| //===-- tsan_interceptors_posix.cpp ---------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of ThreadSanitizer (TSan), a race detector. |
| // |
| // FIXME: move as many interceptors as possible into |
| // sanitizer_common/sanitizer_common_interceptors.inc |
| //===----------------------------------------------------------------------===// |
| |
| #include "sanitizer_common/sanitizer_atomic.h" |
| #include "sanitizer_common/sanitizer_errno.h" |
| #include "sanitizer_common/sanitizer_libc.h" |
| #include "sanitizer_common/sanitizer_linux.h" |
| #include "sanitizer_common/sanitizer_platform_limits_netbsd.h" |
| #include "sanitizer_common/sanitizer_platform_limits_posix.h" |
| #include "sanitizer_common/sanitizer_placement_new.h" |
| #include "sanitizer_common/sanitizer_posix.h" |
| #include "sanitizer_common/sanitizer_stacktrace.h" |
| #include "sanitizer_common/sanitizer_tls_get_addr.h" |
| #include "interception/interception.h" |
| #include "tsan_interceptors.h" |
| #include "tsan_interface.h" |
| #include "tsan_platform.h" |
| #include "tsan_suppressions.h" |
| #include "tsan_rtl.h" |
| #include "tsan_mman.h" |
| #include "tsan_fd.h" |
| |
| #include <stdarg.h> |
| |
| using namespace __tsan; |
| |
| #if SANITIZER_FREEBSD || SANITIZER_MAC |
| #define stdout __stdoutp |
| #define stderr __stderrp |
| #endif |
| |
| #if SANITIZER_NETBSD |
| #define dirfd(dirp) (*(int *)(dirp)) |
| #define fileno_unlocked(fp) \ |
| (((__sanitizer_FILE *)fp)->_file == -1 \ |
| ? -1 \ |
| : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file)) |
| |
| #define stdout ((__sanitizer_FILE*)&__sF[1]) |
| #define stderr ((__sanitizer_FILE*)&__sF[2]) |
| |
| #define nanosleep __nanosleep50 |
| #define vfork __vfork14 |
| #endif |
| |
| #ifdef __mips__ |
| const int kSigCount = 129; |
| #else |
| const int kSigCount = 65; |
| #endif |
| |
| #ifdef __mips__ |
| struct ucontext_t { |
| u64 opaque[768 / sizeof(u64) + 1]; |
| }; |
| #else |
| struct ucontext_t { |
| // The size is determined by looking at sizeof of real ucontext_t on linux. |
| u64 opaque[936 / sizeof(u64) + 1]; |
| }; |
| #endif |
| |
| #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1 || \ |
| defined(__s390x__) |
| #define PTHREAD_ABI_BASE "GLIBC_2.3.2" |
| #elif defined(__aarch64__) || SANITIZER_PPC64V2 |
| #define PTHREAD_ABI_BASE "GLIBC_2.17" |
| #endif |
| |
| extern "C" int pthread_attr_init(void *attr); |
| extern "C" int pthread_attr_destroy(void *attr); |
| DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *) |
| extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize); |
| extern "C" int pthread_atfork(void (*prepare)(void), void (*parent)(void), |
| void (*child)(void)); |
| extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v)); |
| extern "C" int pthread_setspecific(unsigned key, const void *v); |
| DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *) |
| DECLARE_REAL(int, fflush, __sanitizer_FILE *fp) |
| DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size) |
| DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr) |
| extern "C" void *pthread_self(); |
| extern "C" void _exit(int status); |
| #if !SANITIZER_NETBSD |
| extern "C" int fileno_unlocked(void *stream); |
| extern "C" int dirfd(void *dirp); |
| #endif |
| #if SANITIZER_NETBSD |
| extern __sanitizer_FILE __sF[]; |
| #else |
| extern __sanitizer_FILE *stdout, *stderr; |
| #endif |
| #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD |
| const int PTHREAD_MUTEX_RECURSIVE = 1; |
| const int PTHREAD_MUTEX_RECURSIVE_NP = 1; |
| #else |
| const int PTHREAD_MUTEX_RECURSIVE = 2; |
| const int PTHREAD_MUTEX_RECURSIVE_NP = 2; |
| #endif |
| #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD |
| const int EPOLL_CTL_ADD = 1; |
| #endif |
| const int SIGILL = 4; |
| const int SIGTRAP = 5; |
| const int SIGABRT = 6; |
| const int SIGFPE = 8; |
| const int SIGSEGV = 11; |
| const int SIGPIPE = 13; |
| const int SIGTERM = 15; |
| #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD |
| const int SIGBUS = 10; |
| const int SIGSYS = 12; |
| #else |
| const int SIGBUS = 7; |
| const int SIGSYS = 31; |
| #endif |
| void *const MAP_FAILED = (void*)-1; |
| #if SANITIZER_NETBSD |
| const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567; |
| #elif !SANITIZER_MAC |
| const int PTHREAD_BARRIER_SERIAL_THREAD = -1; |
| #endif |
| const int MAP_FIXED = 0x10; |
| typedef long long_t; |
| typedef __sanitizer::u16 mode_t; |
| |
| // From /usr/include/unistd.h |
| # define F_ULOCK 0 /* Unlock a previously locked region. */ |
| # define F_LOCK 1 /* Lock a region for exclusive use. */ |
| # define F_TLOCK 2 /* Test and lock a region for exclusive use. */ |
| # define F_TEST 3 /* Test a region for other processes locks. */ |
| |
| #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD |
| const int SA_SIGINFO = 0x40; |
| const int SIG_SETMASK = 3; |
| #elif defined(__mips__) |
| const int SA_SIGINFO = 8; |
| const int SIG_SETMASK = 3; |
| #else |
| const int SA_SIGINFO = 4; |
| const int SIG_SETMASK = 2; |
| #endif |
| |
| #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \ |
| (!cur_thread_init()->is_inited) |
| |
| namespace __tsan { |
| struct SignalDesc { |
| bool armed; |
| __sanitizer_siginfo siginfo; |
| ucontext_t ctx; |
| }; |
| |
| struct ThreadSignalContext { |
| int int_signal_send; |
| atomic_uintptr_t in_blocking_func; |
| SignalDesc pending_signals[kSigCount]; |
| // emptyset and oldset are too big for stack. |
| __sanitizer_sigset_t emptyset; |
| __sanitizer_sigset_t oldset; |
| }; |
| |
| // The sole reason tsan wraps atexit callbacks is to establish synchronization |
| // between callback setup and callback execution. |
| struct AtExitCtx { |
| void (*f)(); |
| void *arg; |
| }; |
| |
| // InterceptorContext holds all global data required for interceptors. |
| // It's explicitly constructed in InitializeInterceptors with placement new |
| // and is never destroyed. This allows usage of members with non-trivial |
| // constructors and destructors. |
| struct InterceptorContext { |
| // The object is 64-byte aligned, because we want hot data to be located |
| // in a single cache line if possible (it's accessed in every interceptor). |
| ALIGNED(64) LibIgnore libignore; |
| __sanitizer_sigaction sigactions[kSigCount]; |
| #if !SANITIZER_MAC && !SANITIZER_NETBSD |
| unsigned finalize_key; |
| #endif |
| |
| Mutex atexit_mu; |
| Vector<struct AtExitCtx *> AtExitStack; |
| |
| InterceptorContext() : libignore(LINKER_INITIALIZED), atexit_mu(MutexTypeAtExit), AtExitStack() {} |
| }; |
| |
| static ALIGNED(64) char interceptor_placeholder[sizeof(InterceptorContext)]; |
| InterceptorContext *interceptor_ctx() { |
| return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]); |
| } |
| |
| LibIgnore *libignore() { |
| return &interceptor_ctx()->libignore; |
| } |
| |
| void InitializeLibIgnore() { |
| const SuppressionContext &supp = *Suppressions(); |
| const uptr n = supp.SuppressionCount(); |
| for (uptr i = 0; i < n; i++) { |
| const Suppression *s = supp.SuppressionAt(i); |
| if (0 == internal_strcmp(s->type, kSuppressionLib)) |
| libignore()->AddIgnoredLibrary(s->templ); |
| } |
| if (flags()->ignore_noninstrumented_modules) |
| libignore()->IgnoreNoninstrumentedModules(true); |
| libignore()->OnLibraryLoaded(0); |
| } |
| |
| // The following two hooks can be used by for cooperative scheduling when |
| // locking. |
| #ifdef TSAN_EXTERNAL_HOOKS |
| void OnPotentiallyBlockingRegionBegin(); |
| void OnPotentiallyBlockingRegionEnd(); |
| #else |
| SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {} |
| SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {} |
| #endif |
| |
| } // namespace __tsan |
| |
| static ThreadSignalContext *SigCtx(ThreadState *thr) { |
| ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx; |
| if (ctx == 0 && !thr->is_dead) { |
| ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext"); |
| MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx)); |
| thr->signal_ctx = ctx; |
| } |
| return ctx; |
| } |
| |
| ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname, |
| uptr pc) |
| : thr_(thr), in_ignored_lib_(false), ignoring_(false) { |
| LazyInitialize(thr); |
| if (!thr_->is_inited) return; |
| if (!thr_->ignore_interceptors) FuncEntry(thr, pc); |
| DPrintf("#%d: intercept %s()\n", thr_->tid, fname); |
| ignoring_ = |
| !thr_->in_ignored_lib && (flags()->ignore_interceptors_accesses || |
| libignore()->IsIgnored(pc, &in_ignored_lib_)); |
| EnableIgnores(); |
| } |
| |
| ScopedInterceptor::~ScopedInterceptor() { |
| if (!thr_->is_inited) return; |
| DisableIgnores(); |
| if (!thr_->ignore_interceptors) { |
| ProcessPendingSignals(thr_); |
| FuncExit(thr_); |
| CheckedMutex::CheckNoLocks(); |
| } |
| } |
| |
| NOINLINE |
| void ScopedInterceptor::EnableIgnoresImpl() { |
| ThreadIgnoreBegin(thr_, 0); |
| if (flags()->ignore_noninstrumented_modules) |
| thr_->suppress_reports++; |
| if (in_ignored_lib_) { |
| DCHECK(!thr_->in_ignored_lib); |
| thr_->in_ignored_lib = true; |
| } |
| } |
| |
| NOINLINE |
| void ScopedInterceptor::DisableIgnoresImpl() { |
| ThreadIgnoreEnd(thr_); |
| if (flags()->ignore_noninstrumented_modules) |
| thr_->suppress_reports--; |
| if (in_ignored_lib_) { |
| DCHECK(thr_->in_ignored_lib); |
| thr_->in_ignored_lib = false; |
| } |
| } |
| |
| #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func) |
| #if SANITIZER_FREEBSD |
| # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func) |
| # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) |
| # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) |
| #elif SANITIZER_NETBSD |
| # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func) |
| # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \ |
| INTERCEPT_FUNCTION(__libc_##func) |
| # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \ |
| INTERCEPT_FUNCTION(__libc_thr_##func) |
| #else |
| # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver) |
| # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) |
| # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) |
| #endif |
| |
| #define READ_STRING_OF_LEN(thr, pc, s, len, n) \ |
| MemoryAccessRange((thr), (pc), (uptr)(s), \ |
| common_flags()->strict_string_checks ? (len) + 1 : (n), false) |
| |
| #define READ_STRING(thr, pc, s, n) \ |
| READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n)) |
| |
| #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name)) |
| |
| struct BlockingCall { |
| explicit BlockingCall(ThreadState *thr) |
| : thr(thr) |
| , ctx(SigCtx(thr)) { |
| for (;;) { |
| atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed); |
| if (atomic_load(&thr->pending_signals, memory_order_relaxed) == 0) |
| break; |
| atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed); |
| ProcessPendingSignals(thr); |
| } |
| // When we are in a "blocking call", we process signals asynchronously |
| // (right when they arrive). In this context we do not expect to be |
| // executing any user/runtime code. The known interceptor sequence when |
| // this is not true is: pthread_join -> munmap(stack). It's fine |
| // to ignore munmap in this case -- we handle stack shadow separately. |
| thr->ignore_interceptors++; |
| } |
| |
| ~BlockingCall() { |
