| /* If-conversion for vectorizer. |
| Copyright (C) 2004-2022 Free Software Foundation, Inc. |
| Contributed by Devang Patel <dpatel@apple.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* This pass implements a tree level if-conversion of loops. Its |
| initial goal is to help the vectorizer to vectorize loops with |
| conditions. |
| |
| A short description of if-conversion: |
| |
| o Decide if a loop is if-convertible or not. |
| o Walk all loop basic blocks in breadth first order (BFS order). |
| o Remove conditional statements (at the end of basic block) |
| and propagate condition into destination basic blocks' |
| predicate list. |
| o Replace modify expression with conditional modify expression |
| using current basic block's condition. |
| o Merge all basic blocks |
| o Replace phi nodes with conditional modify expr |
| o Merge all basic blocks into header |
| |
| Sample transformation: |
| |
| INPUT |
| ----- |
| |
| # i_23 = PHI <0(0), i_18(10)>; |
| <L0>:; |
| j_15 = A[i_23]; |
| if (j_15 > 41) goto <L1>; else goto <L17>; |
| |
| <L17>:; |
| goto <bb 3> (<L3>); |
| |
| <L1>:; |
| |
| # iftmp.2_4 = PHI <0(8), 42(2)>; |
| <L3>:; |
| A[i_23] = iftmp.2_4; |
| i_18 = i_23 + 1; |
| if (i_18 <= 15) goto <L19>; else goto <L18>; |
| |
| <L19>:; |
| goto <bb 1> (<L0>); |
| |
| <L18>:; |
| |
| OUTPUT |
| ------ |
| |
| # i_23 = PHI <0(0), i_18(10)>; |
| <L0>:; |
| j_15 = A[i_23]; |
| |
| <L3>:; |
| iftmp.2_4 = j_15 > 41 ? 42 : 0; |
| A[i_23] = iftmp.2_4; |
| i_18 = i_23 + 1; |
| if (i_18 <= 15) goto <L19>; else goto <L18>; |
| |
| <L19>:; |
| goto <bb 1> (<L0>); |
| |
| <L18>:; |
| */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "rtl.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "cfghooks.h" |
| #include "tree-pass.h" |
| #include "ssa.h" |
| #include "expmed.h" |
| #include "optabs-query.h" |
| #include "gimple-pretty-print.h" |
| #include "alias.h" |
| #include "fold-const.h" |
| #include "stor-layout.h" |
| #include "gimple-fold.h" |
| #include "gimplify.h" |
| #include "gimple-iterator.h" |
| #include "gimplify-me.h" |
| #include "tree-cfg.h" |
| #include "tree-into-ssa.h" |
| #include "tree-ssa.h" |
| #include "cfgloop.h" |
| #include "tree-data-ref.h" |
| #include "tree-scalar-evolution.h" |
| #include "tree-ssa-loop.h" |
| #include "tree-ssa-loop-niter.h" |
| #include "tree-ssa-loop-ivopts.h" |
| #include "tree-ssa-address.h" |
| #include "dbgcnt.h" |
| #include "tree-hash-traits.h" |
| #include "varasm.h" |
| #include "builtins.h" |
| #include "cfganal.h" |
| #include "internal-fn.h" |
| #include "fold-const.h" |
| #include "tree-ssa-sccvn.h" |
| #include "tree-cfgcleanup.h" |
| #include "tree-ssa-dse.h" |
| #include "tree-vectorizer.h" |
| #include "tree-eh.h" |
| |
| /* Only handle PHIs with no more arguments unless we are asked to by |
| simd pragma. */ |
| #define MAX_PHI_ARG_NUM \ |
| ((unsigned) param_max_tree_if_conversion_phi_args) |
| |
| /* True if we've converted a statement that was only executed when some |
| condition C was true, and if for correctness we need to predicate the |
| statement to ensure that it is a no-op when C is false. See |
| predicate_statements for the kinds of predication we support. */ |
| static bool need_to_predicate; |
| |
| /* True if we have to rewrite stmts that may invoke undefined behavior |
| when a condition C was false so it doesn't if it is always executed. |
| See predicate_statements for the kinds of predication we support. */ |
| static bool need_to_rewrite_undefined; |
| |
| /* Indicate if there are any complicated PHIs that need to be handled in |
| if-conversion. Complicated PHI has more than two arguments and can't |
| be degenerated to two arguments PHI. See more information in comment |
| before phi_convertible_by_degenerating_args. */ |
| static bool any_complicated_phi; |
| |
| /* Hash for struct innermost_loop_behavior. It depends on the user to |
| free the memory. */ |
| |
| struct innermost_loop_behavior_hash : nofree_ptr_hash <innermost_loop_behavior> |
| { |
| static inline hashval_t hash (const value_type &); |
| static inline bool equal (const value_type &, |
| const compare_type &); |
| }; |
| |
| inline hashval_t |
| innermost_loop_behavior_hash::hash (const value_type &e) |
| { |
| hashval_t hash; |
| |
| hash = iterative_hash_expr (e->base_address, 0); |
| hash = iterative_hash_expr (e->offset, hash); |
| hash = iterative_hash_expr (e->init, hash); |
| return iterative_hash_expr (e->step, hash); |
| } |
| |
| inline bool |
| innermost_loop_behavior_hash::equal (const value_type &e1, |
| const compare_type &e2) |
| { |
| if ((e1->base_address && !e2->base_address) |
| || (!e1->base_address && e2->base_address) |
| || (!e1->offset && e2->offset) |
| || (e1->offset && !e2->offset) |
| || (!e1->init && e2->init) |
| || (e1->init && !e2->init) |
| || (!e1->step && e2->step) |
| || (e1->step && !e2->step)) |
| return false; |
| |
| if (e1->base_address && e2->base_address |
| && !operand_equal_p (e1->base_address, e2->base_address, 0)) |
| return false; |
| if (e1->offset && e2->offset |
| && !operand_equal_p (e1->offset, e2->offset, 0)) |
| return false; |
| if (e1->init && e2->init |
| && !operand_equal_p (e1->init, e2->init, 0)) |
| return false; |
| if (e1->step && e2->step |
| && !operand_equal_p (e1->step, e2->step, 0)) |
| return false; |
| |
| return true; |
| } |
| |
| /* List of basic blocks in if-conversion-suitable order. */ |
| static basic_block *ifc_bbs; |
| |
| /* Hash table to store <DR's innermost loop behavior, DR> pairs. */ |
| static hash_map<innermost_loop_behavior_hash, |
| data_reference_p> *innermost_DR_map; |
| |
| /* Hash table to store <base reference, DR> pairs. */ |
| static hash_map<tree_operand_hash, data_reference_p> *baseref_DR_map; |
| |
| /* List of redundant SSA names: the first should be replaced by the second. */ |
| static vec< std::pair<tree, tree> > redundant_ssa_names; |
| |
| /* Structure used to predicate basic blocks. This is attached to the |
| ->aux field of the BBs in the loop to be if-converted. */ |
| struct bb_predicate { |
| |
| /* The condition under which this basic block is executed. */ |
| tree predicate; |
| |
| /* PREDICATE is gimplified, and the sequence of statements is |
| recorded here, in order to avoid the duplication of computations |
| that occur in previous conditions. See PR44483. */ |
| gimple_seq predicate_gimplified_stmts; |
| }; |
| |
| /* Returns true when the basic block BB has a predicate. */ |
| |
| static inline bool |
| bb_has_predicate (basic_block bb) |
| { |
| return bb->aux != NULL; |
| } |
| |
| /* Returns the gimplified predicate for basic block BB. */ |
| |
| static inline tree |
| bb_predicate (basic_block bb) |
| { |
| return ((struct bb_predicate *) bb->aux)->predicate; |
| } |
| |
| /* Sets the gimplified predicate COND for basic block BB. */ |
| |
| static inline void |
| set_bb_predicate (basic_block bb, tree cond) |
| { |
| gcc_assert ((TREE_CODE (cond) == TRUTH_NOT_EXPR |
| && is_gimple_condexpr (TREE_OPERAND (cond, 0))) |
| || is_gimple_condexpr (cond)); |
| ((struct bb_predicate *) bb->aux)->predicate = cond; |
| } |
| |
| /* Returns the sequence of statements of the gimplification of the |
| predicate for basic block BB. */ |
| |
| static inline gimple_seq |
| bb_predicate_gimplified_stmts (basic_block bb) |
| { |
| return ((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts; |
| } |
| |
| /* Sets the sequence of statements STMTS of the gimplification of the |
| predicate for basic block BB. */ |
| |
| static inline void |
| set_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts) |
| { |
| ((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts = stmts; |
| } |
| |
| /* Adds the sequence of statements STMTS to the sequence of statements |
| of the predicate for basic block BB. */ |
| |
| static inline void |
| add_bb_predicate_gimplified_stmts (basic_block bb, gimple_seq stmts) |
| { |
| /* We might have updated some stmts in STMTS via force_gimple_operand |
| calling fold_stmt and that producing multiple stmts. Delink immediate |
| uses so update_ssa after loop versioning doesn't get confused for |
| the not yet inserted predicates. |
| ??? This should go away once we reliably avoid updating stmts |
| not in any BB. */ |
| for (gimple_stmt_iterator gsi = gsi_start (stmts); |
| !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple *stmt = gsi_stmt (gsi); |
| delink_stmt_imm_use (stmt); |
| gimple_set_modified (stmt, true); |
| } |
| gimple_seq_add_seq_without_update |
| (&(((struct bb_predicate *) bb->aux)->predicate_gimplified_stmts), stmts); |
| } |
| |
| /* Initializes to TRUE the predicate of basic block BB. */ |
| |
| static inline void |
| init_bb_predicate (basic_block bb) |
| { |
| bb->aux = XNEW (struct bb_predicate); |
| set_bb_predicate_gimplified_stmts (bb, NULL); |
| set_bb_predicate (bb, boolean_true_node); |
| } |
| |
| /* Release the SSA_NAMEs associated with the predicate of basic block BB. */ |
| |
| static inline void |
| release_bb_predicate (basic_block bb) |
| { |
| gimple_seq stmts = bb_predicate_gimplified_stmts (bb); |
| if (stmts) |
| { |
| /* Ensure that these stmts haven't yet been added to a bb. */ |
| if (flag_checking) |
| for (gimple_stmt_iterator i = gsi_start (stmts); |
| !gsi_end_p (i); gsi_next (&i)) |
| gcc_assert (! gimple_bb (gsi_stmt (i))); |
| |
| /* Discard them. */ |
| gimple_seq_discard (stmts); |
| set_bb_predicate_gimplified_stmts (bb, NULL); |
| } |
| } |
| |
| /* Free the predicate of basic block BB. */ |
| |
| static inline void |
| free_bb_predicate (basic_block bb) |
| { |
| if (!bb_has_predicate (bb)) |
| return; |
| |
| release_bb_predicate (bb); |
| free (bb->aux); |
| bb->aux = NULL; |
| } |
| |
| /* Reinitialize predicate of BB with the true predicate. */ |
| |
| static inline void |
| reset_bb_predicate (basic_block bb) |
| { |
| if (!bb_has_predicate (bb)) |
| init_bb_predicate (bb); |
| else |
| { |
| release_bb_predicate (bb); |
| set_bb_predicate (bb, boolean_true_node); |
| } |
| } |
| |
| /* Returns a new SSA_NAME of type TYPE that is assigned the value of |
| the expression EXPR. Inserts the statement created for this |
| computation before GSI and leaves the iterator GSI at the same |
| statement. */ |
| |
| static tree |
| ifc_temp_var (tree type, tree expr, gimple_stmt_iterator *gsi) |
| { |
| tree new_name = make_temp_ssa_name (type, NULL, "_ifc_"); |
| gimple *stmt = gimple_build_assign (new_name, expr); |
| gimple_set_vuse (stmt, gimple_vuse (gsi_stmt (*gsi))); |
| gsi_insert_before (gsi, stmt, GSI_SAME_STMT); |
| return new_name; |
| } |
| |
| /* Return true when COND is a false predicate. */ |
| |
| static inline bool |
| is_false_predicate (tree cond) |
| { |
| return (cond != NULL_TREE |
| && (cond == boolean_false_node |
| || integer_zerop (cond))); |
| } |
| |
| /* Return true when COND is a true predicate. */ |
| |
| static inline bool |
| is_true_predicate (tree cond) |
| { |
| return (cond == NULL_TREE |
| || cond == boolean_true_node |
| || integer_onep (cond)); |
| } |
| |
| /* Returns true when BB has a predicate that is not trivial: true or |
| NULL_TREE. */ |
| |
| static inline bool |
| is_predicated (basic_block bb) |
| { |
| return !is_true_predicate (bb_predicate (bb)); |
| } |
| |
| /* Parses the predicate COND and returns its comparison code and |
| operands OP0 and OP1. */ |
| |
| static enum tree_code |
| parse_predicate (tree cond, tree *op0, tree *op1) |
| { |
| gimple *s; |
| |
| if (TREE_CODE (cond) == SSA_NAME |
| && is_gimple_assign (s = SSA_NAME_DEF_STMT (cond))) |
| { |
