blob: e8cee04cf403afa6f3076a5a4912e99967bf40f9 [file] [log] [blame]
/* Subroutines for assembler code output on the TMS320C[34]x
Copyright (C) 1994-98, 1999 Free Software Foundation, Inc.
Contributed by Michael Hayes (m.hayes@elec.canterbury.ac.nz)
and Herman Ten Brugge (Haj.Ten.Brugge@net.HCC.nl).
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Some output-actions in c4x.md need these. */
#include "config.h"
#include "system.h"
#include "toplev.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "real.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "insn-codes.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "tree.h"
#include "expr.h"
#include "flags.h"
#include "loop.h"
#include "recog.h"
#include "c-tree.h"
static int c4x_leaf_function;
static char *float_reg_names[] = FLOAT_REGISTER_NAMES;
/* Array of the smallest class containing reg number REGNO, indexed by
REGNO. Used by REGNO_REG_CLASS in c4x.h. We assume that all these
registers are available and set the class to NO_REGS for registers
that the target switches say are unavailable. */
enum reg_class c4x_regclass_map[FIRST_PSEUDO_REGISTER] =
{
/* Reg Modes Saved */
R0R1_REGS, /* R0 QI, QF, HF No */
R0R1_REGS, /* R1 QI, QF, HF No */
R2R3_REGS, /* R2 QI, QF, HF No */
R2R3_REGS, /* R3 QI, QF, HF No */
EXT_LOW_REGS, /* R4 QI, QF, HF QI */
EXT_LOW_REGS, /* R5 QI, QF, HF QI */
EXT_LOW_REGS, /* R6 QI, QF, HF QF */
EXT_LOW_REGS, /* R7 QI, QF, HF QF */
ADDR_REGS, /* AR0 QI No */
ADDR_REGS, /* AR1 QI No */
ADDR_REGS, /* AR2 QI No */
ADDR_REGS, /* AR3 QI QI */
ADDR_REGS, /* AR4 QI QI */
ADDR_REGS, /* AR5 QI QI */
ADDR_REGS, /* AR6 QI QI */
ADDR_REGS, /* AR7 QI QI */
DP_REG, /* DP QI No */
INDEX_REGS, /* IR0 QI No */
INDEX_REGS, /* IR1 QI No */
BK_REG, /* BK QI QI */
SP_REG, /* SP QI No */
ST_REG, /* ST CC No */
NO_REGS, /* DIE/IE No */
NO_REGS, /* IIE/IF No */
NO_REGS, /* IIF/IOF No */
INT_REGS, /* RS QI No */
INT_REGS, /* RE QI No */
RC_REG, /* RC QI No */
EXT_REGS, /* R8 QI, QF, HF QI */
EXT_REGS, /* R9 QI, QF, HF No */
EXT_REGS, /* R10 QI, QF, HF No */
EXT_REGS, /* R11 QI, QF, HF No */
};
enum machine_mode c4x_caller_save_map[FIRST_PSEUDO_REGISTER] =
{
/* Reg Modes Saved */
HFmode, /* R0 QI, QF, HF No */
HFmode, /* R1 QI, QF, HF No */
HFmode, /* R2 QI, QF, HF No */
HFmode, /* R3 QI, QF, HF No */
QFmode, /* R4 QI, QF, HF QI */
QFmode, /* R5 QI, QF, HF QI */
QImode, /* R6 QI, QF, HF QF */
QImode, /* R7 QI, QF, HF QF */
QImode, /* AR0 QI No */
QImode, /* AR1 QI No */
QImode, /* AR2 QI No */
QImode, /* AR3 QI QI */
QImode, /* AR4 QI QI */
QImode, /* AR5 QI QI */
QImode, /* AR6 QI QI */
QImode, /* AR7 QI QI */
VOIDmode, /* DP QI No */
QImode, /* IR0 QI No */
QImode, /* IR1 QI No */
QImode, /* BK QI QI */
VOIDmode, /* SP QI No */
VOIDmode, /* ST CC No */
VOIDmode, /* DIE/IE No */
VOIDmode, /* IIE/IF No */
VOIDmode, /* IIF/IOF No */
QImode, /* RS QI No */
QImode, /* RE QI No */
VOIDmode, /* RC QI No */
QFmode, /* R8 QI, QF, HF QI */
HFmode, /* R9 QI, QF, HF No */
HFmode, /* R10 QI, QF, HF No */
HFmode, /* R11 QI, QF, HF No */
};
/* Test and compare insns in c4x.md store the information needed to
generate branch and scc insns here. */
struct rtx_def *c4x_compare_op0 = NULL_RTX;
struct rtx_def *c4x_compare_op1 = NULL_RTX;
char *c4x_rpts_cycles_string;
int c4x_rpts_cycles = 0; /* Max. cycles for RPTS */
char *c4x_cpu_version_string;
int c4x_cpu_version = 40; /* CPU version C30/31/32/40/44 */
/* Pragma definitions. */
tree code_tree = NULL_TREE;
tree data_tree = NULL_TREE;
tree pure_tree = NULL_TREE;
tree noreturn_tree = NULL_TREE;
tree interrupt_tree = NULL_TREE;
/* Override command line options.
