blob: 0429c1a421dfdab8645cffc938784f9af0fc1362 [file] [log] [blame]
/*
*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
*/
#ifndef __SGI_STL_TREE_H
#define __SGI_STL_TREE_H
/*
Red-black tree class, designed for use in implementing STL
associative containers (set, multiset, map, and multimap). The
insertion and deletion algorithms are based on those in Cormen,
Leiserson, and Rivest, Introduction to Algorithms (MIT Press, 1990),
except that
(1) the header cell is maintained with links not only to the root
but also to the leftmost node of the tree, to enable constant time
begin(), and to the rightmost node of the tree, to enable linear time
performance when used with the generic set algorithms (set_union,
etc.);
(2) when a node being deleted has two children its successor node is
relinked into its place, rather than copied, so that the only
iterators invalidated are those referring to the deleted node.
*/
#include <stddef.h>
#include <algobase.h>
#include <iterator.h>
#include <alloc.h>
typedef bool __rb_tree_color_type;
const __rb_tree_color_type __rb_tree_red = false;
const __rb_tree_color_type __rb_tree_black = true;
struct __rb_tree_node_base
{
typedef __rb_tree_color_type color_type;
typedef __rb_tree_node_base* base_ptr;
color_type color;
base_ptr parent;
base_ptr left;
base_ptr right;
static base_ptr minimum(base_ptr x)
{
while (x->left != 0) x = x->left;
return x;
}
static base_ptr maximum(base_ptr x)
{
while (x->right != 0) x = x->right;
return x;
}
};
template <class Value>
struct __rb_tree_node : public __rb_tree_node_base
{
typedef __rb_tree_node<Value>* link_type;
Value value_field;
};
struct __rb_tree_base_iterator
{
typedef __rb_tree_node_base::base_ptr base_ptr;
typedef bidirectional_iterator_tag iterator_category;
typedef ptrdiff_t difference_type;
base_ptr node;
void increment()
{
if (node->right != 0) {
node = node->right;
while (node->left != 0)
node = node->left;
}
else {
base_ptr y = node->parent;
while (node == y->right) {
node = y;
y = y->parent;
}
if (node->right != y)
node = y;
}
}
void decrement()
{
if (node->color == __rb_tree_red &&
node->parent->parent == node)
node = node->right;
else if (node->left != 0) {
base_ptr y = node->left;
while (y->right != 0)
y = y->right;
node = y;
}
else {
base_ptr y = node->parent;
while (node == y->left) {
node = y;
y = y->parent;
}
node = y;
}
}
};
template <class Value, class Ref>
struct __rb_tree_iterator : public __rb_tree_base_iterator
{
typedef Value value_type;
typedef Value& reference;
typedef const Value& const_reference;
typedef Value* pointer;
typedef __rb_tree_iterator<Value, reference> iterator;
typedef __rb_tree_iterator<Value, const_reference> const_iterator;
typedef __rb_tree_iterator<Value, Ref> self;
typedef __rb_tree_node<Value>* link_type;
__rb_tree_iterator() {}
__rb_tree_iterator(link_type x) { node = x; }
__rb_tree_iterator(const iterator& it) { node = it.node; }
Ref operator*() const { return link_type(node)->value_field; }
self& operator++() { increment(); return *this; }
self operator++(int) {
self tmp = *this;
increment();
return tmp;
}