| if (TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison) |
| { |
| *op0 = gimple_assign_rhs1 (s); |
| *op1 = gimple_assign_rhs2 (s); |
| return gimple_assign_rhs_code (s); |
| } |
| |
| else if (gimple_assign_rhs_code (s) == TRUTH_NOT_EXPR) |
| { |
| tree op = gimple_assign_rhs1 (s); |
| tree type = TREE_TYPE (op); |
| enum tree_code code = parse_predicate (op, op0, op1); |
| |
| return code == ERROR_MARK ? ERROR_MARK |
| : invert_tree_comparison (code, HONOR_NANS (type)); |
| } |
| |
| return ERROR_MARK; |
| } |
| |
| if (COMPARISON_CLASS_P (cond)) |
| { |
| *op0 = TREE_OPERAND (cond, 0); |
| *op1 = TREE_OPERAND (cond, 1); |
| return TREE_CODE (cond); |
| } |
| |
| return ERROR_MARK; |
| } |
| |
| /* Returns the fold of predicate C1 OR C2 at location LOC. */ |
| |
| static tree |
| fold_or_predicates (location_t loc, tree c1, tree c2) |
| { |
| tree op1a, op1b, op2a, op2b; |
| enum tree_code code1 = parse_predicate (c1, &op1a, &op1b); |
| enum tree_code code2 = parse_predicate (c2, &op2a, &op2b); |
| |
| if (code1 != ERROR_MARK && code2 != ERROR_MARK) |
| { |
| tree t = maybe_fold_or_comparisons (boolean_type_node, code1, op1a, op1b, |
| code2, op2a, op2b); |
| if (t) |
| return t; |
| } |
| |
| return fold_build2_loc (loc, TRUTH_OR_EXPR, boolean_type_node, c1, c2); |
| } |
| |
| /* Returns either a COND_EXPR or the folded expression if the folded |
| expression is a MIN_EXPR, a MAX_EXPR, an ABS_EXPR, |
| a constant or a SSA_NAME. */ |
| |
| static tree |
| fold_build_cond_expr (tree type, tree cond, tree rhs, tree lhs) |
| { |
| tree rhs1, lhs1, cond_expr; |
| |
| /* If COND is comparison r != 0 and r has boolean type, convert COND |
| to SSA_NAME to accept by vect bool pattern. */ |
| if (TREE_CODE (cond) == NE_EXPR) |
| { |
| tree op0 = TREE_OPERAND (cond, 0); |
| tree op1 = TREE_OPERAND (cond, 1); |
| if (TREE_CODE (op0) == SSA_NAME |
| && TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE |
| && (integer_zerop (op1))) |
| cond = op0; |
| } |
| cond_expr = fold_ternary (COND_EXPR, type, cond, rhs, lhs); |
| |
| if (cond_expr == NULL_TREE) |
| return build3 (COND_EXPR, type, cond, rhs, lhs); |
| |
| STRIP_USELESS_TYPE_CONVERSION (cond_expr); |
| |
| if (is_gimple_val (cond_expr)) |
| return cond_expr; |
| |
| if (TREE_CODE (cond_expr) == ABS_EXPR) |
| { |
| rhs1 = TREE_OPERAND (cond_expr, 1); |
| STRIP_USELESS_TYPE_CONVERSION (rhs1); |
| if (is_gimple_val (rhs1)) |
| return build1 (ABS_EXPR, type, rhs1); |
| } |
| |
| if (TREE_CODE (cond_expr) == MIN_EXPR |
| || TREE_CODE (cond_expr) == MAX_EXPR) |
| { |
| lhs1 = TREE_OPERAND (cond_expr, 0); |
| STRIP_USELESS_TYPE_CONVERSION (lhs1); |
| rhs1 = TREE_OPERAND (cond_expr, 1); |
| STRIP_USELESS_TYPE_CONVERSION (rhs1); |
| if (is_gimple_val (rhs1) && is_gimple_val (lhs1)) |
| return build2 (TREE_CODE (cond_expr), type, lhs1, rhs1); |
| } |
| return build3 (COND_EXPR, type, cond, rhs, lhs); |
| } |
| |
| /* Add condition NC to the predicate list of basic block BB. LOOP is |
| the loop to be if-converted. Use predicate of cd-equivalent block |
| for join bb if it exists: we call basic blocks bb1 and bb2 |
| cd-equivalent if they are executed under the same condition. */ |
| |
| static inline void |
| add_to_predicate_list (class loop *loop, basic_block bb, tree nc) |
| { |
| tree bc, *tp; |
| basic_block dom_bb; |
| |
| if (is_true_predicate (nc)) |
| return; |
| |
| /* If dominance tells us this basic block is always executed, |
| don't record any predicates for it. */ |
| if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) |
| return; |
| |
| dom_bb = get_immediate_dominator (CDI_DOMINATORS, bb); |
| /* We use notion of cd equivalence to get simpler predicate for |
| join block, e.g. if join block has 2 predecessors with predicates |
| p1 & p2 and p1 & !p2, we'd like to get p1 for it instead of |
| p1 & p2 | p1 & !p2. */ |
| if (dom_bb != loop->header |
| && get_immediate_dominator (CDI_POST_DOMINATORS, dom_bb) == bb) |
| { |
| gcc_assert (flow_bb_inside_loop_p (loop, dom_bb)); |
| bc = bb_predicate (dom_bb); |
| if (!is_true_predicate (bc)) |
| set_bb_predicate (bb, bc); |
| else |
| gcc_assert (is_true_predicate (bb_predicate (bb))); |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "Use predicate of bb#%d for bb#%d\n", |
| dom_bb->index, bb->index); |
| return; |
| } |
| |
| if (!is_predicated (bb)) |
| bc = nc; |
| else |
| { |
| bc = bb_predicate (bb); |
| bc = fold_or_predicates (EXPR_LOCATION (bc), nc, bc); |
| if (is_true_predicate (bc)) |
| { |
| reset_bb_predicate (bb); |
| return; |
| } |
| } |
| |
| /* Allow a TRUTH_NOT_EXPR around the main predicate. */ |
| if (TREE_CODE (bc) == TRUTH_NOT_EXPR) |
| tp = &TREE_OPERAND (bc, 0); |
| else |
| tp = &bc; |
| if (!is_gimple_condexpr (*tp)) |
| { |
| gimple_seq stmts; |
| *tp = force_gimple_operand_1 (*tp, &stmts, is_gimple_condexpr, NULL_TREE); |
| add_bb_predicate_gimplified_stmts (bb, stmts); |
| } |
| set_bb_predicate (bb, bc); |
| } |
| |
| /* Add the condition COND to the previous condition PREV_COND, and add |
| this to the predicate list of the destination of edge E. LOOP is |
| the loop to be if-converted. */ |
| |
| static void |
| add_to_dst_predicate_list (class loop *loop, edge e, |
| tree prev_cond, tree cond) |
| { |
| if (!flow_bb_inside_loop_p (loop, e->dest)) |
| return; |
| |
| if (!is_true_predicate (prev_cond)) |
| cond = fold_build2 (TRUTH_AND_EXPR, boolean_type_node, |
| prev_cond, cond); |
| |
| if (!dominated_by_p (CDI_DOMINATORS, loop->latch, e->dest)) |
| add_to_predicate_list (loop, e->dest, cond); |
| } |
| |
| /* Return true if one of the successor edges of BB exits LOOP. */ |
| |
| static bool |
| bb_with_exit_edge_p (class loop *loop, basic_block bb) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (loop_exit_edge_p (loop, e)) |
| return true; |
| |
| return false; |
| } |
| |
| /* Given PHI which has more than two arguments, this function checks if |
| it's if-convertible by degenerating its arguments. Specifically, if |
| below two conditions are satisfied: |
| |
| 1) Number of PHI arguments with different values equals to 2 and one |
| argument has the only occurrence. |
| 2) The edge corresponding to the unique argument isn't critical edge. |
| |
| Such PHI can be handled as PHIs have only two arguments. For example, |
| below PHI: |
| |
| res = PHI <A_1(e1), A_1(e2), A_2(e3)>; |
| |
| can be transformed into: |
| |
| res = (predicate of e3) ? A_2 : A_1; |
| |
| Return TRUE if it is the case, FALSE otherwise. */ |
| |
| static bool |
| phi_convertible_by_degenerating_args (gphi *phi) |
| { |
| edge e; |
| tree arg, t1 = NULL, t2 = NULL; |
| unsigned int i, i1 = 0, i2 = 0, n1 = 0, n2 = 0; |
| unsigned int num_args = gimple_phi_num_args (phi); |
| |
| gcc_assert (num_args > 2); |
| |
| for (i = 0; i < num_args; i++) |
| { |
| arg = gimple_phi_arg_def (phi, i); |
| if (t1 == NULL || operand_equal_p (t1, arg, 0)) |
| { |
| n1++; |
| i1 = i; |
| t1 = arg; |
| } |
| else if (t2 == NULL || operand_equal_p (t2, arg, 0)) |
| { |
| n2++; |
| i2 = i; |
| t2 = arg; |
| } |
| else |
| return false; |
| } |
| |
| if (n1 != 1 && n2 != 1) |
| return false; |
| |
| /* Check if the edge corresponding to the unique arg is critical. */ |
| e = gimple_phi_arg_edge (phi, (n1 == 1) ? i1 : i2); |
| if (EDGE_COUNT (e->src->succs) > 1) |
| return false; |
| |
| return true; |
| } |
| |
| /* Return true when PHI is if-convertible. PHI is part of loop LOOP |
| and it belongs to basic block BB. Note at this point, it is sure |
| that PHI is if-convertible. This function updates global variable |
| ANY_COMPLICATED_PHI if PHI is complicated. */ |
| |
| static bool |
| if_convertible_phi_p (class loop *loop, basic_block bb, gphi *phi) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "-------------------------\n"); |
| print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); |
| } |
| |
| if (bb != loop->header |
| && gimple_phi_num_args (phi) > 2 |
| && !phi_convertible_by_degenerating_args (phi)) |
| any_complicated_phi = true; |
| |
| return true; |
| } |
| |
| /* Records the status of a data reference. This struct is attached to |
| each DR->aux field. */ |
| |
| struct ifc_dr { |
| bool rw_unconditionally; |
| bool w_unconditionally; |
| bool written_at_least_once; |
| |
| tree rw_predicate; |
| tree w_predicate; |
| tree base_w_predicate; |
| }; |
| |
| #define IFC_DR(DR) ((struct ifc_dr *) (DR)->aux) |
| #define DR_BASE_W_UNCONDITIONALLY(DR) (IFC_DR (DR)->written_at_least_once) |
| #define DR_RW_UNCONDITIONALLY(DR) (IFC_DR (DR)->rw_unconditionally) |
| #define DR_W_UNCONDITIONALLY(DR) (IFC_DR (DR)->w_unconditionally) |
| |
| /* Iterates over DR's and stores refs, DR and base refs, DR pairs in |
| HASH tables. While storing them in HASH table, it checks if the |
| reference is unconditionally read or written and stores that as a flag |
| information. For base reference it checks if it is written atlest once |
| unconditionally and stores it as flag information along with DR. |
| In other words for every data reference A in STMT there exist other |
| accesses to a data reference with the same base with predicates that |
| add up (OR-up) to the true predicate: this ensures that the data |
| reference A is touched (read or written) on every iteration of the |
| if-converted loop. */ |
| static void |
| hash_memrefs_baserefs_and_store_DRs_read_written_info (data_reference_p a) |
| { |
| |
| data_reference_p *master_dr, *base_master_dr; |
| tree base_ref = DR_BASE_OBJECT (a); |
| innermost_loop_behavior *innermost = &DR_INNERMOST (a); |
| tree ca = bb_predicate (gimple_bb (DR_STMT (a))); |
| bool exist1, exist2; |
| |
| master_dr = &innermost_DR_map->get_or_insert (innermost, &exist1); |
| if (!exist1) |
| *master_dr = a; |
| |
| if (DR_IS_WRITE (a)) |
| { |
| IFC_DR (*master_dr)->w_predicate |
| = fold_or_predicates (UNKNOWN_LOCATION, ca, |
| IFC_DR (*master_dr)->w_predicate); |
| if (is_true_predicate (IFC_DR (*master_dr)->w_predicate)) |
| DR_W_UNCONDITIONALLY (*master_dr) = true; |
| } |
| IFC_DR (*master_dr)->rw_predicate |
| = fold_or_predicates (UNKNOWN_LOCATION, ca, |
| IFC_DR (*master_dr)->rw_predicate); |
| if (is_true_predicate (IFC_DR (*master_dr)->rw_predicate)) |
| DR_RW_UNCONDITIONALLY (*master_dr) = true; |
| |
| if (DR_IS_WRITE (a)) |
| { |
| base_master_dr = &baseref_DR_map->get_or_insert (base_ref, &exist2); |
| if (!exist2) |
| *base_master_dr = a; |
| IFC_DR (*base_master_dr)->base_w_predicate |
| = fold_or_predicates (UNKNOWN_LOCATION, ca, |
| IFC_DR (*base_master_dr)->base_w_predicate); |
| if (is_true_predicate (IFC_DR (*base_master_dr)->base_w_predicate)) |
| DR_BASE_W_UNCONDITIONALLY (*base_master_dr) = true; |
| } |
| } |
| |
| /* Return TRUE if can prove the index IDX of an array reference REF is |
| within array bound. Return false otherwise. */ |
| |
| static bool |
| idx_within_array_bound (tree ref, tree *idx, void *dta) |
| { |
| wi::overflow_type overflow; |
| widest_int niter, valid_niter, delta, wi_step; |
| tree ev, init, step; |
| tree low, high; |
| class loop *loop = (class loop*) dta; |
| |
| /* Only support within-bound access for array references. */ |
| if (TREE_CODE (ref) != ARRAY_REF) |
| return false; |
| |
| /* For arrays at the end of the structure, we are not guaranteed that they |
| do not really extend over their declared size. However, for arrays of |
| size greater than one, this is unlikely to be intended. */ |
| if (array_at_struct_end_p (ref)) |
| return false; |
| |
| ev = analyze_scalar_evolution (loop, *idx); |
| ev = instantiate_parameters (loop, ev); |
| init = initial_condition (ev); |
| step = evolution_part_in_loop_num (ev, loop->num); |
