| //===-- tsan_rtl_access.cpp -----------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of ThreadSanitizer (TSan), a race detector. |
| // |
| // Definitions of memory access and function entry/exit entry points. |
| //===----------------------------------------------------------------------===// |
| |
| #include "tsan_rtl.h" |
| |
| namespace __tsan { |
| |
| namespace v3 { |
| |
| ALWAYS_INLINE USED bool TryTraceMemoryAccess(ThreadState *thr, uptr pc, |
| uptr addr, uptr size, |
| AccessType typ) { |
| DCHECK(size == 1 || size == 2 || size == 4 || size == 8); |
| if (!kCollectHistory) |
| return true; |
| EventAccess *ev; |
| if (UNLIKELY(!TraceAcquire(thr, &ev))) |
| return false; |
| u64 size_log = size == 1 ? 0 : size == 2 ? 1 : size == 4 ? 2 : 3; |
| uptr pc_delta = pc - thr->trace_prev_pc + (1 << (EventAccess::kPCBits - 1)); |
| thr->trace_prev_pc = pc; |
| if (LIKELY(pc_delta < (1 << EventAccess::kPCBits))) { |
| ev->is_access = 1; |
| ev->is_read = !!(typ & kAccessRead); |
| ev->is_atomic = !!(typ & kAccessAtomic); |
| ev->size_log = size_log; |
| ev->pc_delta = pc_delta; |
| DCHECK_EQ(ev->pc_delta, pc_delta); |
| ev->addr = CompressAddr(addr); |
| TraceRelease(thr, ev); |
| return true; |
| } |
| auto *evex = reinterpret_cast<EventAccessExt *>(ev); |
| evex->is_access = 0; |
| evex->is_func = 0; |
| evex->type = EventType::kAccessExt; |
| evex->is_read = !!(typ & kAccessRead); |
| evex->is_atomic = !!(typ & kAccessAtomic); |
| evex->size_log = size_log; |
| evex->addr = CompressAddr(addr); |
| evex->pc = pc; |
| TraceRelease(thr, evex); |
| return true; |
| } |
| |
| ALWAYS_INLINE USED bool TryTraceMemoryAccessRange(ThreadState *thr, uptr pc, |
| uptr addr, uptr size, |
| AccessType typ) { |
| if (!kCollectHistory) |
| return true; |
| EventAccessRange *ev; |
| if (UNLIKELY(!TraceAcquire(thr, &ev))) |
| return false; |
| thr->trace_prev_pc = pc; |
| ev->is_access = 0; |
| ev->is_func = 0; |
| ev->type = EventType::kAccessRange; |
| ev->is_read = !!(typ & kAccessRead); |
| ev->is_free = !!(typ & kAccessFree); |
| ev->size_lo = size; |
| ev->pc = CompressAddr(pc); |
| ev->addr = CompressAddr(addr); |
| ev->size_hi = size >> EventAccessRange::kSizeLoBits; |
| TraceRelease(thr, ev); |
| return true; |
| } |
| |
| void TraceMemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| AccessType typ) { |
| if (LIKELY(TryTraceMemoryAccessRange(thr, pc, addr, size, typ))) |
| return; |
| TraceSwitchPart(thr); |
| UNUSED bool res = TryTraceMemoryAccessRange(thr, pc, addr, size, typ); |
| DCHECK(res); |
| } |
| |
| void TraceFunc(ThreadState *thr, uptr pc) { |
| if (LIKELY(TryTraceFunc(thr, pc))) |
| return; |
| TraceSwitchPart(thr); |
| UNUSED bool res = TryTraceFunc(thr, pc); |
| DCHECK(res); |
| } |
| |
| void TraceMutexLock(ThreadState *thr, EventType type, uptr pc, uptr addr, |
| StackID stk) { |
| DCHECK(type == EventType::kLock || type == EventType::kRLock); |
| if (!kCollectHistory) |
| return; |
| EventLock ev; |
| ev.is_access = 0; |
| ev.is_func = 0; |
| ev.type = type; |
| ev.pc = CompressAddr(pc); |
| ev.stack_lo = stk; |
| ev.stack_hi = stk >> EventLock::kStackIDLoBits; |
| ev._ = 0; |
| ev.addr = CompressAddr(addr); |
| TraceEvent(thr, ev); |
| } |
| |
