blob: 22843aecc82184f889140776a07296fa0ad8b3b9 [file] [log] [blame]
/* Build expressions with type checking for C compiler.
Copyright (C) 1987, 88, 91-6, 1997 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* This file is part of the C front end.
It contains routines to build C expressions given their operands,
including computing the types of the result, C-specific error checks,
and some optimization.
There are also routines to build RETURN_STMT nodes and CASE_STMT nodes,
and to process initializations in declarations (since they work
like a strange sort of assignment). */
#include "config.h"
#include <stdio.h>
#include "tree.h"
#include "c-tree.h"
#include "flags.h"
#include "output.h"
/* Nonzero if we've already printed a "missing braces around initializer"
message within this initializer. */
static int missing_braces_mentioned;
extern char *index ();
extern char *rindex ();
static tree qualify_type PROTO((tree, tree));
static int comp_target_types PROTO((tree, tree));
static int function_types_compatible_p PROTO((tree, tree));
static int type_lists_compatible_p PROTO((tree, tree));
static int self_promoting_type_p PROTO((tree));
static tree decl_constant_value PROTO((tree));
static tree lookup_field PROTO((tree, tree, tree *));
static tree convert_arguments PROTO((tree, tree, tree, tree));
static tree pointer_int_sum PROTO((enum tree_code, tree, tree));
static tree pointer_diff PROTO((tree, tree));
static tree unary_complex_lvalue PROTO((enum tree_code, tree));
static void pedantic_lvalue_warning PROTO((enum tree_code));
static tree internal_build_compound_expr PROTO((tree, int));
static tree convert_for_assignment PROTO((tree, tree, char *, tree,
tree, int));
static void warn_for_assignment PROTO((char *, char *, tree, int));
static tree valid_compound_expr_initializer PROTO((tree, tree));
static void push_string PROTO((char *));
static void push_member_name PROTO((tree));
static void push_array_bounds PROTO((int));
static int spelling_length PROTO((void));
static char *print_spelling PROTO((char *));
static char *get_spelling PROTO((char *));
static void warning_init PROTO((char *, char *,
char *));
static tree digest_init PROTO((tree, tree, int, int));
static void check_init_type_bitfields PROTO((tree));
static void output_init_element PROTO((tree, tree, tree, int));
static void output_pending_init_elements PROTO((int));
/* Do `exp = require_complete_type (exp);' to make sure exp
does not have an incomplete type. (That includes void types.) */
tree
require_complete_type (value)
tree value;
{
tree type = TREE_TYPE (value);
/* First, detect a valid value with a complete type. */
if (TYPE_SIZE (type) != 0
&& type != void_type_node)
return value;
incomplete_type_error (value, type);
return error_mark_node;
}
/* Print an error message for invalid use of an incomplete type.
VALUE is the expression that was used (or 0 if that isn't known)
and TYPE is the type that was invalid. */
void
incomplete_type_error (value, type)
tree value;
tree type;
{
char *errmsg;
/* Avoid duplicate error message. */
if (TREE_CODE (type) == ERROR_MARK)
return;
if (value != 0 && (TREE_CODE (value) == VAR_DECL
|| TREE_CODE (value) == PARM_DECL))
error ("`%s' has an incomplete type",
IDENTIFIER_POINTER (DECL_NAME (value)));
else
{
retry:
/* We must print an error message. Be clever about what it says. */
switch (TREE_CODE (type))
{
case RECORD_TYPE:
errmsg = "invalid use of undefined type `struct %s'";
break;
case UNION_TYPE:
errmsg = "invalid use of undefined type `union %s'";
break;
case ENUMERAL_TYPE:
errmsg = "invalid use of undefined type `enum %s'";
break;
case VOID_TYPE:
error ("invalid use of void expression");
return;
case ARRAY_TYPE:
if (TYPE_DOMAIN (type))
{
type = TREE_TYPE (type);
goto retry;
}
error ("invalid use of array with unspecified bounds");
return;
default:
abort ();
}
if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
error (errmsg, IDENTIFIER_POINTER (TYPE_NAME (type)));
else
/* If this type has a typedef-name, the TYPE_NAME is a TYPE_DECL. */
error ("invalid use of incomplete typedef `%s'",
IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type))));
}
}
/* Return a variant of TYPE which has all the type qualifiers of LIKE
as well as those of TYPE. */
static tree
qualify_type (type, like)
tree type, like;
{
int constflag = TYPE_READONLY (type) || TYPE_READONLY (like);
int volflag = TYPE_VOLATILE (type) || TYPE_VOLATILE (like);
return c_build_type_variant (type, constflag, volflag);
}
/* Return the common type of two types.
We assume that comptypes has already been done and returned 1;
if that isn't so, this may crash. In particular, we assume that qualifiers
match.
This is the type for the result of most arithmetic operations
if the operands have the given two types. */
tree
common_type (t1, t2)
tree t1, t2;
{
register enum tree_code code1;
register enum tree_code code2;
tree attributes;
/* Save time if the two types are the same. */
if (t1 == t2) return t1;
/* If one type is nonsense, use the other. */
if (t1 == error_mark_node)
return t2;
if (t2 == error_mark_node)
return t1;
/* Merge the attributes */
attributes = merge_attributes (TYPE_ATTRIBUTES (t1), TYPE_ATTRIBUTES (t2));
/* Treat an enum type as the unsigned integer type of the same width. */
if (TREE_CODE (t1) == ENUMERAL_TYPE)
t1 = type_for_size (TYPE_PRECISION (t1), 1);
if (TREE_CODE (t2) == ENUMERAL_TYPE)
t2 = type_for_size (TYPE_PRECISION (t2), 1);
code1 = TREE_CODE (t1);
code2 = TREE_CODE (t2);
/* If one type is complex, form the common type of the non-complex
components, then make that complex. Use T1 or T2 if it is the
required type. */
if (code1 == COMPLEX_TYPE || code2 == COMPLEX_TYPE)
{
tree subtype1 = code1 == COMPLEX_TYPE ? TREE_TYPE (t1) : t1;
tree subtype2 = code2 == COMPLEX_TYPE ? TREE_TYPE (t2) : t2;
tree subtype = common_type (subtype1, subtype2);
if (code1 == COMPLEX_TYPE && TREE_TYPE (t1) == subtype)
return build_type_attribute_variant (t1, attributes);
else if (code2 == COMPLEX_TYPE && TREE_TYPE (t2) == subtype)
return build_type_attribute_variant (t2, attributes);
else
return build_type_attribute_variant (build_complex_type (subtype),
attributes);
}
switch (code1)
{
case INTEGER_TYPE:
case REAL_TYPE:
/* If only one is real, use it as the result. */
if (code1 == REAL_TYPE && code2 != REAL_TYPE)
return build_type_attribute_variant (t1, attributes);
if (code2 == REAL_TYPE && code1 != REAL_TYPE)
return build_type_attribute_variant (t2, attributes);
/* Both real or both integers; use the one with greater precision. */
if (TYPE_PRECISION (t1) > TYPE_PRECISION (t2))
return build_type_attribute_variant (t1, attributes);
else if (TYPE_PRECISION (t2) > TYPE_PRECISION (t1))
return build_type_attribute_variant (t2, attributes);
/* Same precision. Prefer longs to ints even when same size. */
if (TYPE_MAIN_VARIANT (t1) == long_unsigned_type_node
|| TYPE_MAIN_VARIANT (t2) == long_unsigned_type_node)
return build_type_attribute_variant (long_unsigned_type_node,
attributes);
if (TYPE_MAIN_VARIANT (t1) == long_integer_type_node
|| TYPE_MAIN_VARIANT (t2) == long_integer_type_node)
{
/* But preserve unsignedness from the other type,
since long cannot hold all the values of an unsigned int. */
if (TREE_UNSIGNED (t1) || TREE_UNSIGNED (t2))
t1 = long_unsigned_type_node;
else
t1 = long_integer_type_node;
return build_type_attribute_variant (t1, attributes);
}
/* Otherwise prefer the unsigned one. */
if (TREE_UNSIGNED (t1))
return build_type_attribute_variant (t1, attributes);
else
return build_type_attribute_variant (t2, attributes);
case POINTER_TYPE:
/* For two pointers, do this recursively on the target type,
and combine the qualifiers of the two types' targets. */
/* This code was turned off; I don't know why.
But ANSI C specifies doing this with the qualifiers.
So I turned it on again. */
{
tree target = common_type (TYPE_MAIN_VARIANT (TREE_TYPE (t1)),
TYPE_MAIN_VARIANT (TREE_TYPE (t2)));
int constp
= TYPE_READONLY (TREE_TYPE (t1)) || TYPE_READONLY (TREE_TYPE (t2));
int volatilep
= TYPE_VOLATILE (TREE_TYPE (t1)) || TYPE_VOLATILE (TREE_TYPE (t2));
t1 = build_pointer_type (c_build_type_variant (target, constp,
volatilep));
return build_type_attribute_variant (t1, attributes);
}
#if 0
t1 = build_pointer_type (common_type (TREE_TYPE (t1), TREE_TYPE (t2)));
return build_type_attribute_variant (t1, attributes);
#endif
case ARRAY_TYPE:
{
tree elt = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
/* Save space: see if the result is identical to one of the args. */
if (elt == TREE_TYPE (t1) && TYPE_DOMAIN (t1))
return build_type_attribute_variant (t1, attributes);
if (elt == TREE_TYPE (t2) && TYPE_DOMAIN (t2))
return build_type_attribute_variant (t2, attributes);
/* Merge the element types, and have a size if either arg has one. */
t1 = build_array_type (elt, TYPE_DOMAIN (TYPE_DOMAIN (t1) ? t1 : t2));
return build_type_attribute_variant (t1, attributes);
}
case FUNCTION_TYPE:
/* Function types: prefer the one that specified arg types.
If both do, merge the arg types. Also merge the return types. */
{
tree valtype = common_type (TREE_TYPE (t1), TREE_TYPE (t2));
tree p1 = TYPE_ARG_TYPES (t1);
tree p2 = TYPE_ARG_TYPES (t2);
int len;
tree newargs, n;
int i;
/* Save space: see if the result is identical to one of the args. */
if (valtype == TREE_TYPE (t1) && ! TYPE_ARG_TYPES (t2))
return build_type_attribute_variant (t1, attributes);
if (valtype == TREE_TYPE (t2) && ! TYPE_ARG_TYPES (t1))
return build_type_attribute_variant (t2, attributes);
/* Simple way if one arg fails to specify argument types. */
if (TYPE_ARG_TYPES (t1) == 0)
{
t1 = build_function_type (valtype, TYPE_ARG_TYPES (t2));
return build_type_attribute_variant (t1, attributes);
}
if (TYPE_ARG_TYPES (t2) == 0)
{
t1 = build_function_type (valtype, TYPE_ARG_TYPES (t1));
return build_type_attribute_variant (t1, attributes);
}
/* If both args specify argument types, we must merge the two
lists, argument by argument. */
len = list_length (p1);
newargs = 0;
for (i = 0; i < len; i++)
newargs = tree_cons (NULL_TREE, NULL_TREE, newargs);
n = newargs;
for (; p1;
p1 = TREE_CHAIN (p1), p2 = TREE_CHAIN (p2), n = TREE_CHAIN (n))
{
/* A null type means arg type is not specified.