| |
| if (!init || TREE_CODE (init) != INTEGER_CST |
| || (step && TREE_CODE (step) != INTEGER_CST)) |
| return false; |
| |
| low = array_ref_low_bound (ref); |
| high = array_ref_up_bound (ref); |
| |
| /* The case of nonconstant bounds could be handled, but it would be |
| complicated. */ |
| if (TREE_CODE (low) != INTEGER_CST |
| || !high || TREE_CODE (high) != INTEGER_CST) |
| return false; |
| |
| /* Check if the intial idx is within bound. */ |
| if (wi::to_widest (init) < wi::to_widest (low) |
| || wi::to_widest (init) > wi::to_widest (high)) |
| return false; |
| |
| /* The idx is always within bound. */ |
| if (!step || integer_zerop (step)) |
| return true; |
| |
| if (!max_loop_iterations (loop, &niter)) |
| return false; |
| |
| if (wi::to_widest (step) < 0) |
| { |
| delta = wi::to_widest (init) - wi::to_widest (low); |
| wi_step = -wi::to_widest (step); |
| } |
| else |
| { |
| delta = wi::to_widest (high) - wi::to_widest (init); |
| wi_step = wi::to_widest (step); |
| } |
| |
| valid_niter = wi::div_floor (delta, wi_step, SIGNED, &overflow); |
| /* The iteration space of idx is within array bound. */ |
| if (!overflow && niter <= valid_niter) |
| return true; |
| |
| return false; |
| } |
| |
| /* Return TRUE if ref is a within bound array reference. */ |
| |
| static bool |
| ref_within_array_bound (gimple *stmt, tree ref) |
| { |
| class loop *loop = loop_containing_stmt (stmt); |
| |
| gcc_assert (loop != NULL); |
| return for_each_index (&ref, idx_within_array_bound, loop); |
| } |
| |
| |
| /* Given a memory reference expression T, return TRUE if base object |
| it refers to is writable. The base object of a memory reference |
| is the main object being referenced, which is returned by function |
| get_base_address. */ |
| |
| static bool |
| base_object_writable (tree ref) |
| { |
| tree base_tree = get_base_address (ref); |
| |
| return (base_tree |
| && DECL_P (base_tree) |
| && decl_binds_to_current_def_p (base_tree) |
| && !TREE_READONLY (base_tree)); |
| } |
| |
| /* Return true when the memory references of STMT won't trap in the |
| if-converted code. There are two things that we have to check for: |
| |
| - writes to memory occur to writable memory: if-conversion of |
| memory writes transforms the conditional memory writes into |
| unconditional writes, i.e. "if (cond) A[i] = foo" is transformed |
| into "A[i] = cond ? foo : A[i]", and as the write to memory may not |
| be executed at all in the original code, it may be a readonly |
| memory. To check that A is not const-qualified, we check that |
| there exists at least an unconditional write to A in the current |
| function. |
| |
| - reads or writes to memory are valid memory accesses for every |
| iteration. To check that the memory accesses are correctly formed |
| and that we are allowed to read and write in these locations, we |
| check that the memory accesses to be if-converted occur at every |
| iteration unconditionally. |
| |
| Returns true for the memory reference in STMT, same memory reference |
| is read or written unconditionally atleast once and the base memory |
| reference is written unconditionally once. This is to check reference |
| will not write fault. Also retuns true if the memory reference is |
| unconditionally read once then we are conditionally writing to memory |
| which is defined as read and write and is bound to the definition |
| we are seeing. */ |
| static bool |
| ifcvt_memrefs_wont_trap (gimple *stmt, vec<data_reference_p> drs) |
| { |
| /* If DR didn't see a reference here we can't use it to tell |
| whether the ref traps or not. */ |
| if (gimple_uid (stmt) == 0) |
| return false; |
| |
| data_reference_p *master_dr, *base_master_dr; |
| data_reference_p a = drs[gimple_uid (stmt) - 1]; |
| |
| tree base = DR_BASE_OBJECT (a); |
| innermost_loop_behavior *innermost = &DR_INNERMOST (a); |
| |
| gcc_assert (DR_STMT (a) == stmt); |
| gcc_assert (DR_BASE_ADDRESS (a) || DR_OFFSET (a) |
| || DR_INIT (a) || DR_STEP (a)); |
| |
| master_dr = innermost_DR_map->get (innermost); |
| gcc_assert (master_dr != NULL); |
| |
| base_master_dr = baseref_DR_map->get (base); |
| |
| /* If a is unconditionally written to it doesn't trap. */ |
| if (DR_W_UNCONDITIONALLY (*master_dr)) |
| return true; |
| |
| /* If a is unconditionally accessed then ... |
| |
| Even a is conditional access, we can treat it as an unconditional |
| one if it's an array reference and all its index are within array |
| bound. */ |
| if (DR_RW_UNCONDITIONALLY (*master_dr) |
| || ref_within_array_bound (stmt, DR_REF (a))) |
| { |
| /* an unconditional read won't trap. */ |
| if (DR_IS_READ (a)) |
| return true; |
| |
| /* an unconditionaly write won't trap if the base is written |
| to unconditionally. */ |
| if (base_master_dr |
| && DR_BASE_W_UNCONDITIONALLY (*base_master_dr)) |
| return flag_store_data_races; |
| /* or the base is known to be not readonly. */ |
| else if (base_object_writable (DR_REF (a))) |
| return flag_store_data_races; |
| } |
| |
| return false; |
| } |
| |
| /* Return true if STMT could be converted into a masked load or store |
| (conditional load or store based on a mask computed from bb predicate). */ |
| |
| static bool |
| ifcvt_can_use_mask_load_store (gimple *stmt) |
| { |
| /* Check whether this is a load or store. */ |
| tree lhs = gimple_assign_lhs (stmt); |
| bool is_load; |
| tree ref; |
| if (gimple_store_p (stmt)) |
| { |
| if (!is_gimple_val (gimple_assign_rhs1 (stmt))) |
| return false; |
| is_load = false; |
| ref = lhs; |
| } |
| else if (gimple_assign_load_p (stmt)) |
| { |
| is_load = true; |
| ref = gimple_assign_rhs1 (stmt); |
| } |
| else |
| return false; |
| |
| if (may_be_nonaddressable_p (ref)) |
| return false; |
| |
| /* Mask should be integer mode of the same size as the load/store |
| mode. */ |
| machine_mode mode = TYPE_MODE (TREE_TYPE (lhs)); |
| if (!int_mode_for_mode (mode).exists () || VECTOR_MODE_P (mode)) |
| return false; |
| |
| if (can_vec_mask_load_store_p (mode, VOIDmode, is_load)) |
| return true; |
| |
| return false; |
| } |
| |
| /* Return true if STMT could be converted from an operation that is |
| unconditional to one that is conditional on a bb predicate mask. */ |
| |
| static bool |
| ifcvt_can_predicate (gimple *stmt) |
| { |
| basic_block bb = gimple_bb (stmt); |
| |
| if (!(flag_tree_loop_vectorize || bb->loop_father->force_vectorize) |
| || bb->loop_father->dont_vectorize |
| || gimple_has_volatile_ops (stmt)) |
| return false; |
| |
| if (gimple_assign_single_p (stmt)) |
| return ifcvt_can_use_mask_load_store (stmt); |
| |
| tree_code code = gimple_assign_rhs_code (stmt); |
| tree lhs_type = TREE_TYPE (gimple_assign_lhs (stmt)); |
| tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt)); |
| if (!types_compatible_p (lhs_type, rhs_type)) |
| return false; |
| internal_fn cond_fn = get_conditional_internal_fn (code); |
| return (cond_fn != IFN_LAST |
| && vectorized_internal_fn_supported_p (cond_fn, lhs_type)); |
| } |
| |
| /* Return true when STMT is if-convertible. |
| |
| GIMPLE_ASSIGN statement is not if-convertible if, |
| - it is not movable, |
| - it could trap, |
| - LHS is not var decl. */ |
| |
| static bool |
| if_convertible_gimple_assign_stmt_p (gimple *stmt, |
| vec<data_reference_p> refs) |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "-------------------------\n"); |
| print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); |
| } |
| |
| if (!is_gimple_reg_type (TREE_TYPE (lhs))) |
| return false; |
| |
| /* Some of these constrains might be too conservative. */ |
| if (stmt_ends_bb_p (stmt) |
| || gimple_has_volatile_ops (stmt) |
| || (TREE_CODE (lhs) == SSA_NAME |
| && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) |
| || gimple_has_side_effects (stmt)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "stmt not suitable for ifcvt\n"); |
| return false; |
| } |
| |
| /* tree-into-ssa.cc uses GF_PLF_1, so avoid it, because |
| in between if_convertible_loop_p and combine_blocks |
| we can perform loop versioning. */ |
| gimple_set_plf (stmt, GF_PLF_2, false); |
| |
| if ((! gimple_vuse (stmt) |
| || gimple_could_trap_p_1 (stmt, false, false) |
| || ! ifcvt_memrefs_wont_trap (stmt, refs)) |
| && gimple_could_trap_p (stmt)) |
| { |
| if (ifcvt_can_predicate (stmt)) |
| { |
| gimple_set_plf (stmt, GF_PLF_2, true); |
| need_to_predicate = true; |
| return true; |
| } |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "tree could trap...\n"); |
| return false; |
| } |
| else if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs)) |
| || POINTER_TYPE_P (TREE_TYPE (lhs))) |
| && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (lhs)) |
| && arith_code_with_undefined_signed_overflow |
| (gimple_assign_rhs_code (stmt))) |
| /* We have to rewrite stmts with undefined overflow. */ |
| need_to_rewrite_undefined = true; |
| |
| /* When if-converting stores force versioning, likewise if we |
| ended up generating store data races. */ |
| if (gimple_vdef (stmt)) |
| need_to_predicate = true; |
| |
| return true; |
| } |
| |
| /* Return true when STMT is if-convertible. |
| |
| A statement is if-convertible if: |
| - it is an if-convertible GIMPLE_ASSIGN, |
| - it is a GIMPLE_LABEL or a GIMPLE_COND, |
| - it is builtins call. */ |
| |
| static bool |
| if_convertible_stmt_p (gimple *stmt, vec<data_reference_p> refs) |
| { |
| switch (gimple_code (stmt)) |
| { |
| case GIMPLE_LABEL: |
| case GIMPLE_DEBUG: |
| case GIMPLE_COND: |
| return true; |
| |
| case GIMPLE_ASSIGN: |
| return if_convertible_gimple_assign_stmt_p (stmt, refs); |
| |
| case GIMPLE_CALL: |
| { |
| tree fndecl = gimple_call_fndecl (stmt); |
| if (fndecl) |
| { |
| int flags = gimple_call_flags (stmt); |
| if ((flags & ECF_CONST) |
| && !(flags & ECF_LOOPING_CONST_OR_PURE) |
| /* We can only vectorize some builtins at the moment, |
| so restrict if-conversion to those. */ |
| && fndecl_built_in_p (fndecl)) |
| return true; |
| } |
| return false; |
| } |
| |
| default: |
| /* Don't know what to do with 'em so don't do anything. */ |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "don't know what to do\n"); |
| print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); |
| } |
| return false; |
| } |
| } |
| |
| /* Assumes that BB has more than 1 predecessors. |
| Returns false if at least one successor is not on critical edge |
| and true otherwise. */ |
| |
| static inline bool |
| all_preds_critical_p (basic_block bb) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| if (EDGE_COUNT (e->src->succs) == 1) |
| return false; |
| return true; |
| } |
| |
| /* Return true when BB is if-convertible. This routine does not check |
| basic block's statements and phis. |
| |
| A basic block is not if-convertible if: |
| - it is non-empty and it is after the exit block (in BFS order), |
| - it is after the exit block but before the latch, |
| - its edges are not normal. |
| |
| EXIT_BB is the basic block containing the exit of the LOOP. BB is |
| inside LOOP. */ |
| |
| static bool |
| if_convertible_bb_p (class loop *loop, basic_block bb, basic_block exit_bb) |
| { |
| edge e; |
| edge_iterator ei; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "----------[%d]-------------\n", bb->index); |
| |
| if (EDGE_COUNT (bb->succs) > 2) |
| return false; |
| |
| gimple *last = last_stmt (bb); |
| if (gcall *call = safe_dyn_cast <gcall *> (last)) |
| if (gimple_call_ctrl_altering_p (call)) |
| return false; |
| |
| if (exit_bb) |
| { |
| if (bb != loop->latch) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "basic block after exit bb but before latch\n"); |