| thr->ignore_interceptors--; |
| atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed); |
| } |
| |
| ThreadState *thr; |
| ThreadSignalContext *ctx; |
| }; |
| |
| TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) { |
| SCOPED_TSAN_INTERCEPTOR(sleep, sec); |
| unsigned res = BLOCK_REAL(sleep)(sec); |
| AfterSleep(thr, pc); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, usleep, long_t usec) { |
| SCOPED_TSAN_INTERCEPTOR(usleep, usec); |
| int res = BLOCK_REAL(usleep)(usec); |
| AfterSleep(thr, pc); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) { |
| SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem); |
| int res = BLOCK_REAL(nanosleep)(req, rem); |
| AfterSleep(thr, pc); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pause, int fake) { |
| SCOPED_TSAN_INTERCEPTOR(pause, fake); |
| return BLOCK_REAL(pause)(fake); |
| } |
| |
| static void at_exit_wrapper() { |
| AtExitCtx *ctx; |
| { |
| // Ensure thread-safety. |
| Lock l(&interceptor_ctx()->atexit_mu); |
| |
| // Pop AtExitCtx from the top of the stack of callback functions |
| uptr element = interceptor_ctx()->AtExitStack.Size() - 1; |
| ctx = interceptor_ctx()->AtExitStack[element]; |
| interceptor_ctx()->AtExitStack.PopBack(); |
| } |
| |
| Acquire(cur_thread(), (uptr)0, (uptr)ctx); |
| ((void(*)())ctx->f)(); |
| Free(ctx); |
| } |
| |
| static void cxa_at_exit_wrapper(void *arg) { |
| Acquire(cur_thread(), 0, (uptr)arg); |
| AtExitCtx *ctx = (AtExitCtx*)arg; |
| ((void(*)(void *arg))ctx->f)(ctx->arg); |
| Free(ctx); |
| } |
| |
| static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(), |
| void *arg, void *dso); |
| |
| #if !SANITIZER_ANDROID |
| TSAN_INTERCEPTOR(int, atexit, void (*f)()) { |
| if (in_symbolizer()) |
| return 0; |
| // We want to setup the atexit callback even if we are in ignored lib |
| // or after fork. |
| SCOPED_INTERCEPTOR_RAW(atexit, f); |
| return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0); |
| } |
| #endif |
| |
| TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) { |
| if (in_symbolizer()) |
| return 0; |
| SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso); |
| return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso); |
| } |
| |
| static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(), |
| void *arg, void *dso) { |
| auto *ctx = New<AtExitCtx>(); |
| ctx->f = f; |
| ctx->arg = arg; |
| Release(thr, pc, (uptr)ctx); |
| // Memory allocation in __cxa_atexit will race with free during exit, |
| // because we do not see synchronization around atexit callback list. |
| ThreadIgnoreBegin(thr, pc); |
| int res; |
| if (!dso) { |
| // NetBSD does not preserve the 2nd argument if dso is equal to 0 |
| // Store ctx in a local stack-like structure |
| |
| // Ensure thread-safety. |
| Lock l(&interceptor_ctx()->atexit_mu); |
| // __cxa_atexit calls calloc. If we don't ignore interceptors, we will fail |
| // due to atexit_mu held on exit from the calloc interceptor. |
| ScopedIgnoreInterceptors ignore; |
| |
| res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_wrapper, 0, 0); |
| // Push AtExitCtx on the top of the stack of callback functions |
| if (!res) { |
| interceptor_ctx()->AtExitStack.PushBack(ctx); |
| } |
| } else { |
| res = REAL(__cxa_atexit)(cxa_at_exit_wrapper, ctx, dso); |
| } |
| ThreadIgnoreEnd(thr); |
| return res; |
| } |
| |
| #if !SANITIZER_MAC && !SANITIZER_NETBSD |
| static void on_exit_wrapper(int status, void *arg) { |
| ThreadState *thr = cur_thread(); |
| uptr pc = 0; |
| Acquire(thr, pc, (uptr)arg); |
| AtExitCtx *ctx = (AtExitCtx*)arg; |
| ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg); |
| Free(ctx); |
| } |
| |
| TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) { |
| if (in_symbolizer()) |
| return 0; |
| SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg); |
| auto *ctx = New<AtExitCtx>(); |
| ctx->f = (void(*)())f; |
| ctx->arg = arg; |
| Release(thr, pc, (uptr)ctx); |
| // Memory allocation in __cxa_atexit will race with free during exit, |
| // because we do not see synchronization around atexit callback list. |
| ThreadIgnoreBegin(thr, pc); |
| int res = REAL(on_exit)(on_exit_wrapper, ctx); |
| ThreadIgnoreEnd(thr); |
| return res; |
| } |
| #define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit) |
| #else |
| #define TSAN_MAYBE_INTERCEPT_ON_EXIT |
| #endif |
| |
| // Cleanup old bufs. |
| static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) { |
| for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) { |
| JmpBuf *buf = &thr->jmp_bufs[i]; |
| if (buf->sp <= sp) { |
| uptr sz = thr->jmp_bufs.Size(); |
| internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf)); |
| thr->jmp_bufs.PopBack(); |
| i--; |
| } |
| } |
| } |
| |
| static void SetJmp(ThreadState *thr, uptr sp) { |
| if (!thr->is_inited) // called from libc guts during bootstrap |
| return; |
| // Cleanup old bufs. |
| JmpBufGarbageCollect(thr, sp); |
| // Remember the buf. |
| JmpBuf *buf = thr->jmp_bufs.PushBack(); |
| buf->sp = sp; |
| buf->shadow_stack_pos = thr->shadow_stack_pos; |
| ThreadSignalContext *sctx = SigCtx(thr); |
| buf->int_signal_send = sctx ? sctx->int_signal_send : 0; |
| buf->in_blocking_func = sctx ? |
| atomic_load(&sctx->in_blocking_func, memory_order_relaxed) : |
| false; |
| buf->in_signal_handler = atomic_load(&thr->in_signal_handler, |
| memory_order_relaxed); |
| } |
| |
| static void LongJmp(ThreadState *thr, uptr *env) { |
| uptr sp = ExtractLongJmpSp(env); |
| // Find the saved buf with matching sp. |
| for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) { |
| JmpBuf *buf = &thr->jmp_bufs[i]; |
| if (buf->sp == sp) { |
| CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos); |
| // Unwind the stack. |
| while (thr->shadow_stack_pos > buf->shadow_stack_pos) |
| FuncExit(thr); |
| ThreadSignalContext *sctx = SigCtx(thr); |
| if (sctx) { |
| sctx->int_signal_send = buf->int_signal_send; |
| atomic_store(&sctx->in_blocking_func, buf->in_blocking_func, |
| memory_order_relaxed); |
| } |
| atomic_store(&thr->in_signal_handler, buf->in_signal_handler, |
| memory_order_relaxed); |
| JmpBufGarbageCollect(thr, buf->sp - 1); // do not collect buf->sp |
| return; |
| } |
| } |
| Printf("ThreadSanitizer: can't find longjmp buf\n"); |
| CHECK(0); |
| } |
| |
| // FIXME: put everything below into a common extern "C" block? |
| extern "C" void __tsan_setjmp(uptr sp) { SetJmp(cur_thread_init(), sp); } |
| |
| #if SANITIZER_MAC |
| TSAN_INTERCEPTOR(int, setjmp, void *env); |
| TSAN_INTERCEPTOR(int, _setjmp, void *env); |
| TSAN_INTERCEPTOR(int, sigsetjmp, void *env); |
| #else // SANITIZER_MAC |
| |
| #if SANITIZER_NETBSD |
| #define setjmp_symname __setjmp14 |
| #define sigsetjmp_symname __sigsetjmp14 |
| #else |
| #define setjmp_symname setjmp |
| #define sigsetjmp_symname sigsetjmp |
| #endif |
| |
| #define TSAN_INTERCEPTOR_SETJMP_(x) __interceptor_ ## x |
| #define TSAN_INTERCEPTOR_SETJMP__(x) TSAN_INTERCEPTOR_SETJMP_(x) |
| #define TSAN_INTERCEPTOR_SETJMP TSAN_INTERCEPTOR_SETJMP__(setjmp_symname) |
| #define TSAN_INTERCEPTOR_SIGSETJMP TSAN_INTERCEPTOR_SETJMP__(sigsetjmp_symname) |
| |
| #define TSAN_STRING_SETJMP SANITIZER_STRINGIFY(setjmp_symname) |
| #define TSAN_STRING_SIGSETJMP SANITIZER_STRINGIFY(sigsetjmp_symname) |
| |
| // Not called. Merely to satisfy TSAN_INTERCEPT(). |
| extern "C" SANITIZER_INTERFACE_ATTRIBUTE |
| int TSAN_INTERCEPTOR_SETJMP(void *env); |
| extern "C" int TSAN_INTERCEPTOR_SETJMP(void *env) { |
| CHECK(0); |
| return 0; |
| } |
| |
| // FIXME: any reason to have a separate declaration? |
| extern "C" SANITIZER_INTERFACE_ATTRIBUTE |
| int __interceptor__setjmp(void *env); |
| extern "C" int __interceptor__setjmp(void *env) { |
| CHECK(0); |
| return 0; |
| } |
| |
| extern "C" SANITIZER_INTERFACE_ATTRIBUTE |
| int TSAN_INTERCEPTOR_SIGSETJMP(void *env); |
| extern "C" int TSAN_INTERCEPTOR_SIGSETJMP(void *env) { |
| CHECK(0); |
| return 0; |
| } |
| |
| #if !SANITIZER_NETBSD |
| extern "C" SANITIZER_INTERFACE_ATTRIBUTE |
| int __interceptor___sigsetjmp(void *env); |
| extern "C" int __interceptor___sigsetjmp(void *env) { |
| CHECK(0); |
| return 0; |
| } |
| #endif |
| |
| extern "C" int setjmp_symname(void *env); |
| extern "C" int _setjmp(void *env); |
| extern "C" int sigsetjmp_symname(void *env); |
| #if !SANITIZER_NETBSD |
| extern "C" int __sigsetjmp(void *env); |
| #endif |
| DEFINE_REAL(int, setjmp_symname, void *env) |
| DEFINE_REAL(int, _setjmp, void *env) |
| DEFINE_REAL(int, sigsetjmp_symname, void *env) |
| #if !SANITIZER_NETBSD |
| DEFINE_REAL(int, __sigsetjmp, void *env) |
| #endif |
| #endif // SANITIZER_MAC |
| |
| #if SANITIZER_NETBSD |
| #define longjmp_symname __longjmp14 |
| #define siglongjmp_symname __siglongjmp14 |
| #else |
| #define longjmp_symname longjmp |
| #define siglongjmp_symname siglongjmp |
| #endif |
| |
| TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) { |
| // Note: if we call REAL(longjmp) in the context of ScopedInterceptor, |
| // bad things will happen. We will jump over ScopedInterceptor dtor and can |
| // leave thr->in_ignored_lib set. |
| { |
| SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val); |
| } |
| LongJmp(cur_thread(), env); |
| REAL(longjmp_symname)(env, val); |
| } |
| |
| TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) { |
| { |
| SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val); |
| } |
| LongJmp(cur_thread(), env); |
| REAL(siglongjmp_symname)(env, val); |
| } |
| |
| #if SANITIZER_NETBSD |
| TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) { |
| { |
| SCOPED_INTERCEPTOR_RAW(_longjmp, env, val); |
| } |
| LongJmp(cur_thread(), env); |
| REAL(_longjmp)(env, val); |
| } |
| #endif |
| |
| #if !SANITIZER_MAC |
| TSAN_INTERCEPTOR(void*, malloc, uptr size) { |
| if (in_symbolizer()) |
| return InternalAlloc(size); |
| void *p = 0; |
| { |
| SCOPED_INTERCEPTOR_RAW(malloc, size); |
| p = user_alloc(thr, pc, size); |
| } |
| invoke_malloc_hook(p, size); |
| return p; |
| } |
| |
| // In glibc<2.25, dynamic TLS blocks are allocated by __libc_memalign. Intercept |
| // __libc_memalign so that (1) we can detect races (2) free will not be called |
| // on libc internally allocated blocks. |
| TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) { |
| SCOPED_INTERCEPTOR_RAW(__libc_memalign, align, sz); |
| return user_memalign(thr, pc, align, sz); |
| } |
| |
| TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) { |
| if (in_symbolizer()) |
| return InternalCalloc(size, n); |
| void *p = 0; |
| { |
| SCOPED_INTERCEPTOR_RAW(calloc, size, n); |
| p = user_calloc(thr, pc, size, n); |
| } |
| invoke_malloc_hook(p, n * size); |
| return p; |
| } |
| |
| TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) { |
| if (in_symbolizer()) |
| return InternalRealloc(p, size); |
| if (p) |
| invoke_free_hook(p); |
| { |
| SCOPED_INTERCEPTOR_RAW(realloc, p, size); |
| p = user_realloc(thr, pc, p, size); |
| } |
| invoke_malloc_hook(p, size); |
| return p; |
| } |
| |
| TSAN_INTERCEPTOR(void*, reallocarray, void *p, uptr size, uptr n) { |
| if (in_symbolizer()) |
| return InternalReallocArray(p, size, n); |
| if (p) |
| invoke_free_hook(p); |
| { |
| SCOPED_INTERCEPTOR_RAW(reallocarray, p, size, n); |
