_rtx (GET_MODE (prev_reg)); |
| move->num_consecutive_stages = distances[0] && distances[1] ? 2 : 1; |
| move->insn = gen_move_insn (move->new_reg, copy_rtx (prev_reg)); |
| bitmap_clear (move->uses); |
| |
| prev_reg = move->new_reg; |
| } |
| |
| distance1_uses = distances[1] ? sbitmap_alloc (g->num_nodes) : NULL; |
| |
| if (distance1_uses) |
| bitmap_clear (distance1_uses); |
| |
| /* Every use of the register defined by node may require a different |
| copy of this register, depending on the time the use is scheduled. |
| Record which uses require which move results. */ |
| for (e = u->out; e; e = e->next_out) |
| if (e->type == TRUE_DEP && e->dest != e->src) |
| { |
| int dest_copy = (SCHED_TIME (e->dest->cuid) |
| - SCHED_TIME (e->src->cuid)) / ii; |
| |
| if (e->distance == 1) |
| dest_copy = (SCHED_TIME (e->dest->cuid) |
| - SCHED_TIME (e->src->cuid) + ii) / ii; |
| |
| if (SCHED_ROW (e->dest->cuid) == SCHED_ROW (e->src->cuid) |
| && SCHED_COLUMN (e->dest->cuid) < SCHED_COLUMN (e->src->cuid)) |
| dest_copy--; |
| |
| if (dest_copy) |
| { |
| ps_reg_move_info *move; |
| |
| move = ps_reg_move (ps, first_move + dest_copy - 1); |
| bitmap_set_bit (move->uses, e->dest->cuid); |
| if (e->distance == 1) |
| bitmap_set_bit (distance1_uses, e->dest->cuid); |
| } |
| } |
| |
| auto_sbitmap must_follow (first_move + nreg_moves); |
| for (i_reg_move = 0; i_reg_move < nreg_moves; i_reg_move++) |
| if (!schedule_reg_move (ps, first_move + i_reg_move, |
| distance1_uses, must_follow)) |
| break; |
| if (distance1_uses) |
| sbitmap_free (distance1_uses); |
| if (i_reg_move < nreg_moves) |
| return false; |
| } |
| return true; |
| } |
| |
| /* Emit the moves associated with PS. Apply the substitutions |
| associated with them. */ |
| static void |
| apply_reg_moves (partial_schedule_ptr ps) |
| { |
| ps_reg_move_info *move; |
| int i; |
| |
| FOR_EACH_VEC_ELT (ps->reg_moves, i, move) |
| { |
| unsigned int i_use; |
| sbitmap_iterator sbi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (move->uses, 0, i_use, sbi) |
| { |
| replace_rtx (ps->g->nodes[i_use].insn, move->old_reg, move->new_reg); |
| df_insn_rescan (ps->g->nodes[i_use].insn); |
| } |
| } |
| } |
| |
| /* Bump the SCHED_TIMEs of all nodes by AMOUNT. Set the values of |
| SCHED_ROW and SCHED_STAGE. Instruction scheduled on cycle AMOUNT |
| will move to cycle zero. */ |
| static void |
| reset_sched_times (partial_schedule_ptr ps, int amount) |
| { |
| int row; |
| int ii = ps->ii; |
| ps_insn_ptr crr_insn; |
| |
| for (row = 0; row < ii; row++) |
| for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row) |
| { |
| int u = crr_insn->id; |
| int normalized_time = SCHED_TIME (u) - amount; |
| int new_min_cycle = PS_MIN_CYCLE (ps) - amount; |
| |
| if (dump_file) |
| { |
| /* Print the scheduling times after the rotation. */ |
| rtx_insn *insn = ps_rtl_insn (ps, u); |
| |
| fprintf (dump_file, "crr_insn->node=%d (insn id %d), " |
| "crr_insn->cycle=%d, min_cycle=%d", u, |
| INSN_UID (insn), normalized_time, new_min_cycle); |
| if (JUMP_P (insn)) |
| fprintf (dump_file, " (branch)"); |
| fprintf (dump_file, "\n"); |
| } |
| |
| gcc_assert (SCHED_TIME (u) >= ps->min_cycle); |
| gcc_assert (SCHED_TIME (u) <= ps->max_cycle); |
| |
| crr_insn->cycle = normalized_time; |
| update_node_sched_params (u, ii, normalized_time, new_min_cycle); |
| } |
| } |
| |
| /* Permute the insns according to their order in PS, from row 0 to |
| row ii-1, and position them right before LAST. This schedules |
| the insns of the loop kernel. */ |
| static void |
| permute_partial_schedule (partial_schedule_ptr ps, rtx_insn *last) |
| { |
| int ii = ps->ii; |
| int row; |
| ps_insn_ptr ps_ij; |
| |
| for (row = 0; row < ii ; row++) |
| for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row) |
| { |
| rtx_insn *insn = ps_rtl_insn (ps, ps_ij->id); |
| |
| if (PREV_INSN (last) != insn) |
| { |
| if (ps_ij->id < ps->g->num_nodes) |
| reorder_insns_nobb (ps_first_note (ps, ps_ij->id), insn, |
| PREV_INSN (last)); |
| else |
| add_insn_before (insn, last, NULL); |
| } |
| } |
| } |
| |
| /* Set bitmaps TMP_FOLLOW and TMP_PRECEDE to MUST_FOLLOW and MUST_PRECEDE |
| respectively only if cycle C falls on the border of the scheduling |
| window boundaries marked by START and END cycles. STEP is the |
| direction of the window. */ |
| static inline void |
| set_must_precede_follow (sbitmap *tmp_follow, sbitmap must_follow, |
| sbitmap *tmp_precede, sbitmap must_precede, int c, |
| int start, int end, int step) |
| { |
| *tmp_precede = NULL; |
| *tmp_follow = NULL; |
| |
| if (c == start) |
| { |
| if (step == 1) |
| *tmp_precede = must_precede; |
| else /* step == -1. */ |
| *tmp_follow = must_follow; |
| } |
| if (c == end - step) |
| { |
| if (step == 1) |
| *tmp_follow = must_follow; |
| else /* step == -1. */ |
| *tmp_precede = must_precede; |
| } |
| |
| } |
| |
| /* Return True if the branch can be moved to row ii-1 while |
| normalizing the partial schedule PS to start from cycle zero and thus |
| optimize the SC. Otherwise return False. */ |
| static bool |
| optimize_sc (partial_schedule_ptr ps, ddg_ptr g) |
| { |
| int amount = PS_MIN_CYCLE (ps); |
| int start, end, step; |
| int ii = ps->ii; |
| bool ok = false; |
| int stage_count, stage_count_curr; |
| |
| /* Compare the SC after normalization and SC after bringing the branch |
| to row ii-1. If they are equal just bail out. */ |
| stage_count = calculate_stage_count (ps, amount); |
| stage_count_curr = |
| calculate_stage_count (ps, SCHED_TIME (g->closing_branch->cuid) - (ii - 1)); |
| |
| if (stage_count == stage_count_curr) |
| { |
| if (dump_file) |
| fprintf (dump_file, "SMS SC already optimized.\n"); |
| |
| return false; |
| } |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "SMS Trying to optimize branch location\n"); |
| fprintf (dump_file, "SMS partial schedule before trial:\n"); |
| print_partial_schedule (ps, dump_file); |
| } |
| |
| /* First, normalize the partial scheduling. */ |
| reset_sched_times (ps, amount); |
| rotate_partial_schedule (ps, amount); |
| if (dump_file) |
| { |
| fprintf (dump_file, |
| "SMS partial schedule after normalization (ii, %d, SC %d):\n", |
| ii, stage_count); |
| print_partial_schedule (ps, dump_file); |
| } |
| |
| if (SMODULO (SCHED_TIME (g->closing_branch->cuid), ii) == ii - 1) |
| return true; |
| |
| auto_sbitmap sched_nodes (g->num_nodes); |
| bitmap_ones (sched_nodes); |
| |
| /* Calculate the new placement of the branch. It should be in row |
| ii-1 and fall into it's scheduling window. */ |
| if (get_sched_window (ps, g->closing_branch, sched_nodes, ii, &start, |
| &step, &end) == 0) |
| { |
| bool success; |
| ps_insn_ptr next_ps_i; |
| int branch_cycle = SCHED_TIME (g->closing_branch->cuid); |
| int row = SMODULO (branch_cycle, ps->ii); |
| int num_splits = 0; |
| sbitmap tmp_precede, tmp_follow; |
| int min_cycle, c; |
| |
| if (dump_file) |
| fprintf (dump_file, "\nTrying to schedule node %d " |
| "INSN = %d in (%d .. %d) step %d\n", |
| g->closing_branch->cuid, |
| (INSN_UID (g->closing_branch->insn)), start, end, step); |
| |
| gcc_assert ((step > 0 && start < end) || (step < 0 && start > end)); |
| if (step == 1) |
| { |
| c = start + ii - SMODULO (start, ii) - 1; |
| gcc_assert (c >= start); |
| if (c >= end) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "SMS failed to schedule branch at cycle: %d\n", c); |
| return false; |
| } |
| } |
| else |
| { |
| c = start - SMODULO (start, ii) - 1; |
| gcc_assert (c <= start); |
| |
| if (c <= end) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "SMS failed to schedule branch at cycle: %d\n", c); |
| return false; |
| } |
| } |
| |
| auto_sbitmap must_precede (g->num_nodes); |
| auto_sbitmap must_follow (g->num_nodes); |
| |
| /* Try to schedule the branch is it's new cycle. */ |
| calculate_must_precede_follow (g->closing_branch, start, end, |
| step, ii, sched_nodes, |
| must_precede, must_follow); |
| |
| set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede, |
| must_precede, c, start, end, step); |
| |
| /* Find the element in the partial schedule related to the closing |
| branch so we can remove it from it's current cycle. */ |
| for (next_ps_i = ps->rows[row]; |
| next_ps_i; next_ps_i = next_ps_i->next_in_row) |
| if (next_ps_i->id == g->closing_branch->cuid) |
| break; |
| |
| min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii); |
| remove_node_from_ps (ps, next_ps_i); |
| success = |
| try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, c, |
| sched_nodes, &num_splits, |
| tmp_precede, tmp_follow); |
| gcc_assert (num_splits == 0); |
| if (!success) |
| { |
| if (dump_file) |
| fprintf (dump_file, |