| return false; |
| } |
| else if (!empty_block_p (bb)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "non empty basic block after exit bb\n"); |
| return false; |
| } |
| else if (bb == loop->latch |
| && bb != exit_bb |
| && !dominated_by_p (CDI_DOMINATORS, bb, exit_bb)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "latch is not dominated by exit_block\n"); |
| return false; |
| } |
| } |
| |
| /* Be less adventurous and handle only normal edges. */ |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (e->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_IRREDUCIBLE_LOOP)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "Difficult to handle edges\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Return true when all predecessor blocks of BB are visited. The |
| VISITED bitmap keeps track of the visited blocks. */ |
| |
| static bool |
| pred_blocks_visited_p (basic_block bb, bitmap *visited) |
| { |
| edge e; |
| edge_iterator ei; |
| FOR_EACH_EDGE (e, ei, bb->preds) |
| if (!bitmap_bit_p (*visited, e->src->index)) |
| return false; |
| |
| return true; |
| } |
| |
| /* Get body of a LOOP in suitable order for if-conversion. It is |
| caller's responsibility to deallocate basic block list. |
| If-conversion suitable order is, breadth first sort (BFS) order |
| with an additional constraint: select a block only if all its |
| predecessors are already selected. */ |
| |
| static basic_block * |
| get_loop_body_in_if_conv_order (const class loop *loop) |
| { |
| basic_block *blocks, *blocks_in_bfs_order; |
| basic_block bb; |
| bitmap visited; |
| unsigned int index = 0; |
| unsigned int visited_count = 0; |
| |
| gcc_assert (loop->num_nodes); |
| gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)); |
| |
| blocks = XCNEWVEC (basic_block, loop->num_nodes); |
| visited = BITMAP_ALLOC (NULL); |
| |
| blocks_in_bfs_order = get_loop_body_in_bfs_order (loop); |
| |
| index = 0; |
| while (index < loop->num_nodes) |
| { |
| bb = blocks_in_bfs_order [index]; |
| |
| if (bb->flags & BB_IRREDUCIBLE_LOOP) |
| { |
| free (blocks_in_bfs_order); |
| BITMAP_FREE (visited); |
| free (blocks); |
| return NULL; |
| } |
| |
| if (!bitmap_bit_p (visited, bb->index)) |
| { |
| if (pred_blocks_visited_p (bb, &visited) |
| || bb == loop->header) |
| { |
| /* This block is now visited. */ |
| bitmap_set_bit (visited, bb->index); |
| blocks[visited_count++] = bb; |
| } |
| } |
| |
| index++; |
| |
| if (index == loop->num_nodes |
| && visited_count != loop->num_nodes) |
| /* Not done yet. */ |
| index = 0; |
| } |
| free (blocks_in_bfs_order); |
| BITMAP_FREE (visited); |
| return blocks; |
| } |
| |
| /* Returns true when the analysis of the predicates for all the basic |
| blocks in LOOP succeeded. |
| |
| predicate_bbs first allocates the predicates of the basic blocks. |
| These fields are then initialized with the tree expressions |
| representing the predicates under which a basic block is executed |
| in the LOOP. As the loop->header is executed at each iteration, it |
| has the "true" predicate. Other statements executed under a |
| condition are predicated with that condition, for example |
| |
| | if (x) |
| | S1; |
| | else |
| | S2; |
| |
| S1 will be predicated with "x", and |
| S2 will be predicated with "!x". */ |
| |
| static void |
| predicate_bbs (loop_p loop) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| init_bb_predicate (ifc_bbs[i]); |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| { |
| basic_block bb = ifc_bbs[i]; |
| tree cond; |
| gimple *stmt; |
| |
| /* The loop latch and loop exit block are always executed and |
| have no extra conditions to be processed: skip them. */ |
| if (bb == loop->latch |
| || bb_with_exit_edge_p (loop, bb)) |
| { |
| reset_bb_predicate (bb); |
| continue; |
| } |
| |
| cond = bb_predicate (bb); |
| stmt = last_stmt (bb); |
| if (stmt && gimple_code (stmt) == GIMPLE_COND) |
| { |
| tree c2; |
| edge true_edge, false_edge; |
| location_t loc = gimple_location (stmt); |
| tree c = build2_loc (loc, gimple_cond_code (stmt), |
| boolean_type_node, |
| gimple_cond_lhs (stmt), |
| gimple_cond_rhs (stmt)); |
| |
| /* Add new condition into destination's predicate list. */ |
| extract_true_false_edges_from_block (gimple_bb (stmt), |
| &true_edge, &false_edge); |
| |
| /* If C is true, then TRUE_EDGE is taken. */ |
| add_to_dst_predicate_list (loop, true_edge, unshare_expr (cond), |
| unshare_expr (c)); |
| |
| /* If C is false, then FALSE_EDGE is taken. */ |
| c2 = build1_loc (loc, TRUTH_NOT_EXPR, boolean_type_node, |
| unshare_expr (c)); |
| add_to_dst_predicate_list (loop, false_edge, |
| unshare_expr (cond), c2); |
| |
| cond = NULL_TREE; |
| } |
| |
| /* If current bb has only one successor, then consider it as an |
| unconditional goto. */ |
| if (single_succ_p (bb)) |
| { |
| basic_block bb_n = single_succ (bb); |
| |
| /* The successor bb inherits the predicate of its |
| predecessor. If there is no predicate in the predecessor |
| bb, then consider the successor bb as always executed. */ |
| if (cond == NULL_TREE) |
| cond = boolean_true_node; |
| |
| add_to_predicate_list (loop, bb_n, cond); |
| } |
| } |
| |
| /* The loop header is always executed. */ |
| reset_bb_predicate (loop->header); |
| gcc_assert (bb_predicate_gimplified_stmts (loop->header) == NULL |
| && bb_predicate_gimplified_stmts (loop->latch) == NULL); |
| } |
| |
| /* Build region by adding loop pre-header and post-header blocks. */ |
| |
| static vec<basic_block> |
| build_region (class loop *loop) |
| { |
| vec<basic_block> region = vNULL; |
| basic_block exit_bb = NULL; |
| |
| gcc_assert (ifc_bbs); |
| /* The first element is loop pre-header. */ |
| region.safe_push (loop_preheader_edge (loop)->src); |
| |
| for (unsigned int i = 0; i < loop->num_nodes; i++) |
| { |
| basic_block bb = ifc_bbs[i]; |
| region.safe_push (bb); |
| /* Find loop postheader. */ |
| edge e; |
| edge_iterator ei; |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (loop_exit_edge_p (loop, e)) |
| { |
| exit_bb = e->dest; |
| break; |
| } |
| } |
| /* The last element is loop post-header. */ |
| gcc_assert (exit_bb); |
| region.safe_push (exit_bb); |
| return region; |
| } |
| |
| /* Return true when LOOP is if-convertible. This is a helper function |
| for if_convertible_loop_p. REFS and DDRS are initialized and freed |
| in if_convertible_loop_p. */ |
| |
| static bool |
| if_convertible_loop_p_1 (class loop *loop, vec<data_reference_p> *refs) |
| { |
| unsigned int i; |
| basic_block exit_bb = NULL; |
| vec<basic_block> region; |
| |
| if (find_data_references_in_loop (loop, refs) == chrec_dont_know) |
| return false; |
| |
| calculate_dominance_info (CDI_DOMINATORS); |
| |
| /* Allow statements that can be handled during if-conversion. */ |
| ifc_bbs = get_loop_body_in_if_conv_order (loop); |
| if (!ifc_bbs) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "Irreducible loop\n"); |
| return false; |
| } |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| { |
| basic_block bb = ifc_bbs[i]; |
| |
| if (!if_convertible_bb_p (loop, bb, exit_bb)) |
| return false; |
| |
| if (bb_with_exit_edge_p (loop, bb)) |
| exit_bb = bb; |
| } |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| { |
| basic_block bb = ifc_bbs[i]; |
| gimple_stmt_iterator gsi; |
| |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| switch (gimple_code (gsi_stmt (gsi))) |
| { |
| case GIMPLE_LABEL: |
| case GIMPLE_ASSIGN: |
| case GIMPLE_CALL: |
| case GIMPLE_DEBUG: |
| case GIMPLE_COND: |
| gimple_set_uid (gsi_stmt (gsi), 0); |
| break; |
| default: |
| return false; |
| } |
| } |
| |
| data_reference_p dr; |
| |
| innermost_DR_map |
| = new hash_map<innermost_loop_behavior_hash, data_reference_p>; |
| baseref_DR_map = new hash_map<tree_operand_hash, data_reference_p>; |
| |
| /* Compute post-dominator tree locally. */ |
| region = build_region (loop); |
| calculate_dominance_info_for_region (CDI_POST_DOMINATORS, region); |
| |
| predicate_bbs (loop); |
| |
| /* Free post-dominator tree since it is not used after predication. */ |
| free_dominance_info_for_region (cfun, CDI_POST_DOMINATORS, region); |
| region.release (); |
| |
| for (i = 0; refs->iterate (i, &dr); i++) |
| { |
| tree ref = DR_REF (dr); |
| |
| dr->aux = XNEW (struct ifc_dr); |
| DR_BASE_W_UNCONDITIONALLY (dr) = false; |
| DR_RW_UNCONDITIONALLY (dr) = false; |
| DR_W_UNCONDITIONALLY (dr) = false; |
| IFC_DR (dr)->rw_predicate = boolean_false_node; |
| IFC_DR (dr)->w_predicate = boolean_false_node; |
| IFC_DR (dr)->base_w_predicate = boolean_false_node; |
| if (gimple_uid (DR_STMT (dr)) == 0) |
| gimple_set_uid (DR_STMT (dr), i + 1); |
| |
| /* If DR doesn't have innermost loop behavior or it's a compound |
| memory reference, we synthesize its innermost loop behavior |
| for hashing. */ |
| if (TREE_CODE (ref) == COMPONENT_REF |
| || TREE_CODE (ref) == IMAGPART_EXPR |
| || TREE_CODE (ref) == REALPART_EXPR |
| || !(DR_BASE_ADDRESS (dr) || DR_OFFSET (dr) |
| || DR_INIT (dr) || DR_STEP (dr))) |
| { |
| while (TREE_CODE (ref) == COMPONENT_REF |
| || TREE_CODE (ref) == IMAGPART_EXPR |
| || TREE_CODE (ref) == REALPART_EXPR) |
| ref = TREE_OPERAND (ref, 0); |
| |
| memset (&DR_INNERMOST (dr), 0, sizeof (DR_INNERMOST (dr))); |
| DR_BASE_ADDRESS (dr) = ref; |
| } |
| hash_memrefs_baserefs_and_store_DRs_read_written_info (dr); |
| } |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| { |
| basic_block bb = ifc_bbs[i]; |
| gimple_stmt_iterator itr; |
| |
| /* Check the if-convertibility of statements in predicated BBs. */ |
| if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) |
| for (itr = gsi_start_bb (bb); !gsi_end_p (itr); gsi_next (&itr)) |
| if (!if_convertible_stmt_p (gsi_stmt (itr), *refs)) |
| return false; |
| } |
| |
| /* Checking PHIs needs to be done after stmts, as the fact whether there |
| are any masked loads or stores affects the tests. */ |
| for (i = 0; i < loop->num_nodes; i++) |
| { |
| basic_block bb = ifc_bbs[i]; |
| gphi_iterator itr; |
| |
| for (itr = gsi_start_phis (bb); !gsi_end_p (itr); gsi_next (&itr)) |
| if (!if_convertible_phi_p (loop, bb, itr.phi ())) |
| return false; |
| } |
| |
| if (dump_file) |
| fprintf (dump_file, "Applying if-conversion\n"); |
| |
| return true; |
| } |
| |
| /* Return true when LOOP is if-convertible. |
| LOOP is if-convertible if: |
| - it is innermost, |
| - it has two or more basic blocks, |
| - it has only one exit, |
| - loop header is not the exit edge, |
| - if its basic blocks and phi nodes are if convertible. */ |
| |
| static bool |
| if_convertible_loop_p (class loop *loop) |
| { |
| edge e; |
| edge_iterator ei; |
| bool res = false; |
| vec<data_reference_p> refs; |
| |
| /* Handle only innermost loop. */ |
| if (!loop || loop->inner) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "not innermost loop\n"); |
| return false; |
| } |
| |
| /* If only one block, no need for if-conversion. */ |
| if (loop->num_nodes <= 2) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "less than 2 basic blocks\n"); |
| return false; |
| } |
| |
| /* More than one loop exit is too much to handle. */ |
| if (!single_exit (loop)) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, "multiple exits\n"); |
| return false; |
| } |
| |
| /* If one of the loop header's edge is an exit edge then do not |
| apply if-conversion. */ |
| FOR_EACH_EDGE (e, ei, loop->header->succs) |
| if (loop_exit_edge_p (loop, e)) |
| return false; |
| |
| refs.create (5); |
| res = if_convertible_loop_p_1 (loop, &refs); |
| |
| data_reference_p dr; |
| unsigned int i; |
