;; Machine description of the Mitsubishi M32R cpu for GNU C compiler ;; Copyright (C) 1996, 1997, 1998 Free Software Foundation, Inc.
;; This file is part of GNU CC.
;; GNU CC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version.
;; GNU CC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License ;; along with GNU CC; see the file COPYING. If not, write to ;; the Free Software Foundation, 59 Temple Place - Suite 330, ;; Boston, MA 02111-1307, USA.
;; See file “rtl.def” for documentation on define_insn, match_*, et. al.
;; unspec usage ;; 0 - blockage ;; 1 - flush_icache ;; 2 - load_sda_base ;; 3 - setting carry in addx/subx instructions. ;; Insn type. Used to default other attribute values. (define_attr “type” “int2,int4,load2,load4,load8,store2,store4,store8,shift2,shift4,mul2,div4,uncond_branch,branch,call,multi,misc” (const_string “misc”))
;; Length in bytes. (define_attr “length” "" (cond [(eq_attr “type” “int2,load2,store2,shift2,mul2”) (const_int 2)
(eq_attr "type" "int4,load4,store4,shift4,div4") (const_int 4) (eq_attr "type" "multi") (const_int 8) (eq_attr "type" "uncond_branch,branch,call") (const_int 4)] (const_int 4)))
;; The length here is the length of a single asm. Unfortunately it might be ;; 2 or 4 so we must allow for 4. That's ok though. (define_asm_attributes [(set_attr “length” “4”) (set_attr “type” “multi”)])
;; Whether an instruction is 16-bit or 32-bit (define_attr “insn_size” “short,long” (if_then_else (eq_attr “type” “int2,load2,store2,shift2,mul2”) (const_string “short”) (const_string “long”)))
(define_attr “debug” “no,yes” (const (symbol_ref “(TARGET_DEBUG != 0)”)))
(define_attr “opt_size” “no,yes” (const (symbol_ref “(optimize_size != 0)”)))
(define_attr “m32r” “no,yes” (const (symbol_ref “(TARGET_M32R != 0)”)))
;; :::::::::::::::::::: ;; :: ;; :: Function Units ;; :: ;; ::::::::::::::::::::
;; On most RISC machines, there are instructions whose results are not ;; available for a specific number of cycles. Common cases are instructions ;; that load data from memory. On many machines, a pipeline stall will result ;; if the data is referenced too soon after the load instruction.
;; In addition, many newer microprocessors have multiple function units, ;; usually one for integer and one for floating point, and often will incur ;; pipeline stalls when a result that is needed is not yet ready.
;; The descriptions in this section allow the specification of how much time ;; must elapse between the execution of an instruction and the time when its ;; result is used. It also allows specification of when the execution of an ;; instruction will delay execution of similar instructions due to function ;; unit conflicts.
;; For the purposes of the specifications in this section, a machine is divided ;; into “function units”, each of which execute a specific class of ;; instructions in first-in-first-out order. Function units that accept one ;; instruction each cycle and allow a result to be used in the succeeding ;; instruction (usually via forwarding) need not be specified. Classic RISC ;; microprocessors will normally have a single function unit, which we can call ;; `memory'. The newer “superscalar” processors will often have function units ;; for floating point operations, usually at least a floating point adder and ;; multiplier.
;; Each usage of a function units by a class of insns is specified with a ;; `define_function_unit' expression, which looks like this:
;; (define_function_unit NAME MULTIPLICITY SIMULTANEITY TEST READY-DELAY ;; ISSUE-DELAY [CONFLICT-LIST])
;; NAME is a string giving the name of the function unit.
;; MULTIPLICITY is an integer specifying the number of identical units in the ;; processor. If more than one unit is specified, they will be scheduled ;; independently. Only truly independent units should be counted; a pipelined ;; unit should be specified as a single unit. (The only common example of a ;; machine that has multiple function units for a single instruction class that ;; are truly independent and not pipelined are the two multiply and two ;; increment units of the CDC 6600.)
;; SIMULTANEITY specifies the maximum number of insns that can be executing in ;; each instance of the function unit simultaneously or zero if the unit is ;; pipelined and has no limit.
;; All `define_function_unit' definitions referring to function unit NAME must ;; have the same name and values for MULTIPLICITY and SIMULTANEITY.
;; TEST is an attribute test that selects the insns we are describing in this ;; definition. Note that an insn may use more than one function unit and a ;; function unit may be specified in more than one `define_function_unit'.
;; READY-DELAY is an integer that specifies the number of cycles after which ;; the result of the instruction can be used without introducing any stalls.
;; ISSUE-DELAY is an integer that specifies the number of cycles after the ;; instruction matching the TEST expression begins using this unit until a ;; subsequent instruction can begin. A cost of N indicates an N-1 cycle delay. ;; A subsequent instruction may also be delayed if an earlier instruction has a ;; longer READY-DELAY value. This blocking effect is computed using the ;; SIMULTANEITY, READY-DELAY, ISSUE-DELAY, and CONFLICT-LIST terms. For a ;; normal non-pipelined function unit, SIMULTANEITY is one, the unit is taken ;; to block for the READY-DELAY cycles of the executing insn, and smaller ;; values of ISSUE-DELAY are ignored.
;; CONFLICT-LIST is an optional list giving detailed conflict costs for this ;; unit. If specified, it is a list of condition test expressions to be ;; applied to insns chosen to execute in NAME following the particular insn ;; matching TEST that is already executing in NAME. For each insn in the list, ;; ISSUE-DELAY specifies the conflict cost; for insns not in the list, the cost ;; is zero. If not specified, CONFLICT-LIST defaults to all instructions that ;; use the function unit.
;; Typical uses of this vector are where a floating point function unit can ;; pipeline either single- or double-precision operations, but not both, or ;; where a memory unit can pipeline loads, but not stores, etc.
;; As an example, consider a classic RISC machine where the result of a load ;; instruction is not available for two cycles (a single “delay” instruction is ;; required) and where only one load instruction can be executed ;; simultaneously. This would be specified as:
;; (define_function_unit “memory” 1 1 (eq_attr “type” “load”) 2 0)
;; For the case of a floating point function unit that can pipeline ;; either single or double precision, but not both, the following could be ;; specified: ;; ;; (define_function_unit “fp” 1 0 ;; (eq_attr “type” “sp_fp”) 4 4 ;; [(eq_attr “type” “dp_fp”)]) ;; ;; (define_function_unit “fp” 1 0 ;; (eq_attr “type” “dp_fp”) 4 4 ;; [(eq_attr “type” “sp_fp”)])
;; Note: The scheduler attempts to avoid function unit conflicts and uses all ;; the specifications in the `define_function_unit' expression. It has ;; recently come to our attention that these specifications may not allow ;; modeling of some of the newer “superscalar” processors that have insns using ;; multiple pipelined units. These insns will cause a potential conflict for ;; the second unit used during their execution and there is no way of ;; representing that conflict. We welcome any examples of how function unit ;; conflicts work in such processors and suggestions for their representation.