| void TraceMutexUnlock(ThreadState *thr, uptr addr) { |
| if (!kCollectHistory) |
| return; |
| EventUnlock ev; |
| ev.is_access = 0; |
| ev.is_func = 0; |
| ev.type = EventType::kUnlock; |
| ev._ = 0; |
| ev.addr = CompressAddr(addr); |
| TraceEvent(thr, ev); |
| } |
| |
| void TraceTime(ThreadState *thr) { |
| if (!kCollectHistory) |
| return; |
| EventTime ev; |
| ev.is_access = 0; |
| ev.is_func = 0; |
| ev.type = EventType::kTime; |
| ev.sid = static_cast<u64>(thr->sid); |
| ev.epoch = static_cast<u64>(thr->epoch); |
| ev._ = 0; |
| TraceEvent(thr, ev); |
| } |
| |
| } // namespace v3 |
| |
| ALWAYS_INLINE |
| Shadow LoadShadow(u64 *p) { |
| u64 raw = atomic_load((atomic_uint64_t *)p, memory_order_relaxed); |
| return Shadow(raw); |
| } |
| |
| ALWAYS_INLINE |
| void StoreShadow(u64 *sp, u64 s) { |
| atomic_store((atomic_uint64_t *)sp, s, memory_order_relaxed); |
| } |
| |
| ALWAYS_INLINE |
| void StoreIfNotYetStored(u64 *sp, u64 *s) { |
| StoreShadow(sp, *s); |
| *s = 0; |
| } |
| |
| extern "C" void __tsan_report_race(); |
| |
| ALWAYS_INLINE |
| void HandleRace(ThreadState *thr, u64 *shadow_mem, Shadow cur, Shadow old) { |
| thr->racy_state[0] = cur.raw(); |
| thr->racy_state[1] = old.raw(); |
| thr->racy_shadow_addr = shadow_mem; |
| #if !SANITIZER_GO |
| HACKY_CALL(__tsan_report_race); |
| #else |
| ReportRace(thr); |
| #endif |
| } |
| |
| static inline bool HappensBefore(Shadow old, ThreadState *thr) { |
| return thr->clock.get(old.TidWithIgnore()) >= old.epoch(); |
| } |
| |
| ALWAYS_INLINE |
| void MemoryAccessImpl1(ThreadState *thr, uptr addr, int kAccessSizeLog, |
| bool kAccessIsWrite, bool kIsAtomic, u64 *shadow_mem, |
| Shadow cur) { |
| // This potentially can live in an MMX/SSE scratch register. |
| // The required intrinsics are: |
| // __m128i _mm_move_epi64(__m128i*); |
| // _mm_storel_epi64(u64*, __m128i); |
| u64 store_word = cur.raw(); |
| bool stored = false; |
| |
| // scan all the shadow values and dispatch to 4 categories: |
| // same, replace, candidate and race (see comments below). |
| // we consider only 3 cases regarding access sizes: |
| // equal, intersect and not intersect. initially I considered |
| // larger and smaller as well, it allowed to replace some |
| // 'candidates' with 'same' or 'replace', but I think |
| // it's just not worth it (performance- and complexity-wise). |
| |
| Shadow old(0); |
| |
| // It release mode we manually unroll the loop, |
| // because empirically gcc generates better code this way. |
| // However, we can't afford unrolling in debug mode, because the function |
| // consumes almost 4K of stack. Gtest gives only 4K of stack to death test |
| // threads, which is not enough for the unrolled loop. |
| #if SANITIZER_DEBUG |
| for (int idx = 0; idx < 4; idx++) { |
| # include "tsan_update_shadow_word.inc" |
| } |
| #else |
| int idx = 0; |
| # include "tsan_update_shadow_word.inc" |
| idx = 1; |
| if (stored) { |
| # include "tsan_update_shadow_word.inc" |
| } else { |
| # include "tsan_update_shadow_word.inc" |
| } |
| idx = 2; |
| if (stored) { |
| # include "tsan_update_shadow_word.inc" |
| } else { |
| # include "tsan_update_shadow_word.inc" |
| } |
| idx = 3; |
| if (stored) { |