self& operator--() { decrement(); return *this; }
self operator--(int) {
self tmp = *this;
decrement();
return tmp;
}
};
inline bool operator==(const __rb_tree_base_iterator& x,
const __rb_tree_base_iterator& y) {
return x.node == y.node;
}
inline bool operator!=(const __rb_tree_base_iterator& x,
const __rb_tree_base_iterator& y) {
return x.node != y.node;
}
inline bidirectional_iterator_tag
iterator_category(const __rb_tree_base_iterator&) {
return bidirectional_iterator_tag();
}
inline __rb_tree_base_iterator::difference_type*
distance_type(const __rb_tree_base_iterator&) {
return (__rb_tree_base_iterator::difference_type*) 0;
}
template <class Value, class Ref>
inline Value* value_type(const __rb_tree_iterator<Value, Ref>&) {
return (Value*) 0;
}
inline void
__rb_tree_rotate_left(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
__rb_tree_node_base* y = x->right;
x->right = y->left;
if (y->left !=0)
y->left->parent = x;
y->parent = x->parent;
if (x == root)
root = y;
else if (x == x->parent->left)
x->parent->left = y;
else
x->parent->right = y;
y->left = x;
x->parent = y;
}
inline void
__rb_tree_rotate_right(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
__rb_tree_node_base* y = x->left;
x->left = y->right;
if (y->right != 0)
y->right->parent = x;
y->parent = x->parent;
if (x == root)
root = y;
else if (x == x->parent->right)
x->parent->right = y;
else
x->parent->left = y;
y->right = x;
x->parent = y;
}
inline void
__rb_tree_rebalance(__rb_tree_node_base* x, __rb_tree_node_base*& root)
{
x->color = __rb_tree_red;
while (x != root && x->parent->color == __rb_tree_red) {
if (x->parent == x->parent->parent->left) {
__rb_tree_node_base* y = x->parent->parent->right;
if (y && y->color == __rb_tree_red) {
x->parent->color = __rb_tree_black;
y->color = __rb_tree_black;
x->parent->parent->color = __rb_tree_red;
x = x->parent->parent;
}
else {
if (x == x->parent->right) {
x = x->parent;
__rb_tree_rotate_left(x, root);
}
x->parent->color = __rb_tree_black;
x->parent->parent->color = __rb_tree_red;
__rb_tree_rotate_right(x->parent->parent, root);
}
}
else {
__rb_tree_node_base* y = x->parent->parent->left;
if (y && y->color == __rb_tree_red) {
x->parent->color = __rb_tree_black;
y->color = __rb_tree_black;
x->parent->parent->color = __rb_tree_red;
x = x->parent->parent;
}
else {
if (x == x->parent->left) {
x = x->parent;
__rb_tree_rotate_right(x, root);
}
x->parent->color = __rb_tree_black;
x->parent->parent->color = __rb_tree_red;
__rb_tree_rotate_left(x->parent->parent, root);
}
}
}
root->color = __rb_tree_black;
}
inline __rb_tree_node_base*
__rb_tree_rebalance_for_erase(__rb_tree_node_base* z,
__rb_tree_node_base*& root,
__rb_tree_node_base*& leftmost,
__rb_tree_node_base*& rightmost)
{
__rb_tree_node_base* y = z;
__rb_tree_node_base* x = 0;
__rb_tree_node_base* x_parent = 0;
if (y->left == 0) // z has at most one non-null child. y == z.
x = y->right; // x might be null.
else
if (y->right == 0) // z has exactly one non-null child. y == z.
x = y->left; // x is not null.
else { // z has two non-null children. Set y to
y = y->right; // z's successor. x might be null.