| for (i = 0; refs.iterate (i, &dr); i++) |
| free (dr->aux); |
| |
| free_data_refs (refs); |
| |
| delete innermost_DR_map; |
| innermost_DR_map = NULL; |
| |
| delete baseref_DR_map; |
| baseref_DR_map = NULL; |
| |
| return res; |
| } |
| |
| /* Return reduc_1 if has_nop. |
| |
| if (...) |
| tmp1 = (unsigned type) reduc_1; |
| tmp2 = tmp1 + rhs2; |
| reduc_3 = (signed type) tmp2. */ |
| static tree |
| strip_nop_cond_scalar_reduction (bool has_nop, tree op) |
| { |
| if (!has_nop) |
| return op; |
| |
| if (TREE_CODE (op) != SSA_NAME) |
| return NULL_TREE; |
| |
| gassign *stmt = safe_dyn_cast <gassign *> (SSA_NAME_DEF_STMT (op)); |
| if (!stmt |
| || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)) |
| || !tree_nop_conversion_p (TREE_TYPE (op), TREE_TYPE |
| (gimple_assign_rhs1 (stmt)))) |
| return NULL_TREE; |
| |
| return gimple_assign_rhs1 (stmt); |
| } |
| |
| /* Returns true if def-stmt for phi argument ARG is simple increment/decrement |
| which is in predicated basic block. |
| In fact, the following PHI pattern is searching: |
| loop-header: |
| reduc_1 = PHI <..., reduc_2> |
| ... |
| if (...) |
| reduc_3 = ... |
| reduc_2 = PHI <reduc_1, reduc_3> |
| |
| ARG_0 and ARG_1 are correspondent PHI arguments. |
| REDUC, OP0 and OP1 contain reduction stmt and its operands. |
| EXTENDED is true if PHI has > 2 arguments. */ |
| |
| static bool |
| is_cond_scalar_reduction (gimple *phi, gimple **reduc, tree arg_0, tree arg_1, |
| tree *op0, tree *op1, bool extended, bool* has_nop, |
| gimple **nop_reduc) |
| { |
| tree lhs, r_op1, r_op2, r_nop1, r_nop2; |
| gimple *stmt; |
| gimple *header_phi = NULL; |
| enum tree_code reduction_op; |
| basic_block bb = gimple_bb (phi); |
| class loop *loop = bb->loop_father; |
| edge latch_e = loop_latch_edge (loop); |
| imm_use_iterator imm_iter; |
| use_operand_p use_p; |
| edge e; |
| edge_iterator ei; |
| bool result = *has_nop = false; |
| if (TREE_CODE (arg_0) != SSA_NAME || TREE_CODE (arg_1) != SSA_NAME) |
| return false; |
| |
| if (!extended && gimple_code (SSA_NAME_DEF_STMT (arg_0)) == GIMPLE_PHI) |
| { |
| lhs = arg_1; |
| header_phi = SSA_NAME_DEF_STMT (arg_0); |
| stmt = SSA_NAME_DEF_STMT (arg_1); |
| } |
| else if (gimple_code (SSA_NAME_DEF_STMT (arg_1)) == GIMPLE_PHI) |
| { |
| lhs = arg_0; |
| header_phi = SSA_NAME_DEF_STMT (arg_1); |
| stmt = SSA_NAME_DEF_STMT (arg_0); |
| } |
| else |
| return false; |
| if (gimple_bb (header_phi) != loop->header) |
| return false; |
| |
| if (PHI_ARG_DEF_FROM_EDGE (header_phi, latch_e) != PHI_RESULT (phi)) |
| return false; |
| |
| if (gimple_code (stmt) != GIMPLE_ASSIGN |
| || gimple_has_volatile_ops (stmt)) |
| return false; |
| |
| if (!flow_bb_inside_loop_p (loop, gimple_bb (stmt))) |
| return false; |
| |
| if (!is_predicated (gimple_bb (stmt))) |
| return false; |
| |
| /* Check that stmt-block is predecessor of phi-block. */ |
| FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs) |
| if (e->dest == bb) |
| { |
| result = true; |
| break; |
| } |
| if (!result) |
| return false; |
| |
| if (!has_single_use (lhs)) |
| return false; |
| |
| reduction_op = gimple_assign_rhs_code (stmt); |
| |
| /* Catch something like below |
| |
| loop-header: |
| reduc_1 = PHI <..., reduc_2> |
| ... |
| if (...) |
| tmp1 = (unsigned type) reduc_1; |
| tmp2 = tmp1 + rhs2; |
| reduc_3 = (signed type) tmp2; |
| |
| reduc_2 = PHI <reduc_1, reduc_3> |
| |
| and convert to |
| |
| reduc_2 = PHI <0, reduc_3> |
| tmp1 = (unsigned type)reduce_1; |
| ifcvt = cond_expr ? rhs2 : 0 |
| tmp2 = tmp1 +/- ifcvt; |
| reduce_1 = (signed type)tmp2; */ |
| |
| if (CONVERT_EXPR_CODE_P (reduction_op)) |
| { |
| lhs = gimple_assign_rhs1 (stmt); |
| if (TREE_CODE (lhs) != SSA_NAME |
| || !has_single_use (lhs)) |
| return false; |
| |
| *nop_reduc = stmt; |
| stmt = SSA_NAME_DEF_STMT (lhs); |
| if (gimple_bb (stmt) != gimple_bb (*nop_reduc) |
| || !is_gimple_assign (stmt)) |
| return false; |
| |
| *has_nop = true; |
| reduction_op = gimple_assign_rhs_code (stmt); |
| } |
| |
| if (reduction_op != PLUS_EXPR |
| && reduction_op != MINUS_EXPR |
| && reduction_op != BIT_IOR_EXPR |
| && reduction_op != BIT_XOR_EXPR |
| && reduction_op != BIT_AND_EXPR) |
| return false; |
| r_op1 = gimple_assign_rhs1 (stmt); |
| r_op2 = gimple_assign_rhs2 (stmt); |
| |
| r_nop1 = strip_nop_cond_scalar_reduction (*has_nop, r_op1); |
| r_nop2 = strip_nop_cond_scalar_reduction (*has_nop, r_op2); |
| |
| /* Make R_OP1 to hold reduction variable. */ |
| if (r_nop2 == PHI_RESULT (header_phi) |
| && commutative_tree_code (reduction_op)) |
| { |
| std::swap (r_op1, r_op2); |
| std::swap (r_nop1, r_nop2); |
| } |
| else if (r_nop1 != PHI_RESULT (header_phi)) |
| return false; |
| |
| if (*has_nop) |
| { |
| /* Check that R_NOP1 is used in nop_stmt or in PHI only. */ |
| FOR_EACH_IMM_USE_FAST (use_p, imm_iter, r_nop1) |
| { |
| gimple *use_stmt = USE_STMT (use_p); |
| if (is_gimple_debug (use_stmt)) |
| continue; |
| if (use_stmt == SSA_NAME_DEF_STMT (r_op1)) |
| continue; |
| if (use_stmt != phi) |
| return false; |
| } |
| } |
| |
| /* Check that R_OP1 is used in reduction stmt or in PHI only. */ |
| FOR_EACH_IMM_USE_FAST (use_p, imm_iter, r_op1) |
| { |
| gimple *use_stmt = USE_STMT (use_p); |
| if (is_gimple_debug (use_stmt)) |
| continue; |
| if (use_stmt == stmt) |
| continue; |
| if (gimple_code (use_stmt) != GIMPLE_PHI) |
| return false; |
| } |
| |
| *op0 = r_op1; *op1 = r_op2; |
| *reduc = stmt; |
| return true; |
| } |
| |
| /* Converts conditional scalar reduction into unconditional form, e.g. |
| bb_4 |
| if (_5 != 0) goto bb_5 else goto bb_6 |
| end_bb_4 |
| bb_5 |
| res_6 = res_13 + 1; |
| end_bb_5 |
| bb_6 |
| # res_2 = PHI <res_13(4), res_6(5)> |
| end_bb_6 |
| |
| will be converted into sequence |
| _ifc__1 = _5 != 0 ? 1 : 0; |
| res_2 = res_13 + _ifc__1; |
| Argument SWAP tells that arguments of conditional expression should be |
| swapped. |
| Returns rhs of resulting PHI assignment. */ |
| |
| static tree |
| convert_scalar_cond_reduction (gimple *reduc, gimple_stmt_iterator *gsi, |
| tree cond, tree op0, tree op1, bool swap, |
| bool has_nop, gimple* nop_reduc) |
| { |
| gimple_stmt_iterator stmt_it; |
| gimple *new_assign; |
| tree rhs; |
| tree rhs1 = gimple_assign_rhs1 (reduc); |
| tree tmp = make_temp_ssa_name (TREE_TYPE (rhs1), NULL, "_ifc_"); |
| tree c; |
| enum tree_code reduction_op = gimple_assign_rhs_code (reduc); |
| tree op_nochange = neutral_op_for_reduction (TREE_TYPE (rhs1), reduction_op, NULL); |
| gimple_seq stmts = NULL; |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Found cond scalar reduction.\n"); |
| print_gimple_stmt (dump_file, reduc, 0, TDF_SLIM); |
| } |
| |
| /* Build cond expression using COND and constant operand |
| of reduction rhs. */ |
| c = fold_build_cond_expr (TREE_TYPE (rhs1), |
| unshare_expr (cond), |
| swap ? op_nochange : op1, |
| swap ? op1 : op_nochange); |
| |
| /* Create assignment stmt and insert it at GSI. */ |
| new_assign = gimple_build_assign (tmp, c); |
| gsi_insert_before (gsi, new_assign, GSI_SAME_STMT); |
| /* Build rhs for unconditional increment/decrement/logic_operation. */ |
| rhs = gimple_build (&stmts, reduction_op, |
| TREE_TYPE (rhs1), op0, tmp); |
| |
| if (has_nop) |
| { |
| rhs = gimple_convert (&stmts, |
| TREE_TYPE (gimple_assign_lhs (nop_reduc)), rhs); |
| stmt_it = gsi_for_stmt (nop_reduc); |
| gsi_remove (&stmt_it, true); |
| release_defs (nop_reduc); |
| } |
| gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); |
| |
| /* Delete original reduction stmt. */ |
| stmt_it = gsi_for_stmt (reduc); |
| gsi_remove (&stmt_it, true); |
| release_defs (reduc); |
| return rhs; |
| } |
| |
| /* Produce condition for all occurrences of ARG in PHI node. */ |
| |
| static tree |
| gen_phi_arg_condition (gphi *phi, vec<int> *occur, |
| gimple_stmt_iterator *gsi) |
| { |
| int len; |
| int i; |
| tree cond = NULL_TREE; |
| tree c; |
| edge e; |
| |
| len = occur->length (); |
| gcc_assert (len > 0); |
| for (i = 0; i < len; i++) |
| { |
| e = gimple_phi_arg_edge (phi, (*occur)[i]); |
| c = bb_predicate (e->src); |
| if (is_true_predicate (c)) |
| { |
| cond = c; |
| break; |
| } |
| c = force_gimple_operand_gsi_1 (gsi, unshare_expr (c), |
| is_gimple_condexpr, NULL_TREE, |
| true, GSI_SAME_STMT); |
| if (cond != NULL_TREE) |
| { |
| /* Must build OR expression. */ |
| cond = fold_or_predicates (EXPR_LOCATION (c), c, cond); |
| cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond), |
| is_gimple_condexpr, NULL_TREE, |
| true, GSI_SAME_STMT); |
| } |
| else |
| cond = c; |
| } |
| gcc_assert (cond != NULL_TREE); |
| return cond; |
| } |
| |
| /* Local valueization callback that follows all-use SSA edges. */ |
| |
| static tree |
| ifcvt_follow_ssa_use_edges (tree val) |
| { |
| return val; |
| } |
| |
| /* Replace a scalar PHI node with a COND_EXPR using COND as condition. |
| This routine can handle PHI nodes with more than two arguments. |
| |
| For example, |
| S1: A = PHI <x1(1), x2(5)> |
| is converted into, |
| S2: A = cond ? x1 : x2; |
| |
| The generated code is inserted at GSI that points to the top of |
| basic block's statement list. |
| If PHI node has more than two arguments a chain of conditional |
| expression is produced. */ |
| |
| |
| static void |
| predicate_scalar_phi (gphi *phi, gimple_stmt_iterator *gsi) |
| { |
| gimple *new_stmt = NULL, *reduc, *nop_reduc; |
| tree rhs, res, arg0, arg1, op0, op1, scev; |
| tree cond; |
| unsigned int index0; |
| unsigned int max, args_len; |
| edge e; |
| basic_block bb; |
| unsigned int i; |
| bool has_nop; |
| |
| res = gimple_phi_result (phi); |
| if (virtual_operand_p (res)) |
| return; |
| |
| if ((rhs = degenerate_phi_result (phi)) |
| || ((scev = analyze_scalar_evolution (gimple_bb (phi)->loop_father, |
| res)) |
| && !chrec_contains_undetermined (scev) |
| && scev != res |
| && (rhs = gimple_phi_arg_def (phi, 0)))) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Degenerate phi!\n"); |
| print_gimple_stmt (dump_file, phi, 0, TDF_SLIM); |
| } |
| new_stmt = gimple_build_assign (res, rhs); |
| gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); |
| update_stmt (new_stmt); |
| return; |
| } |
| |
| bb = gimple_bb (phi); |
| if (EDGE_COUNT (bb->preds) == 2) |
| { |
| /* Predicate ordinary PHI node with 2 arguments. */ |
| edge first_edge, second_edge; |
| basic_block true_bb; |
| first_edge = EDGE_PRED (bb, 0); |
| second_edge = EDGE_PRED (bb, 1); |
| cond = bb_predicate (first_edge->src); |
| if (TREE_CODE (cond) == TRUTH_NOT_EXPR) |
| std::swap (first_edge, second_edge); |
| if (EDGE_COUNT (first_edge->src->succs) > 1) |
| { |
| cond = bb_predicate (second_edge->src); |
| if (TREE_CODE (cond) == TRUTH_NOT_EXPR) |
| cond = TREE_OPERAND (cond, 0); |
| else |
| first_edge = second_edge; |
| } |
| else |
| cond = bb_predicate (first_edge->src); |
| /* Gimplify the condition to a valid cond-expr conditonal operand. */ |
| cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond), |
| is_gimple_condexpr, NULL_TREE, |
| true, GSI_SAME_STMT); |
| true_bb = first_edge->src; |
| if (EDGE_PRED (bb, 1)->src == true_bb) |
| { |
| arg0 = gimple_phi_arg_def (phi, 1); |
| arg1 = gimple_phi_arg_def (phi, 0); |
| } |
| else |
| { |
| arg0 = gimple_phi_arg_def (phi, 0); |
| arg1 = gimple_phi_arg_def (phi, 1); |
| } |
| if (is_cond_scalar_reduction (phi, &reduc, arg0, arg1, |
| &op0, &op1, false, &has_nop, |
| &nop_reduc)) |
| { |
| /* Convert reduction stmt into vectorizable form. */ |
| rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1, |
| true_bb != gimple_bb (reduc), |
| has_nop, nop_reduc); |