| # include "tsan_update_shadow_word.inc" |
| } else { |
| # include "tsan_update_shadow_word.inc" |
| } |
| #endif |
| |
| // we did not find any races and had already stored |
| // the current access info, so we are done |
| if (LIKELY(stored)) |
| return; |
| // choose a random candidate slot and replace it |
| StoreShadow(shadow_mem + (cur.epoch() % kShadowCnt), store_word); |
| return; |
| RACE: |
| HandleRace(thr, shadow_mem, cur, old); |
| return; |
| } |
| |
| void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| AccessType typ) { |
| DCHECK(!(typ & kAccessAtomic)); |
| const bool kAccessIsWrite = !(typ & kAccessRead); |
| const bool kIsAtomic = false; |
| while (size) { |
| int size1 = 1; |
| int kAccessSizeLog = kSizeLog1; |
| if (size >= 8 && (addr & ~7) == ((addr + 7) & ~7)) { |
| size1 = 8; |
| kAccessSizeLog = kSizeLog8; |
| } else if (size >= 4 && (addr & ~7) == ((addr + 3) & ~7)) { |
| size1 = 4; |
| kAccessSizeLog = kSizeLog4; |
| } else if (size >= 2 && (addr & ~7) == ((addr + 1) & ~7)) { |
| size1 = 2; |
| kAccessSizeLog = kSizeLog2; |
| } |
| MemoryAccess(thr, pc, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic); |
| addr += size1; |
| size -= size1; |
| } |
| } |
| |
| ALWAYS_INLINE |
| bool ContainsSameAccessSlow(u64 *s, u64 a, u64 sync_epoch, bool is_write) { |
| Shadow cur(a); |
| for (uptr i = 0; i < kShadowCnt; i++) { |
| Shadow old(LoadShadow(&s[i])); |
| if (Shadow::Addr0AndSizeAreEqual(cur, old) && |
| old.TidWithIgnore() == cur.TidWithIgnore() && |
| old.epoch() > sync_epoch && old.IsAtomic() == cur.IsAtomic() && |
| old.IsRead() <= cur.IsRead()) |
| return true; |
| } |
| return false; |
| } |
| |
| #if TSAN_VECTORIZE |
| # define SHUF(v0, v1, i0, i1, i2, i3) \ |
| _mm_castps_si128(_mm_shuffle_ps(_mm_castsi128_ps(v0), \ |
| _mm_castsi128_ps(v1), \ |
| (i0)*1 + (i1)*4 + (i2)*16 + (i3)*64)) |
| ALWAYS_INLINE |
| bool ContainsSameAccessFast(u64 *s, u64 a, u64 sync_epoch, bool is_write) { |
| // This is an optimized version of ContainsSameAccessSlow. |
| // load current access into access[0:63] |
| const m128 access = _mm_cvtsi64_si128(a); |
| // duplicate high part of access in addr0: |
| // addr0[0:31] = access[32:63] |
| // addr0[32:63] = access[32:63] |
| // addr0[64:95] = access[32:63] |
| // addr0[96:127] = access[32:63] |
| const m128 addr0 = SHUF(access, access, 1, 1, 1, 1); |
| // load 4 shadow slots |
| const m128 shadow0 = _mm_load_si128((__m128i *)s); |
| const m128 shadow1 = _mm_load_si128((__m128i *)s + 1); |
| // load high parts of 4 shadow slots into addr_vect: |
| // addr_vect[0:31] = shadow0[32:63] |
| // addr_vect[32:63] = shadow0[96:127] |
| // addr_vect[64:95] = shadow1[32:63] |
| // addr_vect[96:127] = shadow1[96:127] |
| m128 addr_vect = SHUF(shadow0, shadow1, 1, 3, 1, 3); |
| if (!is_write) { |
| // set IsRead bit in addr_vect |
| const m128 rw_mask1 = _mm_cvtsi64_si128(1 << 15); |
| const m128 rw_mask = SHUF(rw_mask1, rw_mask1, 0, 0, 0, 0); |
| addr_vect = _mm_or_si128(addr_vect, rw_mask); |
| } |
| // addr0 == addr_vect? |
| const m128 addr_res = _mm_cmpeq_epi32(addr0, addr_vect); |
| // epoch1[0:63] = sync_epoch |
| const m128 epoch1 = _mm_cvtsi64_si128(sync_epoch); |
| // epoch[0:31] = sync_epoch[0:31] |