| "SMS failed to schedule branch at cycle: %d, " |
| "bringing it back to cycle %d\n", c, branch_cycle); |
| |
| /* The branch was failed to be placed in row ii - 1. |
| Put it back in it's original place in the partial |
| schedualing. */ |
| set_must_precede_follow (&tmp_follow, must_follow, &tmp_precede, |
| must_precede, branch_cycle, start, end, |
| step); |
| success = |
| try_scheduling_node_in_cycle (ps, g->closing_branch->cuid, |
| branch_cycle, sched_nodes, |
| &num_splits, tmp_precede, |
| tmp_follow); |
| gcc_assert (success && (num_splits == 0)); |
| ok = false; |
| } |
| else |
| { |
| /* The branch is placed in row ii - 1. */ |
| if (dump_file) |
| fprintf (dump_file, |
| "SMS success in moving branch to cycle %d\n", c); |
| |
| update_node_sched_params (g->closing_branch->cuid, ii, c, |
| PS_MIN_CYCLE (ps)); |
| ok = true; |
| } |
| |
| /* This might have been added to a new first stage. */ |
| if (PS_MIN_CYCLE (ps) < min_cycle) |
| reset_sched_times (ps, 0); |
| } |
| |
| return ok; |
| } |
| |
| static void |
| duplicate_insns_of_cycles (partial_schedule_ptr ps, int from_stage, |
| int to_stage, rtx count_reg, class loop *loop) |
| { |
| int row; |
| ps_insn_ptr ps_ij; |
| copy_bb_data id; |
| |
| for (row = 0; row < ps->ii; row++) |
| for (ps_ij = ps->rows[row]; ps_ij; ps_ij = ps_ij->next_in_row) |
| { |
| int u = ps_ij->id; |
| int first_u, last_u; |
| rtx_insn *u_insn; |
| |
| /* Do not duplicate any insn which refers to count_reg as it |
| belongs to the control part. |
| The closing branch is scheduled as well and thus should |
| be ignored. |
| TODO: This should be done by analyzing the control part of |
| the loop. */ |
| u_insn = ps_rtl_insn (ps, u); |
| if (reg_mentioned_p (count_reg, u_insn) |
| || JUMP_P (u_insn)) |
| continue; |
| |
| first_u = SCHED_STAGE (u); |
| last_u = first_u + ps_num_consecutive_stages (ps, u) - 1; |
| if (from_stage <= last_u && to_stage >= first_u) |
| { |
| if (u < ps->g->num_nodes) |
| duplicate_insn_chain (ps_first_note (ps, u), u_insn, |
| loop, &id); |
| else |
| emit_insn (copy_rtx (PATTERN (u_insn))); |
| } |
| } |
| } |
| |
| |
| /* Generate the instructions (including reg_moves) for prolog & epilog. */ |
| static void |
| generate_prolog_epilog (partial_schedule_ptr ps, class loop *loop, |
| rtx count_reg, bool adjust_init) |
| { |
| int i; |
| int last_stage = PS_STAGE_COUNT (ps) - 1; |
| edge e; |
| |
| /* Generate the prolog, inserting its insns on the loop-entry edge. */ |
| start_sequence (); |
| |
| if (adjust_init) |
| { |
| /* Generate instructions at the beginning of the prolog to |
| adjust the loop count by STAGE_COUNT. If loop count is constant |
| and it not used anywhere in prologue, this constant is adjusted by |
| STAGE_COUNT outside of generate_prolog_epilog function. */ |
| rtx sub_reg = NULL_RTX; |
| |
| sub_reg = expand_simple_binop (GET_MODE (count_reg), MINUS, count_reg, |
| gen_int_mode (last_stage, |
| GET_MODE (count_reg)), |
| count_reg, 1, OPTAB_DIRECT); |
| gcc_assert (REG_P (sub_reg)); |
| if (REGNO (sub_reg) != REGNO (count_reg)) |
| emit_move_insn (count_reg, sub_reg); |
| } |
| |
| for (i = 0; i < last_stage; i++) |
| duplicate_insns_of_cycles (ps, 0, i, count_reg, loop); |
| |
| /* Put the prolog on the entry edge. */ |
| e = loop_preheader_edge (loop); |
| split_edge_and_insert (e, get_insns ()); |
| if (!flag_resched_modulo_sched) |
| e->dest->flags |= BB_DISABLE_SCHEDULE; |
| |
| end_sequence (); |
| |
| /* Generate the epilog, inserting its insns on the loop-exit edge. */ |
| start_sequence (); |
| |
| for (i = 0; i < last_stage; i++) |
| duplicate_insns_of_cycles (ps, i + 1, last_stage, count_reg, loop); |
| |
| /* Put the epilogue on the exit edge. */ |
| gcc_assert (single_exit (loop)); |
| e = single_exit (loop); |
| split_edge_and_insert (e, get_insns ()); |
| if (!flag_resched_modulo_sched) |
| e->dest->flags |= BB_DISABLE_SCHEDULE; |
| |
| end_sequence (); |
| } |
| |
| /* Mark LOOP as software pipelined so the later |
| scheduling passes don't touch it. */ |
| static void |
| mark_loop_unsched (class loop *loop) |
| { |
| unsigned i; |
| basic_block *bbs = get_loop_body (loop); |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| bbs[i]->flags |= BB_DISABLE_SCHEDULE; |
| |
| free (bbs); |
| } |
| |
| /* Return true if all the BBs of the loop are empty except the |
| loop header. */ |
| static bool |
| loop_single_full_bb_p (class loop *loop) |
| { |
| unsigned i; |
| basic_block *bbs = get_loop_body (loop); |
| |
| for (i = 0; i < loop->num_nodes ; i++) |
| { |
| rtx_insn *head, *tail; |
| bool empty_bb = true; |
| |
| if (bbs[i] == loop->header) |
| continue; |
| |
| /* Make sure that basic blocks other than the header |
| have only notes labels or jumps. */ |
| get_ebb_head_tail (bbs[i], bbs[i], &head, &tail); |
| for (; head != NEXT_INSN (tail); head = NEXT_INSN (head)) |
| { |
| if (NOTE_P (head) || LABEL_P (head) |
| || (INSN_P (head) && (DEBUG_INSN_P (head) || JUMP_P (head)))) |
| continue; |
| empty_bb = false; |
| break; |
| } |
| |
| if (! empty_bb) |
| { |
| free (bbs); |
| return false; |
| } |
| } |
| free (bbs); |
| return true; |
| } |
| |
| /* Dump file:line from INSN's location info to dump_file. */ |
| |
| static void |
| dump_insn_location (rtx_insn *insn) |
| { |
| if (dump_file && INSN_HAS_LOCATION (insn)) |
| { |
| expanded_location xloc = insn_location (insn); |
| fprintf (dump_file, " %s:%i", xloc.file, xloc.line); |
| } |
| } |
| |
| /* A simple loop from SMS point of view; it is a loop that is composed of |
| either a single basic block or two BBs - a header and a latch. */ |
| #define SIMPLE_SMS_LOOP_P(loop) ((loop->num_nodes < 3 ) \ |
| && (EDGE_COUNT (loop->latch->preds) == 1) \ |
| && (EDGE_COUNT (loop->latch->succs) == 1)) |
| |
| /* Return true if the loop is in its canonical form and false if not. |
| i.e. SIMPLE_SMS_LOOP_P and have one preheader block, and single exit. */ |
| static bool |
| loop_canon_p (class loop *loop) |
| { |
| |
| if (loop->inner || !loop_outer (loop)) |
| { |
| if (dump_file) |
| fprintf (dump_file, "SMS loop inner or !loop_outer\n"); |
| return false; |
| } |
| |
| if (!single_exit (loop)) |
| { |
| if (dump_file) |
| { |
| rtx_insn *insn = BB_END (loop->header); |
| |
| fprintf (dump_file, "SMS loop many exits"); |
| dump_insn_location (insn); |
| fprintf (dump_file, "\n"); |
| } |
| return false; |
| } |
| |
| if (! SIMPLE_SMS_LOOP_P (loop) && ! loop_single_full_bb_p (loop)) |
| { |
| if (dump_file) |
| { |
| rtx_insn *insn = BB_END (loop->header); |
| |
| fprintf (dump_file, "SMS loop many BBs."); |
| dump_insn_location (insn); |
| fprintf (dump_file, "\n"); |
| } |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* If there are more than one entry for the loop, |
| make it one by splitting the first entry edge and |
| redirecting the others to the new BB. */ |
| static void |
| canon_loop (class loop *loop) |
| { |
| edge e; |
| edge_iterator i; |
| |
| /* Avoid annoying special cases of edges going to exit |
| block. */ |
| FOR_EACH_EDGE (e, i, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) |
| if ((e->flags & EDGE_FALLTHRU) && (EDGE_COUNT (e->src->succs) > 1)) |
| split_edge (e); |
| |
| if (loop->latch == loop->header |
| || EDGE_COUNT (loop->latch->succs) > 1) |
| { |
| FOR_EACH_EDGE (e, i, loop->header->preds) |
| if (e->src == loop->latch) |
| break; |
| split_edge (e); |
| } |
| } |
| |
| /* Setup infos. */ |
| static void |
| setup_sched_infos (void) |
| { |
| memcpy (&sms_common_sched_info, &haifa_common_sched_info, |
| sizeof (sms_common_sched_info)); |
| sms_common_sched_info.sched_pass_id = SCHED_SMS_PASS; |
| common_sched_info = &sms_common_sched_info; |
| |
| sched_deps_info = &sms_sched_deps_info; |
| current_sched_info = &sms_sched_info; |
| } |
| |
| /* Probability in % that the sms-ed loop rolls enough so that optimized |
| version may be entered. Just a guess. */ |
| #define PROB_SMS_ENOUGH_ITERATIONS 80 |
| |
| /* Main entry point, perform SMS scheduling on the loops of the function |
| that consist of single basic blocks. */ |
| static void |
| sms_schedule (void) |
| { |
| rtx_insn *insn; |
| ddg_ptr *g_arr, g; |
| int * node_order; |
| int maxii, max_asap; |
| partial_schedule_ptr ps; |
| basic_block bb = NULL; |
| basic_block condition_bb = NULL; |
| edge latch_edge; |
| HOST_WIDE_INT trip_count, max_trip_count; |
| HARD_REG_SET prohibited_regs; |
| |
| loop_optimizer_init (LOOPS_HAVE_PREHEADERS |
| | LOOPS_HAVE_RECORDED_EXITS); |
| if (number_of_loops (cfun) <= 1) |
| { |
| loop_optimizer_finalize (); |
| return; /* There are no loops to schedule. */ |
| } |
| |
| /* Initialize issue_rate. */ |
| if (targetm.sched.issue_rate) |
| { |
| int temp = reload_completed; |