Take whatever the other function type has. */
if (TREE_VALUE (p1) == 0)
{
TREE_VALUE (n) = TREE_VALUE (p2);
goto parm_done;
}
if (TREE_VALUE (p2) == 0)
{
TREE_VALUE (n) = TREE_VALUE (p1);
goto parm_done;
}
/* Given wait (union {union wait *u; int *i} *)
and wait (union wait *),
prefer union wait * as type of parm. */
if (TREE_CODE (TREE_VALUE (p1)) == UNION_TYPE
&& TREE_VALUE (p1) != TREE_VALUE (p2))
{
tree memb;
for (memb = TYPE_FIELDS (TREE_VALUE (p1));
memb; memb = TREE_CHAIN (memb))
if (comptypes (TREE_TYPE (memb), TREE_VALUE (p2)))
{
TREE_VALUE (n) = TREE_VALUE (p2);
if (pedantic)
pedwarn ("function types not truly compatible in ANSI C");
goto parm_done;
}
}
if (TREE_CODE (TREE_VALUE (p2)) == UNION_TYPE
&& TREE_VALUE (p2) != TREE_VALUE (p1))
{
tree memb;
for (memb = TYPE_FIELDS (TREE_VALUE (p2));
memb; memb = TREE_CHAIN (memb))
if (comptypes (TREE_TYPE (memb), TREE_VALUE (p1)))
{
TREE_VALUE (n) = TREE_VALUE (p1);
if (pedantic)
pedwarn ("function types not truly compatible in ANSI C");
goto parm_done;
}
}
TREE_VALUE (n) = common_type (TREE_VALUE (p1), TREE_VALUE (p2));
parm_done: ;
}
t1 = build_function_type (valtype, newargs);
/* ... falls through ... */
}
default:
return build_type_attribute_variant (t1, attributes);
}
}
/* Return 1 if TYPE1 and TYPE2 are compatible types for assignment
or various other operations. Return 2 if they are compatible
but a warning may be needed if you use them together. */
int
comptypes (type1, type2)
tree type1, type2;
{
register tree t1 = type1;
register tree t2 = type2;
int attrval, val;
/* Suppress errors caused by previously reported errors. */
if (t1 == t2 || TREE_CODE (t1) == ERROR_MARK || TREE_CODE (t2) == ERROR_MARK)
return 1;
/* Treat an enum type as the integer type of the same width and
signedness. */
if (TREE_CODE (t1) == ENUMERAL_TYPE)
t1 = type_for_size (TYPE_PRECISION (t1), TREE_UNSIGNED (t1));
if (TREE_CODE (t2) == ENUMERAL_TYPE)
t2 = type_for_size (TYPE_PRECISION (t2), TREE_UNSIGNED (t2));
if (t1 == t2)
return 1;
/* Different classes of types can't be compatible. */
if (TREE_CODE (t1) != TREE_CODE (t2)) return 0;
/* Qualifiers must match. */
if (TYPE_READONLY (t1) != TYPE_READONLY (t2))
return 0;
if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
return 0;
/* Allow for two different type nodes which have essentially the same
definition. Note that we already checked for equality of the type
type qualifiers (just above). */
if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2))
return 1;
#ifndef COMP_TYPE_ATTRIBUTES
#define COMP_TYPE_ATTRIBUTES(t1,t2) 1
#endif
/* 1 if no need for warning yet, 2 if warning cause has been seen. */
if (! (attrval = COMP_TYPE_ATTRIBUTES (t1, t2)))
return 0;
/* 1 if no need for warning yet, 2 if warning cause has been seen. */
val = 0;
switch (TREE_CODE (t1))
{
case POINTER_TYPE:
val = (TREE_TYPE (t1) == TREE_TYPE (t2)
? 1 : comptypes (TREE_TYPE (t1), TREE_TYPE (t2)));
break;
case FUNCTION_TYPE:
val = function_types_compatible_p (t1, t2);
break;
case ARRAY_TYPE:
{
tree d1 = TYPE_DOMAIN (t1);
tree d2 = TYPE_DOMAIN (t2);
val = 1;
/* Target types must match incl. qualifiers. */
if (TREE_TYPE (t1) != TREE_TYPE (t2)
&& 0 == (val = comptypes (TREE_TYPE (t1), TREE_TYPE (t2))))
return 0;
/* Sizes must match unless one is missing or variable. */
if (d1 == 0 || d2 == 0 || d1 == d2
|| TREE_CODE (TYPE_MIN_VALUE (d1)) != INTEGER_CST
|| TREE_CODE (TYPE_MIN_VALUE (d2)) != INTEGER_CST
|| TREE_CODE (TYPE_MAX_VALUE (d1)) != INTEGER_CST
|| TREE_CODE (TYPE_MAX_VALUE (d2)) != INTEGER_CST)
break;
if (! ((TREE_INT_CST_LOW (TYPE_MIN_VALUE (d1))
== TREE_INT_CST_LOW (TYPE_MIN_VALUE (d2)))
&& (TREE_INT_CST_HIGH (TYPE_MIN_VALUE (d1))
== TREE_INT_CST_HIGH (TYPE_MIN_VALUE (d2)))
&& (TREE_INT_CST_LOW (TYPE_MAX_VALUE (d1))
== TREE_INT_CST_LOW (TYPE_MAX_VALUE (d2)))
&& (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (d1))
== TREE_INT_CST_HIGH (TYPE_MAX_VALUE (d2)))))
val = 0;
break;
}
case RECORD_TYPE:
if (maybe_objc_comptypes (t1, t2, 0) == 1)
val = 1;
break;
}
return attrval == 2 && val == 1 ? 2 : val;
}
/* Return 1 if TTL and TTR are pointers to types that are equivalent,
ignoring their qualifiers. */
static int
comp_target_types (ttl, ttr)
tree ttl, ttr;
{
int val;
/* Give maybe_objc_comptypes a crack at letting these types through. */
if (val = maybe_objc_comptypes (ttl, ttr, 1) >= 0)
return val;
val = comptypes (TYPE_MAIN_VARIANT (TREE_TYPE (ttl)),
TYPE_MAIN_VARIANT (TREE_TYPE (ttr)));
if (val == 2 && pedantic)
pedwarn ("types are not quite compatible");
return val;
}
/* Subroutines of `comptypes'. */
/* Return 1 if two function types F1 and F2 are compatible.
If either type specifies no argument types,
the other must specify a fixed number of self-promoting arg types.
Otherwise, if one type specifies only the number of arguments,
the other must specify that number of self-promoting arg types.
Otherwise, the argument types must match. */
static int
function_types_compatible_p (f1, f2)
tree f1, f2;
{
tree args1, args2;
/* 1 if no need for warning yet, 2 if warning cause has been seen. */
int val = 1;
int val1;
if (!(TREE_TYPE (f1) == TREE_TYPE (f2)
|| (val = comptypes (TREE_TYPE (f1), TREE_TYPE (f2)))))
return 0;
args1 = TYPE_ARG_TYPES (f1);
args2 = TYPE_ARG_TYPES (f2);
/* An unspecified parmlist matches any specified parmlist
whose argument types don't need default promotions. */
if (args1 == 0)
{
if (!self_promoting_args_p (args2))
return 0;
/* If one of these types comes from a non-prototype fn definition,
compare that with the other type's arglist.
If they don't match, ask for a warning (but no error). */
if (TYPE_ACTUAL_ARG_TYPES (f1)
&& 1 != type_lists_compatible_p (args2, TYPE_ACTUAL_ARG_TYPES (f1)))
val = 2;
return val;
}
if (args2 == 0)
{
if (!self_promoting_args_p (args1))
return 0;
if (TYPE_ACTUAL_ARG_TYPES (f2)
&& 1 != type_lists_compatible_p (args1, TYPE_ACTUAL_ARG_TYPES (f2)))
val = 2;
return val;
}
/* Both types have argument lists: compare them and propagate results. */
val1 = type_lists_compatible_p (args1, args2);
return val1 != 1 ? val1 : val;
}
/* Check two lists of types for compatibility,
returning 0 for incompatible, 1 for compatible,
or 2 for compatible with warning. */
static int
type_lists_compatible_p (args1, args2)
tree args1, args2;
{
/* 1 if no need for warning yet, 2 if warning cause has been seen. */
int val = 1;
int newval = 0;
while (1)
{
if (args1 == 0 && args2 == 0)
return val;
/* If one list is shorter than the other,
they fail to match. */
if (args1 == 0 || args2 == 0)
return 0;
/* A null pointer instead of a type
means there is supposed to be an argument
but nothing is specified about what type it has.
So match anything that self-promotes. */
if (TREE_VALUE (args1) == 0)
{
if (! self_promoting_type_p (TREE_VALUE (args2)))
return 0;
}
else if (TREE_VALUE (args2) == 0)
{
if (! self_promoting_type_p (TREE_VALUE (args1)))
return 0;
}
else if (! (newval = comptypes (TREE_VALUE (args1), TREE_VALUE (args2))))
{
/* Allow wait (union {union wait *u; int *i} *)
and wait (union wait *) to be compatible. */
if (TREE_CODE (TREE_VALUE (args1)) == UNION_TYPE
&& (TYPE_NAME (TREE_VALUE (args1)) == 0
|| TYPE_TRANSPARENT_UNION (TREE_VALUE (args1)))
&& TREE_CODE (TYPE_SIZE (TREE_VALUE (args1))) == INTEGER_CST
&& tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args1)),
TYPE_SIZE (TREE_VALUE (args2))))
{
tree memb;
for (memb = TYPE_FIELDS (TREE_VALUE (args1));
memb; memb = TREE_CHAIN (memb))
if (comptypes (TREE_TYPE (memb), TREE_VALUE (args2)))
break;
if (memb == 0)
return 0;
}
else if (TREE_CODE (TREE_VALUE (args2)) == UNION_TYPE
&& (TYPE_NAME (TREE_VALUE (args2)) == 0
|| TYPE_TRANSPARENT_UNION (TREE_VALUE (args2)))
&& TREE_CODE (TYPE_SIZE (TREE_VALUE (args2))) == INTEGER_CST
&& tree_int_cst_equal (TYPE_SIZE (TREE_VALUE (args2)),
TYPE_SIZE (TREE_VALUE (args1))))
{
tree memb;
for (memb = TYPE_FIELDS (TREE_VALUE (args2));
memb; memb = TREE_CHAIN (memb))
if (comptypes (TREE_TYPE (memb), TREE_VALUE (args1)))
break;
if (memb == 0)
return 0;
}
else
return 0;
}
/* comptypes said ok, but record if it said to warn. */
if (newval > val)
val = newval;
args1 = TREE_CHAIN (args1);
args2 = TREE_CHAIN (args2);
}
}
/* Return 1 if PARMS specifies a fixed number of parameters
and none of their types is affected by default promotions. */
int
self_promoting_args_p (parms)
tree parms;
{
register tree t;
for (t = parms; t; t = TREE_CHAIN (t))
{
register tree type = TREE_VALUE (t);
if (TREE_CHAIN (t) == 0 && type != void_type_node)
return 0;
if (type == 0)
return 0;
if (TYPE_MAIN_VARIANT (type) == float_type_node)
return 0;
if (C_PROMOTING_INTEGER_TYPE_P (type))
return 0;
}
return 1;
}
/* Return 1 if TYPE is not affected by default promotions. */
static int
self_promoting_type_p (type)
tree type;
{
if (TYPE_MAIN_VARIANT (type) == float_type_node)
return 0;
if (C_PROMOTING_INTEGER_TYPE_P (type))
return 0;
return 1;
}
/* Return an unsigned type the same as TYPE in other respects. */
tree
unsigned_type (type)
tree type;
{
tree type1 = TYPE_MAIN_VARIANT (type);
if (type1 == signed_char_type_node || type1 == char_type_node)
return unsigned_char_type_node;
if (type1 == integer_type_node)
return unsigned_type_node;
if (type1 == short_integer_type_node)
return short_unsigned_type_node;
if (type1 == long_integer_type_node)
return long_unsigned_type_node;
if (type1 == long_long_integer_type_node)
return long_long_unsigned_type_node;
if (type1 == intDI_type_node)
return unsigned_intDI_type_node;
if (type1 == intSI_type_node)
return unsigned_intSI_type_node;
if (type1 == intHI_type_node)
return unsigned_intHI_type_node;
if (type1 == intQI_type_node)
return unsigned_intQI_type_node;
return signed_or_unsigned_type (1, type);
}
/* Return a signed type the same as TYPE in other respects. */
tree
signed_type (type)
tree type;
{
tree type1 = TYPE_MAIN_VARIANT (type);
if (type1 == unsigned_char_type_node || type1 == char_type_node)
return signed_char_type_node;
if (type1 == unsigned_type_node)
return integer_type_node;
if (type1 == short_unsigned_type_node)