| p = user_reallocarray(thr, pc, p, size, n); |
| } |
| invoke_malloc_hook(p, size); |
| return p; |
| } |
| |
| TSAN_INTERCEPTOR(void, free, void *p) { |
| if (p == 0) |
| return; |
| if (in_symbolizer()) |
| return InternalFree(p); |
| invoke_free_hook(p); |
| SCOPED_INTERCEPTOR_RAW(free, p); |
| user_free(thr, pc, p); |
| } |
| |
| TSAN_INTERCEPTOR(void, cfree, void *p) { |
| if (p == 0) |
| return; |
| if (in_symbolizer()) |
| return InternalFree(p); |
| invoke_free_hook(p); |
| SCOPED_INTERCEPTOR_RAW(cfree, p); |
| user_free(thr, pc, p); |
| } |
| |
| TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) { |
| SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p); |
| return user_alloc_usable_size(p); |
| } |
| #endif |
| |
| TSAN_INTERCEPTOR(char *, strcpy, char *dst, const char *src) { |
| SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src); |
| uptr srclen = internal_strlen(src); |
| MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true); |
| MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false); |
| return REAL(strcpy)(dst, src); |
| } |
| |
| TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) { |
| SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n); |
| uptr srclen = internal_strnlen(src, n); |
| MemoryAccessRange(thr, pc, (uptr)dst, n, true); |
| MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false); |
| return REAL(strncpy)(dst, src, n); |
| } |
| |
| TSAN_INTERCEPTOR(char*, strdup, const char *str) { |
| SCOPED_TSAN_INTERCEPTOR(strdup, str); |
| // strdup will call malloc, so no instrumentation is required here. |
| return REAL(strdup)(str); |
| } |
| |
| // Zero out addr if it points into shadow memory and was provided as a hint |
| // only, i.e., MAP_FIXED is not set. |
| static bool fix_mmap_addr(void **addr, long_t sz, int flags) { |
| if (*addr) { |
| if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) { |
| if (flags & MAP_FIXED) { |
| errno = errno_EINVAL; |
| return false; |
| } else { |
| *addr = 0; |
| } |
| } |
| } |
| return true; |
| } |
| |
| template <class Mmap> |
| static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap, |
| void *addr, SIZE_T sz, int prot, int flags, |
| int fd, OFF64_T off) { |
| if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED; |
| void *res = real_mmap(addr, sz, prot, flags, fd, off); |
| if (res != MAP_FAILED) { |
| if (!IsAppMem((uptr)res) || !IsAppMem((uptr)res + sz - 1)) { |
| Report("ThreadSanitizer: mmap at bad address: addr=%p size=%p res=%p\n", |
| addr, (void*)sz, res); |
| Die(); |
| } |
| if (fd > 0) FdAccess(thr, pc, fd); |
| MemoryRangeImitateWriteOrResetRange(thr, pc, (uptr)res, sz); |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) { |
| SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz); |
| UnmapShadow(thr, (uptr)addr, sz); |
| int res = REAL(munmap)(addr, sz); |
| return res; |
| } |
| |
| #if SANITIZER_LINUX |
| TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) { |
| SCOPED_INTERCEPTOR_RAW(memalign, align, sz); |
| return user_memalign(thr, pc, align, sz); |
| } |
| #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign) |
| #else |
| #define TSAN_MAYBE_INTERCEPT_MEMALIGN |
| #endif |
| |
| #if !SANITIZER_MAC |
| TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) { |
| if (in_symbolizer()) |
| return InternalAlloc(sz, nullptr, align); |
| SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz); |
| return user_aligned_alloc(thr, pc, align, sz); |
| } |
| |
| TSAN_INTERCEPTOR(void*, valloc, uptr sz) { |
| if (in_symbolizer()) |
| return InternalAlloc(sz, nullptr, GetPageSizeCached()); |
| SCOPED_INTERCEPTOR_RAW(valloc, sz); |
| return user_valloc(thr, pc, sz); |
| } |
| #endif |
| |
| #if SANITIZER_LINUX |
| TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) { |
| if (in_symbolizer()) { |
| uptr PageSize = GetPageSizeCached(); |
| sz = sz ? RoundUpTo(sz, PageSize) : PageSize; |
| return InternalAlloc(sz, nullptr, PageSize); |
| } |
| SCOPED_INTERCEPTOR_RAW(pvalloc, sz); |
| return user_pvalloc(thr, pc, sz); |
| } |
| #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc) |
| #else |
| #define TSAN_MAYBE_INTERCEPT_PVALLOC |
| #endif |
| |
| #if !SANITIZER_MAC |
| TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) { |
| if (in_symbolizer()) { |
| void *p = InternalAlloc(sz, nullptr, align); |
| if (!p) |
| return errno_ENOMEM; |
| *memptr = p; |
| return 0; |
| } |
| SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz); |
| return user_posix_memalign(thr, pc, memptr, align, sz); |
| } |
| #endif |
| |
| // Both __cxa_guard_acquire and pthread_once 0-initialize |
| // the object initially. pthread_once does not have any |
| // other ABI requirements. __cxa_guard_acquire assumes |
| // that any non-0 value in the first byte means that |
| // initialization is completed. Contents of the remaining |
| // bytes are up to us. |
| constexpr u32 kGuardInit = 0; |
| constexpr u32 kGuardDone = 1; |
| constexpr u32 kGuardRunning = 1 << 16; |
| constexpr u32 kGuardWaiter = 1 << 17; |
| |
| static int guard_acquire(ThreadState *thr, uptr pc, atomic_uint32_t *g, |
| bool blocking_hooks = true) { |
| if (blocking_hooks) |
| OnPotentiallyBlockingRegionBegin(); |
| auto on_exit = at_scope_exit([blocking_hooks] { |
| if (blocking_hooks) |
| OnPotentiallyBlockingRegionEnd(); |
| }); |
| |
| for (;;) { |
| u32 cmp = atomic_load(g, memory_order_acquire); |
| if (cmp == kGuardInit) { |
| if (atomic_compare_exchange_strong(g, &cmp, kGuardRunning, |
| memory_order_relaxed)) |
| return 1; |
| } else if (cmp == kGuardDone) { |
| if (!thr->in_ignored_lib) |
| Acquire(thr, pc, (uptr)g); |
| return 0; |
| } else { |
| if ((cmp & kGuardWaiter) || |
| atomic_compare_exchange_strong(g, &cmp, cmp | kGuardWaiter, |
| memory_order_relaxed)) |
| FutexWait(g, cmp | kGuardWaiter); |
| } |
| } |
| } |
| |
| static void guard_release(ThreadState *thr, uptr pc, atomic_uint32_t *g) { |
| if (!thr->in_ignored_lib) |
| Release(thr, pc, (uptr)g); |
| u32 old = atomic_exchange(g, kGuardDone, memory_order_release); |
| if (old & kGuardWaiter) |
| FutexWake(g, 1 << 30); |
| } |
| |
| // __cxa_guard_acquire and friends need to be intercepted in a special way - |
| // regular interceptors will break statically-linked libstdc++. Linux |
| // interceptors are especially defined as weak functions (so that they don't |
| // cause link errors when user defines them as well). So they silently |
| // auto-disable themselves when such symbol is already present in the binary. If |
| // we link libstdc++ statically, it will bring own __cxa_guard_acquire which |
| // will silently replace our interceptor. That's why on Linux we simply export |
| // these interceptors with INTERFACE_ATTRIBUTE. |
| // On OS X, we don't support statically linking, so we just use a regular |
| // interceptor. |
| #if SANITIZER_MAC |
| #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR |
| #else |
| #define STDCXX_INTERCEPTOR(rettype, name, ...) \ |
| extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__) |
| #endif |
| |
| // Used in thread-safe function static initialization. |
| STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) { |
| SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g); |
| return guard_acquire(thr, pc, g); |
| } |
| |
| STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) { |
| SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g); |
| guard_release(thr, pc, g); |
| } |
| |
| STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) { |
| SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g); |
| atomic_store(g, kGuardInit, memory_order_relaxed); |
| } |
| |
| namespace __tsan { |
| void DestroyThreadState() { |
| ThreadState *thr = cur_thread(); |
| Processor *proc = thr->proc(); |
| ThreadFinish(thr); |
| ProcUnwire(proc, thr); |
| ProcDestroy(proc); |
| DTLS_Destroy(); |
| cur_thread_finalize(); |
| } |
| |
| void PlatformCleanUpThreadState(ThreadState *thr) { |
| ThreadSignalContext *sctx = thr->signal_ctx; |
| if (sctx) { |
| thr->signal_ctx = 0; |
| UnmapOrDie(sctx, sizeof(*sctx)); |
| } |
| } |
| } // namespace __tsan |
| |
| #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD |
| static void thread_finalize(void *v) { |
| uptr iter = (uptr)v; |
| if (iter > 1) { |
| if (pthread_setspecific(interceptor_ctx()->finalize_key, |
| (void*)(iter - 1))) { |
| Printf("ThreadSanitizer: failed to set thread key\n"); |
| Die(); |
| } |
| return; |
| } |
| DestroyThreadState(); |
| } |
| #endif |
| |
| |
| struct ThreadParam { |
| void* (*callback)(void *arg); |
| void *param; |
| Tid tid; |
| Semaphore created; |
| Semaphore started; |
| }; |
| |
| extern "C" void *__tsan_thread_start_func(void *arg) { |
| ThreadParam *p = (ThreadParam*)arg; |
| void* (*callback)(void *arg) = p->callback; |
| void *param = p->param; |
| { |
| ThreadState *thr = cur_thread_init(); |
| // Thread-local state is not initialized yet. |
| ScopedIgnoreInterceptors ignore; |
| #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD |
| ThreadIgnoreBegin(thr, 0); |
| if (pthread_setspecific(interceptor_ctx()->finalize_key, |
| (void *)GetPthreadDestructorIterations())) { |
| Printf("ThreadSanitizer: failed to set thread key\n"); |
| Die(); |
| } |
| ThreadIgnoreEnd(thr); |
| #endif |
| p->created.Wait(); |
| Processor *proc = ProcCreate(); |
| ProcWire(proc, thr); |
| ThreadStart(thr, p->tid, GetTid(), ThreadType::Regular); |
| p->started.Post(); |
| } |
| void *res = callback(param); |
| // Prevent the callback from being tail called, |
| // it mixes up stack traces. |
| volatile int foo = 42; |
| foo++; |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_create, |
| void *th, void *attr, void *(*callback)(void*), void * param) { |
| SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param); |
| |
| MaybeSpawnBackgroundThread(); |
| |
| if (ctx->after_multithreaded_fork) { |
| if (flags()->die_after_fork) { |
| Report("ThreadSanitizer: starting new threads after multi-threaded " |
| "fork is not supported. Dying (set die_after_fork=0 to override)\n"); |
| Die(); |
| } else { |
| VPrintf(1, |
| "ThreadSanitizer: starting new threads after multi-threaded " |
| "fork is not supported (pid %lu). Continuing because of " |
| "die_after_fork=0, but you are on your own\n", |
| internal_getpid()); |
| } |
| } |
| __sanitizer_pthread_attr_t myattr; |
| if (attr == 0) { |
| pthread_attr_init(&myattr); |
| attr = &myattr; |
| } |
| int detached = 0; |
| REAL(pthread_attr_getdetachstate)(attr, &detached); |
| AdjustStackSize(attr); |
| |
| ThreadParam p; |
| p.callback = callback; |
| p.param = param; |
| p.tid = kMainTid; |
| int res = -1; |
| { |
| // Otherwise we see false positives in pthread stack manipulation. |
| ScopedIgnoreInterceptors ignore; |
| ThreadIgnoreBegin(thr, pc); |
| res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p); |
| ThreadIgnoreEnd(thr); |
| } |
| if (res == 0) { |
| p.tid = ThreadCreate(thr, pc, *(uptr *)th, IsStateDetached(detached)); |
| CHECK_NE(p.tid, kMainTid); |
| // Synchronization on p.tid serves two purposes: |
| // 1. ThreadCreate must finish before the new thread starts. |
| // Otherwise the new thread can call pthread_detach, but the pthread_t |
| // identifier is not yet registered in ThreadRegistry by ThreadCreate. |