;; Function units of the M32R ;; Units that take one cycle do not need to be specified.
;; (define_function_unit {name} {multiplicity} {simulataneity} {test} ;; {ready-delay} {issue-delay} [{conflict-list}])
;; Hack to get GCC to better pack the instructions. ;; We pretend there is a separate long function unit that conflicts with ;; both the left and right 16 bit insn slots.
(define_function_unit “short” 2 2 (and (eq_attr “m32r” “yes”) (and (eq_attr “insn_size” “short”) (eq_attr “type” “!load2”))) 1 0 [(eq_attr “insn_size” “long”)])
(define_function_unit “short” 2 2 ;; load delay of 1 clock for mem execution + 1 clock for WB (and (eq_attr “m32r” “yes”) (eq_attr “type” “load2”)) 3 0 [(eq_attr “insn_size” “long”)])
(define_function_unit “long” 1 1 (and (eq_attr “m32r” “yes”) (and (eq_attr “insn_size” “long”) (eq_attr “type” “!load4,load8”))) 1 0 [(eq_attr “insn_size” “short”)])
(define_function_unit “long” 1 1 ;; load delay of 1 clock for mem execution + 1 clock for WB (and (eq_attr “m32r” “yes”) (and (eq_attr “insn_size” “long”) (eq_attr “type” “load4,load8”))) 3 0 [(eq_attr “insn_size” “short”)])
;; Instruction grouping
;; Expand prologue as RTL (define_expand “prologue” [(const_int 1)] "" " { m32r_expand_prologue (); DONE; }")
;; Move instructions. ;; ;; For QI and HI moves, the register must contain the full properly ;; sign-extended value. nonzero_bits assumes this [otherwise ;; SHORT_IMMEDIATES_SIGN_EXTEND must be used, but the comment for it ;; says it's a kludge and the .md files should be fixed instead].
(define_expand “movqi” [(set (match_operand:QI 0 “general_operand” "") (match_operand:QI 1 “general_operand” ""))] "" " { /* Everything except mem = const or mem = mem can be done easily. Objects in the small data area are handled too. */
if (GET_CODE (operands[0]) == MEM) operands[1] = force_reg (QImode, operands[1]); }")
(define_insn “*movqi_insn” [(set (match_operand:QI 0 “move_dest_operand” “=r,r,r,r,r,T,m”) (match_operand:QI 1 “move_src_operand” “r,I,JQR,T,m,r,r”))] “register_operand (operands[0], QImode) || register_operand (operands[1], QImode)” “@ mv %0,%1 ldi %0,%#%1 ldi %0,%#%1 ldub %0,%1 ldub %0,%1 stb %1,%0 stb %1,%0” [(set_attr “type” “int2,int2,int4,load2,load4,store2,store4”) (set_attr “length” “2,2,4,2,4,2,4”)])
(define_expand “movhi” [(set (match_operand:HI 0 “general_operand” "") (match_operand:HI 1 “general_operand” ""))] "" " { /* Everything except mem = const or mem = mem can be done easily. */
if (GET_CODE (operands[0]) == MEM) operands[1] = force_reg (HImode, operands[1]); }")
(define_insn “*movhi_insn” [(set (match_operand:HI 0 “move_dest_operand” “=r,r,r,r,r,r,T,m”) (match_operand:HI 1 “move_src_operand” “r,I,JQR,K,T,m,r,r”))] “register_operand (operands[0], HImode) || register_operand (operands[1], HImode)” “@ mv %0,%1 ldi %0,%#%1 ldi %0,%#%1 ld24 %0,%#%1 lduh %0,%1 lduh %0,%1 sth %1,%0 sth %1,%0” [(set_attr “type” “int2,int2,int4,int4,load2,load4,store2,store4”) (set_attr “length” “2,2,4,4,2,4,2,4”)])
(define_expand “movsi_push” [(set (mem:SI (pre_dec:SI (match_operand:SI 0 “register_operand” ""))) (match_operand:SI 1 “register_operand” ""))] "" "")
(define_expand “movsi_pop” [(set (match_operand:SI 0 “register_operand” "") (mem:SI (post_inc:SI (match_operand:SI 1 “register_operand” ""))))] "" "")
(define_expand “movsi” [(set (match_operand:SI 0 “general_operand” "") (match_operand:SI 1 “general_operand” ""))] "" " { /* Everything except mem = const or mem = mem can be done easily. */
if (GET_CODE (operands[0]) == MEM) operands[1] = force_reg (SImode, operands[1]);
/* Small Data Area reference? */ if (small_data_operand (operands[1], SImode)) { emit_insn (gen_movsi_sda (operands[0], operands[1])); DONE; }
/* If medium or large code model, symbols have to be loaded with seth/add3. */ if (addr32_operand (operands[1], SImode)) { emit_insn (gen_movsi_addr32 (operands[0], operands[1])); DONE; } }")
;; ??? Do we need a const_double constraint here for large unsigned values? (define_insn “*movsi_insn” [(set (match_operand:SI 0 “move_dest_operand” “=r,r,r,r,r,r,r,r,r,T,U,m”) (match_operand:SI 1 “move_src_operand” “r,I,J,MQ,L,n,T,U,m,r,r,r”))] “register_operand (operands[0], SImode) || register_operand (operands[1], SImode)” "* { if (GET_CODE (operands[0]) == REG || GET_CODE (operands[1]) == SUBREG) { switch (GET_CODE (operands[1])) { HOST_WIDE_INT value;
default: break; case REG: case SUBREG: return \"mv %0,%1\"; case MEM: return \"ld %0,%1\"; case CONST_INT: value = INTVAL (operands[1]); if (INT16_P (value)) return \"ldi %0,%#%1\\t; %X1\"; if (UINT24_P (value)) return \"ld24 %0,%#%1\\t; %X1\"; if (UPPER16_P (value)) return \"seth %0,%#%T1\\t; %X1\"; return \"#\"; case CONST: case SYMBOL_REF: case LABEL_REF: if (TARGET_ADDR24) return \"ld24 %0,%#%1\"; return \"#\"; } }
else if (GET_CODE (operands[0]) == MEM && (GET_CODE (operands[1]) == REG || GET_CODE (operands[1]) == SUBREG)) return "st %1,%0";
fatal_insn ("bad movsi insn", insn); }" [(set_attr “type” “int2,int2,int4,int4,int4,multi,load2,load2,load4,store2,store2,store4”) (set_attr “length” “2,2,4,4,4,8,2,2,4,2,2,4”)])
; Try to use a four byte / two byte pair for constants not loadable with ; ldi, ld24, seth.