while (y->left != 0)
y = y->left;
x = y->right;
}
if (y != z) { // relink y in place of z. y is z's successor
z->left->parent = y;
y->left = z->left;
if (y != z->right) {
x_parent = y->parent;
if (x) x->parent = y->parent;
y->parent->left = x; // y must be a left child
y->right = z->right;
z->right->parent = y;
}
else
x_parent = y;
if (root == z)
root = y;
else if (z->parent->left == z)
z->parent->left = y;
else
z->parent->right = y;
y->parent = z->parent;
::swap(y->color, z->color);
y = z;
// y now points to node to be actually deleted
}
else { // y == z
x_parent = y->parent;
if (x) x->parent = y->parent;
if (root == z)
root = x;
else
if (z->parent->left == z)
z->parent->left = x;
else
z->parent->right = x;
if (leftmost == z)
if (z->right == 0) // z->left must be null also
leftmost = z->parent;
// makes leftmost == header if z == root
else
leftmost = __rb_tree_node_base::minimum(x);
if (rightmost == z)
if (z->left == 0) // z->right must be null also
rightmost = z->parent;
// makes rightmost == header if z == root
else // x == z->left
rightmost = __rb_tree_node_base::maximum(x);
}
if (y->color != __rb_tree_red) {
while (x != root && (x == 0 || x->color == __rb_tree_black))
if (x == x_parent->left) {
__rb_tree_node_base* w = x_parent->right;
if (w->color == __rb_tree_red) {
w->color = __rb_tree_black;
x_parent->color = __rb_tree_red;
__rb_tree_rotate_left(x_parent, root);
w = x_parent->right;
}
if ((w->left == 0 || w->left->color == __rb_tree_black) &&
(w->right == 0 || w->right->color == __rb_tree_black)) {
w->color = __rb_tree_red;
x = x_parent;
x_parent = x_parent->parent;
} else {
if (w->right == 0 || w->right->color == __rb_tree_black) {
if (w->left) w->left->color = __rb_tree_black;
w->color = __rb_tree_red;
__rb_tree_rotate_right(w, root);
w = x_parent->right;
}
w->color = x_parent->color;
x_parent->color = __rb_tree_black;
if (w->right) w->right->color = __rb_tree_black;
__rb_tree_rotate_left(x_parent, root);
break;
}
} else { // same as above, with right <-> left.
__rb_tree_node_base* w = x_parent->left;
if (w->color == __rb_tree_red) {
w->color = __rb_tree_black;
x_parent->color = __rb_tree_red;
__rb_tree_rotate_right(x_parent, root);
w = x_parent->left;
}
if ((w->right == 0 || w->right->color == __rb_tree_black) &&
(w->left == 0 || w->left->color == __rb_tree_black)) {
w->color = __rb_tree_red;
x = x_parent;
x_parent = x_parent->parent;
} else {
if (w->left == 0 || w->left->color == __rb_tree_black) {
if (w->right) w->right->color = __rb_tree_black;
w->color = __rb_tree_red;
__rb_tree_rotate_left(w, root);
w = x_parent->left;
}
w->color = x_parent->color;
x_parent->color = __rb_tree_black;
if (w->left) w->left->color = __rb_tree_black;
__rb_tree_rotate_right(x_parent, root);
break;
}
}
if (x) x->color = __rb_tree_black;
}
return y;
}
template <class Key, class Value, class KeyOfValue, class Compare,
class Alloc = alloc>
class rb_tree {
protected:
typedef void* void_pointer;
typedef __rb_tree_node_base* base_ptr;
typedef __rb_tree_node<Value> rb_tree_node;
typedef simple_alloc<rb_tree_node, Alloc> rb_tree_node_allocator;
typedef __rb_tree_color_type color_type;
public:
typedef Key key_type;
typedef Value value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef rb_tree_node* link_type;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
protected:
link_type get_node() { return rb_tree_node_allocator::allocate(); }
void put_node(link_type p) { rb_tree_node_allocator::deallocate(p); }
link_type create_node(const value_type& x) {
link_type tmp = get_node();
# ifdef __STL_USE_EXCEPTIONS
try {
# endif /* __STL_USE_EXCEPTIONS */
construct(&tmp->value_field, x);
return tmp;
# ifdef __STL_USE_EXCEPTIONS
}
catch(...) {
put_node(tmp);
throw;
}
# endif /* __STL_USE_EXCEPTIONS */
}
link_type clone_node(link_type x) {
link_type tmp = create_node(x->value_field);
tmp->color = x->color;
tmp->left = 0;
tmp->right = 0;
return tmp;
}
void destroy_node(link_type p) {
destroy(&p->value_field);
put_node(p);
}
protected:
size_type node_count; // keeps track of size of tree
link_type header;
Compare key_compare;
link_type& root() const { return (link_type&) header->parent; }
link_type& leftmost() const { return (link_type&) header->left; }
link_type& rightmost() const { return (link_type&) header->right; }
static link_type& left(link_type x) { return (link_type&)(x->left); }
static link_type& right(link_type x) { return (link_type&)(x->right); }
static link_type& parent(link_type x) { return (link_type&)(x->parent); }
static reference value(link_type x) { return x->value_field; }