| // 2. ThreadStart must finish before this thread continues. |
| // Otherwise, this thread can call pthread_detach and reset thr->sync |
| // before the new thread got a chance to acquire from it in ThreadStart. |
| p.created.Post(); |
| p.started.Wait(); |
| } |
| if (attr == &myattr) |
| pthread_attr_destroy(&myattr); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) { |
| SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret); |
| Tid tid = ThreadConsumeTid(thr, pc, (uptr)th); |
| ThreadIgnoreBegin(thr, pc); |
| int res = BLOCK_REAL(pthread_join)(th, ret); |
| ThreadIgnoreEnd(thr); |
| if (res == 0) { |
| ThreadJoin(thr, pc, tid); |
| } |
| return res; |
| } |
| |
| DEFINE_REAL_PTHREAD_FUNCTIONS |
| |
| TSAN_INTERCEPTOR(int, pthread_detach, void *th) { |
| SCOPED_INTERCEPTOR_RAW(pthread_detach, th); |
| Tid tid = ThreadConsumeTid(thr, pc, (uptr)th); |
| int res = REAL(pthread_detach)(th); |
| if (res == 0) { |
| ThreadDetach(thr, pc, tid); |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(void, pthread_exit, void *retval) { |
| { |
| SCOPED_INTERCEPTOR_RAW(pthread_exit, retval); |
| #if !SANITIZER_MAC && !SANITIZER_ANDROID |
| CHECK_EQ(thr, &cur_thread_placeholder); |
| #endif |
| } |
| REAL(pthread_exit)(retval); |
| } |
| |
| #if SANITIZER_LINUX |
| TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) { |
| SCOPED_INTERCEPTOR_RAW(pthread_tryjoin_np, th, ret); |
| Tid tid = ThreadConsumeTid(thr, pc, (uptr)th); |
| ThreadIgnoreBegin(thr, pc); |
| int res = REAL(pthread_tryjoin_np)(th, ret); |
| ThreadIgnoreEnd(thr); |
| if (res == 0) |
| ThreadJoin(thr, pc, tid); |
| else |
| ThreadNotJoined(thr, pc, tid, (uptr)th); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret, |
| const struct timespec *abstime) { |
| SCOPED_INTERCEPTOR_RAW(pthread_timedjoin_np, th, ret, abstime); |
| Tid tid = ThreadConsumeTid(thr, pc, (uptr)th); |
| ThreadIgnoreBegin(thr, pc); |
| int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime); |
| ThreadIgnoreEnd(thr); |
| if (res == 0) |
| ThreadJoin(thr, pc, tid); |
| else |
| ThreadNotJoined(thr, pc, tid, (uptr)th); |
| return res; |
| } |
| #endif |
| |
| // Problem: |
| // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2). |
| // pthread_cond_t has different size in the different versions. |
| // If call new REAL functions for old pthread_cond_t, they will corrupt memory |
| // after pthread_cond_t (old cond is smaller). |
| // If we call old REAL functions for new pthread_cond_t, we will lose some |
| // functionality (e.g. old functions do not support waiting against |
| // CLOCK_REALTIME). |
| // Proper handling would require to have 2 versions of interceptors as well. |
| // But this is messy, in particular requires linker scripts when sanitizer |
| // runtime is linked into a shared library. |
| // Instead we assume we don't have dynamic libraries built against old |
| // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag |
| // that allows to work with old libraries (but this mode does not support |
| // some features, e.g. pthread_condattr_getpshared). |
| static void *init_cond(void *c, bool force = false) { |
| // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions. |
| // So we allocate additional memory on the side large enough to hold |
| // any pthread_cond_t object. Always call new REAL functions, but pass |
| // the aux object to them. |
| // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes |
| // first word of pthread_cond_t to zero. |
| // It's all relevant only for linux. |
| if (!common_flags()->legacy_pthread_cond) |
| return c; |
| atomic_uintptr_t *p = (atomic_uintptr_t*)c; |
| uptr cond = atomic_load(p, memory_order_acquire); |
| if (!force && cond != 0) |
| return (void*)cond; |
| void *newcond = WRAP(malloc)(pthread_cond_t_sz); |
| internal_memset(newcond, 0, pthread_cond_t_sz); |
| if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond, |
| memory_order_acq_rel)) |
| return newcond; |
| WRAP(free)(newcond); |
| return (void*)cond; |
| } |
| |
| namespace { |
| |
| template <class Fn> |
| struct CondMutexUnlockCtx { |
| ScopedInterceptor *si; |
| ThreadState *thr; |
| uptr pc; |
| void *m; |
| void *c; |
| const Fn &fn; |
| |
| int Cancel() const { return fn(); } |
| void Unlock() const; |
| }; |
| |
| template <class Fn> |
| void CondMutexUnlockCtx<Fn>::Unlock() const { |
| // pthread_cond_wait interceptor has enabled async signal delivery |
| // (see BlockingCall below). Disable async signals since we are running |
| // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run |
| // since the thread is cancelled, so we have to manually execute them |
| // (the thread still can run some user code due to pthread_cleanup_push). |
| ThreadSignalContext *ctx = SigCtx(thr); |
| CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1); |
| atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed); |
| MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock); |
| // Undo BlockingCall ctor effects. |
| thr->ignore_interceptors--; |
| si->~ScopedInterceptor(); |
| } |
| } // namespace |
| |
| INTERCEPTOR(int, pthread_cond_init, void *c, void *a) { |
| void *cond = init_cond(c, true); |
| SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a); |
| MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true); |
| return REAL(pthread_cond_init)(cond, a); |
| } |
| |
| template <class Fn> |
| int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si, const Fn &fn, |
| void *c, void *m) { |
| MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false); |
| MutexUnlock(thr, pc, (uptr)m); |
| int res = 0; |
| // This ensures that we handle mutex lock even in case of pthread_cancel. |
| // See test/tsan/cond_cancel.cpp. |
| { |
| // Enable signal delivery while the thread is blocked. |
| BlockingCall bc(thr); |
| CondMutexUnlockCtx<Fn> arg = {si, thr, pc, m, c, fn}; |
| res = call_pthread_cancel_with_cleanup( |
| [](void *arg) -> int { |
| return ((const CondMutexUnlockCtx<Fn> *)arg)->Cancel(); |
| }, |
| [](void *arg) { ((const CondMutexUnlockCtx<Fn> *)arg)->Unlock(); }, |
| &arg); |
| } |
| if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m); |
| MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock); |
| return res; |
| } |
| |
| INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) { |
| void *cond = init_cond(c); |
| SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m); |
| return cond_wait( |
| thr, pc, &si, [=]() { return REAL(pthread_cond_wait)(cond, m); }, cond, |
| m); |
| } |
| |
| INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) { |
| void *cond = init_cond(c); |
| SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime); |
| return cond_wait( |
| thr, pc, &si, |
| [=]() { return REAL(pthread_cond_timedwait)(cond, m, abstime); }, cond, |
| m); |
| } |
| |
| #if SANITIZER_LINUX |
| INTERCEPTOR(int, pthread_cond_clockwait, void *c, void *m, |
| __sanitizer_clockid_t clock, void *abstime) { |
| void *cond = init_cond(c); |
| SCOPED_TSAN_INTERCEPTOR(pthread_cond_clockwait, cond, m, clock, abstime); |
| return cond_wait( |
| thr, pc, &si, |
| [=]() { return REAL(pthread_cond_clockwait)(cond, m, clock, abstime); }, |
| cond, m); |
| } |
| #define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT TSAN_INTERCEPT(pthread_cond_clockwait) |
| #else |
| #define TSAN_MAYBE_PTHREAD_COND_CLOCKWAIT |
| #endif |
| |
| #if SANITIZER_MAC |
| INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m, |
| void *reltime) { |
| void *cond = init_cond(c); |
| SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime); |
| return cond_wait( |
| thr, pc, &si, |
| [=]() { |
| return REAL(pthread_cond_timedwait_relative_np)(cond, m, reltime); |
| }, |
| cond, m); |
| } |
| #endif |
| |
| INTERCEPTOR(int, pthread_cond_signal, void *c) { |
| void *cond = init_cond(c); |
| SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond); |
| MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false); |
| return REAL(pthread_cond_signal)(cond); |
| } |
| |
| INTERCEPTOR(int, pthread_cond_broadcast, void *c) { |
| void *cond = init_cond(c); |
| SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond); |
| MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false); |
| return REAL(pthread_cond_broadcast)(cond); |
| } |
| |
| INTERCEPTOR(int, pthread_cond_destroy, void *c) { |
| void *cond = init_cond(c); |
| SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond); |
| MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true); |
| int res = REAL(pthread_cond_destroy)(cond); |
| if (common_flags()->legacy_pthread_cond) { |
| // Free our aux cond and zero the pointer to not leave dangling pointers. |
| WRAP(free)(cond); |
| atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed); |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a); |
| int res = REAL(pthread_mutex_init)(m, a); |
| if (res == 0) { |
| u32 flagz = 0; |
| if (a) { |
| int type = 0; |
| if (REAL(pthread_mutexattr_gettype)(a, &type) == 0) |
| if (type == PTHREAD_MUTEX_RECURSIVE || |
| type == PTHREAD_MUTEX_RECURSIVE_NP) |
| flagz |= MutexFlagWriteReentrant; |
| } |
| MutexCreate(thr, pc, (uptr)m, flagz); |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m); |
| int res = REAL(pthread_mutex_destroy)(m); |
| if (res == 0 || res == errno_EBUSY) { |
| MutexDestroy(thr, pc, (uptr)m); |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m); |
| int res = REAL(pthread_mutex_trylock)(m); |
| if (res == errno_EOWNERDEAD) |
| MutexRepair(thr, pc, (uptr)m); |
| if (res == 0 || res == errno_EOWNERDEAD) |
| MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock); |
| return res; |
| } |
| |
| #if !SANITIZER_MAC |
| TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime); |
| int res = REAL(pthread_mutex_timedlock)(m, abstime); |
| if (res == 0) { |
| MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock); |
| } |
| return res; |
| } |
| #endif |
| |
| #if !SANITIZER_MAC |
| TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared); |
| int res = REAL(pthread_spin_init)(m, pshared); |
| if (res == 0) { |
| MutexCreate(thr, pc, (uptr)m); |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m); |
| int res = REAL(pthread_spin_destroy)(m); |
| if (res == 0) { |
| MutexDestroy(thr, pc, (uptr)m); |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m); |
| MutexPreLock(thr, pc, (uptr)m); |
| int res = REAL(pthread_spin_lock)(m); |
| if (res == 0) { |
| MutexPostLock(thr, pc, (uptr)m); |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m); |
| int res = REAL(pthread_spin_trylock)(m); |
| if (res == 0) { |
| MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock); |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m); |
| MutexUnlock(thr, pc, (uptr)m); |
| int res = REAL(pthread_spin_unlock)(m); |
| return res; |
| } |
| #endif |
| |
| TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a); |
| int res = REAL(pthread_rwlock_init)(m, a); |
| if (res == 0) { |
| MutexCreate(thr, pc, (uptr)m); |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m); |
| int res = REAL(pthread_rwlock_destroy)(m); |
| if (res == 0) { |
| MutexDestroy(thr, pc, (uptr)m); |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m); |
| MutexPreReadLock(thr, pc, (uptr)m); |
| int res = REAL(pthread_rwlock_rdlock)(m); |