return short_integer_type_node;
if (type1 == long_unsigned_type_node)
return long_integer_type_node;
if (type1 == long_long_unsigned_type_node)
return long_long_integer_type_node;
if (type1 == unsigned_intDI_type_node)
return intDI_type_node;
if (type1 == unsigned_intSI_type_node)
return intSI_type_node;
if (type1 == unsigned_intHI_type_node)
return intHI_type_node;
if (type1 == unsigned_intQI_type_node)
return intQI_type_node;
return signed_or_unsigned_type (0, type);
}
/* Return a type the same as TYPE except unsigned or
signed according to UNSIGNEDP. */
tree
signed_or_unsigned_type (unsignedp, type)
int unsignedp;
tree type;
{
if (! INTEGRAL_TYPE_P (type)
|| TREE_UNSIGNED (type) == unsignedp)
return type;
if (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node))
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
if (TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node))
return unsignedp ? unsigned_type_node : integer_type_node;
if (TYPE_PRECISION (type) == TYPE_PRECISION (short_integer_type_node))
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
if (TYPE_PRECISION (type) == TYPE_PRECISION (long_integer_type_node))
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
if (TYPE_PRECISION (type) == TYPE_PRECISION (long_long_integer_type_node))
return (unsignedp ? long_long_unsigned_type_node
: long_long_integer_type_node);
return type;
}
/* Compute the value of the `sizeof' operator. */
tree
c_sizeof (type)
tree type;
{
enum tree_code code = TREE_CODE (type);
tree t;
if (code == FUNCTION_TYPE)
{
if (pedantic || warn_pointer_arith)
pedwarn ("sizeof applied to a function type");
return size_int (1);
}
if (code == VOID_TYPE)
{
if (pedantic || warn_pointer_arith)
pedwarn ("sizeof applied to a void type");
return size_int (1);
}
if (code == ERROR_MARK)
return size_int (1);
if (TYPE_SIZE (type) == 0)
{
error ("sizeof applied to an incomplete type");
return size_int (0);
}
/* Convert in case a char is more than one unit. */
t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
size_int (TYPE_PRECISION (char_type_node)));
/* size_binop does not put the constant in range, so do it now. */
if (TREE_CODE (t) == INTEGER_CST && force_fit_type (t, 0))
TREE_CONSTANT_OVERFLOW (t) = TREE_OVERFLOW (t) = 1;
return t;
}
tree
c_sizeof_nowarn (type)
tree type;
{
enum tree_code code = TREE_CODE (type);
tree t;
if (code == FUNCTION_TYPE
|| code == VOID_TYPE
|| code == ERROR_MARK)
return size_int (1);
if (TYPE_SIZE (type) == 0)
return size_int (0);
/* Convert in case a char is more than one unit. */
t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
size_int (TYPE_PRECISION (char_type_node)));
force_fit_type (t, 0);
return t;
}
/* Compute the size to increment a pointer by. */
tree
c_size_in_bytes (type)
tree type;
{
enum tree_code code = TREE_CODE (type);
tree t;
if (code == FUNCTION_TYPE)
return size_int (1);
if (code == VOID_TYPE)
return size_int (1);
if (code == ERROR_MARK)
return size_int (1);
if (TYPE_SIZE (type) == 0)
{
error ("arithmetic on pointer to an incomplete type");
return size_int (1);
}
/* Convert in case a char is more than one unit. */
t = size_binop (CEIL_DIV_EXPR, TYPE_SIZE (type),
size_int (BITS_PER_UNIT));
force_fit_type (t, 0);
return t;
}
/* Implement the __alignof keyword: Return the minimum required
alignment of TYPE, measured in bytes. */
tree
c_alignof (type)
tree type;
{
enum tree_code code = TREE_CODE (type);
if (code == FUNCTION_TYPE)
return size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
if (code == VOID_TYPE || code == ERROR_MARK)
return size_int (1);
return size_int (TYPE_ALIGN (type) / BITS_PER_UNIT);
}
/* Implement the __alignof keyword: Return the minimum required
alignment of EXPR, measured in bytes. For VAR_DECL's and
FIELD_DECL's return DECL_ALIGN (which can be set from an
"aligned" __attribute__ specification). */
tree
c_alignof_expr (expr)
tree expr;
{
if (TREE_CODE (expr) == VAR_DECL)
return size_int (DECL_ALIGN (expr) / BITS_PER_UNIT);
if (TREE_CODE (expr) == COMPONENT_REF
&& DECL_C_BIT_FIELD (TREE_OPERAND (expr, 1)))
{
error ("`__alignof' applied to a bit-field");
return size_int (1);
}
else if (TREE_CODE (expr) == COMPONENT_REF
&& TREE_CODE (TREE_OPERAND (expr, 1)) == FIELD_DECL)
return size_int (DECL_ALIGN (TREE_OPERAND (expr, 1)) / BITS_PER_UNIT);
if (TREE_CODE (expr) == INDIRECT_REF)
{
tree t = TREE_OPERAND (expr, 0);
tree best = t;
int bestalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
while (TREE_CODE (t) == NOP_EXPR
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (t, 0))) == POINTER_TYPE)
{
int thisalign;
t = TREE_OPERAND (t, 0);
thisalign = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (t)));
if (thisalign > bestalign)
best = t, bestalign = thisalign;
}
return c_alignof (TREE_TYPE (TREE_TYPE (best)));
}
else
return c_alignof (TREE_TYPE (expr));
}
/* Return either DECL or its known constant value (if it has one). */
static tree
decl_constant_value (decl)
tree decl;
{
if (/* Don't change a variable array bound or initial value to a constant
in a place where a variable is invalid. */
current_function_decl != 0
&& ! pedantic
&& ! TREE_THIS_VOLATILE (decl)
&& TREE_READONLY (decl) && ! ITERATOR_P (decl)
&& DECL_INITIAL (decl) != 0
&& TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK
/* This is invalid if initial value is not constant.
If it has either a function call, a memory reference,
or a variable, then re-evaluating it could give different results. */
&& TREE_CONSTANT (DECL_INITIAL (decl))
/* Check for cases where this is sub-optimal, even though valid. */
&& TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR
&& DECL_MODE (decl) != BLKmode)
return DECL_INITIAL (decl);
return decl;
}
/* Perform default promotions for C data used in expressions.
Arrays and functions are converted to pointers;
enumeral types or short or char, to int.
In addition, manifest constants symbols are replaced by their values. */
tree
default_conversion (exp)
tree exp;
{
register tree type = TREE_TYPE (exp);
register enum tree_code code = TREE_CODE (type);
/* Constants can be used directly unless they're not loadable. */
if (TREE_CODE (exp) == CONST_DECL)
exp = DECL_INITIAL (exp);
/* Replace a nonvolatile const static variable with its value unless
it is an array, in which case we must be sure that taking the
address of the array produces consistent results. */
else if (optimize && TREE_CODE (exp) == VAR_DECL && code != ARRAY_TYPE)
{
exp = decl_constant_value (exp);
type = TREE_TYPE (exp);
}
/* Strip NON_LVALUE_EXPRs and no-op conversions, since we aren't using as
an lvalue. */
/* Do not use STRIP_NOPS here! It will remove conversions from pointer
to integer and cause infinite recursion. */
while (TREE_CODE (exp) == NON_LVALUE_EXPR
|| (TREE_CODE (exp) == NOP_EXPR
&& TREE_TYPE (TREE_OPERAND (exp, 0)) == TREE_TYPE (exp)))
exp = TREE_OPERAND (exp, 0);
/* Normally convert enums to int,
but convert wide enums to something wider. */
if (code == ENUMERAL_TYPE)
{
type = type_for_size (MAX (TYPE_PRECISION (type),
TYPE_PRECISION (integer_type_node)),
((flag_traditional
|| TYPE_PRECISION (type) >= TYPE_PRECISION (integer_type_node))
&& TREE_UNSIGNED (type)));
return convert (type, exp);
}
if (TREE_CODE (exp) == COMPONENT_REF
&& DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
{
tree width = DECL_SIZE (TREE_OPERAND (exp, 1));
HOST_WIDE_INT low = TREE_INT_CST_LOW (width);
/* If it's thinner than an int, promote it like a
C_PROMOTING_INTEGER_TYPE_P, otherwise leave it alone. */
if (low < TYPE_PRECISION (integer_type_node))
{
if (flag_traditional && TREE_UNSIGNED (type))
return convert (unsigned_type_node, exp);
else
return convert (integer_type_node, exp);
}
}
if (C_PROMOTING_INTEGER_TYPE_P (type))
{
/* Traditionally, unsignedness is preserved in default promotions.
Also preserve unsignedness if not really getting any wider. */
if (TREE_UNSIGNED (type)
&& (flag_traditional
|| TYPE_PRECISION (type) == TYPE_PRECISION (integer_type_node)))
return convert (unsigned_type_node, exp);
return convert (integer_type_node, exp);
}
if (flag_traditional && !flag_allow_single_precision
&& TYPE_MAIN_VARIANT (type) == float_type_node)
return convert (double_type_node, exp);
if (code == VOID_TYPE)
{
error ("void value not ignored as it ought to be");
return error_mark_node;
}
if (code == FUNCTION_TYPE)
{
return build_unary_op (ADDR_EXPR, exp, 0);
}
if (code == ARRAY_TYPE)
{
register tree adr;
tree restype = TREE_TYPE (type);
tree ptrtype;
int constp = 0;
int volatilep = 0;
if (TREE_CODE_CLASS (TREE_CODE (exp)) == 'r'
|| TREE_CODE_CLASS (TREE_CODE (exp)) == 'd')
{
constp = TREE_READONLY (exp);
volatilep = TREE_THIS_VOLATILE (exp);
}
if (TYPE_READONLY (type) || TYPE_VOLATILE (type)
|| constp || volatilep)
restype = c_build_type_variant (restype,
TYPE_READONLY (type) || constp,
TYPE_VOLATILE (type) || volatilep);
if (TREE_CODE (exp) == INDIRECT_REF)
return convert (TYPE_POINTER_TO (restype),
TREE_OPERAND (exp, 0));
if (TREE_CODE (exp) == COMPOUND_EXPR)
{
tree op1 = default_conversion (TREE_OPERAND (exp, 1));
return build (COMPOUND_EXPR, TREE_TYPE (op1),
TREE_OPERAND (exp, 0), op1);
}
if (! lvalue_p (exp)
&& ! (TREE_CODE (exp) == CONSTRUCTOR && TREE_STATIC (exp)))
{
error ("invalid use of non-lvalue array");
return error_mark_node;
}
ptrtype = build_pointer_type (restype);
if (TREE_CODE (exp) == VAR_DECL)
{
/* ??? This is not really quite correct
in that the type of the operand of ADDR_EXPR
is not the target type of the type of the ADDR_EXPR itself.
Question is, can this lossage be avoided? */
adr = build1 (ADDR_EXPR, ptrtype, exp);
if (mark_addressable (exp) == 0)
return error_mark_node;
TREE_CONSTANT (adr) = staticp (exp);
TREE_SIDE_EFFECTS (adr) = 0; /* Default would be, same as EXP. */
return adr;
}
/* This way is better for a COMPONENT_REF since it can
simplify the offset for a component. */
adr = build_unary_op (ADDR_EXPR, exp, 1);
return convert (ptrtype, adr);
}
return exp;
}
/* Look up component name in the structure type definition.