static const Key& key(link_type x) { return KeyOfValue()(value(x)); }
static color_type& color(link_type x) { return (color_type&)(x->color); }
static link_type& left(base_ptr x) { return (link_type&)(x->left); }
static link_type& right(base_ptr x) { return (link_type&)(x->right); }
static link_type& parent(base_ptr x) { return (link_type&)(x->parent); }
static reference value(base_ptr x) { return ((link_type)x)->value_field; }
static const Key& key(base_ptr x) { return KeyOfValue()(value(link_type(x)));}
static color_type& color(base_ptr x) { return (color_type&)(link_type(x)->color); }
static link_type minimum(link_type x) {
return (link_type) __rb_tree_node_base::minimum(x);
}
static link_type maximum(link_type x) {
return (link_type) __rb_tree_node_base::maximum(x);
}
public:
typedef __rb_tree_iterator<value_type, reference> iterator;
typedef __rb_tree_iterator<value_type, const_reference> const_iterator;
typedef reverse_bidirectional_iterator<iterator, value_type, reference,
difference_type>
reverse_iterator;
typedef reverse_bidirectional_iterator<const_iterator, value_type,
const_reference, difference_type>
const_reverse_iterator;
private:
iterator __insert(base_ptr x, base_ptr y, const value_type& v);
link_type __copy(link_type x, link_type p);
void __erase(link_type x);
void init() {
header = get_node();
color(header) = __rb_tree_red; // used to distinguish header from
// root, in iterator.operator++
root() = 0;
leftmost() = header;
rightmost() = header;
}
public:
// allocation/deallocation
rb_tree(const Compare& comp = Compare())
: key_compare(comp), node_count(0) { init(); }
rb_tree(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x)
: key_compare(x.key_compare), node_count(0) {
header = get_node();
color(header) = __rb_tree_red;
if (x.root() == 0) {
root() = 0;
leftmost() = header;
rightmost() = header;
}
else {
# ifdef __STL_USE_EXCEPTIONS
try {
# endif /* __STL_USE_EXCEPTIONS */
root() = __copy(x.root(), header);
# ifdef __STL_USE_EXCEPTIONS
}
catch(...) {
put_node(header);
throw;
}
# endif /* __STL_USE_EXCEPTIONS */
leftmost() = minimum(root());
rightmost() = maximum(root());
}
node_count = x.node_count;
}
~rb_tree() {
clear();
put_node(header);
}
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>&
operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x);
public:
// accessors:
Compare key_comp() const { return key_compare; }
iterator begin() { return leftmost(); }
const_iterator begin() const { return leftmost(); }
iterator end() { return header; }
const_iterator end() const { return header; }
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
bool empty() const { return node_count == 0; }
size_type size() const { return node_count; }
size_type max_size() const { return size_type(-1); }
void swap(rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& t) {
::swap(header, t.header);
::swap(node_count, t.node_count);
::swap(key_compare, t.key_compare);
}
public:
// insert/erase
pair<iterator,bool> insert_unique(const value_type& x);
iterator insert_equal(const value_type& x);
iterator insert_unique(iterator position, const value_type& x);
iterator insert_equal(iterator position, const value_type& x);
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert_unique(InputIterator first, InputIterator last);
template <class InputIterator>
void insert_equal(InputIterator first, InputIterator last);
#else /* __STL_MEMBER_TEMPLATES */
void insert_unique(const_iterator first, const_iterator last);
void insert_unique(const value_type* first, const value_type* last);
void insert_equal(const_iterator first, const_iterator last);
void insert_equal(const value_type* first, const value_type* last);
#endif /* __STL_MEMBER_TEMPLATES */
void erase(iterator position);
size_type erase(const key_type& x);
void erase(iterator first, iterator last);
void erase(const key_type* first, const key_type* last);
void clear() {
if (node_count != 0) {
__erase(root());
leftmost() = header;
root() = 0;
rightmost() = header;
node_count = 0;
}
}
public:
// set operations:
iterator find(const key_type& x);
const_iterator find(const key_type& x) const;
size_type count(const key_type& x) const;
iterator lower_bound(const key_type& x);
const_iterator lower_bound(const key_type& x) const;
iterator upper_bound(const key_type& x);
const_iterator upper_bound(const key_type& x) const;
pair<iterator,iterator> equal_range(const key_type& x);
pair<const_iterator, const_iterator> equal_range(const key_type& x) const;
public:
// Debugging.