| if (res == 0) { |
| MutexPostReadLock(thr, pc, (uptr)m); |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m); |
| int res = REAL(pthread_rwlock_tryrdlock)(m); |
| if (res == 0) { |
| MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock); |
| } |
| return res; |
| } |
| |
| #if !SANITIZER_MAC |
| TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime); |
| int res = REAL(pthread_rwlock_timedrdlock)(m, abstime); |
| if (res == 0) { |
| MutexPostReadLock(thr, pc, (uptr)m); |
| } |
| return res; |
| } |
| #endif |
| |
| TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m); |
| MutexPreLock(thr, pc, (uptr)m); |
| int res = REAL(pthread_rwlock_wrlock)(m); |
| if (res == 0) { |
| MutexPostLock(thr, pc, (uptr)m); |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m); |
| int res = REAL(pthread_rwlock_trywrlock)(m); |
| if (res == 0) { |
| MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock); |
| } |
| return res; |
| } |
| |
| #if !SANITIZER_MAC |
| TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime); |
| int res = REAL(pthread_rwlock_timedwrlock)(m, abstime); |
| if (res == 0) { |
| MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock); |
| } |
| return res; |
| } |
| #endif |
| |
| TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m); |
| MutexReadOrWriteUnlock(thr, pc, (uptr)m); |
| int res = REAL(pthread_rwlock_unlock)(m); |
| return res; |
| } |
| |
| #if !SANITIZER_MAC |
| TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count); |
| MemoryAccess(thr, pc, (uptr)b, 1, kAccessWrite); |
| int res = REAL(pthread_barrier_init)(b, a, count); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b); |
| MemoryAccess(thr, pc, (uptr)b, 1, kAccessWrite); |
| int res = REAL(pthread_barrier_destroy)(b); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b); |
| Release(thr, pc, (uptr)b); |
| MemoryAccess(thr, pc, (uptr)b, 1, kAccessRead); |
| int res = REAL(pthread_barrier_wait)(b); |
| MemoryAccess(thr, pc, (uptr)b, 1, kAccessRead); |
| if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) { |
| Acquire(thr, pc, (uptr)b); |
| } |
| return res; |
| } |
| #endif |
| |
| TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) { |
| SCOPED_INTERCEPTOR_RAW(pthread_once, o, f); |
| if (o == 0 || f == 0) |
| return errno_EINVAL; |
| atomic_uint32_t *a; |
| |
| if (SANITIZER_MAC) |
| a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t))); |
| else if (SANITIZER_NETBSD) |
| a = static_cast<atomic_uint32_t*> |
| ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz)); |
| else |
| a = static_cast<atomic_uint32_t*>(o); |
| |
| // Mac OS X appears to use pthread_once() where calling BlockingRegion hooks |
| // result in crashes due to too little stack space. |
| if (guard_acquire(thr, pc, a, !SANITIZER_MAC)) { |
| (*f)(); |
| guard_release(thr, pc, a); |
| } |
| return 0; |
| } |
| |
| #if SANITIZER_LINUX && !SANITIZER_ANDROID |
| TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) { |
| SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf); |
| if (fd > 0) |
| FdAccess(thr, pc, fd); |
| return REAL(__fxstat)(version, fd, buf); |
| } |
| #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat) |
| #else |
| #define TSAN_MAYBE_INTERCEPT___FXSTAT |
| #endif |
| |
| TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) { |
| #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID || SANITIZER_NETBSD |
| SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf); |
| if (fd > 0) |
| FdAccess(thr, pc, fd); |
| return REAL(fstat)(fd, buf); |
| #else |
| SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf); |
| if (fd > 0) |
| FdAccess(thr, pc, fd); |
| return REAL(__fxstat)(0, fd, buf); |
| #endif |
| } |
| |
| #if SANITIZER_LINUX && !SANITIZER_ANDROID |
| TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) { |
| SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf); |
| if (fd > 0) |
| FdAccess(thr, pc, fd); |
| return REAL(__fxstat64)(version, fd, buf); |
| } |
| #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64) |
| #else |
| #define TSAN_MAYBE_INTERCEPT___FXSTAT64 |
| #endif |
| |
| #if SANITIZER_LINUX && !SANITIZER_ANDROID |
| TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) { |
| SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf); |
| if (fd > 0) |
| FdAccess(thr, pc, fd); |
| return REAL(__fxstat64)(0, fd, buf); |
| } |
| #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64) |
| #else |
| #define TSAN_MAYBE_INTERCEPT_FSTAT64 |
| #endif |
| |
| TSAN_INTERCEPTOR(int, open, const char *name, int oflag, ...) { |
| va_list ap; |
| va_start(ap, oflag); |
| mode_t mode = va_arg(ap, int); |
| va_end(ap); |
| SCOPED_TSAN_INTERCEPTOR(open, name, oflag, mode); |
| READ_STRING(thr, pc, name, 0); |
| int fd = REAL(open)(name, oflag, mode); |
| if (fd >= 0) |
| FdFileCreate(thr, pc, fd); |
| return fd; |
| } |
| |
| #if SANITIZER_LINUX |
| TSAN_INTERCEPTOR(int, open64, const char *name, int oflag, ...) { |
| va_list ap; |
| va_start(ap, oflag); |
| mode_t mode = va_arg(ap, int); |
| va_end(ap); |
| SCOPED_TSAN_INTERCEPTOR(open64, name, oflag, mode); |
| READ_STRING(thr, pc, name, 0); |
| int fd = REAL(open64)(name, oflag, mode); |
| if (fd >= 0) |
| FdFileCreate(thr, pc, fd); |
| return fd; |
| } |
| #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64) |
| #else |
| #define TSAN_MAYBE_INTERCEPT_OPEN64 |
| #endif |
| |
| TSAN_INTERCEPTOR(int, creat, const char *name, int mode) { |
| SCOPED_TSAN_INTERCEPTOR(creat, name, mode); |
| READ_STRING(thr, pc, name, 0); |
| int fd = REAL(creat)(name, mode); |
| if (fd >= 0) |
| FdFileCreate(thr, pc, fd); |
| return fd; |
| } |
| |
| #if SANITIZER_LINUX |
| TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) { |
| SCOPED_TSAN_INTERCEPTOR(creat64, name, mode); |
| READ_STRING(thr, pc, name, 0); |
| int fd = REAL(creat64)(name, mode); |
| if (fd >= 0) |
| FdFileCreate(thr, pc, fd); |
| return fd; |
| } |
| #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64) |
| #else |
| #define TSAN_MAYBE_INTERCEPT_CREAT64 |
| #endif |
| |
| TSAN_INTERCEPTOR(int, dup, int oldfd) { |
| SCOPED_TSAN_INTERCEPTOR(dup, oldfd); |
| int newfd = REAL(dup)(oldfd); |
| if (oldfd >= 0 && newfd >= 0 && newfd != oldfd) |
| FdDup(thr, pc, oldfd, newfd, true); |
| return newfd; |
| } |
| |
| TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) { |
| SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd); |
| int newfd2 = REAL(dup2)(oldfd, newfd); |
| if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd) |
| FdDup(thr, pc, oldfd, newfd2, false); |
| return newfd2; |
| } |
| |
| #if !SANITIZER_MAC |
| TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) { |
| SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags); |
| int newfd2 = REAL(dup3)(oldfd, newfd, flags); |
| if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd) |
| FdDup(thr, pc, oldfd, newfd2, false); |
| return newfd2; |
| } |
| #endif |
| |
| #if SANITIZER_LINUX |
| TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) { |
| SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags); |
| int fd = REAL(eventfd)(initval, flags); |
| if (fd >= 0) |
| FdEventCreate(thr, pc, fd); |
| return fd; |
| } |
| #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd) |
| #else |
| #define TSAN_MAYBE_INTERCEPT_EVENTFD |
| #endif |
| |
| #if SANITIZER_LINUX |
| TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) { |
| SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags); |
| if (fd >= 0) |
| FdClose(thr, pc, fd); |
| fd = REAL(signalfd)(fd, mask, flags); |
| if (fd >= 0) |
| FdSignalCreate(thr, pc, fd); |
| return fd; |
| } |
| #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd) |
| #else |
| #define TSAN_MAYBE_INTERCEPT_SIGNALFD |
| #endif |
| |
| #if SANITIZER_LINUX |
| TSAN_INTERCEPTOR(int, inotify_init, int fake) { |
| SCOPED_TSAN_INTERCEPTOR(inotify_init, fake); |
| int fd = REAL(inotify_init)(fake); |
| if (fd >= 0) |
| FdInotifyCreate(thr, pc, fd); |
| return fd; |
| } |
| #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init) |
| #else |
| #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT |
| #endif |
| |
| #if SANITIZER_LINUX |
| TSAN_INTERCEPTOR(int, inotify_init1, int flags) { |
| SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags); |
| int fd = REAL(inotify_init1)(flags); |
| if (fd >= 0) |
| FdInotifyCreate(thr, pc, fd); |
| return fd; |
| } |
| #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1) |
| #else |
| #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 |
| #endif |
| |
| TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) { |
| SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol); |
| int fd = REAL(socket)(domain, type, protocol); |
| if (fd >= 0) |
| FdSocketCreate(thr, pc, fd); |
| return fd; |
| } |
| |
| TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) { |
| SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd); |
| int res = REAL(socketpair)(domain, type, protocol, fd); |
| if (res == 0 && fd[0] >= 0 && fd[1] >= 0) |
| FdPipeCreate(thr, pc, fd[0], fd[1]); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) { |
| SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen); |
| FdSocketConnecting(thr, pc, fd); |
| int res = REAL(connect)(fd, addr, addrlen); |
| if (res == 0 && fd >= 0) |
| FdSocketConnect(thr, pc, fd); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) { |
| SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen); |
| int res = REAL(bind)(fd, addr, addrlen); |
| if (fd > 0 && res == 0) |
| FdAccess(thr, pc, fd); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, listen, int fd, int backlog) { |
| SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog); |
| int res = REAL(listen)(fd, backlog); |
| if (fd > 0 && res == 0) |
| FdAccess(thr, pc, fd); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, close, int fd) { |
| SCOPED_TSAN_INTERCEPTOR(close, fd); |
| if (fd >= 0) |
| FdClose(thr, pc, fd); |
| return REAL(close)(fd); |
| } |
| |
| #if SANITIZER_LINUX |
| TSAN_INTERCEPTOR(int, __close, int fd) { |
| SCOPED_TSAN_INTERCEPTOR(__close, fd); |
| if (fd >= 0) |
| FdClose(thr, pc, fd); |
| return REAL(__close)(fd); |
| } |
| #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close) |
| #else |
| #define TSAN_MAYBE_INTERCEPT___CLOSE |
| #endif |
| |
| // glibc guts |
| #if SANITIZER_LINUX && !SANITIZER_ANDROID |
| TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) { |
| SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr); |
| int fds[64]; |
| int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds)); |
| for (int i = 0; i < cnt; i++) { |
| if (fds[i] > 0) |
| FdClose(thr, pc, fds[i]); |
| } |
| REAL(__res_iclose)(state, free_addr); |
| } |
| #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose) |
| #else |
| #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE |
| #endif |
| |
| TSAN_INTERCEPTOR(int, pipe, int *pipefd) { |
| SCOPED_TSAN_INTERCEPTOR(pipe, pipefd); |
| int res = REAL(pipe)(pipefd); |
| if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0) |
| FdPipeCreate(thr, pc, pipefd[0], pipefd[1]); |
| return res; |
| } |
| |
| #if !SANITIZER_MAC |
| TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) { |
| SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags); |