(define_split [(set (match_operand:SI 0 “register_operand” "") (match_operand:SI 1 “two_insn_const_operand” ""))] "" [(set (match_dup 0) (match_dup 2)) (set (match_dup 0) (ior:SI (match_dup 0) (match_dup 3)))] " { unsigned HOST_WIDE_INT val = INTVAL (operands[1]); unsigned HOST_WIDE_INT tmp; int shift;
/* In all cases we will emit two instructions. However we try to use 2 byte instructions wherever possible. We can assume the constant isn't loadable with any of ldi, ld24, or seth. */
/* See if we can load a 24 bit unsigned value and invert it. */ if (UINT24_P (~ val)) { emit_insn (gen_movsi (operands[0], GEN_INT (~ val))); emit_insn (gen_one_cmplsi2 (operands[0], operands[0])); DONE; }
/* See if we can load a 24 bit unsigned value and shift it into place. 0x01fffffe is just beyond ld24's range. */ for (shift = 1, tmp = 0x01fffffe; shift < 8; ++shift, tmp <<= 1) { if ((val & ~tmp) == 0) { emit_insn (gen_movsi (operands[0], GEN_INT (val >> shift))); emit_insn (gen_ashlsi3 (operands[0], operands[0], GEN_INT (shift))); DONE; } }
/* Can't use any two byte insn, fall back to seth/or3. */ operands[2] = GEN_INT ((val) & 0xffff0000); operands[3] = GEN_INT ((val) & 0xffff); }")
(define_split [(set (match_operand:SI 0 “register_operand” "") (match_operand:SI 1 “seth_add3_operand” “i”))] “TARGET_ADDR32” [(set (match_dup 0) (high:SI (match_dup 1))) (set (match_dup 0) (lo_sum:SI (match_dup 0) (match_dup 1)))] "")
;; Small data area support. ;; The address of SDA_BASE is loaded into a register and all objects in ;; the small data area are indexed off that. This is done for each reference ;; but cse will clean things up for us. We let the compiler choose the ;; register to use so we needn't allocate (and maybe even fix) a special ;; register to use. Since the load and store insns have a 16 bit offset the ;; total size of the data area can be 64K. However, if the data area lives ;; above 16M (24 bits), SDA_BASE will have to be loaded with seth/add3 which ;; would then yield 3 instructions to reference an object [though there would ;; be no net loss if two or more objects were referenced]. The 3 insns can be ;; reduced back to 2 if the size of the small data area were reduced to 32K ;; [then seth + ld/st would work for any object in the area]. Doing this ;; would require special handling of SDA_BASE (its value would be ;; (.sdata + 32K) & 0xffff0000) and reloc computations would be different ;; [I think]. What to do about this is deferred until later and for now we ;; require .sdata to be in the first 16M.
(define_expand “movsi_sda” [(set (match_dup 2) (unspec [(const_int 0)] 2)) (set (match_operand:SI 0 “register_operand” "") (lo_sum:SI (match_dup 2) (match_operand:SI 1 “small_data_operand” "“)))] "" " { if (reload_in_progress || reload_completed) operands[2] = operands[0]; else operands[2] = gen_reg_rtx (SImode); }”)
(define_insn “*load_sda_base” [(set (match_operand:SI 0 “register_operand” “=r”) (unspec [(const_int 0)] 2))] "" “ld24 %0,#SDA_BASE” [(set_attr “type” “int4”) (set_attr “length” “4”)])
;; 32 bit address support.
(define_expand “movsi_addr32” [(set (match_dup 2) ; addr32_operand isn‘t used because it’s too restrictive, ; seth_add3_operand is more general and thus safer. (high:SI (match_operand:SI 1 “seth_add3_operand” ""))) (set (match_operand:SI 0 “register_operand” "“) (lo_sum:SI (match_dup 2) (match_dup 1)))] "" " { if (reload_in_progress || reload_completed) operands[2] = operands[0]; else operands[2] = gen_reg_rtx (SImode); }”)
(define_insn “set_hi_si” [(set (match_operand:SI 0 “register_operand” “=r”) (high:SI (match_operand 1 “symbolic_operand” "")))] "" “seth %0,%#shigh(%1)” [(set_attr “type” “int4”) (set_attr “length” “4”)])
(define_insn “lo_sum_si” [(set (match_operand:SI 0 “register_operand” “=r”) (lo_sum:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “immediate_operand” “in”)))] "" “add3 %0,%1,%#%B2” [(set_attr “type” “int4”) (set_attr “length” “4”)])
(define_expand “movdi” [(set (match_operand:DI 0 “general_operand” "") (match_operand:DI 1 “general_operand” ""))] "" " { /* Everything except mem = const or mem = mem can be done easily. */
if (GET_CODE (operands[0]) == MEM) operands[1] = force_reg (DImode, operands[1]); }")
(define_insn “*movdi_insn” [(set (match_operand:DI 0 “move_dest_operand” “=r,r,r,r,m”) (match_operand:DI 1 “move_double_src_operand” “r,nG,F,m,r”))] “register_operand (operands[0], DImode) || register_operand (operands[1], DImode)” “#” [(set_attr “type” “multi,multi,multi,load8,store8”) (set_attr “length” “4,4,16,6,6”)])
(define_split [(set (match_operand:DI 0 “move_dest_operand” "") (match_operand:DI 1 “move_double_src_operand” ""))] “reload_completed” [(match_dup 2)] “operands[2] = gen_split_move_double (operands);”) ;; Floating point move insns.
(define_expand “movsf” [(set (match_operand:SF 0 “general_operand” "") (match_operand:SF 1 “general_operand” ""))] "" " { /* Everything except mem = const or mem = mem can be done easily. */
if (GET_CODE (operands[0]) == MEM) operands[1] = force_reg (SFmode, operands[1]); }")
(define_insn “*movsf_insn” [(set (match_operand:SF 0 “move_dest_operand” “=r,r,r,r,T,m”) (match_operand:SF 1 “move_src_operand” “r,F,T,m,r,r”))] “register_operand (operands[0], SFmode) || register_operand (operands[1], SFmode)” "@ mv %0,%1
ld %0,%1 ld %0,%1 st %1,%0 st %1,%0" ;; ??? Length of alternative 1 is either 2, 4 or 8. [(set_attr “type” “int2,multi,load2,load4,store2,store4”) (set_attr “length” “2,8,2,4,2,4”)])
(define_split [(set (match_operand:SF 0 “register_operand” "") (match_operand:SF 1 “const_double_operand” ""))] “reload_completed” [(set (match_dup 2) (match_dup 3))] " { long l; REAL_VALUE_TYPE rv;
REAL_VALUE_FROM_CONST_DOUBLE (rv, operands[1]); REAL_VALUE_TO_TARGET_SINGLE (rv, l);
operands[2] = operand_subword (operands[0], 0, 0, SFmode); operands[3] = GEN_INT (l); }")
(define_expand “movdf” [(set (match_operand:DF 0 “general_operand” "") (match_operand:DF 1 “general_operand” ""))] "" " { /* Everything except mem = const or mem = mem can be done easily. */
if (GET_CODE (operands[0]) == MEM) operands[1] = force_reg (DFmode, operands[1]); }")
(define_insn “*movdf_insn” [(set (match_operand:DF 0 “move_dest_operand” “=r,r,r,m”) (match_operand:DF 1 “move_double_src_operand” “r,F,m,r”))] “register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode)” “#” [(set_attr “type” “multi,multi,load8,store8”) (set_attr “length” “4,16,6,6”)])
(define_split [(set (match_operand:DF 0 “move_dest_operand” "") (match_operand:DF 1 “move_double_src_operand” ""))] “reload_completed” [(match_dup 2)] “operands[2] = gen_split_move_double (operands);”) ;; Zero extension instructions.