bool __rb_verify() const;
};
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline bool operator==(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,
const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {
return x.size() == y.size() && equal(x.begin(), x.end(), y.begin());
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline bool operator<(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x,
const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& y) {
return lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>&
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::
operator=(const rb_tree<Key, Value, KeyOfValue, Compare, Alloc>& x) {
if (this != &x) {
// Note that Key may be a constant type.
clear();
node_count = 0;
key_compare = x.key_compare;
if (x.root() == 0) {
root() = 0;
leftmost() = header;
rightmost() = header;
}
else {
root() = __copy(x.root(), header);
leftmost() = minimum(root());
rightmost() = maximum(root());
node_count = x.node_count;
}
}
return *this;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::
__insert(base_ptr x_, base_ptr y_, const Value& v) {
link_type x = (link_type) x_;
link_type y = (link_type) y_;
link_type z;
if (y == header || x != 0 || key_compare(KeyOfValue()(v), key(y))) {
z = create_node(v);
left(y) = z; // also makes leftmost() = z when y == header
if (y == header) {
root() = z;
rightmost() = z;
}
else if (y == leftmost())
leftmost() = z; // maintain leftmost() pointing to min node
}
else {
z = create_node(v);
right(y) = z;
if (y == rightmost())
rightmost() = z; // maintain rightmost() pointing to max node
}
parent(z) = y;
left(z) = 0;
right(z) = 0;
__rb_tree_rebalance(z, header->parent);
++node_count;
return iterator(z);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_equal(const Value& v)
{
link_type y = header;
link_type x = root();
while (x != 0) {
y = x;
x = key_compare(KeyOfValue()(v), key(x)) ? left(x) : right(x);
}
return __insert(x, y, v);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
pair<rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator, bool>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::insert_unique(const Value& v)
{
link_type y = header;
link_type x = root();
bool comp = true;
while (x != 0) {
y = x;
comp = key_compare(KeyOfValue()(v), key(x));
x = comp ? left(x) : right(x);
}
iterator j = iterator(y);
if (comp)
if (j == begin())
return pair<iterator,bool>(__insert(x, y, v), true);
else
--j;
if (key_compare(key(j.node), KeyOfValue()(v)))
return pair<iterator,bool>(__insert(x, y, v), true);
return pair<iterator,bool>(j, false);
}
template <class Key, class Val, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_unique(iterator position,
const Val& v) {
if (position.node == header->left) // begin()
if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))
return __insert(position.node, position.node, v);
// first argument just needs to be non-null
else
return insert_unique(v).first;
else if (position.node == header) // end()
if (key_compare(key(rightmost()), KeyOfValue()(v)))
return __insert(0, rightmost(), v);
else
return insert_unique(v).first;
else {
iterator before = position;
--before;
if (key_compare(key(before.node), KeyOfValue()(v))
&& key_compare(KeyOfValue()(v), key(position.node)))
if (right(before.node) == 0)
return __insert(0, before.node, v);
else
return __insert(position.node, position.node, v);
// first argument just needs to be non-null
else
return insert_unique(v).first;
}
}
template <class Key, class Val, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Val, KeyOfValue, Compare, Alloc>::insert_equal(iterator position,
const Val& v) {
if (position.node == header->left) // begin()
if (size() > 0 && key_compare(KeyOfValue()(v), key(position.node)))
return __insert(position.node, position.node, v);