| int res = REAL(pipe2)(pipefd, flags); |
| if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0) |
| FdPipeCreate(thr, pc, pipefd[0], pipefd[1]); |
| return res; |
| } |
| #endif |
| |
| TSAN_INTERCEPTOR(int, unlink, char *path) { |
| SCOPED_TSAN_INTERCEPTOR(unlink, path); |
| Release(thr, pc, File2addr(path)); |
| int res = REAL(unlink)(path); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(void*, tmpfile, int fake) { |
| SCOPED_TSAN_INTERCEPTOR(tmpfile, fake); |
| void *res = REAL(tmpfile)(fake); |
| if (res) { |
| int fd = fileno_unlocked(res); |
| if (fd >= 0) |
| FdFileCreate(thr, pc, fd); |
| } |
| return res; |
| } |
| |
| #if SANITIZER_LINUX |
| TSAN_INTERCEPTOR(void*, tmpfile64, int fake) { |
| SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake); |
| void *res = REAL(tmpfile64)(fake); |
| if (res) { |
| int fd = fileno_unlocked(res); |
| if (fd >= 0) |
| FdFileCreate(thr, pc, fd); |
| } |
| return res; |
| } |
| #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64) |
| #else |
| #define TSAN_MAYBE_INTERCEPT_TMPFILE64 |
| #endif |
| |
| static void FlushStreams() { |
| // Flushing all the streams here may freeze the process if a child thread is |
| // performing file stream operations at the same time. |
| REAL(fflush)(stdout); |
| REAL(fflush)(stderr); |
| } |
| |
| TSAN_INTERCEPTOR(void, abort, int fake) { |
| SCOPED_TSAN_INTERCEPTOR(abort, fake); |
| FlushStreams(); |
| REAL(abort)(fake); |
| } |
| |
| TSAN_INTERCEPTOR(int, rmdir, char *path) { |
| SCOPED_TSAN_INTERCEPTOR(rmdir, path); |
| Release(thr, pc, Dir2addr(path)); |
| int res = REAL(rmdir)(path); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, closedir, void *dirp) { |
| SCOPED_TSAN_INTERCEPTOR(closedir, dirp); |
| if (dirp) { |
| int fd = dirfd(dirp); |
| FdClose(thr, pc, fd); |
| } |
| return REAL(closedir)(dirp); |
| } |
| |
| #if SANITIZER_LINUX |
| TSAN_INTERCEPTOR(int, epoll_create, int size) { |
| SCOPED_TSAN_INTERCEPTOR(epoll_create, size); |
| int fd = REAL(epoll_create)(size); |
| if (fd >= 0) |
| FdPollCreate(thr, pc, fd); |
| return fd; |
| } |
| |
| TSAN_INTERCEPTOR(int, epoll_create1, int flags) { |
| SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags); |
| int fd = REAL(epoll_create1)(flags); |
| if (fd >= 0) |
| FdPollCreate(thr, pc, fd); |
| return fd; |
| } |
| |
| TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) { |
| SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev); |
| if (epfd >= 0) |
| FdAccess(thr, pc, epfd); |
| if (epfd >= 0 && fd >= 0) |
| FdAccess(thr, pc, fd); |
| if (op == EPOLL_CTL_ADD && epfd >= 0) |
| FdRelease(thr, pc, epfd); |
| int res = REAL(epoll_ctl)(epfd, op, fd, ev); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) { |
| SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout); |
| if (epfd >= 0) |
| FdAccess(thr, pc, epfd); |
| int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout); |
| if (res > 0 && epfd >= 0) |
| FdAcquire(thr, pc, epfd); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout, |
| void *sigmask) { |
| SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask); |
| if (epfd >= 0) |
| FdAccess(thr, pc, epfd); |
| int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask); |
| if (res > 0 && epfd >= 0) |
| FdAcquire(thr, pc, epfd); |
| return res; |
| } |
| |
| #define TSAN_MAYBE_INTERCEPT_EPOLL \ |
| TSAN_INTERCEPT(epoll_create); \ |
| TSAN_INTERCEPT(epoll_create1); \ |
| TSAN_INTERCEPT(epoll_ctl); \ |
| TSAN_INTERCEPT(epoll_wait); \ |
| TSAN_INTERCEPT(epoll_pwait) |
| #else |
| #define TSAN_MAYBE_INTERCEPT_EPOLL |
| #endif |
| |
| // The following functions are intercepted merely to process pending signals. |
| // If program blocks signal X, we must deliver the signal before the function |
| // returns. Similarly, if program unblocks a signal (or returns from sigsuspend) |
| // it's better to deliver the signal straight away. |
| TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) { |
| SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask); |
| return REAL(sigsuspend)(mask); |
| } |
| |
| TSAN_INTERCEPTOR(int, sigblock, int mask) { |
| SCOPED_TSAN_INTERCEPTOR(sigblock, mask); |
| return REAL(sigblock)(mask); |
| } |
| |
| TSAN_INTERCEPTOR(int, sigsetmask, int mask) { |
| SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask); |
| return REAL(sigsetmask)(mask); |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set, |
| __sanitizer_sigset_t *oldset) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset); |
| return REAL(pthread_sigmask)(how, set, oldset); |
| } |
| |
| namespace __tsan { |
| |
| static void ReportErrnoSpoiling(ThreadState *thr, uptr pc) { |
| VarSizeStackTrace stack; |
| // StackTrace::GetNestInstructionPc(pc) is used because return address is |
| // expected, OutputReport() will undo this. |
| ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack); |
| ThreadRegistryLock l(&ctx->thread_registry); |
| ScopedReport rep(ReportTypeErrnoInSignal); |
| if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) { |
| rep.AddStack(stack, true); |
| OutputReport(thr, rep); |
| } |
| } |
| |
| static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire, |
| int sig, __sanitizer_siginfo *info, |
| void *uctx) { |
| __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions; |
| if (acquire) |
| Acquire(thr, 0, (uptr)&sigactions[sig]); |
| // Signals are generally asynchronous, so if we receive a signals when |
| // ignores are enabled we should disable ignores. This is critical for sync |
| // and interceptors, because otherwise we can miss synchronization and report |
| // false races. |
| int ignore_reads_and_writes = thr->ignore_reads_and_writes; |
| int ignore_interceptors = thr->ignore_interceptors; |
| int ignore_sync = thr->ignore_sync; |
| // For symbolizer we only process SIGSEGVs synchronously |
| // (bug in symbolizer or in tsan). But we want to reset |
| // in_symbolizer to fail gracefully. Symbolizer and user code |
| // use different memory allocators, so if we don't reset |
| // in_symbolizer we can get memory allocated with one being |
| // feed with another, which can cause more crashes. |
| int in_symbolizer = thr->in_symbolizer; |
| if (!ctx->after_multithreaded_fork) { |
| thr->ignore_reads_and_writes = 0; |
| thr->fast_state.ClearIgnoreBit(); |
| thr->ignore_interceptors = 0; |
| thr->ignore_sync = 0; |
| thr->in_symbolizer = 0; |
| } |
| // Ensure that the handler does not spoil errno. |
| const int saved_errno = errno; |
| errno = 99; |
| // This code races with sigaction. Be careful to not read sa_sigaction twice. |
| // Also need to remember pc for reporting before the call, |
| // because the handler can reset it. |
| volatile uptr pc = (sigactions[sig].sa_flags & SA_SIGINFO) |
| ? (uptr)sigactions[sig].sigaction |
| : (uptr)sigactions[sig].handler; |
| if (pc != sig_dfl && pc != sig_ign) { |
| // The callback can be either sa_handler or sa_sigaction. |
| // They have different signatures, but we assume that passing |
| // additional arguments to sa_handler works and is harmless. |
| ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx); |
| } |
| if (!ctx->after_multithreaded_fork) { |
| thr->ignore_reads_and_writes = ignore_reads_and_writes; |
| if (ignore_reads_and_writes) |
| thr->fast_state.SetIgnoreBit(); |
| thr->ignore_interceptors = ignore_interceptors; |
| thr->ignore_sync = ignore_sync; |
| thr->in_symbolizer = in_symbolizer; |
| } |
| // We do not detect errno spoiling for SIGTERM, |
| // because some SIGTERM handlers do spoil errno but reraise SIGTERM, |
| // tsan reports false positive in such case. |
| // It's difficult to properly detect this situation (reraise), |
| // because in async signal processing case (when handler is called directly |
| // from rtl_generic_sighandler) we have not yet received the reraised |
| // signal; and it looks too fragile to intercept all ways to reraise a signal. |
| if (ShouldReport(thr, ReportTypeErrnoInSignal) && !sync && sig != SIGTERM && |
| errno != 99) |
| ReportErrnoSpoiling(thr, pc); |
| errno = saved_errno; |
| } |
| |
| void ProcessPendingSignalsImpl(ThreadState *thr) { |
| atomic_store(&thr->pending_signals, 0, memory_order_relaxed); |
| ThreadSignalContext *sctx = SigCtx(thr); |
| if (sctx == 0) |
| return; |
| atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed); |
| internal_sigfillset(&sctx->emptyset); |
| int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset); |
| CHECK_EQ(res, 0); |
| for (int sig = 0; sig < kSigCount; sig++) { |
| SignalDesc *signal = &sctx->pending_signals[sig]; |
| if (signal->armed) { |
| signal->armed = false; |
| CallUserSignalHandler(thr, false, true, sig, &signal->siginfo, |
| &signal->ctx); |
| } |
| } |
| res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0); |
| CHECK_EQ(res, 0); |
| atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed); |
| } |
| |
| } // namespace __tsan |
| |
| static bool is_sync_signal(ThreadSignalContext *sctx, int sig) { |
| return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGTRAP || |
| sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS || |
| // If we are sending signal to ourselves, we must process it now. |
| (sctx && sig == sctx->int_signal_send); |
| } |
| |
| void sighandler(int sig, __sanitizer_siginfo *info, void *ctx) { |
| ThreadState *thr = cur_thread_init(); |
| ThreadSignalContext *sctx = SigCtx(thr); |
| if (sig < 0 || sig >= kSigCount) { |
| VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig); |
| return; |
| } |
| // Don't mess with synchronous signals. |
| const bool sync = is_sync_signal(sctx, sig); |
| if (sync || |
| // If we are in blocking function, we can safely process it now |
| // (but check if we are in a recursive interceptor, |
| // i.e. pthread_join()->munmap()). |
| (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) { |
| atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed); |
| if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) { |
| atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed); |
| CallUserSignalHandler(thr, sync, true, sig, info, ctx); |
| atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed); |
| } else { |
| // Be very conservative with when we do acquire in this case. |
| // It's unsafe to do acquire in async handlers, because ThreadState |
| // can be in inconsistent state. |
| // SIGSYS looks relatively safe -- it's synchronous and can actually |
| // need some global state. |
| bool acq = (sig == SIGSYS); |
| CallUserSignalHandler(thr, sync, acq, sig, info, ctx); |
| } |
| atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed); |
| return; |
| } |
| |
| if (sctx == 0) |
| return; |
| SignalDesc *signal = &sctx->pending_signals[sig]; |
| if (signal->armed == false) { |
| signal->armed = true; |
| internal_memcpy(&signal->siginfo, info, sizeof(*info)); |
| internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx)); |
| atomic_store(&thr->pending_signals, 1, memory_order_relaxed); |
| } |
| } |
| |
| TSAN_INTERCEPTOR(int, raise, int sig) { |
| SCOPED_TSAN_INTERCEPTOR(raise, sig); |
| ThreadSignalContext *sctx = SigCtx(thr); |
| CHECK_NE(sctx, 0); |
| int prev = sctx->int_signal_send; |
| sctx->int_signal_send = sig; |
| int res = REAL(raise)(sig); |