(define_insn “zero_extendqihi2” [(set (match_operand:HI 0 “register_operand” “=r,r,r”) (zero_extend:HI (match_operand:QI 1 “nonimmediate_operand” “r,T,m”)))] "" “@ and3 %0,%1,%#255 ldub %0,%1 ldub %0,%1” [(set_attr “type” “int4,load2,load4”) (set_attr “length” “4,2,4”)])
(define_insn “zero_extendqisi2” [(set (match_operand:SI 0 “register_operand” “=r,r,r”) (zero_extend:SI (match_operand:QI 1 “nonimmediate_operand” “r,T,m”)))] "" “@ and3 %0,%1,%#255 ldub %0,%1 ldub %0,%1” [(set_attr “type” “int4,load2,load4”) (set_attr “length” “4,2,4”)])
(define_insn “zero_extendhisi2” [(set (match_operand:SI 0 “register_operand” “=r,r,r”) (zero_extend:SI (match_operand:HI 1 “nonimmediate_operand” “r,T,m”)))] "" “@ and3 %0,%1,%#65535 lduh %0,%1 lduh %0,%1” [(set_attr “type” “int4,load2,load4”) (set_attr “length” “4,2,4”)]) ;; Sign extension instructions. ;; ??? See v850.md.
;; These patterns originally accepted general_operands, however, slightly ;; better code is generated by only accepting register_operands, and then ;; letting combine generate the lds[hb] insns. ;; [This comment copied from sparc.md, I think.]
(define_expand “extendqihi2” [(set (match_operand:HI 0 “register_operand” "") (sign_extend:HI (match_operand:QI 1 “register_operand” "")))] "" " { rtx temp = gen_reg_rtx (SImode); rtx shift_24 = GEN_INT (24); int op1_subword = 0; int op0_subword = 0;
if (GET_CODE (operand1) == SUBREG) { op1_subword = SUBREG_WORD (operand1); operand1 = XEXP (operand1, 0); } if (GET_CODE (operand0) == SUBREG) { op0_subword = SUBREG_WORD (operand0); operand0 = XEXP (operand0, 0); } emit_insn (gen_ashlsi3 (temp, gen_rtx (SUBREG, SImode, operand1, op1_subword), shift_24)); if (GET_MODE (operand0) != SImode) operand0 = gen_rtx (SUBREG, SImode, operand0, op0_subword); emit_insn (gen_ashrsi3 (operand0, temp, shift_24)); DONE; }")
(define_insn “*sign_extendqihi2_insn” [(set (match_operand:HI 0 “register_operand” “=r,r”) (sign_extend:HI (match_operand:QI 1 “memory_operand” “T,m”)))] "" “ldb %0,%1” [(set_attr “type” “load2,load4”) (set_attr “length” “2,4”)])
(define_expand “extendqisi2” [(set (match_operand:SI 0 “register_operand” "") (sign_extend:SI (match_operand:QI 1 “register_operand” "")))] "" " { rtx temp = gen_reg_rtx (SImode); rtx shift_24 = GEN_INT (24); int op1_subword = 0;
if (GET_CODE (operand1) == SUBREG) { op1_subword = SUBREG_WORD (operand1); operand1 = XEXP (operand1, 0); }
emit_insn (gen_ashlsi3 (temp, gen_rtx (SUBREG, SImode, operand1, op1_subword), shift_24)); emit_insn (gen_ashrsi3 (operand0, temp, shift_24)); DONE; }")
(define_insn “*sign_extendqisi2_insn” [(set (match_operand:SI 0 “register_operand” “=r,r”) (sign_extend:SI (match_operand:QI 1 “memory_operand” “T,m”)))] "" “ldb %0,%1” [(set_attr “type” “load2,load4”) (set_attr “length” “2,4”)])
(define_expand “extendhisi2” [(set (match_operand:SI 0 “register_operand” "") (sign_extend:SI (match_operand:HI 1 “register_operand” "")))] "" " { rtx temp = gen_reg_rtx (SImode); rtx shift_16 = GEN_INT (16); int op1_subword = 0;
if (GET_CODE (operand1) == SUBREG) { op1_subword = SUBREG_WORD (operand1); operand1 = XEXP (operand1, 0); }
emit_insn (gen_ashlsi3 (temp, gen_rtx (SUBREG, SImode, operand1, op1_subword), shift_16)); emit_insn (gen_ashrsi3 (operand0, temp, shift_16)); DONE; }")
(define_insn “*sign_extendhisi2_insn” [(set (match_operand:SI 0 “register_operand” “=r,r”) (sign_extend:SI (match_operand:HI 1 “memory_operand” “T,m”)))] "" “ldh %0,%1” [(set_attr “type” “load2,load4”) (set_attr “length” “2,4”)]) ;; Arithmetic instructions.
; ??? Adding an alternative to split add3 of small constants into two ; insns yields better instruction packing but slower code. Adds of small ; values is done a lot.