If this component name is found indirectly within an anonymous union,
store in *INDIRECT the component which directly contains
that anonymous union. Otherwise, set *INDIRECT to 0. */
static tree
lookup_field (type, component, indirect)
tree type, component;
tree *indirect;
{
tree field;
/* If TYPE_LANG_SPECIFIC is set, then it is a sorted array of pointers
to the field elements. Use a binary search on this array to quickly
find the element. Otherwise, do a linear search. TYPE_LANG_SPECIFIC
will always be set for structures which have many elements. */
if (TYPE_LANG_SPECIFIC (type))
{
int bot, top, half;
tree *field_array = &TYPE_LANG_SPECIFIC (type)->elts[0];
field = TYPE_FIELDS (type);
bot = 0;
top = TYPE_LANG_SPECIFIC (type)->len;
while (top - bot > 1)
{
half = (top - bot + 1) >> 1;
field = field_array[bot+half];
if (DECL_NAME (field) == NULL_TREE)
{
/* Step through all anon unions in linear fashion. */
while (DECL_NAME (field_array[bot]) == NULL_TREE)
{
tree anon = 0, junk;
field = field_array[bot++];
if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
|| TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
anon = lookup_field (TREE_TYPE (field), component, &junk);
if (anon != NULL_TREE)
{
*indirect = field;
return anon;
}
}
/* Entire record is only anon unions. */
if (bot > top)
return NULL_TREE;
/* Restart the binary search, with new lower bound. */
continue;
}
if (DECL_NAME (field) == component)
break;
if (DECL_NAME (field) < component)
bot += half;
else
top = bot + half;
}
if (DECL_NAME (field_array[bot]) == component)
field = field_array[bot];
else if (DECL_NAME (field) != component)
field = 0;
}
else
{
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
{
if (DECL_NAME (field) == NULL_TREE)
{
tree junk;
tree anon = 0;
if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE
|| TREE_CODE (TREE_TYPE (field)) == UNION_TYPE)
anon = lookup_field (TREE_TYPE (field), component, &junk);
if (anon != NULL_TREE)
{
*indirect = field;
return anon;
}
}
if (DECL_NAME (field) == component)
break;
}
}
*indirect = NULL_TREE;
return field;
}
/* Make an expression to refer to the COMPONENT field of
structure or union value DATUM. COMPONENT is an IDENTIFIER_NODE. */
tree
build_component_ref (datum, component)
tree datum, component;
{
register tree type = TREE_TYPE (datum);
register enum tree_code code = TREE_CODE (type);
register tree field = NULL;
register tree ref;
/* If DATUM is a COMPOUND_EXPR or COND_EXPR, move our reference inside it
unless we are not to support things not strictly ANSI. */
switch (TREE_CODE (datum))
{
case COMPOUND_EXPR:
{
tree value = build_component_ref (TREE_OPERAND (datum, 1), component);
return build (COMPOUND_EXPR, TREE_TYPE (value),
TREE_OPERAND (datum, 0), value);
}
case COND_EXPR:
return build_conditional_expr
(TREE_OPERAND (datum, 0),
build_component_ref (TREE_OPERAND (datum, 1), component),
build_component_ref (TREE_OPERAND (datum, 2), component));
}
/* See if there is a field or component with name COMPONENT. */
if (code == RECORD_TYPE || code == UNION_TYPE)
{
tree indirect = 0;
if (TYPE_SIZE (type) == 0)
{
incomplete_type_error (NULL_TREE, type);
return error_mark_node;
}
field = lookup_field (type, component, &indirect);
if (!field)
{
error (code == RECORD_TYPE
? "structure has no member named `%s'"
: "union has no member named `%s'",
IDENTIFIER_POINTER (component));
return error_mark_node;
}
if (TREE_TYPE (field) == error_mark_node)
return error_mark_node;
/* If FIELD was found buried within an anonymous union,
make one COMPONENT_REF to get that anonymous union,
then fall thru to make a second COMPONENT_REF to get FIELD. */
if (indirect != 0)
{
ref = build (COMPONENT_REF, TREE_TYPE (indirect), datum, indirect);
if (TREE_READONLY (datum) || TREE_READONLY (indirect))
TREE_READONLY (ref) = 1;
if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (indirect))
TREE_THIS_VOLATILE (ref) = 1;
datum = ref;
}
ref = build (COMPONENT_REF, TREE_TYPE (field), datum, field);
if (TREE_READONLY (datum) || TREE_READONLY (field))
TREE_READONLY (ref) = 1;
if (TREE_THIS_VOLATILE (datum) || TREE_THIS_VOLATILE (field))
TREE_THIS_VOLATILE (ref) = 1;
return ref;
}
else if (code != ERROR_MARK)
error ("request for member `%s' in something not a structure or union",
IDENTIFIER_POINTER (component));
return error_mark_node;
}
/* Given an expression PTR for a pointer, return an expression
for the value pointed to.
ERRORSTRING is the name of the operator to appear in error messages. */
tree
build_indirect_ref (ptr, errorstring)
tree ptr;
char *errorstring;
{
register tree pointer = default_conversion (ptr);
register tree type = TREE_TYPE (pointer);
if (TREE_CODE (type) == POINTER_TYPE)
{
if (TREE_CODE (pointer) == ADDR_EXPR
&& !flag_volatile
&& (TREE_TYPE (TREE_OPERAND (pointer, 0))
== TREE_TYPE (type)))
return TREE_OPERAND (pointer, 0);
else
{
tree t = TREE_TYPE (type);
register tree ref = build1 (INDIRECT_REF,
TYPE_MAIN_VARIANT (t), pointer);
if (TYPE_SIZE (t) == 0 && TREE_CODE (t) != ARRAY_TYPE)
{
error ("dereferencing pointer to incomplete type");
return error_mark_node;
}
if (TREE_CODE (t) == VOID_TYPE && skip_evaluation == 0)
warning ("dereferencing `void *' pointer");
/* We *must* set TREE_READONLY when dereferencing a pointer to const,
so that we get the proper error message if the result is used
to assign to. Also, &* is supposed to be a no-op.
And ANSI C seems to specify that the type of the result
should be the const type. */
/* A de-reference of a pointer to const is not a const. It is valid
to change it via some other pointer. */
TREE_READONLY (ref) = TYPE_READONLY (t);
TREE_SIDE_EFFECTS (ref)
= TYPE_VOLATILE (t) || TREE_SIDE_EFFECTS (pointer) || flag_volatile;
TREE_THIS_VOLATILE (ref) = TYPE_VOLATILE (t);
return ref;
}
}
else if (TREE_CODE (pointer) != ERROR_MARK)
error ("invalid type argument of `%s'", errorstring);
return error_mark_node;
}
/* This handles expressions of the form "a[i]", which denotes
an array reference.
This is logically equivalent in C to *(a+i), but we may do it differently.
If A is a variable or a member, we generate a primitive ARRAY_REF.
This avoids forcing the array out of registers, and can work on
arrays that are not lvalues (for example, members of structures returned
by functions). */
tree
build_array_ref (array, index)
tree array, index;
{
if (index == 0)
{
error ("subscript missing in array reference");
return error_mark_node;
}
if (TREE_TYPE (array) == error_mark_node
|| TREE_TYPE (index) == error_mark_node)
return error_mark_node;
if (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE
&& TREE_CODE (array) != INDIRECT_REF)
{
tree rval, type;
/* Subscripting with type char is likely to lose
on a machine where chars are signed.
So warn on any machine, but optionally.
Don't warn for unsigned char since that type is safe.
Don't warn for signed char because anyone who uses that
must have done so deliberately. */
if (warn_char_subscripts
&& TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
warning ("array subscript has type `char'");
/* Apply default promotions *after* noticing character types. */
index = default_conversion (index);
/* Require integer *after* promotion, for sake of enums. */
if (TREE_CODE (TREE_TYPE (index)) != INTEGER_TYPE)
{
error ("array subscript is not an integer");
return error_mark_node;
}
/* An array that is indexed by a non-constant
cannot be stored in a register; we must be able to do
address arithmetic on its address.
Likewise an array of elements of variable size. */
if (TREE_CODE (index) != INTEGER_CST
|| (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array))) != 0
&& TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (array)))) != INTEGER_CST))
{
if (mark_addressable (array) == 0)
return error_mark_node;
}
/* An array that is indexed by a constant value which is not within
the array bounds cannot be stored in a register either; because we
would get a crash in store_bit_field/extract_bit_field when trying
to access a non-existent part of the register. */
if (TREE_CODE (index) == INTEGER_CST
&& TYPE_VALUES (TREE_TYPE (array))
&& ! int_fits_type_p (index, TYPE_VALUES (TREE_TYPE (array))))
{
if (mark_addressable (array) == 0)
return error_mark_node;
}
if (pedantic && !lvalue_p (array))
{
if (DECL_REGISTER (array))
pedwarn ("ANSI C forbids subscripting `register' array");
else
pedwarn ("ANSI C forbids subscripting non-lvalue array");
}
if (pedantic)
{
tree foo = array;
while (TREE_CODE (foo) == COMPONENT_REF)
foo = TREE_OPERAND (foo, 0);
if (TREE_CODE (foo) == VAR_DECL && DECL_REGISTER (foo))
pedwarn ("ANSI C forbids subscripting non-lvalue array");
}
type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (array)));
rval = build (ARRAY_REF, type, array, index);
/* Array ref is const/volatile if the array elements are
or if the array is. */
TREE_READONLY (rval)
|= (TYPE_READONLY (TREE_TYPE (TREE_TYPE (array)))
| TREE_READONLY (array));
TREE_SIDE_EFFECTS (rval)
|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
| TREE_SIDE_EFFECTS (array));
TREE_THIS_VOLATILE (rval)
|= (TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (array)))
/* This was added by rms on 16 Nov 91.
It fixes vol struct foo *a; a->elts[1]
in an inline function.
Hope it doesn't break something else. */
| TREE_THIS_VOLATILE (array));
return require_complete_type (fold (rval));
}
{
tree ar = default_conversion (array);
tree ind = default_conversion (index);
/* Do the same warning check as above, but only on the part that's
syntactically the index and only if it is also semantically
the index. */
if (warn_char_subscripts
&& TREE_CODE (TREE_TYPE (index)) == INTEGER_TYPE
&& TYPE_MAIN_VARIANT (TREE_TYPE (index)) == char_type_node)
warning ("subscript has type `char'");
/* Put the integer in IND to simplify error checking. */
if (TREE_CODE (TREE_TYPE (ar)) == INTEGER_TYPE)
{
tree temp = ar;
ar = ind;
ind = temp;
}
if (ar == error_mark_node)
return ar;
if (TREE_CODE (TREE_TYPE (ar)) != POINTER_TYPE
|| TREE_CODE (TREE_TYPE (TREE_TYPE (ar))) == FUNCTION_TYPE)
{
error ("subscripted value is neither array nor pointer");
return error_mark_node;
}
if (TREE_CODE (TREE_TYPE (ind)) != INTEGER_TYPE)
{
error ("array subscript is not an integer");
return error_mark_node;
}
return build_indirect_ref (build_binary_op (PLUS_EXPR, ar, ind, 0),
"array indexing");
}
}
/* Build a function call to function FUNCTION with parameters PARAMS.
PARAMS is a list--a chain of TREE_LIST nodes--in which the
TREE_VALUE of each node is a parameter-expression.
FUNCTION's data type may be a function type or a pointer-to-function. */
tree
build_function_call (function, params)
tree function, params;
{
register tree fntype, fundecl = 0;
register tree coerced_params;
tree name = NULL_TREE, assembler_name = NULL_TREE;
/* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
STRIP_TYPE_NOPS (function);
/* Convert anything with function type to a pointer-to-function. */
if (TREE_CODE (function) == FUNCTION_DECL)
{
name = DECL_NAME (function);
assembler_name = DECL_ASSEMBLER_NAME (function);
/* Differs from default_conversion by not setting TREE_ADDRESSABLE
(because calling an inline function does not mean the function
needs to be separately compiled). */
fntype = build_type_variant (TREE_TYPE (function),
TREE_READONLY (function),
TREE_THIS_VOLATILE (function));
fundecl = function;
function = build1 (ADDR_EXPR, build_pointer_type (fntype), function);
}
else
function = default_conversion (function);
fntype = TREE_TYPE (function);
if (TREE_CODE (fntype) == ERROR_MARK)
return error_mark_node;
if (!(TREE_CODE (fntype) == POINTER_TYPE
&& TREE_CODE (TREE_TYPE (fntype)) == FUNCTION_TYPE))
{
error ("called object is not a function");
return error_mark_node;
}
/* fntype now gets the type of function pointed to. */
fntype = TREE_TYPE (fntype);
/* Convert the parameters to the types declared in the
function prototype, or apply default promotions. */
coerced_params
= convert_arguments (TYPE_ARG_TYPES (fntype), params, name, fundecl);
/* Check for errors in format strings. */
if (warn_format && (name || assembler_name))
check_function_format (name, assembler_name, coerced_params);
/* Recognize certain built-in functions so we can make tree-codes
other than CALL_EXPR. We do this when it enables fold-const.c
to do something useful. */
if (TREE_CODE (function) == ADDR_EXPR
&& TREE_CODE (TREE_OPERAND (function, 0)) == FUNCTION_DECL
&& DECL_BUILT_IN (TREE_OPERAND (function, 0)))
switch (DECL_FUNCTION_CODE (TREE_OPERAND (function, 0)))
{
case BUILT_IN_ABS:
case BUILT_IN_LABS:
case BUILT_IN_FABS:
if (coerced_params == 0)
return integer_zero_node;
return build_unary_op (ABS_EXPR, TREE_VALUE (coerced_params), 0);
}
{
register tree result
= build (CALL_EXPR, TREE_TYPE (fntype),
function, coerced_params, NULL_TREE);
TREE_SIDE_EFFECTS (result) = 1;
if (TREE_TYPE (result) == void_type_node)
return result;
return require_complete_type (result);
}
}
/* Convert the argument expressions in the list VALUES
to the types in the list TYPELIST. The result is a list of converted
argument expressions.