| |
| reload_completed = 1; |
| issue_rate = targetm.sched.issue_rate (); |
| reload_completed = temp; |
| } |
| else |
| issue_rate = 1; |
| |
| /* Initialize the scheduler. */ |
| setup_sched_infos (); |
| haifa_sched_init (); |
| |
| /* Allocate memory to hold the DDG array one entry for each loop. |
| We use loop->num as index into this array. */ |
| g_arr = XCNEWVEC (ddg_ptr, number_of_loops (cfun)); |
| |
| REG_SET_TO_HARD_REG_SET (prohibited_regs, &df->regular_block_artificial_uses); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "\n\nSMS analysis phase\n"); |
| fprintf (dump_file, "===================\n\n"); |
| } |
| |
| /* Build DDGs for all the relevant loops and hold them in G_ARR |
| indexed by the loop index. */ |
| for (auto loop : loops_list (cfun, 0)) |
| { |
| rtx_insn *head, *tail; |
| rtx count_reg; |
| |
| /* For debugging. */ |
| if (dbg_cnt (sms_sched_loop) == false) |
| { |
| if (dump_file) |
| fprintf (dump_file, "SMS reached max limit... \n"); |
| |
| break; |
| } |
| |
| if (dump_file) |
| { |
| rtx_insn *insn = BB_END (loop->header); |
| |
| fprintf (dump_file, "SMS loop num: %d", loop->num); |
| dump_insn_location (insn); |
| fprintf (dump_file, "\n"); |
| } |
| |
| if (! loop_canon_p (loop)) |
| continue; |
| |
| if (! loop_single_full_bb_p (loop)) |
| { |
| if (dump_file) |
| fprintf (dump_file, "SMS not loop_single_full_bb_p\n"); |
| continue; |
| } |
| |
| bb = loop->header; |
| |
| get_ebb_head_tail (bb, bb, &head, &tail); |
| latch_edge = loop_latch_edge (loop); |
| gcc_assert (single_exit (loop)); |
| trip_count = get_estimated_loop_iterations_int (loop); |
| max_trip_count = get_max_loop_iterations_int (loop); |
| |
| /* Perform SMS only on loops that their average count is above threshold. */ |
| |
| if ( latch_edge->count () > profile_count::zero () |
| && (latch_edge->count() |
| < single_exit (loop)->count ().apply_scale |
| (param_sms_loop_average_count_threshold, 1))) |
| { |
| if (dump_file) |
| { |
| dump_insn_location (tail); |
| fprintf (dump_file, "\nSMS single-bb-loop\n"); |
| if (profile_info && flag_branch_probabilities) |
| { |
| fprintf (dump_file, "SMS loop-count "); |
| fprintf (dump_file, "%" PRId64, |
| (int64_t) bb->count.to_gcov_type ()); |
| fprintf (dump_file, "\n"); |
| fprintf (dump_file, "SMS trip-count "); |
| fprintf (dump_file, "%" PRId64 "max %" PRId64, |
| (int64_t) trip_count, (int64_t) max_trip_count); |
| fprintf (dump_file, "\n"); |
| } |
| } |
| continue; |
| } |
| |
| /* Make sure this is a doloop. */ |
| if ( !(count_reg = doloop_register_get (head, tail))) |
| { |
| if (dump_file) |
| fprintf (dump_file, "SMS doloop_register_get failed\n"); |
| continue; |
| } |
| |
| /* Don't handle BBs with calls or barriers |
| or !single_set with the exception of do-loop control part insns. |
| ??? Should handle insns defining subregs. */ |
| for (insn = head; insn != NEXT_INSN (tail); insn = NEXT_INSN (insn)) |
| { |
| if (INSN_P (insn)) |
| { |
| HARD_REG_SET regs; |
| CLEAR_HARD_REG_SET (regs); |
| note_stores (insn, record_hard_reg_sets, ®s); |
| if (hard_reg_set_intersect_p (regs, prohibited_regs)) |
| break; |
| } |
| |
| if (CALL_P (insn) |
| || BARRIER_P (insn) |
| || (INSN_P (insn) && single_set (insn) |
| && GET_CODE (SET_DEST (single_set (insn))) == SUBREG) |
| /* Not a single set. */ |
| || (NONDEBUG_INSN_P (insn) && !JUMP_P (insn) |
| && !single_set (insn) && GET_CODE (PATTERN (insn)) != USE |
| /* But non-single-set allowed in one special case. */ |
| && (insn != prev_nondebug_insn (tail) |
| || !reg_mentioned_p (count_reg, insn)))) |
| break; |
| } |
| |
| if (insn != NEXT_INSN (tail)) |
| { |
| if (dump_file) |
| { |
| if (CALL_P (insn)) |
| fprintf (dump_file, "SMS loop-with-call\n"); |
| else if (BARRIER_P (insn)) |
| fprintf (dump_file, "SMS loop-with-barrier\n"); |
| else if (INSN_P (insn) && single_set (insn) |
| && GET_CODE (SET_DEST (single_set (insn))) == SUBREG) |
| fprintf (dump_file, "SMS loop with subreg in lhs\n"); |
| else |
| fprintf (dump_file, |
| "SMS loop-with-not-single-set-or-prohibited-reg\n"); |
| |
| print_rtl_single (dump_file, insn); |
| } |
| |
| continue; |
| } |
| |
| /* Always schedule the closing branch with the rest of the |
| instructions. The branch is rotated to be in row ii-1 at the |
| end of the scheduling procedure to make sure it's the last |
| instruction in the iteration. */ |
| if (! (g = create_ddg (bb, 1))) |
| { |
| if (dump_file) |
| fprintf (dump_file, "SMS create_ddg failed\n"); |
| continue; |
| } |
| |
| g_arr[loop->num] = g; |
| if (dump_file) |
| fprintf (dump_file, "...OK\n"); |
| |
| } |
| if (dump_file) |
| { |
| fprintf (dump_file, "\nSMS transformation phase\n"); |
| fprintf (dump_file, "=========================\n\n"); |
| } |
| |
| /* We don't want to perform SMS on new loops - created by versioning. */ |
| for (auto loop : loops_list (cfun, 0)) |
| { |
| rtx_insn *head, *tail; |
| rtx count_reg; |
| rtx_insn *count_init; |
| int mii, rec_mii, stage_count, min_cycle; |
| int64_t loop_count = 0; |
| bool opt_sc_p, adjust_inplace = false; |
| basic_block pre_header; |
| |
| if (! (g = g_arr[loop->num])) |
| continue; |
| |
| if (dump_file) |
| { |
| rtx_insn *insn = BB_END (loop->header); |
| |
| fprintf (dump_file, "SMS loop num: %d", loop->num); |
| dump_insn_location (insn); |
| fprintf (dump_file, "\n"); |
| |
| print_ddg (dump_file, g); |
| } |
| |
| get_ebb_head_tail (loop->header, loop->header, &head, &tail); |
| |
| latch_edge = loop_latch_edge (loop); |
| gcc_assert (single_exit (loop)); |
| trip_count = get_estimated_loop_iterations_int (loop); |
| max_trip_count = get_max_loop_iterations_int (loop); |
| |
| if (dump_file) |
| { |
| dump_insn_location (tail); |
| fprintf (dump_file, "\nSMS single-bb-loop\n"); |
| if (profile_info && flag_branch_probabilities) |
| { |
| fprintf (dump_file, "SMS loop-count "); |
| fprintf (dump_file, "%" PRId64, |
| (int64_t) bb->count.to_gcov_type ()); |
| fprintf (dump_file, "\n"); |
| } |
| fprintf (dump_file, "SMS doloop\n"); |
| fprintf (dump_file, "SMS built-ddg %d\n", g->num_nodes); |
| fprintf (dump_file, "SMS num-loads %d\n", g->num_loads); |
| fprintf (dump_file, "SMS num-stores %d\n", g->num_stores); |
| } |
| |
| |
| count_reg = doloop_register_get (head, tail); |
| gcc_assert (count_reg); |
| |
| pre_header = loop_preheader_edge (loop)->src; |
| count_init = const_iteration_count (count_reg, pre_header, &loop_count, |
| &adjust_inplace); |
| |
| if (dump_file && count_init) |
| { |
| fprintf (dump_file, "SMS const-doloop "); |
| fprintf (dump_file, "%" PRId64, |
| loop_count); |
| fprintf (dump_file, "\n"); |
| } |
| |
| node_order = XNEWVEC (int, g->num_nodes); |
| |
| mii = 1; /* Need to pass some estimate of mii. */ |
| rec_mii = sms_order_nodes (g, mii, node_order, &max_asap); |
| mii = MAX (res_MII (g), rec_mii); |
| mii = MAX (mii, 1); |
| maxii = MAX (max_asap, param_sms_max_ii_factor * mii); |
| |
| if (dump_file) |
| fprintf (dump_file, "SMS iis %d %d %d (rec_mii, mii, maxii)\n", |
| rec_mii, mii, maxii); |
| |
| for (;;) |
| { |
| set_node_sched_params (g); |
| |
| stage_count = 0; |
| opt_sc_p = false; |
| ps = sms_schedule_by_order (g, mii, maxii, node_order); |
| |
| if (ps) |
| { |
| /* Try to achieve optimized SC by normalizing the partial |
| schedule (having the cycles start from cycle zero). |
| The branch location must be placed in row ii-1 in the |
| final scheduling. If failed, shift all instructions to |
| position the branch in row ii-1. */ |
| opt_sc_p = optimize_sc (ps, g); |
| if (opt_sc_p) |
| stage_count = calculate_stage_count (ps, 0); |
| else |
| { |
| /* Bring the branch to cycle ii-1. */ |
| int amount = (SCHED_TIME (g->closing_branch->cuid) |
| - (ps->ii - 1)); |
| |
| if (dump_file) |
| fprintf (dump_file, "SMS schedule branch at cycle ii-1\n"); |
| |
| stage_count = calculate_stage_count (ps, amount); |
| } |
| |
| gcc_assert (stage_count >= 1); |
| } |
| |
| /* The default value of param_sms_min_sc is 2 as stage count of |
| 1 means that there is no interleaving between iterations thus |
| we let the scheduling passes do the job in this case. */ |
| if (stage_count < param_sms_min_sc |
| || (count_init && (loop_count <= stage_count)) |
| || (max_trip_count >= 0 && max_trip_count <= stage_count) |
| || (trip_count >= 0 && trip_count <= stage_count)) |
| { |
| if (dump_file) |
| { |
| fprintf (dump_file, "SMS failed... \n"); |
| fprintf (dump_file, "SMS sched-failed (stage-count=%d," |
| " loop-count=", stage_count); |
| fprintf (dump_file, "%" PRId64, loop_count); |
| fprintf (dump_file, ", trip-count="); |
| fprintf (dump_file, "%" PRId64 "max %" PRId64, |
| (int64_t) trip_count, (int64_t) max_trip_count); |