(define_insn “addsi3” [(set (match_operand:SI 0 “register_operand” “=r,r,r”) (plus:SI (match_operand:SI 1 “register_operand” “%0,0,r”) (match_operand:SI 2 “nonmemory_operand” “r,I,J”)))] "" “@ add %0,%2 addi %0,%#%2 add3 %0,%1,%#%2” [(set_attr “type” “int2,int2,int4”) (set_attr “length” “2,2,4”)])
;(define_split ; [(set (match_operand:SI 0 “register_operand” "") ; (plus:SI (match_operand:SI 1 “register_operand” "") ; (match_operand:SI 2 “int8_operand” "")))] ; “reload_completed ; && REGNO (operands[0]) != REGNO (operands[1]) ; && INT8_P (INTVAL (operands[2])) ; && INTVAL (operands[2]) != 0” ; [(set (match_dup 0) (match_dup 1)) ; (set (match_dup 0) (plus:SI (match_dup 0) (match_dup 2)))] ; "")
(define_insn “adddi3” [(set (match_operand:DI 0 “register_operand” “=r”) (plus:DI (match_operand:DI 1 “register_operand” “%0”) (match_operand:DI 2 “register_operand” “r”))) (clobber (reg:CC 17))] "" “#” [(set_attr “type” “multi”) (set_attr “length” “6”)])
;; ??? The cmp clears the condition bit. Can we speed up somehow? (define_split [(set (match_operand:DI 0 “register_operand” "") (plus:DI (match_operand:DI 1 “register_operand” "") (match_operand:DI 2 “register_operand” ""))) (clobber (match_operand 3 "" "“))] “reload_completed” [(parallel [(set (match_dup 3) (const_int 0)) (use (match_dup 4))]) (parallel [(set (match_dup 4) (plus:SI (match_dup 4) (plus:SI (match_dup 5) (match_dup 3)))) (set (match_dup 3) (unspec [(const_int 0)] 3))]) (parallel [(set (match_dup 6) (plus:SI (match_dup 6) (plus:SI (match_dup 7) (match_dup 3)))) (set (match_dup 3) (unspec [(const_int 0)] 3))])] " { operands[4] = operand_subword (operands[0], (WORDS_BIG_ENDIAN != 0), 0, DImode); operands[5] = operand_subword (operands[2], (WORDS_BIG_ENDIAN != 0), 0, DImode); operands[6] = operand_subword (operands[0], (WORDS_BIG_ENDIAN == 0), 0, DImode); operands[7] = operand_subword (operands[2], (WORDS_BIG_ENDIAN == 0), 0, DImode); }”)
(define_insn “*clear_c” [(set (reg:CC 17) (const_int 0)) (use (match_operand:SI 0 “register_operand” “r”))] "" “cmp %0,%0” [(set_attr “type” “int2”) (set_attr “length” “2”)])
(define_insn “*add_carry” [(set (match_operand:SI 0 “register_operand” “=r”) (plus:SI (match_operand:SI 1 “register_operand” “%0”) (plus:SI (match_operand:SI 2 “register_operand” “r”) (reg:CC 17)))) (set (reg:CC 17) (unspec [(const_int 0)] 3))] "" “addx %0,%2” [(set_attr “type” “int2”) (set_attr “length” “2”)])
(define_insn “subsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (minus:SI (match_operand:SI 1 “register_operand” “0”) (match_operand:SI 2 “register_operand” “r”)))] "" “sub %0,%2” [(set_attr “type” “int2”) (set_attr “length” “2”)])
(define_insn “subdi3” [(set (match_operand:DI 0 “register_operand” “=r”) (minus:DI (match_operand:DI 1 “register_operand” “0”) (match_operand:DI 2 “register_operand” “r”))) (clobber (reg:CC 17))] "" “#” [(set_attr “type” “multi”) (set_attr “length” “6”)])
;; ??? The cmp clears the condition bit. Can we speed up somehow? (define_split [(set (match_operand:DI 0 “register_operand” "") (minus:DI (match_operand:DI 1 “register_operand” "") (match_operand:DI 2 “register_operand” ""))) (clobber (match_operand 3 "" "“))] “reload_completed” [(parallel [(set (match_dup 3) (const_int 0)) (use (match_dup 4))]) (parallel [(set (match_dup 4) (minus:SI (match_dup 4) (minus:SI (match_dup 5) (match_dup 3)))) (set (match_dup 3) (unspec [(const_int 0)] 3))]) (parallel [(set (match_dup 6) (minus:SI (match_dup 6) (minus:SI (match_dup 7) (match_dup 3)))) (set (match_dup 3) (unspec [(const_int 0)] 3))])] " { operands[4] = operand_subword (operands[0], (WORDS_BIG_ENDIAN != 0), 0, DImode); operands[5] = operand_subword (operands[2], (WORDS_BIG_ENDIAN != 0), 0, DImode); operands[6] = operand_subword (operands[0], (WORDS_BIG_ENDIAN == 0), 0, DImode); operands[7] = operand_subword (operands[2], (WORDS_BIG_ENDIAN == 0), 0, DImode); }”)
(define_insn “*sub_carry” [(set (match_operand:SI 0 “register_operand” “=r”) (minus:SI (match_operand:SI 1 “register_operand” “%0”) (minus:SI (match_operand:SI 2 “register_operand” “r”) (reg:CC 17)))) (set (reg:CC 17) (unspec [(const_int 0)] 3))] "" “subx %0,%2” [(set_attr “type” “int2”) (set_attr “length” “2”)]) ; Multiply/Divide instructions.
(define_insn “mulhisi3” [(set (match_operand:SI 0 “register_operand” “=r”) (mult:SI (sign_extend:SI (match_operand:HI 1 “register_operand” “r”)) (sign_extend:SI (match_operand:HI 2 “register_operand” “r”))))] "" “mullo %1,%2;mvfacmi %0” [(set_attr “type” “multi”) (set_attr “length” “4”)])
(define_insn “mulsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (mult:SI (match_operand:SI 1 “register_operand” “%0”) (match_operand:SI 2 “register_operand” “r”)))] "" “mul %0,%2” [(set_attr “type” “mul2”) (set_attr “length” “2”)])
(define_insn “divsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (div:SI (match_operand:SI 1 “register_operand” “0”) (match_operand:SI 2 “register_operand” “r”)))] "" “div %0,%2” [(set_attr “type” “div4”) (set_attr “length” “4”)])
(define_insn “udivsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (udiv:SI (match_operand:SI 1 “register_operand” “0”) (match_operand:SI 2 “register_operand” “r”)))] "" “divu %0,%2” [(set_attr “type” “div4”) (set_attr “length” “4”)])
(define_insn “modsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (mod:SI (match_operand:SI 1 “register_operand” “0”) (match_operand:SI 2 “register_operand” “r”)))] "" “rem %0,%2” [(set_attr “type” “div4”) (set_attr “length” “4”)])
(define_insn “umodsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (umod:SI (match_operand:SI 1 “register_operand” “0”) (match_operand:SI 2 “register_operand” “r”)))] "" “remu %0,%2” [(set_attr “type” “div4”) (set_attr “length” “4”)]) ;; Boolean instructions. ;; ;; We don‘t define the DImode versions as expand_binop does a good enough job. ;; And if it doesn’t it should be fixed.
(define_insn “andsi3” [(set (match_operand:SI 0 “register_operand” “=r,r”) (and:SI (match_operand:SI 1 “register_operand” “%0,r”) (match_operand:SI 2 “nonmemory_operand” “r,K”)))] "" “@ and %0,%2 and3 %0,%1,%#%2\t; %X2” [(set_attr “type” “int2,int4”) (set_attr “length” “2,4”)])
(define_insn “iorsi3” [(set (match_operand:SI 0 “register_operand” “=r,r”) (ior:SI (match_operand:SI 1 “register_operand” “%0,r”) (match_operand:SI 2 “nonmemory_operand” “r,K”)))] "" “@ or %0,%2 or3 %0,%1,%#%2\t; %X2” [(set_attr “type” “int2,int4”) (set_attr “length” “2,4”)])
(define_insn “xorsi3” [(set (match_operand:SI 0 “register_operand” “=r,r”) (xor:SI (match_operand:SI 1 “register_operand” “%0,r”) (match_operand:SI 2 “nonmemory_operand” “r,K”)))] "" “@ xor %0,%2 xor3 %0,%1,%#%2\t; %X2” [(set_attr “type” “int2,int4”) (set_attr “length” “2,4”)])
(define_insn “negsi2” [(set (match_operand:SI 0 “register_operand” “=r”) (neg:SI (match_operand:SI 1 “register_operand” “r”)))] "" “neg %0,%1” [(set_attr “type” “int2”) (set_attr “length” “2”)])
(define_insn “one_cmplsi2” [(set (match_operand:SI 0 “register_operand” “=r”) (not:SI (match_operand:SI 1 “register_operand” “r”)))] "" “not %0,%1” [(set_attr “type” “int2”) (set_attr “length” “2”)]) ;; Shift instructions.