If TYPELIST is exhausted, or when an element has NULL as its type,
perform the default conversions.
PARMLIST is the chain of parm decls for the function being called.
It may be 0, if that info is not available.
It is used only for generating error messages.
NAME is an IDENTIFIER_NODE or 0. It is used only for error messages.
This is also where warnings about wrong number of args are generated.
Both VALUES and the returned value are chains of TREE_LIST nodes
with the elements of the list in the TREE_VALUE slots of those nodes. */
static tree
convert_arguments (typelist, values, name, fundecl)
tree typelist, values, name, fundecl;
{
register tree typetail, valtail;
register tree result = NULL;
int parmnum;
/* Scan the given expressions and types, producing individual
converted arguments and pushing them on RESULT in reverse order. */
for (valtail = values, typetail = typelist, parmnum = 0;
valtail;
valtail = TREE_CHAIN (valtail), parmnum++)
{
register tree type = typetail ? TREE_VALUE (typetail) : 0;
register tree val = TREE_VALUE (valtail);
if (type == void_type_node)
{
if (name)
error ("too many arguments to function `%s'",
IDENTIFIER_POINTER (name));
else
error ("too many arguments to function");
break;
}
/* Strip NON_LVALUE_EXPRs since we aren't using as an lvalue. */
/* Do not use STRIP_NOPS here! We do not want an enumerator with value 0
to convert automatically to a pointer. */
if (TREE_CODE (val) == NON_LVALUE_EXPR)
val = TREE_OPERAND (val, 0);
if (TREE_CODE (TREE_TYPE (val)) == ARRAY_TYPE
|| TREE_CODE (TREE_TYPE (val)) == FUNCTION_TYPE)
val = default_conversion (val);
val = require_complete_type (val);
if (type != 0)
{
/* Formal parm type is specified by a function prototype. */
tree parmval;
if (TYPE_SIZE (type) == 0)
{
error ("type of formal parameter %d is incomplete", parmnum + 1);
parmval = val;
}
else
{
/* Optionally warn about conversions that
differ from the default conversions. */
if (warn_conversion)
{
int formal_prec = TYPE_PRECISION (type);
if (INTEGRAL_TYPE_P (type)
&& TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
warn_for_assignment ("%s as integer rather than floating due to prototype", (char *) 0, name, parmnum + 1);
else if (TREE_CODE (type) == COMPLEX_TYPE
&& TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
warn_for_assignment ("%s as complex rather than floating due to prototype", (char *) 0, name, parmnum + 1);
else if (TREE_CODE (type) == REAL_TYPE
&& INTEGRAL_TYPE_P (TREE_TYPE (val)))
warn_for_assignment ("%s as floating rather than integer due to prototype", (char *) 0, name, parmnum + 1);
else if (TREE_CODE (type) == REAL_TYPE
&& TREE_CODE (TREE_TYPE (val)) == COMPLEX_TYPE)
warn_for_assignment ("%s as floating rather than complex due to prototype", (char *) 0, name, parmnum + 1);
/* ??? At some point, messages should be written about
conversions between complex types, but that's too messy
to do now. */
else if (TREE_CODE (type) == REAL_TYPE
&& TREE_CODE (TREE_TYPE (val)) == REAL_TYPE)
{
/* Warn if any argument is passed as `float',
since without a prototype it would be `double'. */
if (formal_prec == TYPE_PRECISION (float_type_node))
warn_for_assignment ("%s as `float' rather than `double' due to prototype", (char *) 0, name, parmnum + 1);
}
/* Detect integer changing in width or signedness. */
else if (INTEGRAL_TYPE_P (type)
&& INTEGRAL_TYPE_P (TREE_TYPE (val)))
{
tree would_have_been = default_conversion (val);
tree type1 = TREE_TYPE (would_have_been);
if (TREE_CODE (type) == ENUMERAL_TYPE
&& type == TREE_TYPE (val))
/* No warning if function asks for enum
and the actual arg is that enum type. */
;
else if (formal_prec != TYPE_PRECISION (type1))
warn_for_assignment ("%s with different width due to prototype", (char *) 0, name, parmnum + 1);
else if (TREE_UNSIGNED (type) == TREE_UNSIGNED (type1))
;
/* Don't complain if the formal parameter type
is an enum, because we can't tell now whether
the value was an enum--even the same enum. */
else if (TREE_CODE (type) == ENUMERAL_TYPE)
;
else if (TREE_CODE (val) == INTEGER_CST
&& int_fits_type_p (val, type))
/* Change in signedness doesn't matter
if a constant value is unaffected. */
;
/* Likewise for a constant in a NOP_EXPR. */
else if (TREE_CODE (val) == NOP_EXPR
&& TREE_CODE (TREE_OPERAND (val, 0)) == INTEGER_CST
&& int_fits_type_p (TREE_OPERAND (val, 0), type))
;
#if 0 /* We never get such tree structure here. */
else if (TREE_CODE (TREE_TYPE (val)) == ENUMERAL_TYPE
&& int_fits_type_p (TYPE_MIN_VALUE (TREE_TYPE (val)), type)
&& int_fits_type_p (TYPE_MAX_VALUE (TREE_TYPE (val)), type))
/* Change in signedness doesn't matter
if an enum value is unaffected. */
;
#endif
/* If the value is extended from a narrower
unsigned type, it doesn't matter whether we
pass it as signed or unsigned; the value
certainly is the same either way. */
else if (TYPE_PRECISION (TREE_TYPE (val)) < TYPE_PRECISION (type)
&& TREE_UNSIGNED (TREE_TYPE (val)))
;
else if (TREE_UNSIGNED (type))
warn_for_assignment ("%s as unsigned due to prototype", (char *) 0, name, parmnum + 1);
else
warn_for_assignment ("%s as signed due to prototype", (char *) 0, name, parmnum + 1);
}
}
parmval = convert_for_assignment (type, val,
(char *) 0, /* arg passing */
fundecl, name, parmnum + 1);
#ifdef PROMOTE_PROTOTYPES
if ((TREE_CODE (type) == INTEGER_TYPE
|| TREE_CODE (type) == ENUMERAL_TYPE)
&& (TYPE_PRECISION (type) < TYPE_PRECISION (integer_type_node)))
parmval = default_conversion (parmval);
#endif
}
result = tree_cons (NULL_TREE, parmval, result);
}
else if (TREE_CODE (TREE_TYPE (val)) == REAL_TYPE
&& (TYPE_PRECISION (TREE_TYPE (val))
< TYPE_PRECISION (double_type_node)))
/* Convert `float' to `double'. */
result = tree_cons (NULL_TREE, convert (double_type_node, val), result);
else
/* Convert `short' and `char' to full-size `int'. */
result = tree_cons (NULL_TREE, default_conversion (val), result);
if (typetail)
typetail = TREE_CHAIN (typetail);
}
if (typetail != 0 && TREE_VALUE (typetail) != void_type_node)
{
if (name)
error ("too few arguments to function `%s'",
IDENTIFIER_POINTER (name));
else
error ("too few arguments to function");
}
return nreverse (result);
}
/* This is the entry point used by the parser
for binary operators in the input.
In addition to constructing the expression,
we check for operands that were written with other binary operators
in a way that is likely to confuse the user. */
tree
parser_build_binary_op (code, arg1, arg2)
enum tree_code code;
tree arg1, arg2;
{
tree result = build_binary_op (code, arg1, arg2, 1);
char class;
char class1 = TREE_CODE_CLASS (TREE_CODE (arg1));
char class2 = TREE_CODE_CLASS (TREE_CODE (arg2));
enum tree_code code1 = ERROR_MARK;
enum tree_code code2 = ERROR_MARK;
if (class1 == 'e' || class1 == '1'
|| class1 == '2' || class1 == '<')
code1 = C_EXP_ORIGINAL_CODE (arg1);
if (class2 == 'e' || class2 == '1'
|| class2 == '2' || class2 == '<')
code2 = C_EXP_ORIGINAL_CODE (arg2);
/* Check for cases such as x+y<<z which users are likely
to misinterpret. If parens are used, C_EXP_ORIGINAL_CODE
is cleared to prevent these warnings. */
if (warn_parentheses)
{
if (code == LSHIFT_EXPR || code == RSHIFT_EXPR)
{
if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
|| code2 == PLUS_EXPR || code2 == MINUS_EXPR)
warning ("suggest parentheses around + or - inside shift");
}
if (code == TRUTH_ORIF_EXPR)
{
if (code1 == TRUTH_ANDIF_EXPR
|| code2 == TRUTH_ANDIF_EXPR)
warning ("suggest parentheses around && within ||");
}
if (code == BIT_IOR_EXPR)
{
if (code1 == BIT_AND_EXPR || code1 == BIT_XOR_EXPR
|| code1 == PLUS_EXPR || code1 == MINUS_EXPR
|| code2 == BIT_AND_EXPR || code2 == BIT_XOR_EXPR
|| code2 == PLUS_EXPR || code2 == MINUS_EXPR)
warning ("suggest parentheses around arithmetic in operand of |");
/* Check cases like x|y==z */
if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
warning ("suggest parentheses around comparison in operand of |");
}
if (code == BIT_XOR_EXPR)
{
if (code1 == BIT_AND_EXPR
|| code1 == PLUS_EXPR || code1 == MINUS_EXPR
|| code2 == BIT_AND_EXPR
|| code2 == PLUS_EXPR || code2 == MINUS_EXPR)
warning ("suggest parentheses around arithmetic in operand of ^");
/* Check cases like x^y==z */
if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
warning ("suggest parentheses around comparison in operand of ^");
}
if (code == BIT_AND_EXPR)
{
if (code1 == PLUS_EXPR || code1 == MINUS_EXPR
|| code2 == PLUS_EXPR || code2 == MINUS_EXPR)
warning ("suggest parentheses around + or - in operand of &");
/* Check cases like x&y==z */
if (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<')
warning ("suggest parentheses around comparison in operand of &");
}
}
/* Similarly, check for cases like 1<=i<=10 that are probably errors. */
if (TREE_CODE_CLASS (code) == '<' && extra_warnings
&& (TREE_CODE_CLASS (code1) == '<' || TREE_CODE_CLASS (code2) == '<'))
warning ("comparisons like X<=Y<=Z do not have their mathematical meaning");
unsigned_conversion_warning (result, arg1);
unsigned_conversion_warning (result, arg2);
overflow_warning (result);
class = TREE_CODE_CLASS (TREE_CODE (result));
/* Record the code that was specified in the source,
for the sake of warnings about confusing nesting. */
if (class == 'e' || class == '1'
|| class == '2' || class == '<')
C_SET_EXP_ORIGINAL_CODE (result, code);
else
{
int flag = TREE_CONSTANT (result);
/* We used to use NOP_EXPR rather than NON_LVALUE_EXPR
so that convert_for_assignment wouldn't strip it.
That way, we got warnings for things like p = (1 - 1).
But it turns out we should not get those warnings. */
result = build1 (NON_LVALUE_EXPR, TREE_TYPE (result), result);
C_SET_EXP_ORIGINAL_CODE (result, code);
TREE_CONSTANT (result) = flag;
}
return result;
}
/* Build a binary-operation expression without default conversions.
CODE is the kind of expression to build.
This function differs from `build' in several ways:
the data type of the result is computed and recorded in it,
warnings are generated if arg data types are invalid,
special handling for addition and subtraction of pointers is known,
and some optimization is done (operations on narrow ints
are done in the narrower type when that gives the same result).
Constant folding is also done before the result is returned.
Note that the operands will never have enumeral types, or function
or array types, because either they will have the default conversions
performed or they have both just been converted to some other type in which
the arithmetic is to be done. */
tree
build_binary_op (code, orig_op0, orig_op1, convert_p)
enum tree_code code;
tree orig_op0, orig_op1;
int convert_p;
{
tree type0, type1;
register enum tree_code code0, code1;
tree op0, op1;
/* Expression code to give to the expression when it is built.