| fprintf (dump_file, ")\n"); |
| } |
| break; |
| } |
| |
| if (!opt_sc_p) |
| { |
| /* Rotate the partial schedule to have the branch in row ii-1. */ |
| int amount = SCHED_TIME (g->closing_branch->cuid) - (ps->ii - 1); |
| |
| reset_sched_times (ps, amount); |
| rotate_partial_schedule (ps, amount); |
| } |
| |
| set_columns_for_ps (ps); |
| |
| min_cycle = PS_MIN_CYCLE (ps) - SMODULO (PS_MIN_CYCLE (ps), ps->ii); |
| if (!schedule_reg_moves (ps)) |
| { |
| mii = ps->ii + 1; |
| free_partial_schedule (ps); |
| continue; |
| } |
| |
| /* Moves that handle incoming values might have been added |
| to a new first stage. Bump the stage count if so. |
| |
| ??? Perhaps we could consider rotating the schedule here |
| instead? */ |
| if (PS_MIN_CYCLE (ps) < min_cycle) |
| { |
| reset_sched_times (ps, 0); |
| stage_count++; |
| } |
| |
| /* The stage count should now be correct without rotation. */ |
| gcc_checking_assert (stage_count == calculate_stage_count (ps, 0)); |
| PS_STAGE_COUNT (ps) = stage_count; |
| |
| canon_loop (loop); |
| |
| if (dump_file) |
| { |
| dump_insn_location (tail); |
| fprintf (dump_file, " SMS succeeded %d %d (with ii, sc)\n", |
| ps->ii, stage_count); |
| print_partial_schedule (ps, dump_file); |
| } |
| |
| if (count_init) |
| { |
| if (adjust_inplace) |
| { |
| /* When possible, set new iteration count of loop kernel in |
| place. Otherwise, generate_prolog_epilog creates an insn |
| to adjust. */ |
| SET_SRC (single_set (count_init)) = GEN_INT (loop_count |
| - stage_count + 1); |
| } |
| } |
| else |
| { |
| /* case the BCT count is not known , Do loop-versioning */ |
| rtx comp_rtx = gen_rtx_GT (VOIDmode, count_reg, |
| gen_int_mode (stage_count, |
| GET_MODE (count_reg))); |
| profile_probability prob = profile_probability::guessed_always () |
| .apply_scale (PROB_SMS_ENOUGH_ITERATIONS, 100); |
| |
| loop_version (loop, comp_rtx, &condition_bb, |
| prob, prob.invert (), |
| prob, prob.invert (), true); |
| } |
| |
| /* Now apply the scheduled kernel to the RTL of the loop. */ |
| permute_partial_schedule (ps, g->closing_branch->first_note); |
| |
| /* Mark this loop as software pipelined so the later |
| scheduling passes don't touch it. */ |
| if (! flag_resched_modulo_sched) |
| mark_loop_unsched (loop); |
| |
| /* The life-info is not valid any more. */ |
| df_set_bb_dirty (g->bb); |
| |
| apply_reg_moves (ps); |
| if (dump_file) |
| print_node_sched_params (dump_file, g->num_nodes, ps); |
| /* Generate prolog and epilog. */ |
| generate_prolog_epilog (ps, loop, count_reg, !adjust_inplace); |
| break; |
| } |
| |
| free_partial_schedule (ps); |
| node_sched_param_vec.release (); |
| free (node_order); |
| free_ddg (g); |
| } |
| |
| free (g_arr); |
| |
| /* Release scheduler data, needed until now because of DFA. */ |
| haifa_sched_finish (); |
| loop_optimizer_finalize (); |
| } |
| |
| /* The SMS scheduling algorithm itself |
| ----------------------------------- |
| Input: 'O' an ordered list of insns of a loop. |
| Output: A scheduling of the loop - kernel, prolog, and epilogue. |
| |
| 'Q' is the empty Set |
| 'PS' is the partial schedule; it holds the currently scheduled nodes with |
| their cycle/slot. |
| 'PSP' previously scheduled predecessors. |
| 'PSS' previously scheduled successors. |
| 't(u)' the cycle where u is scheduled. |
| 'l(u)' is the latency of u. |
| 'd(v,u)' is the dependence distance from v to u. |
| 'ASAP(u)' the earliest time at which u could be scheduled as computed in |
| the node ordering phase. |
| 'check_hardware_resources_conflicts(u, PS, c)' |
| run a trace around cycle/slot through DFA model |
| to check resource conflicts involving instruction u |
| at cycle c given the partial schedule PS. |
| 'add_to_partial_schedule_at_time(u, PS, c)' |
| Add the node/instruction u to the partial schedule |
| PS at time c. |
| 'calculate_register_pressure(PS)' |
| Given a schedule of instructions, calculate the register |
| pressure it implies. One implementation could be the |
| maximum number of overlapping live ranges. |
| 'maxRP' The maximum allowed register pressure, it is usually derived from the number |
| registers available in the hardware. |
| |
| 1. II = MII. |
| 2. PS = empty list |
| 3. for each node u in O in pre-computed order |
| 4. if (PSP(u) != Q && PSS(u) == Q) then |
| 5. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u). |
| 6. start = Early_start; end = Early_start + II - 1; step = 1 |
| 11. else if (PSP(u) == Q && PSS(u) != Q) then |
| 12. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u). |
| 13. start = Late_start; end = Late_start - II + 1; step = -1 |
| 14. else if (PSP(u) != Q && PSS(u) != Q) then |
| 15. Early_start(u) = max ( t(v) + l(v) - d(v,u)*II ) over all every v in PSP(u). |
| 16. Late_start(u) = min ( t(v) - l(v) + d(v,u)*II ) over all every v in PSS(u). |
| 17. start = Early_start; |
| 18. end = min(Early_start + II - 1 , Late_start); |
| 19. step = 1 |
| 20. else "if (PSP(u) == Q && PSS(u) == Q)" |
| 21. start = ASAP(u); end = start + II - 1; step = 1 |
| 22. endif |
| |
| 23. success = false |
| 24. for (c = start ; c != end ; c += step) |
| 25. if check_hardware_resources_conflicts(u, PS, c) then |
| 26. add_to_partial_schedule_at_time(u, PS, c) |
| 27. success = true |
| 28. break |
| 29. endif |
| 30. endfor |
| 31. if (success == false) then |
| 32. II = II + 1 |
| 33. if (II > maxII) then |
| 34. finish - failed to schedule |
| 35. endif |
| 36. goto 2. |
| 37. endif |
| 38. endfor |
| 39. if (calculate_register_pressure(PS) > maxRP) then |
| 40. goto 32. |
| 41. endif |
| 42. compute epilogue & prologue |
| 43. finish - succeeded to schedule |
| |
| ??? The algorithm restricts the scheduling window to II cycles. |
| In rare cases, it may be better to allow windows of II+1 cycles. |
| The window would then start and end on the same row, but with |
| different "must precede" and "must follow" requirements. */ |
| |
| /* A threshold for the number of repeated unsuccessful attempts to insert |
| an empty row, before we flush the partial schedule and start over. */ |
| #define MAX_SPLIT_NUM 10 |
| /* Given the partial schedule PS, this function calculates and returns the |
| cycles in which we can schedule the node with the given index I. |
| NOTE: Here we do the backtracking in SMS, in some special cases. We have |
| noticed that there are several cases in which we fail to SMS the loop |
| because the sched window of a node is empty due to tight data-deps. In |
| such cases we want to unschedule some of the predecessors/successors |
| until we get non-empty scheduling window. It returns -1 if the |
| scheduling window is empty and zero otherwise. */ |
| |
| static int |
| get_sched_window (partial_schedule_ptr ps, ddg_node_ptr u_node, |
| sbitmap sched_nodes, int ii, int *start_p, int *step_p, |
| int *end_p) |
| { |
| int start, step, end; |
| int early_start, late_start; |
| ddg_edge_ptr e; |
| auto_sbitmap psp (ps->g->num_nodes); |
| auto_sbitmap pss (ps->g->num_nodes); |
| sbitmap u_node_preds = NODE_PREDECESSORS (u_node); |
| sbitmap u_node_succs = NODE_SUCCESSORS (u_node); |
| int psp_not_empty; |
| int pss_not_empty; |
| int count_preds; |
| int count_succs; |
| |
| /* 1. compute sched window for u (start, end, step). */ |
| bitmap_clear (psp); |
| bitmap_clear (pss); |
| psp_not_empty = bitmap_and (psp, u_node_preds, sched_nodes); |
| pss_not_empty = bitmap_and (pss, u_node_succs, sched_nodes); |
| |
| /* We first compute a forward range (start <= end), then decide whether |
| to reverse it. */ |
| early_start = INT_MIN; |
| late_start = INT_MAX; |
| start = INT_MIN; |
| end = INT_MAX; |
| step = 1; |
| |
| count_preds = 0; |
| count_succs = 0; |
| |
| if (dump_file && (psp_not_empty || pss_not_empty)) |
| { |
| fprintf (dump_file, "\nAnalyzing dependencies for node %d (INSN %d)" |
| "; ii = %d\n\n", u_node->cuid, INSN_UID (u_node->insn), ii); |
| fprintf (dump_file, "%11s %11s %11s %11s %5s\n", |
| "start", "early start", "late start", "end", "time"); |
| fprintf (dump_file, "=========== =========== =========== ===========" |
| " =====\n"); |
| } |
| /* Calculate early_start and limit end. Both bounds are inclusive. */ |
| if (psp_not_empty) |
| for (e = u_node->in; e != 0; e = e->next_in) |
| { |
| int v = e->src->cuid; |
| |
| if (bitmap_bit_p (sched_nodes, v)) |
| { |
| int p_st = SCHED_TIME (v); |
| int earliest = p_st + e->latency - (e->distance * ii); |
| int latest = (e->data_type == MEM_DEP ? p_st + ii - 1 : INT_MAX); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "%11s %11d %11s %11d %5d", |
| "", earliest, "", latest, p_st); |
| print_ddg_edge (dump_file, e); |
| fprintf (dump_file, "\n"); |
| } |
| |
| early_start = MAX (early_start, earliest); |