(define_insn “ashlsi3” [(set (match_operand:SI 0 “register_operand” “=r,r,r”) (ashift:SI (match_operand:SI 1 “register_operand” “0,0,r”) (match_operand:SI 2 “reg_or_uint16_operand” “r,O,K”)))] "" “@ sll %0,%2 slli %0,%#%2 sll3 %0,%1,%#%2” [(set_attr “type” “shift2,shift2,shift4”) (set_attr “length” “2,2,4”)])
(define_insn “ashrsi3” [(set (match_operand:SI 0 “register_operand” “=r,r,r”) (ashiftrt:SI (match_operand:SI 1 “register_operand” “0,0,r”) (match_operand:SI 2 “reg_or_uint16_operand” “r,O,K”)))] "" “@ sra %0,%2 srai %0,%#%2 sra3 %0,%1,%#%2” [(set_attr “type” “shift2,shift2,shift4”) (set_attr “length” “2,2,4”)])
(define_insn “lshrsi3” [(set (match_operand:SI 0 “register_operand” “=r,r,r”) (lshiftrt:SI (match_operand:SI 1 “register_operand” “0,0,r”) (match_operand:SI 2 “reg_or_uint16_operand” “r,O,K”)))] "" “@ srl %0,%2 srli %0,%#%2 srl3 %0,%1,%#%2” [(set_attr “type” “shift2,shift2,shift4”) (set_attr “length” “2,2,4”)]) ;; Compare instructions. ;; This controls RTL generation and register allocation.
;; We generate RTL for comparisons and branches by having the cmpxx ;; patterns store away the operands. Then the bcc patterns ;; emit RTL for both the compare and the branch. ;; ;; On the m32r it is more efficient to use the bxxz instructions and ;; thus merge the compare and branch into one instruction, so they are ;; preferred.
(define_expand “cmpsi” [(set (reg:CC 17) (compare:CC (match_operand:SI 0 “register_operand” "") (match_operand:SI 1 “nonmemory_operand” "“)))] "" " { m32r_compare_op0 = operands[0]; m32r_compare_op1 = operands[1]; DONE; }”)
;; The cmp_xxx_insn patterns set the condition bit to the result of the ;; comparison. There isn't a “compare equal” instruction so cmp_eqsi_insn ;; is quite inefficient. However, it is rarely used.
(define_insn “cmp_eqsi_insn” [(set (reg:CC 17) (eq:CC (match_operand:SI 0 “register_operand” “r,r”) (match_operand:SI 1 “reg_or_cmp_int16_operand” “r,P”))) (clobber (match_scratch:SI 2 “=&r,&r”))] "" “* { if (which_alternative == 0) { return "mv %2,%0;sub %2,%1;cmpui %2,#1"; } else { if (INTVAL (operands [1]) == 0) return "cmpui %0, #1"; else if (REGNO (operands [2]) == REGNO (operands [0])) return "addi %0,%#%N1;cmpui %2,#1"; else return "add3 %2,%0,%#%N1;cmpui %2,#1"; } }” [(set_attr “type” “multi,multi”) (set_attr “length” “8,8”)])
(define_insn “cmp_ltsi_insn” [(set (reg:CC 17) (lt:CC (match_operand:SI 0 “register_operand” “r,r”) (match_operand:SI 1 “reg_or_int16_operand” “r,J”)))] "" “@ cmp %0,%1 cmpi %0,%#%1” [(set_attr “type” “int2,int4”) (set_attr “length” “2,4”)])
(define_insn “cmp_ltusi_insn” [(set (reg:CC 17) (ltu:CC (match_operand:SI 0 “register_operand” “r,r”) (match_operand:SI 1 “reg_or_uint16_operand” “r,K”)))] "" “@ cmpu %0,%1 cmpui %0,%#%1” [(set_attr “type” “int2,int4”) (set_attr “length” “2,4”)])
;; reg == small constant comparisons are best handled by putting the result ;; of the comparison in a tmp reg and then using beqz/bnez. ;; ??? The result register doesn't contain 0/STORE_FLAG_VALUE, ;; it contains 0/non-zero.
(define_insn “cmp_ne_small_const_insn” [(set (match_operand:SI 0 “register_operand” “=r,r”) (ne:SI (match_operand:SI 1 “register_operand” “0,r”) (match_operand:SI 2 “cmp_int16_operand” “N,P”)))] "" “@ addi %0,%#%N2 add3 %0,%1,%#%N2” [(set_attr “type” “int2,int4”) (set_attr “length” “2,4”)]) ;; These control RTL generation for conditional jump insns.
(define_expand “beq” [(set (pc) (if_then_else (match_dup 1) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { operands[1] = gen_compare ((int)EQ, m32r_compare_op0, m32r_compare_op1, FALSE); }”)
(define_expand “bne” [(set (pc) (if_then_else (match_dup 1) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { operands[1] = gen_compare ((int)NE, m32r_compare_op0, m32r_compare_op1, FALSE); }”)
(define_expand “bgt” [(set (pc) (if_then_else (match_dup 1) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { operands[1] = gen_compare ((int)GT, m32r_compare_op0, m32r_compare_op1, FALSE); }”)
(define_expand “ble” [(set (pc) (if_then_else (match_dup 1) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { operands[1] = gen_compare ((int)LE, m32r_compare_op0, m32r_compare_op1, FALSE); }”)
(define_expand “bge” [(set (pc) (if_then_else (match_dup 1) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { operands[1] = gen_compare ((int)GE, m32r_compare_op0, m32r_compare_op1, FALSE); }”)
(define_expand “blt” [(set (pc) (if_then_else (match_dup 1) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { operands[1] = gen_compare ((int)LT, m32r_compare_op0, m32r_compare_op1, FALSE); }”)
(define_expand “bgtu” [(set (pc) (if_then_else (match_dup 1) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { operands[1] = gen_compare ((int)GTU, m32r_compare_op0, m32r_compare_op1, FALSE); }”)
(define_expand “bleu” [(set (pc) (if_then_else (match_dup 1) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { operands[1] = gen_compare ((int)LEU, m32r_compare_op0, m32r_compare_op1, FALSE); }”)
(define_expand “bgeu” [(set (pc) (if_then_else (match_dup 1) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { operands[1] = gen_compare ((int)GEU, m32r_compare_op0, m32r_compare_op1, FALSE); }”)
(define_expand “bltu” [(set (pc) (if_then_else (match_dup 1) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { operands[1] = gen_compare ((int)LTU, m32r_compare_op0, m32r_compare_op1, FALSE); }”)
;; Now match both normal and inverted jump.