Normally this is CODE, which is what the caller asked for,
but in some special cases we change it. */
register enum tree_code resultcode = code;
/* Data type in which the computation is to be performed.
In the simplest cases this is the common type of the arguments. */
register tree result_type = NULL;
/* Nonzero means operands have already been type-converted
in whatever way is necessary.
Zero means they need to be converted to RESULT_TYPE. */
int converted = 0;
/* Nonzero means create the expression with this type, rather than
RESULT_TYPE. */
tree build_type = 0;
/* Nonzero means after finally constructing the expression
convert it to this type. */
tree final_type = 0;
/* Nonzero if this is an operation like MIN or MAX which can
safely be computed in short if both args are promoted shorts.
Also implies COMMON.
-1 indicates a bitwise operation; this makes a difference
in the exact conditions for when it is safe to do the operation
in a narrower mode. */
int shorten = 0;
/* Nonzero if this is a comparison operation;
if both args are promoted shorts, compare the original shorts.
Also implies COMMON. */
int short_compare = 0;
/* Nonzero if this is a right-shift operation, which can be computed on the
original short and then promoted if the operand is a promoted short. */
int short_shift = 0;
/* Nonzero means set RESULT_TYPE to the common type of the args. */
int common = 0;
if (convert_p)
{
op0 = default_conversion (orig_op0);
op1 = default_conversion (orig_op1);
}
else
{
op0 = orig_op0;
op1 = orig_op1;
}
type0 = TREE_TYPE (op0);
type1 = TREE_TYPE (op1);
/* The expression codes of the data types of the arguments tell us
whether the arguments are integers, floating, pointers, etc. */
code0 = TREE_CODE (type0);
code1 = TREE_CODE (type1);
/* Strip NON_LVALUE_EXPRs, etc., since we aren't using as an lvalue. */
STRIP_TYPE_NOPS (op0);
STRIP_TYPE_NOPS (op1);
/* If an error was already reported for one of the arguments,
avoid reporting another error. */
if (code0 == ERROR_MARK || code1 == ERROR_MARK)
return error_mark_node;
switch (code)
{
case PLUS_EXPR:
/* Handle the pointer + int case. */
if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
return pointer_int_sum (PLUS_EXPR, op0, op1);
else if (code1 == POINTER_TYPE && code0 == INTEGER_TYPE)
return pointer_int_sum (PLUS_EXPR, op1, op0);
else
common = 1;
break;
case MINUS_EXPR:
/* Subtraction of two similar pointers.
We must subtract them as integers, then divide by object size. */
if (code0 == POINTER_TYPE && code1 == POINTER_TYPE
&& comp_target_types (type0, type1))
return pointer_diff (op0, op1);
/* Handle pointer minus int. Just like pointer plus int. */
else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
return pointer_int_sum (MINUS_EXPR, op0, op1);
else
common = 1;
break;
case MULT_EXPR:
common = 1;
break;
case TRUNC_DIV_EXPR:
case CEIL_DIV_EXPR:
case FLOOR_DIV_EXPR:
case ROUND_DIV_EXPR:
case EXACT_DIV_EXPR:
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
|| code0 == COMPLEX_TYPE)
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE
|| code1 == COMPLEX_TYPE))
{
if (!(code0 == INTEGER_TYPE && code1 == INTEGER_TYPE))
resultcode = RDIV_EXPR;
else
{
/* Although it would be tempting to shorten always here, that
loses on some targets, since the modulo instruction is
undefined if the quotient can't be represented in the
computation mode. We shorten only if unsigned or if
dividing by something we know != -1. */
shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
|| (TREE_CODE (op1) == INTEGER_CST
&& (TREE_INT_CST_LOW (op1) != -1
|| TREE_INT_CST_HIGH (op1) != -1)));
}
common = 1;
}
break;
case BIT_AND_EXPR:
case BIT_ANDTC_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
shorten = -1;
/* If one operand is a constant, and the other is a short type
that has been converted to an int,
really do the work in the short type and then convert the
result to int. If we are lucky, the constant will be 0 or 1
in the short type, making the entire operation go away. */
if (TREE_CODE (op0) == INTEGER_CST
&& TREE_CODE (op1) == NOP_EXPR
&& TYPE_PRECISION (type1) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op1, 0)))
&& TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op1, 0))))
{
final_type = result_type;
op1 = TREE_OPERAND (op1, 0);
result_type = TREE_TYPE (op1);
}
if (TREE_CODE (op1) == INTEGER_CST
&& TREE_CODE (op0) == NOP_EXPR
&& TYPE_PRECISION (type0) > TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))
&& TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op0, 0))))
{
final_type = result_type;
op0 = TREE_OPERAND (op0, 0);
result_type = TREE_TYPE (op0);
}
break;
case TRUNC_MOD_EXPR:
case FLOOR_MOD_EXPR:
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
{
/* Although it would be tempting to shorten always here, that loses
on some targets, since the modulo instruction is undefined if the
quotient can't be represented in the computation mode. We shorten
only if unsigned or if dividing by something we know != -1. */
shorten = (TREE_UNSIGNED (TREE_TYPE (orig_op0))
|| (TREE_CODE (op1) == INTEGER_CST
&& (TREE_INT_CST_LOW (op1) != -1
|| TREE_INT_CST_HIGH (op1) != -1)));
common = 1;
}
break;
case TRUTH_ANDIF_EXPR:
case TRUTH_ORIF_EXPR:
case TRUTH_AND_EXPR:
case TRUTH_OR_EXPR:
case TRUTH_XOR_EXPR:
if ((code0 == INTEGER_TYPE || code0 == POINTER_TYPE
|| code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
&& (code1 == INTEGER_TYPE || code1 == POINTER_TYPE
|| code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
{
/* Result of these operations is always an int,
but that does not mean the operands should be
converted to ints! */
result_type = integer_type_node;
op0 = truthvalue_conversion (op0);
op1 = truthvalue_conversion (op1);
converted = 1;
}
break;
/* Shift operations: result has same type as first operand;
always convert second operand to int.
Also set SHORT_SHIFT if shifting rightward. */
case RSHIFT_EXPR:
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
{
if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
{
if (tree_int_cst_sgn (op1) < 0)
warning ("right shift count is negative");
else
{
if (TREE_INT_CST_LOW (op1) | TREE_INT_CST_HIGH (op1))
short_shift = 1;
if (TREE_INT_CST_HIGH (op1) != 0
|| ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
>= TYPE_PRECISION (type0)))
warning ("right shift count >= width of type");
}
}
/* Use the type of the value to be shifted.
This is what most traditional C compilers do. */
result_type = type0;
/* Unless traditional, convert the shift-count to an integer,
regardless of size of value being shifted. */
if (! flag_traditional)
{
if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
op1 = convert (integer_type_node, op1);
/* Avoid converting op1 to result_type later. */
converted = 1;
}
}
break;
case LSHIFT_EXPR:
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
{
if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
{
if (tree_int_cst_sgn (op1) < 0)
warning ("left shift count is negative");
else if (TREE_INT_CST_HIGH (op1) != 0
|| ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
>= TYPE_PRECISION (type0)))
warning ("left shift count >= width of type");
}
/* Use the type of the value to be shifted.
This is what most traditional C compilers do. */
result_type = type0;
/* Unless traditional, convert the shift-count to an integer,
regardless of size of value being shifted. */
if (! flag_traditional)
{
if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
op1 = convert (integer_type_node, op1);
/* Avoid converting op1 to result_type later. */
converted = 1;
}
}
break;
case RROTATE_EXPR:
case LROTATE_EXPR:
if (code0 == INTEGER_TYPE && code1 == INTEGER_TYPE)
{
if (TREE_CODE (op1) == INTEGER_CST && skip_evaluation == 0)
{
if (tree_int_cst_sgn (op1) < 0)
warning ("shift count is negative");
else if (TREE_INT_CST_HIGH (op1) != 0
|| ((unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (op1)
>= TYPE_PRECISION (type0)))
warning ("shift count >= width of type");
}
/* Use the type of the value to be shifted.
This is what most traditional C compilers do. */
result_type = type0;
/* Unless traditional, convert the shift-count to an integer,
regardless of size of value being shifted. */
if (! flag_traditional)
{
if (TYPE_MAIN_VARIANT (TREE_TYPE (op1)) != integer_type_node)
op1 = convert (integer_type_node, op1);
/* Avoid converting op1 to result_type later. */
converted = 1;
}
}
break;
case EQ_EXPR:
case NE_EXPR:
/* Result of comparison is always int,
but don't convert the args to int! */
build_type = integer_type_node;
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE
|| code0 == COMPLEX_TYPE)
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE
|| code1 == COMPLEX_TYPE))
short_compare = 1;
else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
{
register tree tt0 = TREE_TYPE (type0);
register tree tt1 = TREE_TYPE (type1);
/* Anything compares with void *. void * compares with anything.
Otherwise, the targets must be compatible
and both must be object or both incomplete. */
if (comp_target_types (type0, type1))
result_type = common_type (type0, type1);
else if (TYPE_MAIN_VARIANT (tt0) == void_type_node)
{
/* op0 != orig_op0 detects the case of something
whose value is 0 but which isn't a valid null ptr const. */
if (pedantic && (!integer_zerop (op0) || op0 != orig_op0)
&& TREE_CODE (tt1) == FUNCTION_TYPE)
pedwarn ("ANSI C forbids comparison of `void *' with function pointer");
}
else if (TYPE_MAIN_VARIANT (tt1) == void_type_node)
{
if (pedantic && (!integer_zerop (op1) || op1 != orig_op1)
&& TREE_CODE (tt0) == FUNCTION_TYPE)
pedwarn ("ANSI C forbids comparison of `void *' with function pointer");
}
else
pedwarn ("comparison of distinct pointer types lacks a cast");
if (result_type == NULL_TREE)
result_type = ptr_type_node;
}
else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
&& integer_zerop (op1))
result_type = type0;
else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
&& integer_zerop (op0))
result_type = type1;
else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
{
result_type = type0;
if (! flag_traditional)
pedwarn ("comparison between pointer and integer");
}
else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
{
result_type = type1;
if (! flag_traditional)
pedwarn ("comparison between pointer and integer");
}
break;
case MAX_EXPR:
case MIN_EXPR:
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
shorten = 1;
else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
{
if (comp_target_types (type0, type1))
{
result_type = common_type (type0, type1);
if (pedantic
&& TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
pedwarn ("ANSI C forbids ordered comparisons of pointers to functions");
}
else
{
result_type = ptr_type_node;
pedwarn ("comparison of distinct pointer types lacks a cast");
}
}
break;
case LE_EXPR:
case GE_EXPR:
case LT_EXPR:
case GT_EXPR:
build_type = integer_type_node;
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE)
&& (code1 == INTEGER_TYPE || code1 == REAL_TYPE))
short_compare = 1;
else if (code0 == POINTER_TYPE && code1 == POINTER_TYPE)
{
if (comp_target_types (type0, type1))
{
result_type = common_type (type0, type1);
if ((TYPE_SIZE (TREE_TYPE (type0)) != 0)
!= (TYPE_SIZE (TREE_TYPE (type1)) != 0))
pedwarn ("comparison of complete and incomplete pointers");
else if (pedantic
&& TREE_CODE (TREE_TYPE (type0)) == FUNCTION_TYPE)
pedwarn ("ANSI C forbids ordered comparisons of pointers to functions");
}
else
{
result_type = ptr_type_node;
pedwarn ("comparison of distinct pointer types lacks a cast");
}
}
else if (code0 == POINTER_TYPE && TREE_CODE (op1) == INTEGER_CST
&& integer_zerop (op1))
{
result_type = type0;
if (pedantic || extra_warnings)
pedwarn ("ordered comparison of pointer with integer zero");
}
else if (code1 == POINTER_TYPE && TREE_CODE (op0) == INTEGER_CST
&& integer_zerop (op0))
{
result_type = type1;
if (pedantic)
pedwarn ("ordered comparison of pointer with integer zero");
}
else if (code0 == POINTER_TYPE && code1 == INTEGER_TYPE)
{
result_type = type0;
if (! flag_traditional)
pedwarn ("comparison between pointer and integer");
}
else if (code0 == INTEGER_TYPE && code1 == POINTER_TYPE)
{
result_type = type1;
if (! flag_traditional)
pedwarn ("comparison between pointer and integer");
}
break;
}
if ((code0 == INTEGER_TYPE || code0 == REAL_TYPE || code0 == COMPLEX_TYPE)
&&
(code1 == INTEGER_TYPE || code1 == REAL_TYPE || code1 == COMPLEX_TYPE))
{
int none_complex = (code0 != COMPLEX_TYPE && code1 != COMPLEX_TYPE);
if (shorten || common || short_compare)
result_type = common_type (type0, type1);
/* For certain operations (which identify themselves by shorten != 0)
if both args were extended from the same smaller type,
do the arithmetic in that type and then extend.
shorten !=0 and !=1 indicates a bitwise operation.