// first argument just needs to be non-null
else
return insert_equal(v);
else if (position.node == header) // end()
if (!key_compare(KeyOfValue()(v), key(rightmost())))
return __insert(0, rightmost(), v);
else
return insert_equal(v);
else {
iterator before = position;
--before;
if (!key_compare(KeyOfValue()(v), key(before.node))
&& !key_compare(key(position.node), KeyOfValue()(v)))
if (right(before.node) == 0)
return __insert(0, before.node, v);
else
return __insert(position.node, position.node, v);
// first argument just needs to be non-null
else
return insert_equal(v);
}
}
#ifdef __STL_MEMBER_TEMPLATES
template <class K, class V, class KoV, class Cmp, class Al> template<class II>
void rb_tree<K, V, KoV, Cmp, Al>::insert_equal(II first, II last) {
for ( ; first != last; ++first)
insert_equal(*first);
}
template <class K, class V, class KoV, class Cmp, class Al> template<class II>
void rb_tree<K, V, KoV, Cmp, Al>::insert_unique(II first, II last) {
for ( ; first != last; ++first)
insert_unique(*first);
}
#else /* __STL_MEMBER_TEMPLATES */
template <class K, class V, class KoV, class Cmp, class Al>
void
rb_tree<K, V, KoV, Cmp, Al>::insert_equal(const V* first, const V* last) {
for ( ; first != last; ++first)
insert_equal(*first);
}
template <class K, class V, class KoV, class Cmp, class Al>
void
rb_tree<K, V, KoV, Cmp, Al>::insert_equal(const_iterator first,
const_iterator last) {
for ( ; first != last; ++first)
insert_equal(*first);
}
template <class K, class V, class KoV, class Cmp, class A>
void
rb_tree<K, V, KoV, Cmp, A>::insert_unique(const V* first, const V* last) {
for ( ; first != last; ++first)
insert_unique(*first);
}
template <class K, class V, class KoV, class Cmp, class A>
void
rb_tree<K, V, KoV, Cmp, A>::insert_unique(const_iterator first,
const_iterator last) {
for ( ; first != last; ++first)
insert_unique(*first);
}
#endif /* __STL_MEMBER_TEMPLATES */
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline void
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator position) {
link_type y = (link_type) __rb_tree_rebalance_for_erase(position.node,
header->parent,
header->left,
header->right);
destroy_node(y);
--node_count;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key& x) {
pair<iterator,iterator> p = equal_range(x);
size_type n = 0;
distance(p.first, p.second, n);
erase(p.first, p.second);
return n;
}
template <class K, class V, class KeyOfValue, class Compare, class Alloc>
rb_tree<K, V, KeyOfValue, Compare, Alloc>::link_type
rb_tree<K, V, KeyOfValue, Compare, Alloc>::__copy(link_type x, link_type p) {
// structural copy. x and p must be non-null.
link_type top = clone_node(x);
top->parent = p;
# ifdef __STL_USE_EXCEPTIONS
try {
# endif /* __STL_USE_EXCEPTIONS */
if (x->right)
top->right = __copy(right(x), top);
p = top;
x = left(x);
while (x != 0) {
link_type y = clone_node(x);
p->left = y;
y->parent = p;
if (x->right)
y->right = __copy(right(x), y);
p = y;
x = left(x);
}
# ifdef __STL_USE_EXCEPTIONS
}
catch(...) {
__erase(top);
throw;
}
# endif /* __STL_USE_EXCEPTIONS */
return top;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__erase(link_type x) {
// erase without rebalancing
while (x != 0) {
__erase(right(x));
link_type y = left(x);
destroy_node(x);
x = y;
}
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(iterator first,
iterator last) {
if (first == begin() && last == end())
clear();
else
while (first != last) erase(first++);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
void rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::erase(const Key* first,
const Key* last) {
while (first != last) erase(*first++);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) {
link_type y = header; // Last node which is not less than k.