| end = MIN (end, latest); |
| |
| if (e->type == TRUE_DEP && e->data_type == REG_DEP) |
| count_preds++; |
| } |
| } |
| |
| /* Calculate late_start and limit start. Both bounds are inclusive. */ |
| if (pss_not_empty) |
| for (e = u_node->out; e != 0; e = e->next_out) |
| { |
| int v = e->dest->cuid; |
| |
| if (bitmap_bit_p (sched_nodes, v)) |
| { |
| int s_st = SCHED_TIME (v); |
| int earliest = (e->data_type == MEM_DEP ? s_st - ii + 1 : INT_MIN); |
| int latest = s_st - e->latency + (e->distance * ii); |
| |
| if (dump_file) |
| { |
| fprintf (dump_file, "%11d %11s %11d %11s %5d", |
| earliest, "", latest, "", s_st); |
| print_ddg_edge (dump_file, e); |
| fprintf (dump_file, "\n"); |
| } |
| |
| start = MAX (start, earliest); |
| late_start = MIN (late_start, latest); |
| |
| if (e->type == TRUE_DEP && e->data_type == REG_DEP) |
| count_succs++; |
| } |
| } |
| |
| if (dump_file && (psp_not_empty || pss_not_empty)) |
| { |
| fprintf (dump_file, "----------- ----------- ----------- -----------" |
| " -----\n"); |
| fprintf (dump_file, "%11d %11d %11d %11d %5s %s\n", |
| start, early_start, late_start, end, "", |
| "(max, max, min, min)"); |
| } |
| |
| /* Get a target scheduling window no bigger than ii. */ |
| if (early_start == INT_MIN && late_start == INT_MAX) |
| early_start = NODE_ASAP (u_node); |
| else if (early_start == INT_MIN) |
| early_start = late_start - (ii - 1); |
| late_start = MIN (late_start, early_start + (ii - 1)); |
| |
| /* Apply memory dependence limits. */ |
| start = MAX (start, early_start); |
| end = MIN (end, late_start); |
| |
| if (dump_file && (psp_not_empty || pss_not_empty)) |
| fprintf (dump_file, "%11s %11d %11d %11s %5s final window\n", |
| "", start, end, "", ""); |
| |
| /* If there are at least as many successors as predecessors, schedule the |
| node close to its successors. */ |
| if (pss_not_empty && count_succs >= count_preds) |
| { |
| std::swap (start, end); |
| step = -1; |
| } |
| |
| /* Now that we've finalized the window, make END an exclusive rather |
| than an inclusive bound. */ |
| end += step; |
| |
| *start_p = start; |
| *step_p = step; |
| *end_p = end; |
| |
| if ((start >= end && step == 1) || (start <= end && step == -1)) |
| { |
| if (dump_file) |
| fprintf (dump_file, "\nEmpty window: start=%d, end=%d, step=%d\n", |
| start, end, step); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* Calculate MUST_PRECEDE/MUST_FOLLOW bitmaps of U_NODE; which is the |
| node currently been scheduled. At the end of the calculation |
| MUST_PRECEDE/MUST_FOLLOW contains all predecessors/successors of |
| U_NODE which are (1) already scheduled in the first/last row of |
| U_NODE's scheduling window, (2) whose dependence inequality with U |
| becomes an equality when U is scheduled in this same row, and (3) |
| whose dependence latency is zero. |
| |
| The first and last rows are calculated using the following parameters: |
| START/END rows - The cycles that begins/ends the traversal on the window; |
| searching for an empty cycle to schedule U_NODE. |
| STEP - The direction in which we traverse the window. |
| II - The initiation interval. */ |
| |
| static void |
| calculate_must_precede_follow (ddg_node_ptr u_node, int start, int end, |
| int step, int ii, sbitmap sched_nodes, |
| sbitmap must_precede, sbitmap must_follow) |
| { |
| ddg_edge_ptr e; |
| int first_cycle_in_window, last_cycle_in_window; |
| |
| gcc_assert (must_precede && must_follow); |
| |
| /* Consider the following scheduling window: |
| {first_cycle_in_window, first_cycle_in_window+1, ..., |
| last_cycle_in_window}. If step is 1 then the following will be |
| the order we traverse the window: {start=first_cycle_in_window, |
| first_cycle_in_window+1, ..., end=last_cycle_in_window+1}, |
| or {start=last_cycle_in_window, last_cycle_in_window-1, ..., |
| end=first_cycle_in_window-1} if step is -1. */ |
| first_cycle_in_window = (step == 1) ? start : end - step; |
| last_cycle_in_window = (step == 1) ? end - step : start; |
| |
| bitmap_clear (must_precede); |
| bitmap_clear (must_follow); |
| |
| if (dump_file) |
| fprintf (dump_file, "\nmust_precede: "); |
| |
| /* Instead of checking if: |
| (SMODULO (SCHED_TIME (e->src), ii) == first_row_in_window) |
| && ((SCHED_TIME (e->src) + e->latency - (e->distance * ii)) == |
| first_cycle_in_window) |
| && e->latency == 0 |
| we use the fact that latency is non-negative: |
| SCHED_TIME (e->src) - (e->distance * ii) <= |
| SCHED_TIME (e->src) + e->latency - (e->distance * ii)) <= |
| first_cycle_in_window |
| and check only if |
| SCHED_TIME (e->src) - (e->distance * ii) == first_cycle_in_window */ |
| for (e = u_node->in; e != 0; e = e->next_in) |
| if (bitmap_bit_p (sched_nodes, e->src->cuid) |
| && ((SCHED_TIME (e->src->cuid) - (e->distance * ii)) == |
| first_cycle_in_window)) |
| { |
| if (dump_file) |
| fprintf (dump_file, "%d ", e->src->cuid); |
| |
| bitmap_set_bit (must_precede, e->src->cuid); |
| } |
| |
| if (dump_file) |
| fprintf (dump_file, "\nmust_follow: "); |
| |
| /* Instead of checking if: |
| (SMODULO (SCHED_TIME (e->dest), ii) == last_row_in_window) |
| && ((SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) == |
| last_cycle_in_window) |
| && e->latency == 0 |
| we use the fact that latency is non-negative: |
| SCHED_TIME (e->dest) + (e->distance * ii) >= |
| SCHED_TIME (e->dest) - e->latency + (e->distance * ii)) >= |
| last_cycle_in_window |
| and check only if |
| SCHED_TIME (e->dest) + (e->distance * ii) == last_cycle_in_window */ |
| for (e = u_node->out; e != 0; e = e->next_out) |
| if (bitmap_bit_p (sched_nodes, e->dest->cuid) |
| && ((SCHED_TIME (e->dest->cuid) + (e->distance * ii)) == |
| last_cycle_in_window)) |
| { |
| if (dump_file) |
| fprintf (dump_file, "%d ", e->dest->cuid); |
| |
| bitmap_set_bit (must_follow, e->dest->cuid); |
| } |
| |
| if (dump_file) |
| fprintf (dump_file, "\n"); |
| } |
| |
| /* Return 1 if U_NODE can be scheduled in CYCLE. Use the following |
| parameters to decide if that's possible: |
| PS - The partial schedule. |
| U - The serial number of U_NODE. |
| NUM_SPLITS - The number of row splits made so far. |
| MUST_PRECEDE - The nodes that must precede U_NODE. (only valid at |
| the first row of the scheduling window) |
| MUST_FOLLOW - The nodes that must follow U_NODE. (only valid at the |
| last row of the scheduling window) */ |
| |
| static bool |
| try_scheduling_node_in_cycle (partial_schedule_ptr ps, |
| int u, int cycle, sbitmap sched_nodes, |
| int *num_splits, sbitmap must_precede, |
| sbitmap must_follow) |
| { |
| ps_insn_ptr psi; |
| bool success = 0; |
| |
| verify_partial_schedule (ps, sched_nodes); |
| psi = ps_add_node_check_conflicts (ps, u, cycle, must_precede, must_follow); |
| if (psi) |
| { |
| SCHED_TIME (u) = cycle; |
| bitmap_set_bit (sched_nodes, u); |
| success = 1; |
| *num_splits = 0; |
| if (dump_file) |
| fprintf (dump_file, "Scheduled w/o split in %d\n", cycle); |
| |
| } |
| |
| return success; |
| } |
| |
| /* This function implements the scheduling algorithm for SMS according to the |
| above algorithm. */ |
| static partial_schedule_ptr |
| sms_schedule_by_order (ddg_ptr g, int mii, int maxii, int *nodes_order) |
| { |
| int ii = mii; |
| int i, c, success, num_splits = 0; |
| int flush_and_start_over = true; |
| int num_nodes = g->num_nodes; |
| int start, end, step; /* Place together into one struct? */ |
| auto_sbitmap sched_nodes (num_nodes); |
| auto_sbitmap must_precede (num_nodes); |
| auto_sbitmap must_follow (num_nodes); |
| auto_sbitmap tobe_scheduled (num_nodes); |
| |
| /* Value of param_sms_dfa_history is a limit on the number of cycles that |
| resource conflicts can span. ??? Should be provided by DFA, and be |
| dependent on the type of insn scheduled. Set to 0 by default to save |
| compile time. */ |
| partial_schedule_ptr ps = create_partial_schedule (ii, g, |
| param_sms_dfa_history); |
| |
| bitmap_ones (tobe_scheduled); |
| bitmap_clear (sched_nodes); |
| |
| while (flush_and_start_over && (ii < maxii)) |
| { |
| |
| if (dump_file) |
| fprintf (dump_file, "Starting with ii=%d\n", ii); |
| flush_and_start_over = false; |
| bitmap_clear (sched_nodes); |
| |
| for (i = 0; i < num_nodes; i++) |
| { |
| int u = nodes_order[i]; |
| ddg_node_ptr u_node = &ps->g->nodes[u]; |
| rtx_insn *insn = u_node->insn; |
| |
| gcc_checking_assert (NONDEBUG_INSN_P (insn)); |
| |
| if (bitmap_bit_p (sched_nodes, u)) |
| continue; |
| |
| /* Try to get non-empty scheduling window. */ |
| success = 0; |
| if (get_sched_window (ps, u_node, sched_nodes, ii, &start, |
| &step, &end) == 0) |
| { |
| if (dump_file) |
| fprintf (dump_file, "\nTrying to schedule node %d " |