For them, this optimization is safe only if
both args are zero-extended or both are sign-extended.
Otherwise, we might change the result.
Eg, (short)-1 | (unsigned short)-1 is (int)-1
but calculated in (unsigned short) it would be (unsigned short)-1. */
if (shorten && none_complex)
{
int unsigned0, unsigned1;
tree arg0 = get_narrower (op0, &unsigned0);
tree arg1 = get_narrower (op1, &unsigned1);
/* UNS is 1 if the operation to be done is an unsigned one. */
int uns = TREE_UNSIGNED (result_type);
tree type;
final_type = result_type;
/* Handle the case that OP0 (or OP1) does not *contain* a conversion
but it *requires* conversion to FINAL_TYPE. */
if ((TYPE_PRECISION (TREE_TYPE (op0))
== TYPE_PRECISION (TREE_TYPE (arg0)))
&& TREE_TYPE (op0) != final_type)
unsigned0 = TREE_UNSIGNED (TREE_TYPE (op0));
if ((TYPE_PRECISION (TREE_TYPE (op1))
== TYPE_PRECISION (TREE_TYPE (arg1)))
&& TREE_TYPE (op1) != final_type)
unsigned1 = TREE_UNSIGNED (TREE_TYPE (op1));
/* Now UNSIGNED0 is 1 if ARG0 zero-extends to FINAL_TYPE. */
/* For bitwise operations, signedness of nominal type
does not matter. Consider only how operands were extended. */
if (shorten == -1)
uns = unsigned0;
/* Note that in all three cases below we refrain from optimizing
an unsigned operation on sign-extended args.
That would not be valid. */
/* Both args variable: if both extended in same way
from same width, do it in that width.
Do it unsigned if args were zero-extended. */
if ((TYPE_PRECISION (TREE_TYPE (arg0))
< TYPE_PRECISION (result_type))
&& (TYPE_PRECISION (TREE_TYPE (arg1))
== TYPE_PRECISION (TREE_TYPE (arg0)))
&& unsigned0 == unsigned1
&& (unsigned0 || !uns))
result_type
= signed_or_unsigned_type (unsigned0,
common_type (TREE_TYPE (arg0), TREE_TYPE (arg1)));
else if (TREE_CODE (arg0) == INTEGER_CST
&& (unsigned1 || !uns)
&& (TYPE_PRECISION (TREE_TYPE (arg1))
< TYPE_PRECISION (result_type))
&& (type = signed_or_unsigned_type (unsigned1,
TREE_TYPE (arg1)),
int_fits_type_p (arg0, type)))
result_type = type;
else if (TREE_CODE (arg1) == INTEGER_CST
&& (unsigned0 || !uns)
&& (TYPE_PRECISION (TREE_TYPE (arg0))
< TYPE_PRECISION (result_type))
&& (type = signed_or_unsigned_type (unsigned0,
TREE_TYPE (arg0)),
int_fits_type_p (arg1, type)))
result_type = type;
}
/* Shifts can be shortened if shifting right. */
if (short_shift)
{
int unsigned_arg;
tree arg0 = get_narrower (op0, &unsigned_arg);
final_type = result_type;
if (arg0 == op0 && final_type == TREE_TYPE (op0))
unsigned_arg = TREE_UNSIGNED (TREE_TYPE (op0));
if (TYPE_PRECISION (TREE_TYPE (arg0)) < TYPE_PRECISION (result_type)
/* We can shorten only if the shift count is less than the
number of bits in the smaller type size. */
&& TREE_INT_CST_HIGH (op1) == 0
&& TYPE_PRECISION (TREE_TYPE (arg0)) > TREE_INT_CST_LOW (op1)
/* If arg is sign-extended and then unsigned-shifted,
we can simulate this with a signed shift in arg's type
only if the extended result is at least twice as wide
as the arg. Otherwise, the shift could use up all the
ones made by sign-extension and bring in zeros.
We can't optimize that case at all, but in most machines
it never happens because available widths are 2**N. */
&& (!TREE_UNSIGNED (final_type)
|| unsigned_arg
|| 2 * TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (result_type)))
{
/* Do an unsigned shift if the operand was zero-extended. */
result_type
= signed_or_unsigned_type (unsigned_arg,
TREE_TYPE (arg0));
/* Convert value-to-be-shifted to that type. */
if (TREE_TYPE (op0) != result_type)
op0 = convert (result_type, op0);
converted = 1;
}
}
/* Comparison operations are shortened too but differently.
They identify themselves by setting short_compare = 1. */
if (short_compare)
{
/* Don't write &op0, etc., because that would prevent op0
from being kept in a register.
Instead, make copies of the our local variables and
pass the copies by reference, then copy them back afterward. */
tree xop0 = op0, xop1 = op1, xresult_type = result_type;
enum tree_code xresultcode = resultcode;
tree val
= shorten_compare (&xop0, &xop1, &xresult_type, &xresultcode);
if (val != 0)
return val;
op0 = xop0, op1 = xop1;
converted = 1;
resultcode = xresultcode;
if ((warn_sign_compare < 0 ? extra_warnings : warn_sign_compare != 0)
&& skip_evaluation == 0)
{
int op0_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op0));
int op1_signed = ! TREE_UNSIGNED (TREE_TYPE (orig_op1));
int unsignedp0, unsignedp1;
tree primop0 = get_narrower (op0, &unsignedp0);
tree primop1 = get_narrower (op1, &unsignedp1);
/* Avoid spurious warnings for comparison with enumerators. */
xop0 = orig_op0;
xop1 = orig_op1;
STRIP_TYPE_NOPS (xop0);
STRIP_TYPE_NOPS (xop1);
/* Give warnings for comparisons between signed and unsigned
quantities that may fail. */
/* Do the checking based on the original operand trees, so that
casts will be considered, but default promotions won't be. */
/* Do not warn if the comparison is being done in a signed type,
since the signed type will only be chosen if it can represent
all the values of the unsigned type. */
if (! TREE_UNSIGNED (result_type))
/* OK */;
/* Do not warn if both operands are unsigned. */
else if (op0_signed == op1_signed)
/* OK */;
/* Do not warn if the signed quantity is an unsuffixed
integer literal (or some static constant expression
involving such literals) and it is non-negative. */
else if ((op0_signed && TREE_CODE (xop0) == INTEGER_CST
&& tree_int_cst_sgn (xop0) >= 0)
|| (op1_signed && TREE_CODE (xop1) == INTEGER_CST
&& tree_int_cst_sgn (xop1) >= 0))
/* OK */;
/* Do not warn if the comparison is an equality operation,
the unsigned quantity is an integral constant and it does
not use the most significant bit of result_type. */
else if ((resultcode == EQ_EXPR || resultcode == NE_EXPR)
&& ((op0_signed && TREE_CODE (xop1) == INTEGER_CST
&& int_fits_type_p (xop1, signed_type (result_type)))
|| (op1_signed && TREE_CODE (xop0) == INTEGER_CST
&& int_fits_type_p (xop0, signed_type (result_type)))))
/* OK */;
else
warning ("comparison between signed and unsigned");
/* Warn if two unsigned values are being compared in a size
larger than their original size, and one (and only one) is the
result of a `~' operator. This comparison will always fail.
Also warn if one operand is a constant, and the constant
does not have all bits set that are set in the ~ operand
when it is extended. */
if ((TREE_CODE (primop0) == BIT_NOT_EXPR)
!= (TREE_CODE (primop1) == BIT_NOT_EXPR))
{
if (TREE_CODE (primop0) == BIT_NOT_EXPR)
primop0 = get_narrower (TREE_OPERAND (primop0, 0),
&unsignedp0);
else
primop1 = get_narrower (TREE_OPERAND (primop1, 0),
&unsignedp1);
if (TREE_CODE (primop0) == INTEGER_CST
|| TREE_CODE (primop1) == INTEGER_CST)
{
tree primop;
long constant, mask;
int unsignedp, bits;
if (TREE_CODE (primop0) == INTEGER_CST)
{
primop = primop1;
unsignedp = unsignedp1;
constant = TREE_INT_CST_LOW (primop0);
}
else
{
primop = primop0;
unsignedp = unsignedp0;
constant = TREE_INT_CST_LOW (primop1);
}
bits = TYPE_PRECISION (TREE_TYPE (primop));
if (bits < TYPE_PRECISION (result_type)
&& bits < HOST_BITS_PER_LONG && unsignedp)
{
mask = (~0L) << bits;
if ((mask & constant) != mask)
warning ("comparison of promoted ~unsigned with constant");
}
}
else if (unsignedp0 && unsignedp1
&& (TYPE_PRECISION (TREE_TYPE (primop0))
< TYPE_PRECISION (result_type))
&& (TYPE_PRECISION (TREE_TYPE (primop1))
< TYPE_PRECISION (result_type)))
warning ("comparison of promoted ~unsigned with unsigned");
}
}
}
}
/* At this point, RESULT_TYPE must be nonzero to avoid an error message.
If CONVERTED is zero, both args will be converted to type RESULT_TYPE.
Then the expression will be built.
It will be given type FINAL_TYPE if that is nonzero;
otherwise, it will be given type RESULT_TYPE. */
if (!result_type)
{
binary_op_error (code);
return error_mark_node;
}
if (! converted)
{
if (TREE_TYPE (op0) != result_type)
op0 = convert (result_type, op0);
if (TREE_TYPE (op1) != result_type)
op1 = convert (result_type, op1);
}
if (build_type == NULL_TREE)
build_type = result_type;
{
register tree result = build (resultcode, build_type, op0, op1);
register tree folded;
folded = fold (result);
if (folded == result)
TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
if (final_type != 0)
return convert (final_type, folded);
return folded;
}
}
/* Return a tree for the sum or difference (RESULTCODE says which)
of pointer PTROP and integer INTOP. */
static tree
pointer_int_sum (resultcode, ptrop, intop)
enum tree_code resultcode;
register tree ptrop, intop;
{
tree size_exp;
register tree result;
register tree folded;
/* The result is a pointer of the same type that is being added. */
register tree result_type = TREE_TYPE (ptrop);
if (TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE)
{
if (pedantic || warn_pointer_arith)
pedwarn ("pointer of type `void *' used in arithmetic");
size_exp = integer_one_node;
}
else if (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE)
{
if (pedantic || warn_pointer_arith)
pedwarn ("pointer to a function used in arithmetic");
size_exp = integer_one_node;
}
else
size_exp = c_size_in_bytes (TREE_TYPE (result_type));
/* If what we are about to multiply by the size of the elements
contains a constant term, apply distributive law
and multiply that constant term separately.
This helps produce common subexpressions. */
if ((TREE_CODE (intop) == PLUS_EXPR || TREE_CODE (intop) == MINUS_EXPR)
&& ! TREE_CONSTANT (intop)
&& TREE_CONSTANT (TREE_OPERAND (intop, 1))
&& TREE_CONSTANT (size_exp)
/* If the constant comes from pointer subtraction,
skip this optimization--it would cause an error. */
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (intop, 0))) == INTEGER_TYPE
/* If the constant is unsigned, and smaller than the pointer size,
then we must skip this optimization. This is because it could cause
an overflow error if the constant is negative but INTOP is not. */
&& (! TREE_UNSIGNED (TREE_TYPE (intop))
|| (TYPE_PRECISION (TREE_TYPE (intop))
== TYPE_PRECISION (TREE_TYPE (ptrop)))))
{
enum tree_code subcode = resultcode;
tree int_type = TREE_TYPE (intop);
if (TREE_CODE (intop) == MINUS_EXPR)
subcode = (subcode == PLUS_EXPR ? MINUS_EXPR : PLUS_EXPR);
/* Convert both subexpression types to the type of intop,
because weird cases involving pointer arithmetic
can result in a sum or difference with different type args. */
ptrop = build_binary_op (subcode, ptrop,
convert (int_type, TREE_OPERAND (intop, 1)), 1);
intop = convert (int_type, TREE_OPERAND (intop, 0));
}
/* Convert the integer argument to a type the same size as sizetype
so the multiply won't overflow spuriously. */
if (TYPE_PRECISION (TREE_TYPE (intop)) != TYPE_PRECISION (sizetype)
|| TREE_UNSIGNED (TREE_TYPE (intop)) != TREE_UNSIGNED (sizetype))
intop = convert (type_for_size (TYPE_PRECISION (sizetype),
TREE_UNSIGNED (sizetype)), intop);
/* Replace the integer argument with a suitable product by the object size.