| // epoch[32:63] = sync_epoch[0:31] |
| // epoch[64:95] = sync_epoch[0:31] |
| // epoch[96:127] = sync_epoch[0:31] |
| const m128 epoch = SHUF(epoch1, epoch1, 0, 0, 0, 0); |
| // load low parts of shadow cell epochs into epoch_vect: |
| // epoch_vect[0:31] = shadow0[0:31] |
| // epoch_vect[32:63] = shadow0[64:95] |
| // epoch_vect[64:95] = shadow1[0:31] |
| // epoch_vect[96:127] = shadow1[64:95] |
| const m128 epoch_vect = SHUF(shadow0, shadow1, 0, 2, 0, 2); |
| // epoch_vect >= sync_epoch? |
| const m128 epoch_res = _mm_cmpgt_epi32(epoch_vect, epoch); |
| // addr_res & epoch_res |
| const m128 res = _mm_and_si128(addr_res, epoch_res); |
| // mask[0] = res[7] |
| // mask[1] = res[15] |
| // ... |
| // mask[15] = res[127] |
| const int mask = _mm_movemask_epi8(res); |
| return mask != 0; |
| } |
| #endif |
| |
| ALWAYS_INLINE |
| bool ContainsSameAccess(u64 *s, u64 a, u64 sync_epoch, bool is_write) { |
| #if TSAN_VECTORIZE |
| bool res = ContainsSameAccessFast(s, a, sync_epoch, is_write); |
| // NOTE: this check can fail if the shadow is concurrently mutated |
| // by other threads. But it still can be useful if you modify |
| // ContainsSameAccessFast and want to ensure that it's not completely broken. |
| // DCHECK_EQ(res, ContainsSameAccessSlow(s, a, sync_epoch, is_write)); |
| return res; |
| #else |
| return ContainsSameAccessSlow(s, a, sync_epoch, is_write); |
| #endif |
| } |
| |
| ALWAYS_INLINE USED void MemoryAccess(ThreadState *thr, uptr pc, uptr addr, |
| int kAccessSizeLog, bool kAccessIsWrite, |
| bool kIsAtomic) { |
| RawShadow *shadow_mem = MemToShadow(addr); |
| DPrintf2( |
| "#%d: MemoryAccess: @%p %p size=%d" |
| " is_write=%d shadow_mem=%p {%zx, %zx, %zx, %zx}\n", |
| (int)thr->fast_state.tid(), (void *)pc, (void *)addr, |
| (int)(1 << kAccessSizeLog), kAccessIsWrite, shadow_mem, |
| (uptr)shadow_mem[0], (uptr)shadow_mem[1], (uptr)shadow_mem[2], |
| (uptr)shadow_mem[3]); |
| #if SANITIZER_DEBUG |
| if (!IsAppMem(addr)) { |
| Printf("Access to non app mem %zx\n", addr); |
| DCHECK(IsAppMem(addr)); |
| } |
| if (!IsShadowMem(shadow_mem)) { |
| Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); |
| DCHECK(IsShadowMem(shadow_mem)); |
| } |
| #endif |
| |
| if (!SANITIZER_GO && !kAccessIsWrite && *shadow_mem == kShadowRodata) { |
| // Access to .rodata section, no races here. |
| // Measurements show that it can be 10-20% of all memory accesses. |
| return; |
| } |
| |
| FastState fast_state = thr->fast_state; |
| if (UNLIKELY(fast_state.GetIgnoreBit())) { |
| return; |
| } |
| |
| Shadow cur(fast_state); |
| cur.SetAddr0AndSizeLog(addr & 7, kAccessSizeLog); |
| cur.SetWrite(kAccessIsWrite); |
| cur.SetAtomic(kIsAtomic); |
| |
| if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch, |
| kAccessIsWrite))) { |
| return; |
| } |
| |
| if (kCollectHistory) { |
| fast_state.IncrementEpoch(); |
| thr->fast_state = fast_state; |
| TraceAddEvent(thr, fast_state, EventTypeMop, pc); |
| cur.IncrementEpoch(); |
| } |
| |
| MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, |
| shadow_mem, cur); |
| } |
| |
| // Called by MemoryAccessRange in tsan_rtl_thread.cpp |
| ALWAYS_INLINE USED void MemoryAccessImpl(ThreadState *thr, uptr addr, |
| int kAccessSizeLog, |