| "INSN = %d in (%d .. %d) step %d\n", u, (INSN_UID |
| (g->nodes[u].insn)), start, end, step); |
| |
| gcc_assert ((step > 0 && start < end) |
| || (step < 0 && start > end)); |
| |
| calculate_must_precede_follow (u_node, start, end, step, ii, |
| sched_nodes, must_precede, |
| must_follow); |
| |
| for (c = start; c != end; c += step) |
| { |
| sbitmap tmp_precede, tmp_follow; |
| |
| set_must_precede_follow (&tmp_follow, must_follow, |
| &tmp_precede, must_precede, |
| c, start, end, step); |
| success = |
| try_scheduling_node_in_cycle (ps, u, c, |
| sched_nodes, |
| &num_splits, tmp_precede, |
| tmp_follow); |
| if (success) |
| break; |
| } |
| |
| verify_partial_schedule (ps, sched_nodes); |
| } |
| if (!success) |
| { |
| int split_row; |
| |
| if (ii++ == maxii) |
| break; |
| |
| if (num_splits >= MAX_SPLIT_NUM) |
| { |
| num_splits = 0; |
| flush_and_start_over = true; |
| verify_partial_schedule (ps, sched_nodes); |
| reset_partial_schedule (ps, ii); |
| verify_partial_schedule (ps, sched_nodes); |
| break; |
| } |
| |
| num_splits++; |
| /* The scheduling window is exclusive of 'end' |
| whereas compute_split_window() expects an inclusive, |
| ordered range. */ |
| if (step == 1) |
| split_row = compute_split_row (sched_nodes, start, end - 1, |
| ps->ii, u_node); |
| else |
| split_row = compute_split_row (sched_nodes, end + 1, start, |
| ps->ii, u_node); |
| |
| ps_insert_empty_row (ps, split_row, sched_nodes); |
| i--; /* Go back and retry node i. */ |
| |
| if (dump_file) |
| fprintf (dump_file, "num_splits=%d\n", num_splits); |
| } |
| |
| /* ??? If (success), check register pressure estimates. */ |
| } /* Continue with next node. */ |
| } /* While flush_and_start_over. */ |
| if (ii >= maxii) |
| { |
| free_partial_schedule (ps); |
| ps = NULL; |
| } |
| else |
| gcc_assert (bitmap_equal_p (tobe_scheduled, sched_nodes)); |
| |
| return ps; |
| } |
| |
| /* This function inserts a new empty row into PS at the position |
| according to SPLITROW, keeping all already scheduled instructions |
| intact and updating their SCHED_TIME and cycle accordingly. */ |
| static void |
| ps_insert_empty_row (partial_schedule_ptr ps, int split_row, |
| sbitmap sched_nodes) |
| { |
| ps_insn_ptr crr_insn; |
| ps_insn_ptr *rows_new; |
| int ii = ps->ii; |
| int new_ii = ii + 1; |
| int row; |
| int *rows_length_new; |
| |
| verify_partial_schedule (ps, sched_nodes); |
| |
| /* We normalize sched_time and rotate ps to have only non-negative sched |
| times, for simplicity of updating cycles after inserting new row. */ |
| split_row -= ps->min_cycle; |
| split_row = SMODULO (split_row, ii); |
| if (dump_file) |
| fprintf (dump_file, "split_row=%d\n", split_row); |
| |
| reset_sched_times (ps, PS_MIN_CYCLE (ps)); |
| rotate_partial_schedule (ps, PS_MIN_CYCLE (ps)); |
| |
| rows_new = (ps_insn_ptr *) xcalloc (new_ii, sizeof (ps_insn_ptr)); |
| rows_length_new = (int *) xcalloc (new_ii, sizeof (int)); |
| for (row = 0; row < split_row; row++) |
| { |
| rows_new[row] = ps->rows[row]; |
| rows_length_new[row] = ps->rows_length[row]; |
| ps->rows[row] = NULL; |
| for (crr_insn = rows_new[row]; |
| crr_insn; crr_insn = crr_insn->next_in_row) |
| { |
| int u = crr_insn->id; |
| int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii); |
| |
| SCHED_TIME (u) = new_time; |
| crr_insn->cycle = new_time; |
| SCHED_ROW (u) = new_time % new_ii; |
| SCHED_STAGE (u) = new_time / new_ii; |
| } |
| |
| } |
| |
| rows_new[split_row] = NULL; |
| |
| for (row = split_row; row < ii; row++) |
| { |
| rows_new[row + 1] = ps->rows[row]; |
| rows_length_new[row + 1] = ps->rows_length[row]; |
| ps->rows[row] = NULL; |
| for (crr_insn = rows_new[row + 1]; |
| crr_insn; crr_insn = crr_insn->next_in_row) |
| { |
| int u = crr_insn->id; |
| int new_time = SCHED_TIME (u) + (SCHED_TIME (u) / ii) + 1; |
| |
| SCHED_TIME (u) = new_time; |
| crr_insn->cycle = new_time; |
| SCHED_ROW (u) = new_time % new_ii; |
| SCHED_STAGE (u) = new_time / new_ii; |
| } |
| } |
| |
| /* Updating ps. */ |
| ps->min_cycle = ps->min_cycle + ps->min_cycle / ii |
| + (SMODULO (ps->min_cycle, ii) >= split_row ? 1 : 0); |
| ps->max_cycle = ps->max_cycle + ps->max_cycle / ii |
| + (SMODULO (ps->max_cycle, ii) >= split_row ? 1 : 0); |
| free (ps->rows); |
| ps->rows = rows_new; |
| free (ps->rows_length); |
| ps->rows_length = rows_length_new; |
| ps->ii = new_ii; |
| gcc_assert (ps->min_cycle >= 0); |
| |
| verify_partial_schedule (ps, sched_nodes); |
| |
| if (dump_file) |
| fprintf (dump_file, "min_cycle=%d, max_cycle=%d\n", ps->min_cycle, |
| ps->max_cycle); |
| } |
| |
| /* Given U_NODE which is the node that failed to be scheduled; LOW and |
| UP which are the boundaries of it's scheduling window; compute using |
| SCHED_NODES and II a row in the partial schedule that can be split |
| which will separate a critical predecessor from a critical successor |
| thereby expanding the window, and return it. */ |
| static int |
| compute_split_row (sbitmap sched_nodes, int low, int up, int ii, |
| ddg_node_ptr u_node) |
| { |
| ddg_edge_ptr e; |
| int lower = INT_MIN, upper = INT_MAX; |
| int crit_pred = -1; |
| int crit_succ = -1; |
| int crit_cycle; |
| |
| for (e = u_node->in; e != 0; e = e->next_in) |
| { |
| int v = e->src->cuid; |
| |
| if (bitmap_bit_p (sched_nodes, v) |
| && (low == SCHED_TIME (v) + e->latency - (e->distance * ii))) |
| if (SCHED_TIME (v) > lower) |
| { |
| crit_pred = v; |
| lower = SCHED_TIME (v); |
| } |
| } |
| |
| if (crit_pred >= 0) |
| { |
| crit_cycle = SCHED_TIME (crit_pred) + 1; |
| return SMODULO (crit_cycle, ii); |
| } |
| |
| for (e = u_node->out; e != 0; e = e->next_out) |
| { |
| int v = e->dest->cuid; |
| |
| if (bitmap_bit_p (sched_nodes, v) |
| && (up == SCHED_TIME (v) - e->latency + (e->distance * ii))) |
| if (SCHED_TIME (v) < upper) |
| { |
| crit_succ = v; |
| upper = SCHED_TIME (v); |
| } |
| } |
| |
| if (crit_succ >= 0) |
| { |
| crit_cycle = SCHED_TIME (crit_succ); |
| return SMODULO (crit_cycle, ii); |
| } |
| |
| if (dump_file) |
| fprintf (dump_file, "Both crit_pred and crit_succ are NULL\n"); |
| |
| return SMODULO ((low + up + 1) / 2, ii); |
| } |
| |
| static void |
| verify_partial_schedule (partial_schedule_ptr ps, sbitmap sched_nodes) |
| { |
| int row; |
| ps_insn_ptr crr_insn; |
| |
| for (row = 0; row < ps->ii; row++) |
| { |
| int length = 0; |
| |
| for (crr_insn = ps->rows[row]; crr_insn; crr_insn = crr_insn->next_in_row) |
| { |
| int u = crr_insn->id; |
| |
| length++; |
| gcc_assert (bitmap_bit_p (sched_nodes, u)); |
| /* ??? Test also that all nodes of sched_nodes are in ps, perhaps by |
| popcount (sched_nodes) == number of insns in ps. */ |
| gcc_assert (SCHED_TIME (u) >= ps->min_cycle); |
| gcc_assert (SCHED_TIME (u) <= ps->max_cycle); |
| } |
| |
| gcc_assert (ps->rows_length[row] == length); |
| } |
| } |
| |
| |
| /* This page implements the algorithm for ordering the nodes of a DDG |
| for modulo scheduling, activated through the |
| "int sms_order_nodes (ddg_ptr, int mii, int * result)" API. */ |
| |
| #define ORDER_PARAMS(x) ((struct node_order_params *) (x)->aux.info) |
| #define ASAP(x) (ORDER_PARAMS ((x))->asap) |
| #define ALAP(x) (ORDER_PARAMS ((x))->alap) |
| #define HEIGHT(x) (ORDER_PARAMS ((x))->height) |
| #define MOB(x) (ALAP ((x)) - ASAP ((x))) |
| #define DEPTH(x) (ASAP ((x))) |
| |
| typedef struct node_order_params * nopa; |
| |
| static void order_nodes_of_sccs (ddg_all_sccs_ptr, int * result); |
| static int order_nodes_in_scc (ddg_ptr, sbitmap, sbitmap, int*, int); |
| static nopa calculate_order_params (ddg_ptr, int, int *); |
| static int find_max_asap (ddg_ptr, sbitmap); |
| static int find_max_hv_min_mob (ddg_ptr, sbitmap); |
| static int find_max_dv_min_mob (ddg_ptr, sbitmap); |
| |
| enum sms_direction {BOTTOMUP, TOPDOWN}; |
| |
| struct node_order_params |
| { |
| int asap; |
| int alap; |
| int height; |
| }; |
| |
| /* Check if NODE_ORDER contains a permutation of 0 .. NUM_NODES-1. */ |
| static void |
| check_nodes_order (int *node_order, int num_nodes) |
| { |
| int i; |
| auto_sbitmap tmp (num_nodes); |
| |
| bitmap_clear (tmp); |
| |
| if (dump_file) |
| fprintf (dump_file, "SMS final nodes order: \n"); |
| |
| for (i = 0; i < num_nodes; i++) |
| { |
| int u = node_order[i]; |
| |
| if (dump_file) |
| fprintf (dump_file, "%d ", u); |
| gcc_assert (u < num_nodes && u >= 0 && !bitmap_bit_p (tmp, u)); |
| |
| bitmap_set_bit (tmp, u); |
| } |
| |
| if (dump_file) |
| fprintf (dump_file, "\n"); |
| } |
| |
| /* Order the nodes of G for scheduling and pass the result in |
| NODE_ORDER. Also set aux.count of each node to ASAP. |
| Put maximal ASAP to PMAX_ASAP. Return the recMII for the given DDG. */ |
| static int |