| redundant_ssa_names.safe_push (std::make_pair (res, rhs)); |
| } |
| else |
| /* Build new RHS using selected condition and arguments. */ |
| rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond), |
| arg0, arg1); |
| new_stmt = gimple_build_assign (res, rhs); |
| gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); |
| gimple_stmt_iterator new_gsi = gsi_for_stmt (new_stmt); |
| if (fold_stmt (&new_gsi, ifcvt_follow_ssa_use_edges)) |
| { |
| new_stmt = gsi_stmt (new_gsi); |
| update_stmt (new_stmt); |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "new phi replacement stmt\n"); |
| print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM); |
| } |
| return; |
| } |
| |
| /* Create hashmap for PHI node which contain vector of argument indexes |
| having the same value. */ |
| bool swap = false; |
| hash_map<tree_operand_hash, auto_vec<int> > phi_arg_map; |
| unsigned int num_args = gimple_phi_num_args (phi); |
| int max_ind = -1; |
| /* Vector of different PHI argument values. */ |
| auto_vec<tree> args (num_args); |
| |
| /* Compute phi_arg_map. */ |
| for (i = 0; i < num_args; i++) |
| { |
| tree arg; |
| |
| arg = gimple_phi_arg_def (phi, i); |
| if (!phi_arg_map.get (arg)) |
| args.quick_push (arg); |
| phi_arg_map.get_or_insert (arg).safe_push (i); |
| } |
| |
| /* Determine element with max number of occurrences. */ |
| max_ind = -1; |
| max = 1; |
| args_len = args.length (); |
| for (i = 0; i < args_len; i++) |
| { |
| unsigned int len; |
| if ((len = phi_arg_map.get (args[i])->length ()) > max) |
| { |
| max_ind = (int) i; |
| max = len; |
| } |
| } |
| |
| /* Put element with max number of occurences to the end of ARGS. */ |
| if (max_ind != -1 && max_ind +1 != (int) args_len) |
| std::swap (args[args_len - 1], args[max_ind]); |
| |
| /* Handle one special case when number of arguments with different values |
| is equal 2 and one argument has the only occurrence. Such PHI can be |
| handled as if would have only 2 arguments. */ |
| if (args_len == 2 && phi_arg_map.get (args[0])->length () == 1) |
| { |
| vec<int> *indexes; |
| indexes = phi_arg_map.get (args[0]); |
| index0 = (*indexes)[0]; |
| arg0 = args[0]; |
| arg1 = args[1]; |
| e = gimple_phi_arg_edge (phi, index0); |
| cond = bb_predicate (e->src); |
| if (TREE_CODE (cond) == TRUTH_NOT_EXPR) |
| { |
| swap = true; |
| cond = TREE_OPERAND (cond, 0); |
| } |
| /* Gimplify the condition to a valid cond-expr conditonal operand. */ |
| cond = force_gimple_operand_gsi_1 (gsi, unshare_expr (cond), |
| is_gimple_condexpr, NULL_TREE, |
| true, GSI_SAME_STMT); |
| if (!(is_cond_scalar_reduction (phi, &reduc, arg0 , arg1, |
| &op0, &op1, true, &has_nop, &nop_reduc))) |
| rhs = fold_build_cond_expr (TREE_TYPE (res), unshare_expr (cond), |
| swap? arg1 : arg0, |
| swap? arg0 : arg1); |
| else |
| { |
| /* Convert reduction stmt into vectorizable form. */ |
| rhs = convert_scalar_cond_reduction (reduc, gsi, cond, op0, op1, |
| swap,has_nop, nop_reduc); |
| redundant_ssa_names.safe_push (std::make_pair (res, rhs)); |
| } |
| new_stmt = gimple_build_assign (res, rhs); |
| gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); |
| update_stmt (new_stmt); |
| } |
| else |
| { |
| /* Common case. */ |
| vec<int> *indexes; |
| tree type = TREE_TYPE (gimple_phi_result (phi)); |
| tree lhs; |
| arg1 = args[1]; |
| for (i = 0; i < args_len; i++) |
| { |
| arg0 = args[i]; |
| indexes = phi_arg_map.get (args[i]); |
| if (i != args_len - 1) |
| lhs = make_temp_ssa_name (type, NULL, "_ifc_"); |
| else |
| lhs = res; |
| cond = gen_phi_arg_condition (phi, indexes, gsi); |
| rhs = fold_build_cond_expr (type, unshare_expr (cond), |
| arg0, arg1); |
| new_stmt = gimple_build_assign (lhs, rhs); |
| gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); |
| update_stmt (new_stmt); |
| arg1 = lhs; |
| } |
| } |
| |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "new extended phi replacement stmt\n"); |
| print_gimple_stmt (dump_file, new_stmt, 0, TDF_SLIM); |
| } |
| } |
| |
| /* Replaces in LOOP all the scalar phi nodes other than those in the |
| LOOP->header block with conditional modify expressions. */ |
| |
| static void |
| predicate_all_scalar_phis (class loop *loop) |
| { |
| basic_block bb; |
| unsigned int orig_loop_num_nodes = loop->num_nodes; |
| unsigned int i; |
| |
| for (i = 1; i < orig_loop_num_nodes; i++) |
| { |
| gphi *phi; |
| gimple_stmt_iterator gsi; |
| gphi_iterator phi_gsi; |
| bb = ifc_bbs[i]; |
| |
| if (bb == loop->header) |
| continue; |
| |
| phi_gsi = gsi_start_phis (bb); |
| if (gsi_end_p (phi_gsi)) |
| continue; |
| |
| gsi = gsi_after_labels (bb); |
| while (!gsi_end_p (phi_gsi)) |
| { |
| phi = phi_gsi.phi (); |
| if (virtual_operand_p (gimple_phi_result (phi))) |
| gsi_next (&phi_gsi); |
| else |
| { |
| predicate_scalar_phi (phi, &gsi); |
| remove_phi_node (&phi_gsi, false); |
| } |
| } |
| } |
| } |
| |
| /* Insert in each basic block of LOOP the statements produced by the |
| gimplification of the predicates. */ |
| |
| static void |
| insert_gimplified_predicates (loop_p loop) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| { |
| basic_block bb = ifc_bbs[i]; |
| gimple_seq stmts; |
| if (!is_predicated (bb)) |
| gcc_assert (bb_predicate_gimplified_stmts (bb) == NULL); |
| if (!is_predicated (bb)) |
| { |
| /* Do not insert statements for a basic block that is not |
| predicated. Also make sure that the predicate of the |
| basic block is set to true. */ |
| reset_bb_predicate (bb); |
| continue; |
| } |
| |
| stmts = bb_predicate_gimplified_stmts (bb); |
| if (stmts) |
| { |
| if (need_to_predicate) |
| { |
| /* Insert the predicate of the BB just after the label, |
| as the if-conversion of memory writes will use this |
| predicate. */ |
| gimple_stmt_iterator gsi = gsi_after_labels (bb); |
| gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT); |
| } |
| else |
| { |
| /* Insert the predicate of the BB at the end of the BB |
| as this would reduce the register pressure: the only |
| use of this predicate will be in successor BBs. */ |
| gimple_stmt_iterator gsi = gsi_last_bb (bb); |
| |
| if (gsi_end_p (gsi) |
| || stmt_ends_bb_p (gsi_stmt (gsi))) |
| gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT); |
| else |
| gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT); |
| } |
| |
| /* Once the sequence is code generated, set it to NULL. */ |
| set_bb_predicate_gimplified_stmts (bb, NULL); |
| } |
| } |
| } |
| |
| /* Helper function for predicate_statements. Returns index of existent |
| mask if it was created for given SIZE and -1 otherwise. */ |
| |
| static int |
| mask_exists (int size, const vec<int> &vec) |
| { |
| unsigned int ix; |
| int v; |
| FOR_EACH_VEC_ELT (vec, ix, v) |
| if (v == size) |
| return (int) ix; |
| return -1; |
| } |
| |
| /* Helper function for predicate_statements. STMT is a memory read or |
| write and it needs to be predicated by MASK. Return a statement |
| that does so. */ |
| |
| static gimple * |
| predicate_load_or_store (gimple_stmt_iterator *gsi, gassign *stmt, tree mask) |
| { |
| gcall *new_stmt; |
| |
| tree lhs = gimple_assign_lhs (stmt); |
| tree rhs = gimple_assign_rhs1 (stmt); |
| tree ref = TREE_CODE (lhs) == SSA_NAME ? rhs : lhs; |
| mark_addressable (ref); |
| tree addr = force_gimple_operand_gsi (gsi, build_fold_addr_expr (ref), |
| true, NULL_TREE, true, GSI_SAME_STMT); |
| tree ptr = build_int_cst (reference_alias_ptr_type (ref), |
| get_object_alignment (ref)); |
| /* Copy points-to info if possible. */ |
| if (TREE_CODE (addr) == SSA_NAME && !SSA_NAME_PTR_INFO (addr)) |
| copy_ref_info (build2 (MEM_REF, TREE_TYPE (ref), addr, ptr), |
| ref); |
| if (TREE_CODE (lhs) == SSA_NAME) |
| { |
| new_stmt |
| = gimple_build_call_internal (IFN_MASK_LOAD, 3, addr, |
| ptr, mask); |
| gimple_call_set_lhs (new_stmt, lhs); |
| gimple_set_vuse (new_stmt, gimple_vuse (stmt)); |
| } |
| else |
| { |
| new_stmt |
| = gimple_build_call_internal (IFN_MASK_STORE, 4, addr, ptr, |
| mask, rhs); |
| gimple_move_vops (new_stmt, stmt); |
| } |
| gimple_call_set_nothrow (new_stmt, true); |
| return new_stmt; |
| } |
| |
| /* STMT uses OP_LHS. Check whether it is equivalent to: |
| |
| ... = OP_MASK ? OP_LHS : X; |
| |
| Return X if so, otherwise return null. OP_MASK is an SSA_NAME that is |
| known to have value OP_COND. */ |
| |
| static tree |
| check_redundant_cond_expr (gimple *stmt, tree op_mask, tree op_cond, |
| tree op_lhs) |
| { |
| gassign *assign = dyn_cast <gassign *> (stmt); |
| if (!assign || gimple_assign_rhs_code (assign) != COND_EXPR) |
| return NULL_TREE; |
| |
| tree use_cond = gimple_assign_rhs1 (assign); |
| tree if_true = gimple_assign_rhs2 (assign); |
| tree if_false = gimple_assign_rhs3 (assign); |
| |
| if ((use_cond == op_mask || operand_equal_p (use_cond, op_cond, 0)) |
| && if_true == op_lhs) |
| return if_false; |
| |
| if (inverse_conditions_p (use_cond, op_cond) && if_false == op_lhs) |
| return if_true; |
| |
| return NULL_TREE; |
| } |
| |
| /* Return true if VALUE is available for use at STMT. SSA_NAMES is |
| the set of SSA names defined earlier in STMT's block. */ |
| |
| static bool |
| value_available_p (gimple *stmt, hash_set<tree_ssa_name_hash> *ssa_names, |
| tree value) |
| { |
| if (is_gimple_min_invariant (value)) |
| return true; |
| |
| if (TREE_CODE (value) == SSA_NAME) |
| { |
| if (SSA_NAME_IS_DEFAULT_DEF (value)) |
| return true; |
| |
| basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (value)); |
| basic_block use_bb = gimple_bb (stmt); |
| return (def_bb == use_bb |
| ? ssa_names->contains (value) |
| : dominated_by_p (CDI_DOMINATORS, use_bb, def_bb)); |
| } |
| |
| return false; |
| } |
| |
| /* Helper function for predicate_statements. STMT is a potentially-trapping |
| arithmetic operation that needs to be predicated by MASK, an SSA_NAME that |
| has value COND. Return a statement that does so. SSA_NAMES is the set of |
| SSA names defined earlier in STMT's block. */ |
| |
| static gimple * |
| predicate_rhs_code (gassign *stmt, tree mask, tree cond, |
| hash_set<tree_ssa_name_hash> *ssa_names) |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| tree_code code = gimple_assign_rhs_code (stmt); |
| unsigned int nops = gimple_num_ops (stmt); |
| internal_fn cond_fn = get_conditional_internal_fn (code); |
| |
| /* Construct the arguments to the conditional internal function. */ |
| auto_vec<tree, 8> args; |
| args.safe_grow (nops + 1, true); |
| args[0] = mask; |
| for (unsigned int i = 1; i < nops; ++i) |
| args[i] = gimple_op (stmt, i); |
| args[nops] = NULL_TREE; |
| |
| /* Look for uses of the result to see whether they are COND_EXPRs that can |
| be folded into the conditional call. */ |
| imm_use_iterator imm_iter; |
| gimple *use_stmt; |
| FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs) |
| { |
| tree new_else = check_redundant_cond_expr (use_stmt, mask, cond, lhs); |
| if (new_else && value_available_p (stmt, ssa_names, new_else)) |
| { |
| if (!args[nops]) |
| args[nops] = new_else; |
| if (operand_equal_p (new_else, args[nops], 0)) |
| { |
| /* We have: |
| |
| LHS = IFN_COND (MASK, ..., ELSE); |
| X = MASK ? LHS : ELSE; |
| |
| which makes X equivalent to LHS. */ |
| tree use_lhs = gimple_assign_lhs (use_stmt); |
| redundant_ssa_names.safe_push (std::make_pair (use_lhs, lhs)); |
| } |
| } |
| } |
| if (!args[nops]) |
| args[nops] = targetm.preferred_else_value (cond_fn, TREE_TYPE (lhs), |
| nops - 1, &args[1]); |
| |
| /* Create and insert the call. */ |
| gcall *new_stmt = gimple_build_call_internal_vec (cond_fn, args); |
| gimple_call_set_lhs (new_stmt, lhs); |
| gimple_call_set_nothrow (new_stmt, true); |