| bool kAccessIsWrite, bool kIsAtomic, |
| u64 *shadow_mem, Shadow cur) { |
| if (LIKELY(ContainsSameAccess(shadow_mem, cur.raw(), thr->fast_synch_epoch, |
| kAccessIsWrite))) { |
| return; |
| } |
| |
| MemoryAccessImpl1(thr, addr, kAccessSizeLog, kAccessIsWrite, kIsAtomic, |
| shadow_mem, cur); |
| } |
| |
| static void MemoryRangeSet(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| u64 val) { |
| (void)thr; |
| (void)pc; |
| if (size == 0) |
| return; |
| // FIXME: fix me. |
| uptr offset = addr % kShadowCell; |
| if (offset) { |
| offset = kShadowCell - offset; |
| if (size <= offset) |
| return; |
| addr += offset; |
| size -= offset; |
| } |
| DCHECK_EQ(addr % 8, 0); |
| // If a user passes some insane arguments (memset(0)), |
| // let it just crash as usual. |
| if (!IsAppMem(addr) || !IsAppMem(addr + size - 1)) |
| return; |
| // Don't want to touch lots of shadow memory. |
| // If a program maps 10MB stack, there is no need reset the whole range. |
| size = (size + (kShadowCell - 1)) & ~(kShadowCell - 1); |
| // UnmapOrDie/MmapFixedNoReserve does not work on Windows. |
| if (SANITIZER_WINDOWS || size < common_flags()->clear_shadow_mmap_threshold) { |
| RawShadow *p = MemToShadow(addr); |
| CHECK(IsShadowMem(p)); |
| CHECK(IsShadowMem(p + size * kShadowCnt / kShadowCell - 1)); |
| // FIXME: may overwrite a part outside the region |
| for (uptr i = 0; i < size / kShadowCell * kShadowCnt;) { |
| p[i++] = val; |
| for (uptr j = 1; j < kShadowCnt; j++) p[i++] = 0; |
| } |
| } else { |
| // The region is big, reset only beginning and end. |
| const uptr kPageSize = GetPageSizeCached(); |
| RawShadow *begin = MemToShadow(addr); |
| RawShadow *end = begin + size / kShadowCell * kShadowCnt; |
| RawShadow *p = begin; |
| // Set at least first kPageSize/2 to page boundary. |
| while ((p < begin + kPageSize / kShadowSize / 2) || ((uptr)p % kPageSize)) { |
| *p++ = val; |
| for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0; |
| } |
| // Reset middle part. |
| RawShadow *p1 = p; |
| p = RoundDown(end, kPageSize); |
| if (!MmapFixedSuperNoReserve((uptr)p1, (uptr)p - (uptr)p1)) |
| Die(); |
| // Set the ending. |
| while (p < end) { |
| *p++ = val; |
| for (uptr j = 1; j < kShadowCnt; j++) *p++ = 0; |
| } |
| } |
| } |
| |
| void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size) { |
| MemoryRangeSet(thr, pc, addr, size, 0); |
| } |
| |
| void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size) { |
| // Processing more than 1k (4k of shadow) is expensive, |
| // can cause excessive memory consumption (user does not necessary touch |
| // the whole range) and most likely unnecessary. |
| if (size > 1024) |
| size = 1024; |
| CHECK_EQ(thr->is_freeing, false); |
| thr->is_freeing = true; |
| MemoryAccessRange(thr, pc, addr, size, true); |
| thr->is_freeing = false; |
| if (kCollectHistory) { |
| thr->fast_state.IncrementEpoch(); |
| TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); |
| } |
| Shadow s(thr->fast_state); |
| s.ClearIgnoreBit(); |
| s.MarkAsFreed(); |
| s.SetWrite(true); |
| s.SetAddr0AndSizeLog(0, 3); |
| MemoryRangeSet(thr, pc, addr, size, s.raw()); |
| } |
| |
| void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size) { |
| if (kCollectHistory) { |
