blob: a0a92e0618dcb4107739a86a11c4e2fa3d1b4a96 [file] [log] [blame]
/* { dg-do compile } */
/* { dg-require-effective-target size32plus } */
/* { dg-options "-fstrict-volatile-bitfields -fdump-rtl-final" } */
/* With -fstrict-volatile-bitfields, the volatile accesses to bf2.b
and bf3.b must do unsigned int reads/writes. The non-volatile
accesses to bf1.b are not so constrained. */
extern struct
{
unsigned int b : 1;
unsigned int : 31;
} __attribute__((aligned(4))) bf1;
extern volatile struct
{
unsigned int b : 1;
unsigned int : 31;
} __attribute__((aligned(4))) bf2;
extern struct
{
volatile unsigned int b : 1;
volatile unsigned int : 31;
} __attribute__((aligned(4))) bf3;
void writeb(void)
{
bf1.b = 1;
bf2.b = 1; /* volatile read + volatile write */
bf3.b = 1; /* volatile read + volatile write */
}
extern unsigned int x1, x2, x3;
void readb(void)
{
x1 = bf1.b;
x2 = bf2.b; /* volatile write */
x3 = bf3.b; /* volatile write */
}
/* There should be 6 volatile MEMs total, but scan-rtl-dump-times counts
the number of match variables and not the number of matches. Since
the parenthesized subexpression in the regexp introduces an extra match
variable, we need to give a count of 12 instead of 6 here. */
/* { dg-final { scan-rtl-dump-times "mem/v(/.)*:SI" 12 "final" } } */