Do this multiplication as signed, then convert to the appropriate
pointer type (actually unsigned integral). */
intop = convert (result_type,
build_binary_op (MULT_EXPR, intop,
convert (TREE_TYPE (intop), size_exp), 1));
/* Create the sum or difference. */
result = build (resultcode, result_type, ptrop, intop);
folded = fold (result);
if (folded == result)
TREE_CONSTANT (folded) = TREE_CONSTANT (ptrop) & TREE_CONSTANT (intop);
return folded;
}
/* Return a tree for the difference of pointers OP0 and OP1.
The resulting tree has type int. */
static tree
pointer_diff (op0, op1)
register tree op0, op1;
{
register tree result, folded;
tree restype = ptrdiff_type_node;
tree target_type = TREE_TYPE (TREE_TYPE (op0));
if (pedantic || warn_pointer_arith)
{
if (TREE_CODE (target_type) == VOID_TYPE)
pedwarn ("pointer of type `void *' used in subtraction");
if (TREE_CODE (target_type) == FUNCTION_TYPE)
pedwarn ("pointer to a function used in subtraction");
}
/* First do the subtraction as integers;
then drop through to build the divide operator.
Do not do default conversions on the minus operator
in case restype is a short type. */
op0 = build_binary_op (MINUS_EXPR, convert (restype, op0),
convert (restype, op1), 0);
/* This generates an error if op1 is pointer to incomplete type. */
if (TYPE_SIZE (TREE_TYPE (TREE_TYPE (op1))) == 0)
error ("arithmetic on pointer to an incomplete type");
/* This generates an error if op0 is pointer to incomplete type. */
op1 = c_size_in_bytes (target_type);
/* Divide by the size, in easiest possible way. */
result = build (EXACT_DIV_EXPR, restype, op0, convert (restype, op1));
folded = fold (result);
if (folded == result)
TREE_CONSTANT (folded) = TREE_CONSTANT (op0) & TREE_CONSTANT (op1);
return folded;
}
/* Construct and perhaps optimize a tree representation
for a unary operation. CODE, a tree_code, specifies the operation
and XARG is the operand. NOCONVERT nonzero suppresses
the default promotions (such as from short to int). */
tree
build_unary_op (code, xarg, noconvert)
enum tree_code code;
tree xarg;
int noconvert;
{
/* No default_conversion here. It causes trouble for ADDR_EXPR. */
register tree arg = xarg;
register tree argtype = 0;
register enum tree_code typecode = TREE_CODE (TREE_TYPE (arg));
char *errstring = NULL;
tree val;
if (typecode == ERROR_MARK)
return error_mark_node;
if (typecode == ENUMERAL_TYPE)
typecode = INTEGER_TYPE;
switch (code)
{
case CONVERT_EXPR:
/* This is used for unary plus, because a CONVERT_EXPR
is enough to prevent anybody from looking inside for
associativity, but won't generate any code. */
if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
|| typecode == COMPLEX_TYPE))
errstring = "wrong type argument to unary plus";
else if (!noconvert)
arg = default_conversion (arg);
break;
case NEGATE_EXPR:
if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
|| typecode == COMPLEX_TYPE))
errstring = "wrong type argument to unary minus";
else if (!noconvert)
arg = default_conversion (arg);
break;
case BIT_NOT_EXPR:
if (typecode == COMPLEX_TYPE)
{
code = CONJ_EXPR;
if (!noconvert)
arg = default_conversion (arg);
}
else if (typecode != INTEGER_TYPE)
errstring = "wrong type argument to bit-complement";
else if (!noconvert)
arg = default_conversion (arg);
break;
case ABS_EXPR:
if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
|| typecode == COMPLEX_TYPE))
errstring = "wrong type argument to abs";
else if (!noconvert)
arg = default_conversion (arg);
break;
case CONJ_EXPR:
/* Conjugating a real value is a no-op, but allow it anyway. */
if (!(typecode == INTEGER_TYPE || typecode == REAL_TYPE
|| typecode == COMPLEX_TYPE))
errstring = "wrong type argument to conjugation";
else if (!noconvert)
arg = default_conversion (arg);
break;
case TRUTH_NOT_EXPR:
if (typecode != INTEGER_TYPE
&& typecode != REAL_TYPE && typecode != POINTER_TYPE
&& typecode != COMPLEX_TYPE
/* These will convert to a pointer. */
&& typecode != ARRAY_TYPE && typecode != FUNCTION_TYPE)
{
errstring = "wrong type argument to unary exclamation mark";
break;
}
arg = truthvalue_conversion (arg);
return invert_truthvalue (arg);
case NOP_EXPR:
break;
case REALPART_EXPR:
if (TREE_CODE (arg) == COMPLEX_CST)
return TREE_REALPART (arg);
else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
return fold (build1 (REALPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
else
return arg;
case IMAGPART_EXPR:
if (TREE_CODE (arg) == COMPLEX_CST)
return TREE_IMAGPART (arg);
else if (TREE_CODE (TREE_TYPE (arg)) == COMPLEX_TYPE)
return fold (build1 (IMAGPART_EXPR, TREE_TYPE (TREE_TYPE (arg)), arg));
else
return convert (TREE_TYPE (arg), integer_zero_node);
case PREINCREMENT_EXPR:
case POSTINCREMENT_EXPR:
case PREDECREMENT_EXPR:
case POSTDECREMENT_EXPR:
/* Handle complex lvalues (when permitted)
by reduction to simpler cases. */
val = unary_complex_lvalue (code, arg);
if (val != 0)
return val;
/* Increment or decrement the real part of the value,
and don't change the imaginary part. */
if (typecode == COMPLEX_TYPE)
{
tree real, imag;
arg = stabilize_reference (arg);
real = build_unary_op (REALPART_EXPR, arg, 1);
imag = build_unary_op (IMAGPART_EXPR, arg, 1);
return build (COMPLEX_EXPR, TREE_TYPE (arg),
build_unary_op (code, real, 1), imag);
}
/* Report invalid types. */
if (typecode != POINTER_TYPE
&& typecode != INTEGER_TYPE && typecode != REAL_TYPE)
{
if (code == PREINCREMENT_EXPR || code == POSTINCREMENT_EXPR)
errstring ="wrong type argument to increment";
else
errstring ="wrong type argument to decrement";
break;
}
{
register tree inc;
tree result_type = TREE_TYPE (arg);
arg = get_unwidened (arg, 0);
argtype = TREE_TYPE (arg);
/* Compute the increment. */
if (typecode == POINTER_TYPE)
{
/* If pointer target is an undefined struct,
we just cannot know how to do the arithmetic. */
if (TYPE_SIZE (TREE_TYPE (result_type)) == 0)
error ("%s of pointer to unknown structure",
((code == PREINCREMENT_EXPR
|| code == POSTINCREMENT_EXPR)
? "increment" : "decrement"));
else if ((pedantic || warn_pointer_arith)
&& (TREE_CODE (TREE_TYPE (result_type)) == FUNCTION_TYPE
|| TREE_CODE (TREE_TYPE (result_type)) == VOID_TYPE))
pedwarn ("wrong type argument to %s",
((code == PREINCREMENT_EXPR
|| code == POSTINCREMENT_EXPR)
? "increment" : "decrement"));
inc = c_size_in_bytes (TREE_TYPE (result_type));
}
else
inc = integer_one_node;
inc = convert (argtype, inc);
/* Handle incrementing a cast-expression. */
while (1)
switch (TREE_CODE (arg))
{
case NOP_EXPR:
case CONVERT_EXPR:
case FLOAT_EXPR:
case FIX_TRUNC_EXPR:
case FIX_FLOOR_EXPR:
case FIX_ROUND_EXPR:
case FIX_CEIL_EXPR:
pedantic_lvalue_warning (CONVERT_EXPR);
/* If the real type has the same machine representation
as the type it is cast to, we can make better output
by adding directly to the inside of the cast. */
if ((TREE_CODE (TREE_TYPE (arg))
== TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 0))))
&& (TYPE_MODE (TREE_TYPE (arg))
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (arg, 0)))))
arg = TREE_OPERAND (arg, 0);
else
{
tree incremented, modify, value;
arg = stabilize_reference (arg);
if (code == PREINCREMENT_EXPR || code == PREDECREMENT_EXPR)
value = arg;
else
value = save_expr (arg);
incremented = build (((code == PREINCREMENT_EXPR
|| code == POSTINCREMENT_EXPR)
? PLUS_EXPR : MINUS_EXPR),
argtype, value, inc);
TREE_SIDE_EFFECTS (incremented) = 1;
modify = build_modify_expr (arg, NOP_EXPR, incremented);
value = build (COMPOUND_EXPR, TREE_TYPE (arg), modify, value);
TREE_USED (value) = 1;
return value;
}
break;
default:
goto give_up;
}
give_up:
/* Complain about anything else that is not a true lvalue. */
if (!lvalue_or_else (arg, ((code == PREINCREMENT_EXPR
|| code == POSTINCREMENT_EXPR)
? "increment" : "decrement")))
return error_mark_node;
/* Report a read-only lvalue. */
if (TREE_READONLY (arg))
readonly_warning (arg,
((code == PREINCREMENT_EXPR
|| code == POSTINCREMENT_EXPR)
? "increment" : "decrement"));
val = build (code, TREE_TYPE (arg), arg, inc);
TREE_SIDE_EFFECTS (val) = 1;
val = convert (result_type, val);
if (TREE_CODE (val) != code)
TREE_NO_UNUSED_WARNING (val) = 1;
return val;
}
case ADDR_EXPR:
/* Note that this operation never does default_conversion
regardless of NOCONVERT. */
/* Let &* cancel out to simplify resulting code. */
if (TREE_CODE (arg) == INDIRECT_REF)
{
/* Don't let this be an lvalue. */
if (lvalue_p (TREE_OPERAND (arg, 0)))
return non_lvalue (TREE_OPERAND (arg, 0));
return TREE_OPERAND (arg, 0);
}
/* For &x[y], return x+y */
if (TREE_CODE (arg) == ARRAY_REF)
{
if (mark_addressable (TREE_OPERAND (arg, 0)) == 0)
return error_mark_node;
return build_binary_op (PLUS_EXPR, TREE_OPERAND (arg, 0),
TREE_OPERAND (arg, 1), 1);
}
/* Handle complex lvalues (when permitted)
by reduction to simpler cases. */
val = unary_complex_lvalue (code, arg);
if (val != 0)
return val;
#if 0 /* Turned off because inconsistent;
float f; *&(int)f = 3.4 stores in int format
whereas (int)f = 3.4 stores in float format. */
/* Address of a cast is just a cast of the address
of the operand of the cast. */
switch (TREE_CODE (arg))
{
case NOP_EXPR:
case CONVERT_EXPR:
case FLOAT_EXPR:
case FIX_TRUNC_EXPR:
case FIX_FLOOR_EXPR:
case FIX_ROUND_EXPR:
case FIX_CEIL_EXPR:
if (pedantic)
pedwarn ("ANSI C forbids the address of a cast expression");
return convert (build_pointer_type (TREE_TYPE (arg)),
build_unary_op (ADDR_EXPR, TREE_OPERAND (arg, 0),
0));
}
#endif
/* Allow the address of a constructor if all the elements
are constant. */
if (TREE_CODE (arg) == CONSTRUCTOR && TREE_CONSTANT (arg))
;
/* Anything not already handled and not a true memory reference
is an error. */
else if (typecode != FUNCTION_TYPE && !lvalue_or_else (arg, "unary `&'"))
return error_mark_node;