| thr->fast_state.IncrementEpoch(); |
| TraceAddEvent(thr, thr->fast_state, EventTypeMop, pc); |
| } |
| Shadow s(thr->fast_state); |
| s.ClearIgnoreBit(); |
| s.SetWrite(true); |
| s.SetAddr0AndSizeLog(0, 3); |
| MemoryRangeSet(thr, pc, addr, size, s.raw()); |
| } |
| |
| void MemoryRangeImitateWriteOrResetRange(ThreadState *thr, uptr pc, uptr addr, |
| uptr size) { |
| if (thr->ignore_reads_and_writes == 0) |
| MemoryRangeImitateWrite(thr, pc, addr, size); |
| else |
| MemoryResetRange(thr, pc, addr, size); |
| } |
| |
| void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr, uptr size, |
| bool is_write) { |
| if (size == 0) |
| return; |
| |
| RawShadow *shadow_mem = MemToShadow(addr); |
| DPrintf2("#%d: MemoryAccessRange: @%p %p size=%d is_write=%d\n", thr->tid, |
| (void *)pc, (void *)addr, (int)size, is_write); |
| |
| #if SANITIZER_DEBUG |
| if (!IsAppMem(addr)) { |
| Printf("Access to non app mem %zx\n", addr); |
| DCHECK(IsAppMem(addr)); |
| } |
| if (!IsAppMem(addr + size - 1)) { |
| Printf("Access to non app mem %zx\n", addr + size - 1); |
| DCHECK(IsAppMem(addr + size - 1)); |
| } |
| if (!IsShadowMem(shadow_mem)) { |
| Printf("Bad shadow addr %p (%zx)\n", shadow_mem, addr); |
| DCHECK(IsShadowMem(shadow_mem)); |
| } |
| if (!IsShadowMem(shadow_mem + size * kShadowCnt / 8 - 1)) { |
| Printf("Bad shadow addr %p (%zx)\n", shadow_mem + size * kShadowCnt / 8 - 1, |
| addr + size - 1); |
| DCHECK(IsShadowMem(shadow_mem + size * kShadowCnt / 8 - 1)); |
| } |
| #endif |
| |
| if (*shadow_mem == kShadowRodata) { |
| DCHECK(!is_write); |
| // Access to .rodata section, no races here. |
| // Measurements show that it can be 10-20% of all memory accesses. |
| return; |
| } |
| |
| FastState fast_state = thr->fast_state; |
| if (fast_state.GetIgnoreBit()) |
| return; |
| |
| fast_state.IncrementEpoch(); |
| thr->fast_state = fast_state; |
| TraceAddEvent(thr, fast_state, EventTypeMop, pc); |
| |
| bool unaligned = (addr % kShadowCell) != 0; |
| |
| // Handle unaligned beginning, if any. |
| for (; addr % kShadowCell && size; addr++, size--) { |
| int const kAccessSizeLog = 0; |
| Shadow cur(fast_state); |
| cur.SetWrite(is_write); |
| cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog); |
| MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem, |
| cur); |
| } |
| if (unaligned) |
| shadow_mem += kShadowCnt; |
| // Handle middle part, if any. |
| for (; size >= kShadowCell; addr += kShadowCell, size -= kShadowCell) { |
| int const kAccessSizeLog = 3; |
| Shadow cur(fast_state); |
| cur.SetWrite(is_write); |
| cur.SetAddr0AndSizeLog(0, kAccessSizeLog); |
| MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem, |
| cur); |
| shadow_mem += kShadowCnt; |
| } |
| // Handle ending, if any. |
| for (; size; addr++, size--) { |
| int const kAccessSizeLog = 0; |
| Shadow cur(fast_state); |
| cur.SetWrite(is_write); |
| cur.SetAddr0AndSizeLog(addr & (kShadowCell - 1), kAccessSizeLog); |
| MemoryAccessImpl(thr, addr, kAccessSizeLog, is_write, false, shadow_mem, |
| cur); |
| } |
| } |
| |
| } // namespace __tsan |
| |
| #if !SANITIZER_GO |
| // Must be included in this file to make sure everything is inlined. |
| # include "tsan_interface.inc" |
| #endif |