| |
| return new_stmt; |
| } |
| |
| /* Predicate each write to memory in LOOP. |
| |
| This function transforms control flow constructs containing memory |
| writes of the form: |
| |
| | for (i = 0; i < N; i++) |
| | if (cond) |
| | A[i] = expr; |
| |
| into the following form that does not contain control flow: |
| |
| | for (i = 0; i < N; i++) |
| | A[i] = cond ? expr : A[i]; |
| |
| The original CFG looks like this: |
| |
| | bb_0 |
| | i = 0 |
| | end_bb_0 |
| | |
| | bb_1 |
| | if (i < N) goto bb_5 else goto bb_2 |
| | end_bb_1 |
| | |
| | bb_2 |
| | cond = some_computation; |
| | if (cond) goto bb_3 else goto bb_4 |
| | end_bb_2 |
| | |
| | bb_3 |
| | A[i] = expr; |
| | goto bb_4 |
| | end_bb_3 |
| | |
| | bb_4 |
| | goto bb_1 |
| | end_bb_4 |
| |
| insert_gimplified_predicates inserts the computation of the COND |
| expression at the beginning of the destination basic block: |
| |
| | bb_0 |
| | i = 0 |
| | end_bb_0 |
| | |
| | bb_1 |
| | if (i < N) goto bb_5 else goto bb_2 |
| | end_bb_1 |
| | |
| | bb_2 |
| | cond = some_computation; |
| | if (cond) goto bb_3 else goto bb_4 |
| | end_bb_2 |
| | |
| | bb_3 |
| | cond = some_computation; |
| | A[i] = expr; |
| | goto bb_4 |
| | end_bb_3 |
| | |
| | bb_4 |
| | goto bb_1 |
| | end_bb_4 |
| |
| predicate_statements is then predicating the memory write as follows: |
| |
| | bb_0 |
| | i = 0 |
| | end_bb_0 |
| | |
| | bb_1 |
| | if (i < N) goto bb_5 else goto bb_2 |
| | end_bb_1 |
| | |
| | bb_2 |
| | if (cond) goto bb_3 else goto bb_4 |
| | end_bb_2 |
| | |
| | bb_3 |
| | cond = some_computation; |
| | A[i] = cond ? expr : A[i]; |
| | goto bb_4 |
| | end_bb_3 |
| | |
| | bb_4 |
| | goto bb_1 |
| | end_bb_4 |
| |
| and finally combine_blocks removes the basic block boundaries making |
| the loop vectorizable: |
| |
| | bb_0 |
| | i = 0 |
| | if (i < N) goto bb_5 else goto bb_1 |
| | end_bb_0 |
| | |
| | bb_1 |
| | cond = some_computation; |
| | A[i] = cond ? expr : A[i]; |
| | if (i < N) goto bb_5 else goto bb_4 |
| | end_bb_1 |
| | |
| | bb_4 |
| | goto bb_1 |
| | end_bb_4 |
| */ |
| |
| static void |
| predicate_statements (loop_p loop) |
| { |
| unsigned int i, orig_loop_num_nodes = loop->num_nodes; |
| auto_vec<int, 1> vect_sizes; |
| auto_vec<tree, 1> vect_masks; |
| hash_set<tree_ssa_name_hash> ssa_names; |
| |
| for (i = 1; i < orig_loop_num_nodes; i++) |
| { |
| gimple_stmt_iterator gsi; |
| basic_block bb = ifc_bbs[i]; |
| tree cond = bb_predicate (bb); |
| bool swap; |
| int index; |
| |
| if (is_true_predicate (cond)) |
| continue; |
| |
| swap = false; |
| if (TREE_CODE (cond) == TRUTH_NOT_EXPR) |
| { |
| swap = true; |
| cond = TREE_OPERAND (cond, 0); |
| } |
| |
| vect_sizes.truncate (0); |
| vect_masks.truncate (0); |
| |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);) |
| { |
| gassign *stmt = dyn_cast <gassign *> (gsi_stmt (gsi)); |
| tree lhs; |
| if (!stmt) |
| ; |
| else if (is_false_predicate (cond) |
| && gimple_vdef (stmt)) |
| { |
| unlink_stmt_vdef (stmt); |
| gsi_remove (&gsi, true); |
| release_defs (stmt); |
| continue; |
| } |
| else if (gimple_plf (stmt, GF_PLF_2)) |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| tree mask; |
| gimple *new_stmt; |
| gimple_seq stmts = NULL; |
| machine_mode mode = TYPE_MODE (TREE_TYPE (lhs)); |
| /* We checked before setting GF_PLF_2 that an equivalent |
| integer mode exists. */ |
| int bitsize = GET_MODE_BITSIZE (mode).to_constant (); |
| if (!vect_sizes.is_empty () |
| && (index = mask_exists (bitsize, vect_sizes)) != -1) |
| /* Use created mask. */ |
| mask = vect_masks[index]; |
| else |
| { |
| if (COMPARISON_CLASS_P (cond)) |
| mask = gimple_build (&stmts, TREE_CODE (cond), |
| boolean_type_node, |
| TREE_OPERAND (cond, 0), |
| TREE_OPERAND (cond, 1)); |
| else |
| mask = cond; |
| |
| if (swap) |
| { |
| tree true_val |
| = constant_boolean_node (true, TREE_TYPE (mask)); |
| mask = gimple_build (&stmts, BIT_XOR_EXPR, |
| TREE_TYPE (mask), mask, true_val); |
| } |
| gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT); |
| |
| /* Save mask and its size for further use. */ |
| vect_sizes.safe_push (bitsize); |
| vect_masks.safe_push (mask); |
| } |
| if (gimple_assign_single_p (stmt)) |
| new_stmt = predicate_load_or_store (&gsi, stmt, mask); |
| else |
| new_stmt = predicate_rhs_code (stmt, mask, cond, &ssa_names); |
| |
| gsi_replace (&gsi, new_stmt, true); |
| } |
| else if (((lhs = gimple_assign_lhs (stmt)), true) |
| && (INTEGRAL_TYPE_P (TREE_TYPE (lhs)) |
| || POINTER_TYPE_P (TREE_TYPE (lhs))) |
| && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (lhs)) |
| && arith_code_with_undefined_signed_overflow |
| (gimple_assign_rhs_code (stmt))) |
| { |
| gsi_remove (&gsi, true); |
| gimple_seq stmts = rewrite_to_defined_overflow (stmt); |
| bool first = true; |
| for (gimple_stmt_iterator gsi2 = gsi_start (stmts); |
| !gsi_end_p (gsi2);) |
| { |
| gassign *stmt2 = as_a <gassign *> (gsi_stmt (gsi2)); |
| gsi_remove (&gsi2, false); |
| if (first) |
| { |
| gsi_insert_before (&gsi, stmt2, GSI_NEW_STMT); |
| first = false; |
| } |
| else |
| gsi_insert_after (&gsi, stmt2, GSI_NEW_STMT); |
| } |
| } |
| else if (gimple_vdef (stmt)) |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| tree rhs = gimple_assign_rhs1 (stmt); |
| tree type = TREE_TYPE (lhs); |
| |
| lhs = ifc_temp_var (type, unshare_expr (lhs), &gsi); |
| rhs = ifc_temp_var (type, unshare_expr (rhs), &gsi); |
| if (swap) |
| std::swap (lhs, rhs); |
| cond = force_gimple_operand_gsi_1 (&gsi, unshare_expr (cond), |
| is_gimple_condexpr, NULL_TREE, |
| true, GSI_SAME_STMT); |
| rhs = fold_build_cond_expr (type, unshare_expr (cond), rhs, lhs); |
| gimple_assign_set_rhs1 (stmt, ifc_temp_var (type, rhs, &gsi)); |
| update_stmt (stmt); |
| } |
| lhs = gimple_get_lhs (gsi_stmt (gsi)); |
| if (lhs && TREE_CODE (lhs) == SSA_NAME) |
| ssa_names.add (lhs); |
| gsi_next (&gsi); |
| } |
| ssa_names.empty (); |
| } |
| } |
| |
| /* Remove all GIMPLE_CONDs and GIMPLE_LABELs of all the basic blocks |
| other than the exit and latch of the LOOP. Also resets the |
| GIMPLE_DEBUG information. */ |
| |
| static void |
| remove_conditions_and_labels (loop_p loop) |
| { |
| gimple_stmt_iterator gsi; |
| unsigned int i; |
| |
| for (i = 0; i < loop->num_nodes; i++) |
| { |
| basic_block bb = ifc_bbs[i]; |
| |
| if (bb_with_exit_edge_p (loop, bb) |
| || bb == loop->latch) |
| continue; |
| |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); ) |
| switch (gimple_code (gsi_stmt (gsi))) |
| { |
| case GIMPLE_COND: |
| case GIMPLE_LABEL: |
| gsi_remove (&gsi, true); |
| break; |
| |
| case GIMPLE_DEBUG: |
| /* ??? Should there be conditional GIMPLE_DEBUG_BINDs? */ |
| if (gimple_debug_bind_p (gsi_stmt (gsi))) |
| { |
| gimple_debug_bind_reset_value (gsi_stmt (gsi)); |
| update_stmt (gsi_stmt (gsi)); |
| } |
| gsi_next (&gsi); |
| break; |
| |
| default: |
| gsi_next (&gsi); |
| } |
| } |
| } |
| |
| /* Combine all the basic blocks from LOOP into one or two super basic |
| blocks. Replace PHI nodes with conditional modify expressions. */ |
| |
| static void |
| combine_blocks (class loop *loop) |
| { |
| basic_block bb, exit_bb, merge_target_bb; |
| unsigned int orig_loop_num_nodes = loop->num_nodes; |
| unsigned int i; |
| edge e; |
| edge_iterator ei; |
| |
| remove_conditions_and_labels (loop); |
| insert_gimplified_predicates (loop); |
| predicate_all_scalar_phis (loop); |
| |
| if (need_to_predicate || need_to_rewrite_undefined) |
| predicate_statements (loop); |
| |
| /* Merge basic blocks. */ |
| exit_bb = NULL; |
| bool *predicated = XNEWVEC (bool, orig_loop_num_nodes); |
| for (i = 0; i < orig_loop_num_nodes; i++) |
| { |
| bb = ifc_bbs[i]; |
| predicated[i] = !is_true_predicate (bb_predicate (bb)); |
| free_bb_predicate (bb); |
| if (bb_with_exit_edge_p (loop, bb)) |
| { |
| gcc_assert (exit_bb == NULL); |
| exit_bb = bb; |
| } |
| } |
| gcc_assert (exit_bb != loop->latch); |
| |
| merge_target_bb = loop->header; |
| |
| /* Get at the virtual def valid for uses starting at the first block |
| we merge into the header. Without a virtual PHI the loop has the |
| same virtual use on all stmts. */ |
| gphi *vphi = get_virtual_phi (loop->header); |
| tree last_vdef = NULL_TREE; |
| if (vphi) |
| { |
| last_vdef = gimple_phi_result (vphi); |
| for (gimple_stmt_iterator gsi = gsi_start_bb (loop->header); |
| ! gsi_end_p (gsi); gsi_next (&gsi)) |
| if (gimple_vdef (gsi_stmt (gsi))) |
| last_vdef = gimple_vdef (gsi_stmt (gsi)); |
| } |
| for (i = 1; i < orig_loop_num_nodes; i++) |
| { |
| gimple_stmt_iterator gsi; |
| gimple_stmt_iterator last; |
| |
| bb = ifc_bbs[i]; |
| |
| if (bb == exit_bb || bb == loop->latch) |
| continue; |
| |
| /* We release virtual PHIs late because we have to propagate them |
| out using the current VUSE. The def might be the one used |
| after the loop. */ |
| vphi = get_virtual_phi (bb); |
| if (vphi) |
| { |
| /* When there's just loads inside the loop a stray virtual |
| PHI merging the uses can appear, update last_vdef from |
| it. */ |
| if (!last_vdef) |
| last_vdef = gimple_phi_arg_def (vphi, 0); |
| imm_use_iterator iter; |
| use_operand_p use_p; |
| gimple *use_stmt; |
| FOR_EACH_IMM_USE_STMT (use_stmt, iter, gimple_phi_result (vphi)) |
| { |
| FOR_EACH_IMM_USE_ON_STMT (use_p, iter) |
| SET_USE (use_p, last_vdef); |
| } |
| if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (vphi))) |
| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (last_vdef) = 1; |
| gsi = gsi_for_stmt (vphi); |
| remove_phi_node (&gsi, true); |
| } |
| |
| /* Make stmts member of loop->header and clear range info from all stmts |
| in BB which is now no longer executed conditional on a predicate we |
| could have derived it from. */ |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| gimple *stmt = gsi_stmt (gsi); |
| gimple_set_bb (stmt, merge_target_bb); |
| /* Update virtual operands. */ |
| if (last_vdef) |
| { |
| use_operand_p use_p = ssa_vuse_operand (stmt); |
| if (use_p |
| && USE_FROM_PTR (use_p) != last_vdef) |
| SET_USE (use_p, last_vdef); |
| if (gimple_vdef (stmt)) |
| last_vdef = gimple_vdef (stmt); |
| } |
| else |
| /* If this is the first load we arrive at update last_vdef |
| so we handle stray PHIs correctly. */ |
| last_vdef = gimple_vuse (stmt); |
| if (predicated[i]) |
| { |
| ssa_op_iter i; |
| tree op; |
| FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF) |
| reset_flow_sensitive_info (op); |
| } |
| } |
| |
| /* Update stmt list. */ |
| last = gsi_last_bb (merge_target_bb); |
| gsi_insert_seq_after_without_update (&last, bb_seq (bb), GSI_NEW_STMT); |
| set_bb_seq (bb, NULL); |
| } |
| |
| /* Fixup virtual operands in the exit block. */ |
| if (exit_bb |
| && exit_bb != loop->header) |
| { |
| /* We release virtual PHIs late because we have to propagate them |
| out using the current VUSE. The def might be the one used |
| after the loop. */ |
| vphi = get_virtual_phi (exit_bb); |
| if (vphi) |
| { |
| /* When there's just loads inside the loop a stray virtual |
| PHI merging the uses can appear, update last_vdef from |
| it. */ |
| if (!last_vdef) |
| last_vdef = gimple_phi_arg_def (vphi, 0); |
| imm_use_iterator iter; |
| use_operand_p use_p; |
| gimple *use_stmt; |
| FOR_EACH_IMM_USE_STMT (use_stmt, iter, gimple_phi_result (vphi)) |
| { |
| FOR_EACH_IMM_USE_ON_STMT (use_p, iter) |
| SET_USE (use_p, last_vdef); |
| } |
| if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (vphi))) |
| SSA_NAME_OCCURS_IN_ABNORMAL_PHI (last_vdef) = 1; |
| gimple_stmt_iterator gsi = gsi_for_stmt (vphi); |
| remove_phi_node (&gsi, true); |
| } |
| } |
| |