| sms_order_nodes (ddg_ptr g, int mii, int * node_order, int *pmax_asap) |
| { |
| int i; |
| int rec_mii = 0; |
| ddg_all_sccs_ptr sccs = create_ddg_all_sccs (g); |
| |
| nopa nops = calculate_order_params (g, mii, pmax_asap); |
| |
| if (dump_file) |
| print_sccs (dump_file, sccs, g); |
| |
| order_nodes_of_sccs (sccs, node_order); |
| |
| if (sccs->num_sccs > 0) |
| /* First SCC has the largest recurrence_length. */ |
| rec_mii = sccs->sccs[0]->recurrence_length; |
| |
| /* Save ASAP before destroying node_order_params. */ |
| for (i = 0; i < g->num_nodes; i++) |
| { |
| ddg_node_ptr v = &g->nodes[i]; |
| v->aux.count = ASAP (v); |
| } |
| |
| free (nops); |
| free_ddg_all_sccs (sccs); |
| check_nodes_order (node_order, g->num_nodes); |
| |
| return rec_mii; |
| } |
| |
| static void |
| order_nodes_of_sccs (ddg_all_sccs_ptr all_sccs, int * node_order) |
| { |
| int i, pos = 0; |
| ddg_ptr g = all_sccs->ddg; |
| int num_nodes = g->num_nodes; |
| auto_sbitmap prev_sccs (num_nodes); |
| auto_sbitmap on_path (num_nodes); |
| auto_sbitmap tmp (num_nodes); |
| auto_sbitmap ones (num_nodes); |
| |
| bitmap_clear (prev_sccs); |
| bitmap_ones (ones); |
| |
| /* Perform the node ordering starting from the SCC with the highest recMII. |
| For each SCC order the nodes according to their ASAP/ALAP/HEIGHT etc. */ |
| for (i = 0; i < all_sccs->num_sccs; i++) |
| { |
| ddg_scc_ptr scc = all_sccs->sccs[i]; |
| |
| /* Add nodes on paths from previous SCCs to the current SCC. */ |
| find_nodes_on_paths (on_path, g, prev_sccs, scc->nodes); |
| bitmap_ior (tmp, scc->nodes, on_path); |
| |
| /* Add nodes on paths from the current SCC to previous SCCs. */ |
| find_nodes_on_paths (on_path, g, scc->nodes, prev_sccs); |
| bitmap_ior (tmp, tmp, on_path); |
| |
| /* Remove nodes of previous SCCs from current extended SCC. */ |
| bitmap_and_compl (tmp, tmp, prev_sccs); |
| |
| pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos); |
| /* Above call to order_nodes_in_scc updated prev_sccs |= tmp. */ |
| } |
| |
| /* Handle the remaining nodes that do not belong to any scc. Each call |
| to order_nodes_in_scc handles a single connected component. */ |
| while (pos < g->num_nodes) |
| { |
| bitmap_and_compl (tmp, ones, prev_sccs); |
| pos = order_nodes_in_scc (g, prev_sccs, tmp, node_order, pos); |
| } |
| } |
| |
| /* MII is needed if we consider backarcs (that do not close recursive cycles). */ |
| static struct node_order_params * |
| calculate_order_params (ddg_ptr g, int mii ATTRIBUTE_UNUSED, int *pmax_asap) |
| { |
| int u; |
| int max_asap; |
| int num_nodes = g->num_nodes; |
| ddg_edge_ptr e; |
| /* Allocate a place to hold ordering params for each node in the DDG. */ |
| nopa node_order_params_arr; |
| |
| /* Initialize of ASAP/ALAP/HEIGHT to zero. */ |
| node_order_params_arr = (nopa) xcalloc (num_nodes, |
| sizeof (struct node_order_params)); |
| |
| /* Set the aux pointer of each node to point to its order_params structure. */ |
| for (u = 0; u < num_nodes; u++) |
| g->nodes[u].aux.info = &node_order_params_arr[u]; |
| |
| /* Disregarding a backarc from each recursive cycle to obtain a DAG, |
| calculate ASAP, ALAP, mobility, distance, and height for each node |
| in the dependence (direct acyclic) graph. */ |
| |
| /* We assume that the nodes in the array are in topological order. */ |
| |
| max_asap = 0; |
| for (u = 0; u < num_nodes; u++) |
| { |
| ddg_node_ptr u_node = &g->nodes[u]; |
| |
| ASAP (u_node) = 0; |
| for (e = u_node->in; e; e = e->next_in) |
| if (e->distance == 0) |
| ASAP (u_node) = MAX (ASAP (u_node), |
| ASAP (e->src) + e->latency); |
| max_asap = MAX (max_asap, ASAP (u_node)); |
| } |
| |
| for (u = num_nodes - 1; u > -1; u--) |
| { |
| ddg_node_ptr u_node = &g->nodes[u]; |
| |
| ALAP (u_node) = max_asap; |
| HEIGHT (u_node) = 0; |
| for (e = u_node->out; e; e = e->next_out) |
| if (e->distance == 0) |
| { |
| ALAP (u_node) = MIN (ALAP (u_node), |
| ALAP (e->dest) - e->latency); |
| HEIGHT (u_node) = MAX (HEIGHT (u_node), |
| HEIGHT (e->dest) + e->latency); |
| } |
| } |
| if (dump_file) |
| { |
| fprintf (dump_file, "\nOrder params\n"); |
| for (u = 0; u < num_nodes; u++) |
| { |
| ddg_node_ptr u_node = &g->nodes[u]; |
| |
| fprintf (dump_file, "node %d, ASAP: %d, ALAP: %d, HEIGHT: %d\n", u, |
| ASAP (u_node), ALAP (u_node), HEIGHT (u_node)); |
| } |
| } |
| |
| *pmax_asap = max_asap; |
| return node_order_params_arr; |
| } |
| |
| static int |
| find_max_asap (ddg_ptr g, sbitmap nodes) |
| { |
| unsigned int u = 0; |
| int max_asap = -1; |
| int result = -1; |
| sbitmap_iterator sbi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi) |
| { |
| ddg_node_ptr u_node = &g->nodes[u]; |
| |
| if (max_asap < ASAP (u_node)) |
| { |
| max_asap = ASAP (u_node); |
| result = u; |
| } |
| } |
| return result; |
| } |
| |
| static int |
| find_max_hv_min_mob (ddg_ptr g, sbitmap nodes) |
| { |
| unsigned int u = 0; |
| int max_hv = -1; |
| int min_mob = INT_MAX; |
| int result = -1; |
| sbitmap_iterator sbi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi) |
| { |
| ddg_node_ptr u_node = &g->nodes[u]; |
| |
| if (max_hv < HEIGHT (u_node)) |
| { |
| max_hv = HEIGHT (u_node); |
| min_mob = MOB (u_node); |
| result = u; |
| } |
| else if ((max_hv == HEIGHT (u_node)) |
| && (min_mob > MOB (u_node))) |
| { |
| min_mob = MOB (u_node); |
| result = u; |
| } |
| } |
| return result; |
| } |
| |
| static int |
| find_max_dv_min_mob (ddg_ptr g, sbitmap nodes) |
| { |
| unsigned int u = 0; |
| int max_dv = -1; |
| int min_mob = INT_MAX; |
| int result = -1; |
| sbitmap_iterator sbi; |
| |
| EXECUTE_IF_SET_IN_BITMAP (nodes, 0, u, sbi) |
| { |
| ddg_node_ptr u_node = &g->nodes[u]; |
| |
| if (max_dv < DEPTH (u_node)) |
| { |
| max_dv = DEPTH (u_node); |
| min_mob = MOB (u_node); |
| result = u; |
| } |
| else if ((max_dv == DEPTH (u_node)) |
| && (min_mob > MOB (u_node))) |
| { |
| min_mob = MOB (u_node); |
| result = u; |
| } |
| } |
| return result; |
| } |
| |
| /* Places the nodes of SCC into the NODE_ORDER array starting |
| at position POS, according to the SMS ordering algorithm. |
| NODES_ORDERED (in&out parameter) holds the bitset of all nodes in |
| the NODE_ORDER array, starting from position zero. */ |
| static int |
| order_nodes_in_scc (ddg_ptr g, sbitmap nodes_ordered, sbitmap scc, |
| int * node_order, int pos) |
| { |
| enum sms_direction dir; |
| int num_nodes = g->num_nodes; |
| auto_sbitmap workset (num_nodes); |
| auto_sbitmap tmp (num_nodes); |
| sbitmap zero_bitmap = sbitmap_alloc (num_nodes); |
| auto_sbitmap predecessors (num_nodes); |
| auto_sbitmap successors (num_nodes); |
| |
| bitmap_clear (predecessors); |
| find_predecessors (predecessors, g, nodes_ordered); |
| |
| bitmap_clear (successors); |
| find_successors (successors, g, nodes_ordered); |
| |
| bitmap_clear (tmp); |
| if (bitmap_and (tmp, predecessors, scc)) |
| { |
| bitmap_copy (workset, tmp); |
| dir = BOTTOMUP; |
| } |
| else if (bitmap_and (tmp, successors, scc)) |
| { |
| bitmap_copy (workset, tmp); |
| dir = TOPDOWN; |
| } |
| else |
| { |
| int u; |
| |
| bitmap_clear (workset); |
| if ((u = find_max_asap (g, scc)) >= 0) |
| bitmap_set_bit (workset, u); |
| dir = BOTTOMUP; |
| } |
| |
| bitmap_clear (zero_bitmap); |
| while (!bitmap_equal_p (workset, zero_bitmap)) |
| { |
| int v; |
| ddg_node_ptr v_node; |
| sbitmap v_node_preds; |
| sbitmap v_node_succs; |
| |
| if (dir == TOPDOWN) |
| { |
| while (!bitmap_equal_p (workset, zero_bitmap)) |
| { |
| v = find_max_hv_min_mob (g, workset); |
| v_node = &g->nodes[v]; |
| node_order[pos++] = v; |
| v_node_succs = NODE_SUCCESSORS (v_node); |
| bitmap_and (tmp, v_node_succs, scc); |
| |
| /* Don't consider the already ordered successors again. */ |
| bitmap_and_compl (tmp, tmp, nodes_ordered); |
| bitmap_ior (workset, workset, tmp); |
| bitmap_clear_bit (workset, v); |
| bitmap_set_bit (nodes_ordered, v); |
| } |
| dir = BOTTOMUP; |
| bitmap_clear (predecessors); |
| find_predecessors (predecessors, g, nodes_ordered); |
| bitmap_and (workset, predecessors, scc); |
| } |
| else |
| { |
| while (!bitmap_equal_p (workset, zero_bitmap)) |
| { |
| v = find_max_dv_min_mob (g, workset); |
| v_node = &g->nodes[v]; |
| node_order[pos++] = v; |
| v_node_preds = NODE_PREDECESSORS (v_node); |
| bitmap_and (tmp, v_node_preds, scc); |
| |
| /* Don't consider the already ordered predecessors again. */ |
| bitmap_and_compl (tmp, tmp, nodes_ordered); |
| bitmap_ior (workset, workset, tmp); |
| bitmap_clear_bit (workset, v); |
| bitmap_set_bit (nodes_ordered, v); |
| } |
| dir = TOPDOWN; |
| bitmap_clear (successors); |
| find_successors (successors, g, nodes_ordered); |
| bitmap_and (workset, successors, scc); |
| } |
| } |
| sbitmap_free (zero_bitmap); |