(define_insn “*branch_insn” [(set (pc) (if_then_else (match_operator 1 “eqne_comparison_operator” [(reg 17) (const_int 0)]) (label_ref (match_operand 0 "" "")) (pc)))] "" “* { static char instruction[40]; sprintf (instruction, "%s%s %%l0", (GET_CODE (operands[1]) == NE) ? "bc" : "bnc", (get_attr_length (insn) == 2) ? ".s" : ""); return instruction; }” [(set_attr “type” “branch”) ; We use 400/800 instead of 512,1024 to account for inaccurate insn ; lengths and insn alignments that are complex to track. ; It's not important that we be hyper-precise here. It may be more ; important blah blah blah when the chip supports parallel execution ; blah blah blah but until then blah blah blah this is simple and ; suffices. (set (attr “length”) (if_then_else (ltu (plus (minus (match_dup 0) (pc)) (const_int 400)) (const_int 800)) (const_int 2) (const_int 4)))])
(define_insn “*rev_branch_insn” [(set (pc) (if_then_else (match_operator 1 “eqne_comparison_operator” [(reg 17) (const_int 0)]) (pc) (label_ref (match_operand 0 "" ""))))] ;“REVERSIBLE_CC_MODE (GET_MODE (XEXP (operands[1], 0)))” "" “* { static char instruction[40]; sprintf (instruction, "%s%s %%l0", (GET_CODE (operands[1]) == EQ) ? "bc" : "bnc", (get_attr_length (insn) == 2) ? ".s" : ""); return instruction; }” [(set_attr “type” “branch”) ; We use 400/800 instead of 512,1024 to account for inaccurate insn ; lengths and insn alignments that are complex to track. ; It's not important that we be hyper-precise here. It may be more ; important blah blah blah when the chip supports parallel execution ; blah blah blah but until then blah blah blah this is simple and ; suffices. (set (attr “length”) (if_then_else (ltu (plus (minus (match_dup 0) (pc)) (const_int 400)) (const_int 800)) (const_int 2) (const_int 4)))])
; reg/reg compare and branch insns
(define_insn “*reg_branch_insn” [(set (pc) (if_then_else (match_operator 1 “eqne_comparison_operator” [(match_operand:SI 2 “register_operand” “r”) (match_operand:SI 3 “register_operand” “r”)]) (label_ref (match_operand 0 "" "")) (pc)))] "" “* { /* Is branch target reachable with beq/bne? */ if (get_attr_length (insn) == 4) { if (GET_CODE (operands[1]) == EQ) return "beq %2,%3,%l0"; else return "bne %2,%3,%l0"; } else { if (GET_CODE (operands[1]) == EQ) return "bne %2,%3,1f;bra %l0;1:"; else return "beq %2,%3,1f;bra %l0;1:"; } }” [(set_attr “type” “branch”) ; We use 25000/50000 instead of 32768/65536 to account for slot filling ; which is complex to track and inaccurate length specs. (set (attr “length”) (if_then_else (ltu (plus (minus (match_dup 0) (pc)) (const_int 25000)) (const_int 50000)) (const_int 4) (const_int 8)))])
(define_insn “*rev_reg_branch_insn” [(set (pc) (if_then_else (match_operator 1 “eqne_comparison_operator” [(match_operand:SI 2 “register_operand” “r”) (match_operand:SI 3 “register_operand” “r”)]) (pc) (label_ref (match_operand 0 "" ""))))] "" “* { /* Is branch target reachable with beq/bne? */ if (get_attr_length (insn) == 4) { if (GET_CODE (operands[1]) == NE) return "beq %2,%3,%l0"; else return "bne %2,%3,%l0"; } else { if (GET_CODE (operands[1]) == NE) return "bne %2,%3,1f;bra %l0;1:"; else return "beq %2,%3,1f;bra %l0;1:"; } }” [(set_attr “type” “branch”) ; We use 25000/50000 instead of 32768/65536 to account for slot filling ; which is complex to track and inaccurate length specs. (set (attr “length”) (if_then_else (ltu (plus (minus (match_dup 0) (pc)) (const_int 25000)) (const_int 50000)) (const_int 4) (const_int 8)))])
; reg/zero compare and branch insns
(define_insn “*zero_branch_insn” [(set (pc) (if_then_else (match_operator 1 “signed_comparison_operator” [(match_operand:SI 2 “register_operand” “r”) (const_int 0)]) (label_ref (match_operand 0 "" "")) (pc)))] "" "* { char *br,*invbr; char asmtext[40];
switch (GET_CODE (operands[1])) { case EQ : br = "eq"; invbr = "ne"; break; case NE : br = "ne"; invbr = "eq"; break; case LE : br = "le"; invbr = "gt"; break; case GT : br = "gt"; invbr = "le"; break; case LT : br = "lt"; invbr = "ge"; break; case GE : br = "ge"; invbr = "lt"; break; }
/* Is branch target reachable with bxxz? */ if (get_attr_length (insn) == 4) { sprintf (asmtext, "b%sz %%2,%%l0", br); output_asm_insn (asmtext, operands); } else { sprintf (asmtext, "b%sz %%2,1f;bra %%l0;1:", invbr); output_asm_insn (asmtext, operands); } return ""; }" [(set_attr “type” “branch”) ; We use 25000/50000 instead of 32768/65536 to account for slot filling ; which is complex to track and inaccurate length specs. (set (attr “length”) (if_then_else (ltu (plus (minus (match_dup 0) (pc)) (const_int 25000)) (const_int 50000)) (const_int 4) (const_int 8)))])
(define_insn “*rev_zero_branch_insn” [(set (pc) (if_then_else (match_operator 1 “eqne_comparison_operator” [(match_operand:SI 2 “register_operand” “r”) (const_int 0)]) (pc) (label_ref (match_operand 0 "" ""))))] "" "* { char *br,*invbr; char asmtext[40];
switch (GET_CODE (operands[1])) { case EQ : br = "eq"; invbr = "ne"; break; case NE : br = "ne"; invbr = "eq"; break; case LE : br = "le"; invbr = "gt"; break; case GT : br = "gt"; invbr = "le"; break; case LT : br = "lt"; invbr = "ge"; break; case GE : br = "ge"; invbr = "lt"; break; }
/* Is branch target reachable with bxxz? */ if (get_attr_length (insn) == 4) { sprintf (asmtext, "b%sz %%2,%%l0", invbr); output_asm_insn (asmtext, operands); } else { sprintf (asmtext, "b%sz %%2,1f;bra %%l0;1:", br); output_asm_insn (asmtext, operands); } return ""; }" [(set_attr “type” “branch”) ; We use 25000/50000 instead of 32768/65536 to account for slot filling ; which is complex to track and inaccurate length specs. (set (attr “length”) (if_then_else (ltu (plus (minus (match_dup 0) (pc)) (const_int 25000)) (const_int 50000)) (const_int 4) (const_int 8)))]) ;; Unconditional and other jump instructions.