| CHECK_EQ(sctx->int_signal_send, sig); |
| sctx->int_signal_send = prev; |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, kill, int pid, int sig) { |
| SCOPED_TSAN_INTERCEPTOR(kill, pid, sig); |
| ThreadSignalContext *sctx = SigCtx(thr); |
| CHECK_NE(sctx, 0); |
| int prev = sctx->int_signal_send; |
| if (pid == (int)internal_getpid()) { |
| sctx->int_signal_send = sig; |
| } |
| int res = REAL(kill)(pid, sig); |
| if (pid == (int)internal_getpid()) { |
| CHECK_EQ(sctx->int_signal_send, sig); |
| sctx->int_signal_send = prev; |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) { |
| SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig); |
| ThreadSignalContext *sctx = SigCtx(thr); |
| CHECK_NE(sctx, 0); |
| int prev = sctx->int_signal_send; |
| if (tid == pthread_self()) { |
| sctx->int_signal_send = sig; |
| } |
| int res = REAL(pthread_kill)(tid, sig); |
| if (tid == pthread_self()) { |
| CHECK_EQ(sctx->int_signal_send, sig); |
| sctx->int_signal_send = prev; |
| } |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) { |
| SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz); |
| // It's intercepted merely to process pending signals. |
| return REAL(gettimeofday)(tv, tz); |
| } |
| |
| TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service, |
| void *hints, void *rv) { |
| SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv); |
| // We miss atomic synchronization in getaddrinfo, |
| // and can report false race between malloc and free |
| // inside of getaddrinfo. So ignore memory accesses. |
| ThreadIgnoreBegin(thr, pc); |
| int res = REAL(getaddrinfo)(node, service, hints, rv); |
| ThreadIgnoreEnd(thr); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, fork, int fake) { |
| if (in_symbolizer()) |
| return REAL(fork)(fake); |
| SCOPED_INTERCEPTOR_RAW(fork, fake); |
| return REAL(fork)(fake); |
| } |
| |
| void atfork_prepare() { |
| if (in_symbolizer()) |
| return; |
| ThreadState *thr = cur_thread(); |
| const uptr pc = StackTrace::GetCurrentPc(); |
| ForkBefore(thr, pc); |
| } |
| |
| void atfork_parent() { |
| if (in_symbolizer()) |
| return; |
| ThreadState *thr = cur_thread(); |
| const uptr pc = StackTrace::GetCurrentPc(); |
| ForkParentAfter(thr, pc); |
| } |
| |
| void atfork_child() { |
| if (in_symbolizer()) |
| return; |
| ThreadState *thr = cur_thread(); |
| const uptr pc = StackTrace::GetCurrentPc(); |
| ForkChildAfter(thr, pc, true); |
| FdOnFork(thr, pc); |
| } |
| |
| TSAN_INTERCEPTOR(int, vfork, int fake) { |
| // Some programs (e.g. openjdk) call close for all file descriptors |
| // in the child process. Under tsan it leads to false positives, because |
| // address space is shared, so the parent process also thinks that |
| // the descriptors are closed (while they are actually not). |
| // This leads to false positives due to missed synchronization. |
| // Strictly saying this is undefined behavior, because vfork child is not |
| // allowed to call any functions other than exec/exit. But this is what |
| // openjdk does, so we want to handle it. |
| // We could disable interceptors in the child process. But it's not possible |
| // to simply intercept and wrap vfork, because vfork child is not allowed |
| // to return from the function that calls vfork, and that's exactly what |
| // we would do. So this would require some assembly trickery as well. |
| // Instead we simply turn vfork into fork. |
| return WRAP(fork)(fake); |
| } |
| |
| #if SANITIZER_LINUX |
| TSAN_INTERCEPTOR(int, clone, int (*fn)(void *), void *stack, int flags, |
| void *arg, int *parent_tid, void *tls, pid_t *child_tid) { |
| SCOPED_INTERCEPTOR_RAW(clone, fn, stack, flags, arg, parent_tid, tls, |
| child_tid); |
| struct Arg { |
| int (*fn)(void *); |
| void *arg; |
| }; |
| auto wrapper = +[](void *p) -> int { |
| auto *thr = cur_thread(); |
| uptr pc = GET_CURRENT_PC(); |
| // Start the background thread for fork, but not for clone. |
| // For fork we did this always and it's known to work (or user code has |
| // adopted). But if we do this for the new clone interceptor some code |
| // (sandbox2) fails. So model we used to do for years and don't start the |
| // background thread after clone. |
| ForkChildAfter(thr, pc, false); |
| FdOnFork(thr, pc); |
| auto *arg = static_cast<Arg *>(p); |
| return arg->fn(arg->arg); |
| }; |
| ForkBefore(thr, pc); |
| Arg arg_wrapper = {fn, arg}; |
| int pid = REAL(clone)(wrapper, stack, flags, &arg_wrapper, parent_tid, tls, |
| child_tid); |
| ForkParentAfter(thr, pc); |
| return pid; |
| } |
| #endif |
| |
| #if !SANITIZER_MAC && !SANITIZER_ANDROID |
| typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size, |
| void *data); |
| struct dl_iterate_phdr_data { |
| ThreadState *thr; |
| uptr pc; |
| dl_iterate_phdr_cb_t cb; |
| void *data; |
| }; |
| |
| static bool IsAppNotRodata(uptr addr) { |
| return IsAppMem(addr) && *MemToShadow(addr) != kShadowRodata; |
| } |
| |
| static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size, |
| void *data) { |
| dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data; |
| // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later |
| // accessible in dl_iterate_phdr callback. But we don't see synchronization |
| // inside of dynamic linker, so we "unpoison" it here in order to not |
| // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough |
| // because some libc functions call __libc_dlopen. |
| if (info && IsAppNotRodata((uptr)info->dlpi_name)) |
| MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name, |
| internal_strlen(info->dlpi_name)); |
| int res = cbdata->cb(info, size, cbdata->data); |
| // Perform the check one more time in case info->dlpi_name was overwritten |
| // by user callback. |
| if (info && IsAppNotRodata((uptr)info->dlpi_name)) |
| MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name, |
| internal_strlen(info->dlpi_name)); |
| return res; |
| } |
| |
| TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) { |
| SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data); |
| dl_iterate_phdr_data cbdata; |
| cbdata.thr = thr; |
| cbdata.pc = pc; |
| cbdata.cb = cb; |
| cbdata.data = data; |
| int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata); |
| return res; |
| } |
| #endif |
| |
| static int OnExit(ThreadState *thr) { |
| int status = Finalize(thr); |
| FlushStreams(); |
| return status; |
| } |
| |
| struct TsanInterceptorContext { |
| ThreadState *thr; |
| const uptr pc; |
| }; |
| |
| #if !SANITIZER_MAC |
| static void HandleRecvmsg(ThreadState *thr, uptr pc, |
| __sanitizer_msghdr *msg) { |
| int fds[64]; |
| int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds)); |
| for (int i = 0; i < cnt; i++) |
| FdEventCreate(thr, pc, fds[i]); |
| } |
| #endif |
| |
| #include "sanitizer_common/sanitizer_platform_interceptors.h" |
| // Causes interceptor recursion (getaddrinfo() and fopen()) |
| #undef SANITIZER_INTERCEPT_GETADDRINFO |
| // We define our own. |
| #if SANITIZER_INTERCEPT_TLS_GET_ADDR |
| #define NEED_TLS_GET_ADDR |
| #endif |
| #undef SANITIZER_INTERCEPT_TLS_GET_ADDR |
| #define SANITIZER_INTERCEPT_TLS_GET_OFFSET 1 |
| #undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK |
| |
| #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name) |
| #define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \ |
| INTERCEPT_FUNCTION_VER(name, ver) |
| #define COMMON_INTERCEPT_FUNCTION_VER_UNVERSIONED_FALLBACK(name, ver) \ |
| (INTERCEPT_FUNCTION_VER(name, ver) || INTERCEPT_FUNCTION(name)) |
| |
| #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \ |
| MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr, \ |
| ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \ |
| true) |
| |
| #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \ |
| MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr, \ |
| ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \ |
| false) |
| |
| #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \ |
| SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__); \ |
| TsanInterceptorContext _ctx = {thr, pc}; \ |
| ctx = (void *)&_ctx; \ |
| (void)ctx; |
| |
| #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \ |
| SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \ |
| TsanInterceptorContext _ctx = {thr, pc}; \ |
| ctx = (void *)&_ctx; \ |
| (void)ctx; |
| |
| #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \ |
| if (path) \ |
| Acquire(thr, pc, File2addr(path)); \ |
| if (file) { \ |
| int fd = fileno_unlocked(file); \ |
| if (fd >= 0) FdFileCreate(thr, pc, fd); \ |
| } |
| |
| #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \ |
| if (file) { \ |
| int fd = fileno_unlocked(file); \ |
| if (fd >= 0) FdClose(thr, pc, fd); \ |
| } |
| |
| #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \ |
| libignore()->OnLibraryLoaded(filename) |
| |
| #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \ |
| libignore()->OnLibraryUnloaded() |
| |
| #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \ |
| Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u) |
| |
| #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \ |
| Release(((TsanInterceptorContext *) ctx)->thr, pc, u) |
| |
| #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \ |
| Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path)) |
| |
| #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \ |
| FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd) |
| |
| #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \ |
| FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd) |
| |
| #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \ |
| FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd) |
| |
| #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \ |
| FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd) |
| |
| #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \ |
| ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name) |
| |
| #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \ |
| __tsan::ctx->thread_registry.SetThreadNameByUserId(thread, name) |
| |
| #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name) |
| |
| #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \ |
| OnExit(((TsanInterceptorContext *) ctx)->thr) |
| |
| #define COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m) \ |
| MutexPreLock(((TsanInterceptorContext *)ctx)->thr, \ |
| ((TsanInterceptorContext *)ctx)->pc, (uptr)m) |
| |
| #define COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m) \ |
| MutexPostLock(((TsanInterceptorContext *)ctx)->thr, \ |
| ((TsanInterceptorContext *)ctx)->pc, (uptr)m) |
| |
| #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \ |
| MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \ |
| ((TsanInterceptorContext *)ctx)->pc, (uptr)m) |
| |
| #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \ |
| MutexRepair(((TsanInterceptorContext *)ctx)->thr, \ |
| ((TsanInterceptorContext *)ctx)->pc, (uptr)m) |
| |
| #define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \ |
| MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \ |
| ((TsanInterceptorContext *)ctx)->pc, (uptr)m) |
| |
| #define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd, \ |
| off) \ |
| do { \ |