| return pos; |
| } |
| |
| |
| /* This page contains functions for manipulating partial-schedules during |
| modulo scheduling. */ |
| |
| /* Create a partial schedule and allocate a memory to hold II rows. */ |
| |
| static partial_schedule_ptr |
| create_partial_schedule (int ii, ddg_ptr g, int history) |
| { |
| partial_schedule_ptr ps = XNEW (struct partial_schedule); |
| ps->rows = (ps_insn_ptr *) xcalloc (ii, sizeof (ps_insn_ptr)); |
| ps->rows_length = (int *) xcalloc (ii, sizeof (int)); |
| ps->reg_moves.create (0); |
| ps->ii = ii; |
| ps->history = history; |
| ps->min_cycle = INT_MAX; |
| ps->max_cycle = INT_MIN; |
| ps->g = g; |
| |
| return ps; |
| } |
| |
| /* Free the PS_INSNs in rows array of the given partial schedule. |
| ??? Consider caching the PS_INSN's. */ |
| static void |
| free_ps_insns (partial_schedule_ptr ps) |
| { |
| int i; |
| |
| for (i = 0; i < ps->ii; i++) |
| { |
| while (ps->rows[i]) |
| { |
| ps_insn_ptr ps_insn = ps->rows[i]->next_in_row; |
| |
| free (ps->rows[i]); |
| ps->rows[i] = ps_insn; |
| } |
| ps->rows[i] = NULL; |
| } |
| } |
| |
| /* Free all the memory allocated to the partial schedule. */ |
| |
| static void |
| free_partial_schedule (partial_schedule_ptr ps) |
| { |
| ps_reg_move_info *move; |
| unsigned int i; |
| |
| if (!ps) |
| return; |
| |
| FOR_EACH_VEC_ELT (ps->reg_moves, i, move) |
| sbitmap_free (move->uses); |
| ps->reg_moves.release (); |
| |
| free_ps_insns (ps); |
| free (ps->rows); |
| free (ps->rows_length); |
| free (ps); |
| } |
| |
| /* Clear the rows array with its PS_INSNs, and create a new one with |
| NEW_II rows. */ |
| |
| static void |
| reset_partial_schedule (partial_schedule_ptr ps, int new_ii) |
| { |
| if (!ps) |
| return; |
| free_ps_insns (ps); |
| if (new_ii == ps->ii) |
| return; |
| ps->rows = (ps_insn_ptr *) xrealloc (ps->rows, new_ii |
| * sizeof (ps_insn_ptr)); |
| memset (ps->rows, 0, new_ii * sizeof (ps_insn_ptr)); |
| ps->rows_length = (int *) xrealloc (ps->rows_length, new_ii * sizeof (int)); |
| memset (ps->rows_length, 0, new_ii * sizeof (int)); |
| ps->ii = new_ii; |
| ps->min_cycle = INT_MAX; |
| ps->max_cycle = INT_MIN; |
| } |
| |
| /* Prints the partial schedule as an ii rows array, for each rows |
| print the ids of the insns in it. */ |
| void |
| print_partial_schedule (partial_schedule_ptr ps, FILE *dump) |
| { |
| int i; |
| |
| for (i = 0; i < ps->ii; i++) |
| { |
| ps_insn_ptr ps_i = ps->rows[i]; |
| |
| fprintf (dump, "\n[ROW %d ]: ", i); |
| while (ps_i) |
| { |
| rtx_insn *insn = ps_rtl_insn (ps, ps_i->id); |
| |
| if (JUMP_P (insn)) |
| fprintf (dump, "%d (branch), ", INSN_UID (insn)); |
| else |
| fprintf (dump, "%d, ", INSN_UID (insn)); |
| |
| ps_i = ps_i->next_in_row; |
| } |
| } |
| } |
| |
| /* Creates an object of PS_INSN and initializes it to the given parameters. */ |
| static ps_insn_ptr |
| create_ps_insn (int id, int cycle) |
| { |
| ps_insn_ptr ps_i = XNEW (struct ps_insn); |
| |
| ps_i->id = id; |
| ps_i->next_in_row = NULL; |
| ps_i->prev_in_row = NULL; |
| ps_i->cycle = cycle; |
| |
| return ps_i; |
| } |
| |
| |
| /* Removes the given PS_INSN from the partial schedule. */ |
| static void |
| remove_node_from_ps (partial_schedule_ptr ps, ps_insn_ptr ps_i) |
| { |
| int row; |
| |
| gcc_assert (ps && ps_i); |
| |
| row = SMODULO (ps_i->cycle, ps->ii); |
| if (! ps_i->prev_in_row) |
| { |
| gcc_assert (ps_i == ps->rows[row]); |
| ps->rows[row] = ps_i->next_in_row; |
| if (ps->rows[row]) |
| ps->rows[row]->prev_in_row = NULL; |
| } |
| else |
| { |
| ps_i->prev_in_row->next_in_row = ps_i->next_in_row; |
| if (ps_i->next_in_row) |
| ps_i->next_in_row->prev_in_row = ps_i->prev_in_row; |
| } |
| |
| ps->rows_length[row] -= 1; |
| free (ps_i); |
| return; |
| } |
| |
| /* Unlike what literature describes for modulo scheduling (which focuses |
| on VLIW machines) the order of the instructions inside a cycle is |
| important. Given the bitmaps MUST_FOLLOW and MUST_PRECEDE we know |
| where the current instruction should go relative to the already |
| scheduled instructions in the given cycle. Go over these |
| instructions and find the first possible column to put it in. */ |
| static bool |
| ps_insn_find_column (partial_schedule_ptr ps, ps_insn_ptr ps_i, |
| sbitmap must_precede, sbitmap must_follow) |
| { |
| ps_insn_ptr next_ps_i; |
| ps_insn_ptr first_must_follow = NULL; |
| ps_insn_ptr last_must_precede = NULL; |
| ps_insn_ptr last_in_row = NULL; |
| int row; |
| |
| if (! ps_i) |
| return false; |
| |
| row = SMODULO (ps_i->cycle, ps->ii); |
| |
| /* Find the first must follow and the last must precede |
| and insert the node immediately after the must precede |
| but make sure that it there is no must follow after it. */ |
| for (next_ps_i = ps->rows[row]; |
| next_ps_i; |
| next_ps_i = next_ps_i->next_in_row) |
| { |
| if (must_follow |
| && bitmap_bit_p (must_follow, next_ps_i->id) |
| && ! first_must_follow) |
| first_must_follow = next_ps_i; |
| if (must_precede && bitmap_bit_p (must_precede, next_ps_i->id)) |
| { |
| /* If we have already met a node that must follow, then |
| there is no possible column. */ |
| if (first_must_follow) |
| return false; |
| else |
| last_must_precede = next_ps_i; |
| } |
| /* The closing branch must be the last in the row. */ |
| if (JUMP_P (ps_rtl_insn (ps, next_ps_i->id))) |
| return false; |
| |
| last_in_row = next_ps_i; |
| } |
| |
| /* The closing branch is scheduled as well. Make sure there is no |
| dependent instruction after it as the branch should be the last |
| instruction in the row. */ |
| if (JUMP_P (ps_rtl_insn (ps, ps_i->id))) |
| { |
| if (first_must_follow) |
| return false; |
| if (last_in_row) |
| { |
| /* Make the branch the last in the row. New instructions |
| will be inserted at the beginning of the row or after the |
| last must_precede instruction thus the branch is guaranteed |
| to remain the last instruction in the row. */ |
| last_in_row->next_in_row = ps_i; |
| ps_i->prev_in_row = last_in_row; |
| ps_i->next_in_row = NULL; |
| } |
| else |
| ps->rows[row] = ps_i; |
| return true; |
| } |
| |
| /* Now insert the node after INSERT_AFTER_PSI. */ |
| |
| if (! last_must_precede) |
| { |
| ps_i->next_in_row = ps->rows[row]; |
| ps_i->prev_in_row = NULL; |
| if (ps_i->next_in_row) |
| ps_i->next_in_row->prev_in_row = ps_i; |
| ps->rows[row] = ps_i; |
| } |
| else |
| { |
| ps_i->next_in_row = last_must_precede->next_in_row; |
| last_must_precede->next_in_row = ps_i; |
| ps_i->prev_in_row = last_must_precede; |
| if (ps_i->next_in_row) |
| ps_i->next_in_row->prev_in_row = ps_i; |
| } |
| |
| return true; |
| } |
| |
| /* Advances the PS_INSN one column in its current row; returns false |
| in failure and true in success. Bit N is set in MUST_FOLLOW if |
| the node with cuid N must be come after the node pointed to by |
| PS_I when scheduled in the same cycle. */ |
| static int |
| ps_insn_advance_column (partial_schedule_ptr ps, ps_insn_ptr ps_i, |
| sbitmap must_follow) |
| { |
| ps_insn_ptr prev, next; |
| int row; |
| |
| if (!ps || !ps_i) |
| return false; |
| |
| row = SMODULO (ps_i->cycle, ps->ii); |
| |
| if (! ps_i->next_in_row) |
| return false; |
| |
| /* Check if next_in_row is dependent on ps_i, both having same sched |
| times (typically ANTI_DEP). If so, ps_i cannot skip over it. */ |
| if (must_follow && bitmap_bit_p (must_follow, ps_i->next_in_row->id)) |
| return false; |
| |
| /* Advance PS_I over its next_in_row in the doubly linked list. */ |
| prev = ps_i->prev_in_row; |
| next = ps_i->next_in_row; |
| |
| if (ps_i == ps->rows[row]) |
| ps->rows[row] = next; |
| |
| ps_i->next_in_row = next->next_in_row; |
| |
| if (next->next_in_row) |
| next->next_in_row->prev_in_row = ps_i; |
| |
| next->next_in_row = ps_i; |
| ps_i->prev_in_row = next; |
| |
| next->prev_in_row = prev; |
| if (prev) |
| prev->next_in_row = next; |
| |
| return true; |
| } |
| |
| /* Inserts a DDG_NODE to the given partial schedule at the given cycle. |
| Returns 0 if this is not possible and a PS_INSN otherwise. Bit N is |
| set in MUST_PRECEDE/MUST_FOLLOW if the node with cuid N must be come |
| before/after (respectively) the node pointed to by PS_I when scheduled |
| in the same cycle. */ |
| static ps_insn_ptr |
| add_node_to_ps (partial_schedule_ptr ps, int id, int cycle, |
| sbitmap must_precede, sbitmap must_follow) |
| { |
| ps_insn_ptr ps_i; |
| int row = SMODULO (cycle, ps->ii); |
| |
| if (ps->rows_length[row] >= issue_rate) |
| return NULL; |
| |
| ps_i = create_ps_insn (id, cycle); |
| |
| /* Finds and inserts PS_I according to MUST_FOLLOW and |
| MUST_PRECEDE. */ |
| if (! ps_insn_find_column (ps, ps_i, must_precede, must_follow)) |
| { |
| free (ps_i |