(define_insn “jump” [(set (pc) (label_ref (match_operand 0 "" "")))] "" “bra %l0” [(set_attr “type” “uncond_branch”) (set (attr “length”) (if_then_else (ltu (plus (minus (match_dup 0) (pc)) (const_int 400)) (const_int 800)) (const_int 2) (const_int 4)))])
(define_insn “indirect_jump” [(set (pc) (match_operand:SI 0 “address_operand” “p”))] "" “jmp %a0” [(set_attr “type” “uncond_branch”) (set_attr “length” “2”)])
(define_insn “tablejump” [(set (pc) (match_operand:SI 0 “address_operand” “p”)) (use (label_ref (match_operand 1 "" "")))] "" “jmp %a0” [(set_attr “type” “uncond_branch”) (set_attr “length” “2”)])
(define_expand “call” ;; operands[1] is stack_size_rtx ;; operands[2] is next_arg_register [(parallel [(call (match_operand:SI 0 “call_operand” "") (match_operand 1 "" "")) (clobber (reg:SI 14))])] "" "")
(define_insn “*call_via_reg” [(call (mem:SI (match_operand:SI 0 “register_operand” “r”)) (match_operand 1 "" "")) (clobber (reg:SI 14))] "" “jl %0” [(set_attr “type” “call”) (set_attr “length” “2”)])
(define_insn “*call_via_label” [(call (mem:SI (match_operand:SI 0 “call_address_operand” "")) (match_operand 1 "" "")) (clobber (reg:SI 14))] "" "* { int call26_p = call26_operand (operands[0], FUNCTION_MODE);
if (! call26_p) { /* We may not be able to reach with a `bl' insn so punt and leave it to the linker. We do this here, rather than doing a force_reg in the define_expand so these insns won‘t be separated, say by scheduling, thus simplifying the linker. */ return "seth r14,%T0;add3 r14,r14,%B0;jl r14"; } else return "bl %0"; }" [(set_attr “type” “call”) (set (attr “length”) (if_then_else (eq (symbol_ref “call26_operand (operands[0], FUNCTION_MODE)”) (const_int 0)) (const_int 12) ; 10 + 2 for nop filler ; The return address must be on a 4 byte boundary so ; there’s no point in using a value of 2 here. A 2 byte ; insn may go in the left slot but we currently can't ; use such knowledge. (const_int 4)))])
(define_expand “call_value” ;; operand 2 is stack_size_rtx ;; operand 3 is next_arg_register [(parallel [(set (match_operand 0 “register_operand” “=r”) (call (match_operand:SI 1 “call_operand” "") (match_operand 2 "" ""))) (clobber (reg:SI 14))])] "" "")
(define_insn “*call_value_via_reg” [(set (match_operand 0 “register_operand” “=r”) (call (mem:SI (match_operand:SI 1 “register_operand” “r”)) (match_operand 2 "" ""))) (clobber (reg:SI 14))] "" “jl %1” [(set_attr “type” “call”) (set_attr “length” “2”)])
(define_insn “*call_value_via_label” [(set (match_operand 0 “register_operand” “=r”) (call (mem:SI (match_operand:SI 1 “call_address_operand” "")) (match_operand 2 "" ""))) (clobber (reg:SI 14))] "" "* { int call26_p = call26_operand (operands[1], FUNCTION_MODE);
if (! call26_p) { /* We may not be able to reach with a `bl' insn so punt and leave it to the linker. We do this here, rather than doing a force_reg in the define_expand so these insns won‘t be separated, say by scheduling, thus simplifying the linker. */ return "seth r14,%T1;add3 r14,r14,%B1;jl r14"; } else return "bl %1"; }" [(set_attr “type” “call”) (set (attr “length”) (if_then_else (eq (symbol_ref “call26_operand (operands[1], FUNCTION_MODE)”) (const_int 0)) (const_int 12) ; 10 + 2 for nop filler ; The return address must be on a 4 byte boundary so ; there’s no point in using a value of 2 here. A 2 byte ; insn may go in the left slot but we currently can't ; use such knowledge. (const_int 4)))]) (define_insn “nop” [(const_int 0)] "" “nop” [(set_attr “type” “int2”) (set_attr “length” “2”)])
;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and ;; all of memory. This blocks insns from being moved across this point.
(define_insn “blockage” [(unspec_volatile [(const_int 0)] 0)] "" "")
;; Special pattern to flush the icache.
(define_insn “flush_icache” [(unspec_volatile [(match_operand 0 “memory_operand” “m”)] 0)] "" “* return "nop ; flush-icache";” [(set_attr “type” “int2”) (set_attr “length” “2”)]) ;; Conditional move instructions ;; Based on those done for the d10v
(define_expand “movsicc” [ (set (match_operand:SI 0 “register_operand” “r”) (if_then_else:SI (match_operand 1 "" "") (match_operand:SI 2 “conditional_move_operand” “O”) (match_operand:SI 3 “conditional_move_operand” “O”) ) ) ] "" " { if (! zero_and_one (operands [2], operands [3])) FAIL;
/* Generate the comparision that will set the carry flag. */ operands[1] = gen_compare ((int)GET_CODE (operands[1]), m32r_compare_op0, m32r_compare_op1, TRUE);
/* See other movsicc pattern below for reason why. */ emit_insn (gen_blockage()); }")
;; Generate the conditional instructions based on how the carry flag is examined. (define_insn “*movsicc_internal” [(set (match_operand:SI 0 “register_operand” “r”) (if_then_else:SI (match_operand 1 “carry_compare_operand” "") (match_operand:SI 2 “conditional_move_operand” “O”) (match_operand:SI 3 “conditional_move_operand” “O”) ) )] “zero_and_one (operands [2], operands[3])” “* return emit_cond_move (operands, insn);” [(set_attr “type” “multi”) (set_attr “length” “8”) ] )
;; Split up troublesome insns for better scheduling. ;; Peepholes go at the end.
;; ??? Setting the type attribute may not be useful, but for completeness ;; we do it.
(define_peephole [(set (mem:SI (plus:SI (match_operand:SI 0 “register_operand” “r”) (const_int 4))) (match_operand:SI 1 “register_operand” “r”))] “0 && dead_or_set_p (insn, operands[0])” “st %1,@+%0” [(set_attr “type” “store2”) (set_attr “length” “2”)])
;; This case is triggered by compiling this code: ;; ;; extern void sub(int *); ;; void main (void) ;; { ;; int i=2,j=3,k; ;; while (i < j) sub(&k); ;; i = j / k; ;; sub(&i); ;; i = j - k; ;; sub(&i); ;; } ;; ;; Without the peephole the following assembler is generated for the ;; divide and subtract expressions: ;; ;; div r5,r4
;; mv r4,r5
;; st r4,@(4,sp) ;; bl sub ;; ;; Simialr code is produced for the subtract expression. With this ;; peephole the redundant move is eliminated. ;; ;; This optimisation onbly works if PRESERVE_DEATH_INFO_REGNO_P is ;; defined in m32r.h
(define_peephole [(set (match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”) ) (set (mem:SI (plus: SI (match_operand:SI 2 “register_operand” “r”) (match_operand:SI 3 “immediate_operand” “J”))) (match_dup 0) ) ] “0 && dead_or_set_p (insn, operands [0])” “st %1,@(%3,%2)” [(set_attr “type” “store4”) (set_attr “length” “4”) ] )