| /* Now remove all the edges in the loop, except for those from the exit |
| block and delete the blocks we elided. */ |
| for (i = 1; i < orig_loop_num_nodes; i++) |
| { |
| bb = ifc_bbs[i]; |
| |
| for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei));) |
| { |
| if (e->src == exit_bb) |
| ei_next (&ei); |
| else |
| remove_edge (e); |
| } |
| } |
| for (i = 1; i < orig_loop_num_nodes; i++) |
| { |
| bb = ifc_bbs[i]; |
| |
| if (bb == exit_bb || bb == loop->latch) |
| continue; |
| |
| delete_basic_block (bb); |
| } |
| |
| /* Re-connect the exit block. */ |
| if (exit_bb != NULL) |
| { |
| if (exit_bb != loop->header) |
| { |
| /* Connect this node to loop header. */ |
| make_single_succ_edge (loop->header, exit_bb, EDGE_FALLTHRU); |
| set_immediate_dominator (CDI_DOMINATORS, exit_bb, loop->header); |
| } |
| |
| /* Redirect non-exit edges to loop->latch. */ |
| FOR_EACH_EDGE (e, ei, exit_bb->succs) |
| { |
| if (!loop_exit_edge_p (loop, e)) |
| redirect_edge_and_branch (e, loop->latch); |
| } |
| set_immediate_dominator (CDI_DOMINATORS, loop->latch, exit_bb); |
| } |
| else |
| { |
| /* If the loop does not have an exit, reconnect header and latch. */ |
| make_edge (loop->header, loop->latch, EDGE_FALLTHRU); |
| set_immediate_dominator (CDI_DOMINATORS, loop->latch, loop->header); |
| } |
| |
| /* If possible, merge loop header to the block with the exit edge. |
| This reduces the number of basic blocks to two, to please the |
| vectorizer that handles only loops with two nodes. */ |
| if (exit_bb |
| && exit_bb != loop->header) |
| { |
| if (can_merge_blocks_p (loop->header, exit_bb)) |
| merge_blocks (loop->header, exit_bb); |
| } |
| |
| free (ifc_bbs); |
| ifc_bbs = NULL; |
| free (predicated); |
| } |
| |
| /* Version LOOP before if-converting it; the original loop |
| will be if-converted, the new copy of the loop will not, |
| and the LOOP_VECTORIZED internal call will be guarding which |
| loop to execute. The vectorizer pass will fold this |
| internal call into either true or false. |
| |
| Note that this function intentionally invalidates profile. Both edges |
| out of LOOP_VECTORIZED must have 100% probability so the profile remains |
| consistent after the condition is folded in the vectorizer. */ |
| |
| static class loop * |
| version_loop_for_if_conversion (class loop *loop, vec<gimple *> *preds) |
| { |
| basic_block cond_bb; |
| tree cond = make_ssa_name (boolean_type_node); |
| class loop *new_loop; |
| gimple *g; |
| gimple_stmt_iterator gsi; |
| unsigned int save_length; |
| |
| g = gimple_build_call_internal (IFN_LOOP_VECTORIZED, 2, |
| build_int_cst (integer_type_node, loop->num), |
| integer_zero_node); |
| gimple_call_set_lhs (g, cond); |
| |
| /* Save BB->aux around loop_version as that uses the same field. */ |
| save_length = loop->inner ? loop->inner->num_nodes : loop->num_nodes; |
| void **saved_preds = XALLOCAVEC (void *, save_length); |
| for (unsigned i = 0; i < save_length; i++) |
| saved_preds[i] = ifc_bbs[i]->aux; |
| |
| initialize_original_copy_tables (); |
| /* At this point we invalidate porfile confistency until IFN_LOOP_VECTORIZED |
| is re-merged in the vectorizer. */ |
| new_loop = loop_version (loop, cond, &cond_bb, |
| profile_probability::always (), |
| profile_probability::always (), |
| profile_probability::always (), |
| profile_probability::always (), true); |
| free_original_copy_tables (); |
| |
| for (unsigned i = 0; i < save_length; i++) |
| ifc_bbs[i]->aux = saved_preds[i]; |
| |
| if (new_loop == NULL) |
| return NULL; |
| |
| new_loop->dont_vectorize = true; |
| new_loop->force_vectorize = false; |
| gsi = gsi_last_bb (cond_bb); |
| gimple_call_set_arg (g, 1, build_int_cst (integer_type_node, new_loop->num)); |
| if (preds) |
| preds->safe_push (g); |
| gsi_insert_before (&gsi, g, GSI_SAME_STMT); |
| update_ssa (TODO_update_ssa); |
| return new_loop; |
| } |
| |
| /* Return true when LOOP satisfies the follow conditions that will |
| allow it to be recognized by the vectorizer for outer-loop |
| vectorization: |
| - The loop is not the root node of the loop tree. |
| - The loop has exactly one inner loop. |
| - The loop has a single exit. |
| - The loop header has a single successor, which is the inner |
| loop header. |
| - Each of the inner and outer loop latches have a single |
| predecessor. |
| - The loop exit block has a single predecessor, which is the |
| inner loop's exit block. */ |
| |
| static bool |
| versionable_outer_loop_p (class loop *loop) |
| { |
| if (!loop_outer (loop) |
| || loop->dont_vectorize |
| || !loop->inner |
| || loop->inner->next |
| || !single_exit (loop) |
| || !single_succ_p (loop->header) |
| || single_succ (loop->header) != loop->inner->header |
| || !single_pred_p (loop->latch) |
| || !single_pred_p (loop->inner->latch)) |
| return false; |
| |
| basic_block outer_exit = single_pred (loop->latch); |
| basic_block inner_exit = single_pred (loop->inner->latch); |
| |
| if (!single_pred_p (outer_exit) || single_pred (outer_exit) != inner_exit) |
| return false; |
| |
| if (dump_file) |
| fprintf (dump_file, "Found vectorizable outer loop for versioning\n"); |
| |
| return true; |
| } |
| |
| /* Performs splitting of critical edges. Skip splitting and return false |
| if LOOP will not be converted because: |
| |
| - LOOP is not well formed. |
| - LOOP has PHI with more than MAX_PHI_ARG_NUM arguments. |
| |
| Last restriction is valid only if AGGRESSIVE_IF_CONV is false. */ |
| |
| static bool |
| ifcvt_split_critical_edges (class loop *loop, bool aggressive_if_conv) |
| { |
| basic_block *body; |
| basic_block bb; |
| unsigned int num = loop->num_nodes; |
| unsigned int i; |
| gimple *stmt; |
| edge e; |
| edge_iterator ei; |
| auto_vec<edge> critical_edges; |
| |
| /* Loop is not well formed. */ |
| if (num <= 2 || loop->inner || !single_exit (loop)) |
| return false; |
| |
| body = get_loop_body (loop); |
| for (i = 0; i < num; i++) |
| { |
| bb = body[i]; |
| if (!aggressive_if_conv |
| && phi_nodes (bb) |
| && EDGE_COUNT (bb->preds) > MAX_PHI_ARG_NUM) |
| { |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| fprintf (dump_file, |
| "BB %d has complicated PHI with more than %u args.\n", |
| bb->index, MAX_PHI_ARG_NUM); |
| |
| free (body); |
| return false; |
| } |
| if (bb == loop->latch || bb_with_exit_edge_p (loop, bb)) |
| continue; |
| |
| stmt = last_stmt (bb); |
| /* Skip basic blocks not ending with conditional branch. */ |
| if (!stmt || gimple_code (stmt) != GIMPLE_COND) |
| continue; |
| |
| FOR_EACH_EDGE (e, ei, bb->succs) |
| if (EDGE_CRITICAL_P (e) && e->dest->loop_father == loop) |
| critical_edges.safe_push (e); |
| } |
| free (body); |
| |
| while (critical_edges.length () > 0) |
| { |
| e = critical_edges.pop (); |
| /* Don't split if bb can be predicated along non-critical edge. */ |
| if (EDGE_COUNT (e->dest->preds) > 2 || all_preds_critical_p (e->dest)) |
| split_edge (e); |
| } |
| |
| return true; |
| } |
| |
| /* Delete redundant statements produced by predication which prevents |
| loop vectorization. */ |
| |
| static void |
| ifcvt_local_dce (class loop *loop) |
| { |
| gimple *stmt; |
| gimple *stmt1; |
| gimple *phi; |
| gimple_stmt_iterator gsi; |
| auto_vec<gimple *> worklist; |
| enum gimple_code code; |
| use_operand_p use_p; |
| imm_use_iterator imm_iter; |
| |
| /* The loop has a single BB only. */ |
| basic_block bb = loop->header; |
| tree latch_vdef = NULL_TREE; |
| |
| worklist.create (64); |
| /* Consider all phi as live statements. */ |
| for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| phi = gsi_stmt (gsi); |
| gimple_set_plf (phi, GF_PLF_2, true); |
| worklist.safe_push (phi); |
| if (virtual_operand_p (gimple_phi_result (phi))) |
| latch_vdef = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop)); |
| } |
| /* Consider load/store statements, CALL and COND as live. */ |
| for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) |
| { |
| stmt = gsi_stmt (gsi); |
| if (is_gimple_debug (stmt)) |
| { |
| gimple_set_plf (stmt, GF_PLF_2, true); |
| continue; |
| } |
| if (gimple_store_p (stmt) || gimple_assign_load_p (stmt)) |
| { |
| gimple_set_plf (stmt, GF_PLF_2, true); |
| worklist.safe_push (stmt); |
| continue; |
| } |
| code = gimple_code (stmt); |
| if (code == GIMPLE_COND || code == GIMPLE_CALL) |
| { |
| gimple_set_plf (stmt, GF_PLF_2, true); |
| worklist.safe_push (stmt); |
| continue; |
| } |
| gimple_set_plf (stmt, GF_PLF_2, false); |
| |
| if (code == GIMPLE_ASSIGN) |
| { |
| tree lhs = gimple_assign_lhs (stmt); |
| FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs) |
| { |
| stmt1 = USE_STMT (use_p); |
| if (!is_gimple_debug (stmt1) && gimple_bb (stmt1) != bb) |
| { |
| gimple_set_plf (stmt, GF_PLF_2, true); |
| worklist.safe_push (stmt); |
| break; |
| } |
| } |
| } |
| } |
| /* Propagate liveness through arguments of live stmt. */ |
| while (worklist.length () > 0) |
| { |
| ssa_op_iter iter; |
| use_operand_p use_p; |
| tree use; |
| |
| stmt = worklist.pop (); |
| FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE) |
| { |
| use = USE_FROM_PTR (use_p); |
| if (TREE_CODE (use) != SSA_NAME) |
| continue; |
| stmt1 = SSA_NAME_DEF_STMT (use); |
| if (gimple_bb (stmt1) != bb || gimple_plf (stmt1, GF_PLF_2)) |
| continue; |
| gimple_set_plf (stmt1, GF_PLF_2, true); |
| worklist.safe_push (stmt1); |
| } |
| } |
| /* Delete dead statements. */ |
| gsi = gsi_last_bb (bb); |
| while (!gsi_end_p (gsi)) |
| { |
| gimple_stmt_iterator gsiprev = gsi; |
| gsi_prev (&gsiprev); |
| stmt = gsi_stmt (gsi); |
| if (gimple_store_p (stmt) && gimple_vdef (stmt)) |
| { |
| tree lhs = gimple_get_lhs (stmt); |
| ao_ref write; |
| ao_ref_init (&write, lhs); |
| |
| if (dse_classify_store (&write, stmt, false, NULL, NULL, latch_vdef) |
| == DSE_STORE_DEAD) |
| delete_dead_or_redundant_assignment (&gsi, "dead"); |
| gsi = gsiprev; |
| continue; |
| } |
| |
| if (gimple_plf (stmt, GF_PLF_2)) |
| { |
| gsi = gsiprev; |
| continue; |
| } |
| if (dump_file && (dump_flags & TDF_DETAILS)) |
| { |
| fprintf (dump_file, "Delete dead stmt in bb#%d\n", bb->index); |
| print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); |
| } |
| gsi_remove (&gsi, true); |
| release_defs (stmt); |
| gsi = gsiprev; |
| } |
| } |
| |
| /* Return true if VALUE is already available on edge PE. */ |
| |
| static bool |
| ifcvt_available_on_edge_p (edge pe, tree value) |
| { |
| if (is_gimple_min_invariant (value)) |
| return true; |
| |
| if (TREE_CODE (value) == SSA_NAME) |
| { |
| basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (value)); |
| if (!def_bb || dominated_by_p (CDI_DOMINATORS, pe->dest, def_bb)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Return true if STMT can be hoisted from if-converted loop LOOP to |
| edge PE. */ |
| |
| static bool |
| ifcvt_can_hoist (class loop *loop, edge pe, gimple *stmt) |
| { |
| if (auto *call = dyn_cast<gcall *> (stmt)) |
| { |
| if (gimple_call_internal_p (call) |
| && internal_fn_mask_index (gimple_call_internal_fn (call)) >= 0) |
| return false; |
| } |
| else if (auto *assign = dyn_cast<gassign *> (stmt)) |
| { |
| if (gimple_assign_rhs_code (assign) == COND_EXPR) |
| return false; |
| } |
| else |
| return false; |
| |
| if (gimple_has_side_effects (stmt) |
| || gimple_could_trap_p (stmt) |
| || stmt_could_throw_p (cfun, stmt) |
| || gimple_vdef (stmt) |
| || gimple_vuse (stmt)) |
| return false; |
| |
| int num_args = gimple_num_args (stmt); |
| if (pe != loop_preheader_edge (loop)) |
| { |
| for (int i = 0; i < num_args; ++i) |
| if (!ifcvt_available_on_edge_p (pe, gimple_arg (stmt, i))) |
| return false; |
| } |
|