| return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \ |
| off); \ |
| } while (false) |
| |
| #if !SANITIZER_MAC |
| #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \ |
| HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \ |
| ((TsanInterceptorContext *)ctx)->pc, msg) |
| #endif |
| |
| #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \ |
| if (TsanThread *t = GetCurrentThread()) { \ |
| *begin = t->tls_begin(); \ |
| *end = t->tls_end(); \ |
| } else { \ |
| *begin = *end = 0; \ |
| } |
| |
| #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \ |
| SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START() |
| |
| #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \ |
| SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END() |
| |
| #include "sanitizer_common/sanitizer_common_interceptors.inc" |
| |
| static int sigaction_impl(int sig, const __sanitizer_sigaction *act, |
| __sanitizer_sigaction *old); |
| static __sanitizer_sighandler_ptr signal_impl(int sig, |
| __sanitizer_sighandler_ptr h); |
| |
| #define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \ |
| { return sigaction_impl(signo, act, oldact); } |
| |
| #define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \ |
| { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); } |
| |
| #include "sanitizer_common/sanitizer_signal_interceptors.inc" |
| |
| int sigaction_impl(int sig, const __sanitizer_sigaction *act, |
| __sanitizer_sigaction *old) { |
| // Note: if we call REAL(sigaction) directly for any reason without proxying |
| // the signal handler through sighandler, very bad things will happen. |
| // The handler will run synchronously and corrupt tsan per-thread state. |
| SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old); |
| if (sig <= 0 || sig >= kSigCount) { |
| errno = errno_EINVAL; |
| return -1; |
| } |
| __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions; |
| __sanitizer_sigaction old_stored; |
| if (old) internal_memcpy(&old_stored, &sigactions[sig], sizeof(old_stored)); |
| __sanitizer_sigaction newact; |
| if (act) { |
| // Copy act into sigactions[sig]. |
| // Can't use struct copy, because compiler can emit call to memcpy. |
| // Can't use internal_memcpy, because it copies byte-by-byte, |
| // and signal handler reads the handler concurrently. It it can read |
| // some bytes from old value and some bytes from new value. |
| // Use volatile to prevent insertion of memcpy. |
| sigactions[sig].handler = |
| *(volatile __sanitizer_sighandler_ptr const *)&act->handler; |
| sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags; |
| internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask, |
| sizeof(sigactions[sig].sa_mask)); |
| #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD |
| sigactions[sig].sa_restorer = act->sa_restorer; |
| #endif |
| internal_memcpy(&newact, act, sizeof(newact)); |
| internal_sigfillset(&newact.sa_mask); |
| if ((act->sa_flags & SA_SIGINFO) || |
| ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl)) { |
| newact.sa_flags |= SA_SIGINFO; |
| newact.sigaction = sighandler; |
| } |
| ReleaseStore(thr, pc, (uptr)&sigactions[sig]); |
| act = &newact; |
| } |
| int res = REAL(sigaction)(sig, act, old); |
| if (res == 0 && old && old->sigaction == sighandler) |
| internal_memcpy(old, &old_stored, sizeof(*old)); |
| return res; |
| } |
| |
| static __sanitizer_sighandler_ptr signal_impl(int sig, |
| __sanitizer_sighandler_ptr h) { |
| __sanitizer_sigaction act; |
| act.handler = h; |
| internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask)); |
| act.sa_flags = 0; |
| __sanitizer_sigaction old; |
| int res = sigaction_symname(sig, &act, &old); |
| if (res) return (__sanitizer_sighandler_ptr)sig_err; |
| return old.handler; |
| } |
| |
| #define TSAN_SYSCALL() \ |
| ThreadState *thr = cur_thread(); \ |
| if (thr->ignore_interceptors) \ |
| return; \ |
| ScopedSyscall scoped_syscall(thr) |
| |
| struct ScopedSyscall { |
| ThreadState *thr; |
| |
| explicit ScopedSyscall(ThreadState *thr) : thr(thr) { LazyInitialize(thr); } |
| |
| ~ScopedSyscall() { |
| ProcessPendingSignals(thr); |
| } |
| }; |
| |
| #if !SANITIZER_FREEBSD && !SANITIZER_MAC |
| static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) { |
| TSAN_SYSCALL(); |
| MemoryAccessRange(thr, pc, p, s, write); |
| } |
| |
| static USED void syscall_acquire(uptr pc, uptr addr) { |
| TSAN_SYSCALL(); |
| Acquire(thr, pc, addr); |
| DPrintf("syscall_acquire(0x%zx))\n", addr); |
| } |
| |
| static USED void syscall_release(uptr pc, uptr addr) { |
| TSAN_SYSCALL(); |
| DPrintf("syscall_release(0x%zx)\n", addr); |
| Release(thr, pc, addr); |
| } |
| |
| static void syscall_fd_close(uptr pc, int fd) { |
| TSAN_SYSCALL(); |
| FdClose(thr, pc, fd); |
| } |
| |
| static USED void syscall_fd_acquire(uptr pc, int fd) { |
| TSAN_SYSCALL(); |
| FdAcquire(thr, pc, fd); |
| DPrintf("syscall_fd_acquire(%d)\n", fd); |
| } |
| |
| static USED void syscall_fd_release(uptr pc, int fd) { |
| TSAN_SYSCALL(); |
| DPrintf("syscall_fd_release(%d)\n", fd); |
| FdRelease(thr, pc, fd); |
| } |
| |
| static void syscall_pre_fork(uptr pc) { ForkBefore(cur_thread(), pc); } |
| |
| static void syscall_post_fork(uptr pc, int pid) { |
| ThreadState *thr = cur_thread(); |
| if (pid == 0) { |
| // child |
| ForkChildAfter(thr, pc, true); |
| FdOnFork(thr, pc); |
| } else if (pid > 0) { |
| // parent |
| ForkParentAfter(thr, pc); |
| } else { |
| // error |
| ForkParentAfter(thr, pc); |
| } |
| } |
| #endif |
| |
| #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \ |
| syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false) |
| |
| #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \ |
| syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true) |
| |
| #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \ |
| do { \ |
| (void)(p); \ |
| (void)(s); \ |
| } while (false) |
| |
| #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \ |
| do { \ |
| (void)(p); \ |
| (void)(s); \ |
| } while (false) |
| |
| #define COMMON_SYSCALL_ACQUIRE(addr) \ |
| syscall_acquire(GET_CALLER_PC(), (uptr)(addr)) |
| |
| #define COMMON_SYSCALL_RELEASE(addr) \ |
| syscall_release(GET_CALLER_PC(), (uptr)(addr)) |
| |
| #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd) |
| |
| #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd) |
| |
| #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd) |
| |
| #define COMMON_SYSCALL_PRE_FORK() \ |
| syscall_pre_fork(GET_CALLER_PC()) |
| |
| #define COMMON_SYSCALL_POST_FORK(res) \ |
| syscall_post_fork(GET_CALLER_PC(), res) |
| |
| #include "sanitizer_common/sanitizer_common_syscalls.inc" |
| #include "sanitizer_common/sanitizer_syscalls_netbsd.inc" |
| |
| #ifdef NEED_TLS_GET_ADDR |
| |
| static void handle_tls_addr(void *arg, void *res) { |
| ThreadState *thr = cur_thread(); |
| if (!thr) |
| return; |
| DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr, |
| thr->tls_addr + thr->tls_size); |
| if (!dtv) |
| return; |
| // New DTLS block has been allocated. |
| MemoryResetRange(thr, 0, dtv->beg, dtv->size); |
| } |
| |
| #if !SANITIZER_S390 |
| // Define own interceptor instead of sanitizer_common's for three reasons: |
| // 1. It must not process pending signals. |
| // Signal handlers may contain MOVDQA instruction (see below). |
| // 2. It must be as simple as possible to not contain MOVDQA. |
| // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which |
| // is empty for tsan (meant only for msan). |
| // Note: __tls_get_addr can be called with mis-aligned stack due to: |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066 |
| // So the interceptor must work with mis-aligned stack, in particular, does not |
| // execute MOVDQA with stack addresses. |
| TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) { |
| void *res = REAL(__tls_get_addr)(arg); |
| handle_tls_addr(arg, res); |
| return res; |
| } |
| #else // SANITIZER_S390 |
| TSAN_INTERCEPTOR(uptr, __tls_get_addr_internal, void *arg) { |
| uptr res = __tls_get_offset_wrapper(arg, REAL(__tls_get_offset)); |
| char *tp = static_cast<char *>(__builtin_thread_pointer()); |
| handle_tls_addr(arg, res + tp); |
| return res; |
| } |
| #endif |
| #endif |
| |
| #if SANITIZER_NETBSD |
| TSAN_INTERCEPTOR(void, _lwp_exit) { |
| SCOPED_TSAN_INTERCEPTOR(_lwp_exit); |
| DestroyThreadState(); |
| REAL(_lwp_exit)(); |
| } |
| #define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit) |
| #else |
| #define TSAN_MAYBE_INTERCEPT__LWP_EXIT |
| #endif |
| |
| #if SANITIZER_FREEBSD |
| TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) { |
| SCOPED_TSAN_INTERCEPTOR(thr_exit, state); |
| DestroyThreadState(); |
| REAL(thr_exit(state)); |
| } |
| #define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit) |
| #else |
| #define TSAN_MAYBE_INTERCEPT_THR_EXIT |
| #endif |
| |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)()) |
| TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b, |
| void *c) |
| |
| namespace __tsan { |
| |
| static void finalize(void *arg) { |
| ThreadState *thr = cur_thread(); |
| int status = Finalize(thr); |
| // Make sure the output is not lost. |
| FlushStreams(); |
| if (status) |
| Die(); |
| } |
| |
| #if !SANITIZER_MAC && !SANITIZER_ANDROID |
| static void unreachable() { |
| Report("FATAL: ThreadSanitizer: unreachable called\n"); |
| Die(); |
| } |
| #endif |
| |
| // Define default implementation since interception of libdispatch is optional. |
| SANITIZER_WEAK_ATTRIBUTE void InitializeLibdispatchInterceptors() {} |
| |
| void InitializeInterceptors() { |
| #if !SANITIZER_MAC |
| // We need to setup it early, because functions like dlsym() can call it. |
| REAL(memset) = internal_memset; |
| REAL(memcpy) = internal_memcpy; |
| #endif |
| |
| new(interceptor_ctx()) InterceptorContext(); |
| |
| InitializeCommonInterceptors(); |
| InitializeSignalInterceptors(); |
| InitializeLibdispatchInterceptors(); |
| |
| #if !SANITIZER_MAC |
| // We can not use TSAN_INTERCEPT to get setjmp addr, |
| // because it does &setjmp and setjmp is not present in some versions of libc. |
| using __interception::InterceptFunction; |
| InterceptFunction(TSAN_STRING_SETJMP, (uptr*)&REAL(setjmp_symname), 0, 0); |
| InterceptFunction("_setjmp", (uptr*)&REAL(_setjmp), 0, 0); |
| InterceptFunction(TSAN_STRING_SIGSETJMP, (uptr*)&REAL(sigsetjmp_symname), 0, |
| 0); |
| #if !SANITIZER_NETBSD |
| InterceptFunction("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0); |
| #endif |
| #endif |
| |
| TSAN_INTERCEPT(longjmp_symname); |
| TSAN_INTERCEPT(siglongjmp_symname); |
| #if SANITIZER_NETBSD |
| TSAN_INTERCEPT(_longjmp); |
| #endif |
| |
| TSAN_INTERCEPT(malloc); |
| TSAN_INTERCEPT(__libc_memalign); |
| TSAN_INTERCEPT(calloc); |
| TSAN_INTERCEPT(realloc); |
| TSAN_INTERCEPT(reallocarray); |
| TSAN_INTERCEPT(free); |
| TSAN_INTERCEPT(cfree); |
| TSAN_INTERCEPT(munmap); |
| TSAN_MAYBE_INTERCEPT_MEMALIGN; |
| TSAN_INTERCEPT(valloc); |
| TSAN_MAYBE_INTERCEPT_PVALLOC; |
| TSAN_INTERCEPT(posix_memalign); |
| |
| TSAN_INTERCEPT(strcpy); |
| TSAN_INTERCEPT(strncpy); |
| TSAN_INTERCEPT(strdup); |
| |
| TSAN_INTERCEPT(pthread_create); |
| TSAN_INTERCEPT(pthread_join); |
| TSAN_INTERCEPT(pthread_detach); |
| TSAN_INTERCEPT(pthread_exit); |
| |