link_type x = root(); // Current node.
while (x != 0)
if (!key_compare(key(x), k))
y = x, x = left(x);
else
x = right(x);
iterator j = iterator(y);
return (j == end() || key_compare(k, key(j.node))) ? end() : j;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::find(const Key& k) const {
link_type y = header; /* Last node which is not less than k. */
link_type x = root(); /* Current node. */
while (x != 0) {
if (!key_compare(key(x), k))
y = x, x = left(x);
else
x = right(x);
}
const_iterator j = const_iterator(y);
return (j == end() || key_compare(k, key(j.node))) ? end() : j;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::size_type
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::count(const Key& k) const {
pair<const_iterator, const_iterator> p = equal_range(k);
size_type n = 0;
distance(p.first, p.second, n);
return n;
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const Key& k) {
link_type y = header; /* Last node which is not less than k. */
link_type x = root(); /* Current node. */
while (x != 0)
if (!key_compare(key(x), k))
y = x, x = left(x);
else
x = right(x);
return iterator(y);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::lower_bound(const Key& k) const {
link_type y = header; /* Last node which is not less than k. */
link_type x = root(); /* Current node. */
while (x != 0)
if (!key_compare(key(x), k))
y = x, x = left(x);
else
x = right(x);
return const_iterator(y);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const Key& k) {
link_type y = header; /* Last node which is greater than k. */
link_type x = root(); /* Current node. */
while (x != 0)
if (key_compare(k, key(x)))
y = x, x = left(x);
else
x = right(x);
return iterator(y);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::upper_bound(const Key& k) const {
link_type y = header; /* Last node which is greater than k. */
link_type x = root(); /* Current node. */
while (x != 0)
if (key_compare(k, key(x)))
y = x, x = left(x);
else
x = right(x);
return const_iterator(y);
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline pair<rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator,
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::iterator>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::equal_range(const Key& k) {
return pair<iterator, iterator>(lower_bound(k), upper_bound(k));
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
inline pair<rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator,
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::const_iterator>
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::equal_range(const Key& k) const {
return pair<const_iterator,const_iterator>(lower_bound(k), upper_bound(k));
}
inline int __black_count(__rb_tree_node_base* node, __rb_tree_node_base* root)
{
if (node == 0)
return 0;
else {
int bc = node->color == __rb_tree_black ? 1 : 0;
if (node == root)
return bc;
else
return bc + __black_count(node->parent, root);
}
}
template <class Key, class Value, class KeyOfValue, class Compare, class Alloc>
bool
rb_tree<Key, Value, KeyOfValue, Compare, Alloc>::__rb_verify() const
{
if (node_count == 0 || begin() == end())
return node_count == 0 && begin() == end() &&
header->left == header && header->right == header;
int len = __black_count(leftmost(), root());
for (const_iterator it = begin(); it != end(); ++it) {
link_type x = (link_type) it.node;
link_type L = left(x);
link_type R = right(x);
if (x->color == __rb_tree_red)
if ((L && L->color == __rb_tree_red) ||
(R && R->color == __rb_tree_red))
return false;
if (L && key_compare(key(x), key(L)))
return false;
if (R && key_compare(key(R), key(x)))
return false;
if (!L && !R && __black_count(x, root()) != len)
return false;
}
if (leftmost() != __rb_tree_node_base::minimum(root()))
return false;
if (rightmost() != __rb_tree_node_base::maximum(root()))
return false;
return true;
}
#endif /* __SGI_STL_TREE_H */