Called once after all options have been parsed.
Mostly we process the processor
type and sometimes adjust other TARGET_ options. */
void
c4x_override_options ()
{
if (c4x_rpts_cycles_string)
c4x_rpts_cycles = atoi (c4x_rpts_cycles_string);
else
c4x_rpts_cycles = 0;
if (TARGET_C30)
c4x_cpu_version = 30;
else if (TARGET_C31)
c4x_cpu_version = 31;
else if (TARGET_C32)
c4x_cpu_version = 32;
else if (TARGET_C40)
c4x_cpu_version = 40;
else if (TARGET_C44)
c4x_cpu_version = 44;
else
c4x_cpu_version = 40;
/* -mcpu=xx overrides -m40 etc. */
if (c4x_cpu_version_string)
c4x_cpu_version = atoi (c4x_cpu_version_string);
target_flags &= ~(C30_FLAG | C31_FLAG | C32_FLAG | C40_FLAG | C44_FLAG);
switch (c4x_cpu_version)
{
case 30: target_flags |= C30_FLAG; break;
case 31: target_flags |= C31_FLAG; break;
case 32: target_flags |= C32_FLAG; break;
case 40: target_flags |= C40_FLAG; break;
case 44: target_flags |= C44_FLAG; break;
default:
warning ("Unknown CPU version %d, using 40.\n", c4x_cpu_version);
c4x_cpu_version = 40;
target_flags |= C40_FLAG;
}
if (TARGET_C30 || TARGET_C31 || TARGET_C32)
target_flags |= C3X_FLAG;
else
target_flags &= ~C3X_FLAG;
/* Convert foo / 8.0 into foo * 0.125, etc. */
flag_fast_math = 1;
/* We should phase out the following at some stage.
This provides compatibility with the old -mno-aliases option. */
if (! TARGET_ALIASES && ! flag_argument_noalias)
flag_argument_noalias = 1;
}
/* This is called before c4x_override_options. */
void
c4x_optimization_options (level, size)
int level;
int size ATTRIBUTE_UNUSED;
{
/* Scheduling before register allocation can screw up global
register allocation, especially for functions that use MPY||ADD
instructions. The benefit we gain we get by scheduling before
register allocation is probably marginal anyhow. */
flag_schedule_insns = 0;
/* When optimizing, enable use of RPTB instruction. */
if (level >= 1)
flag_branch_on_count_reg = 1;
}
/* Write an ASCII string. */
#define C4X_ASCII_LIMIT 40
void
c4x_output_ascii (stream, ptr, len)
FILE *stream;
unsigned char *ptr;
int len;
{
char sbuf[C4X_ASCII_LIMIT + 1];
int s, first, onlys;
if (len)
{
fprintf (stream, "\t.byte\t");
first = 1;
}
for (s = 0; len > 0; --len, ++ptr)
{
onlys = 0;
/* Escape " and \ with a \". */
if (*ptr == '\"' || *ptr == '\\')
sbuf[s++] = '\\';
/* If printable - add to buff. */
if (*ptr >= 0x20 && *ptr < 0x7f)
{
sbuf[s++] = *ptr;
if (s < C4X_ASCII_LIMIT - 1)
continue;
onlys = 1;
}
if (s)
{
if (first)
first = 0;
else
fputc (',', stream);
sbuf[s] = 0;
fprintf (stream, "\"%s\"", sbuf);
s = 0;
}
if (onlys)
continue;
if (first)
first = 0;
else
fputc (',', stream);
fprintf (stream, "%d", *ptr);
}
if (s)
{
if (! first)
fputc (',', stream);
sbuf[s] = 0;
fprintf (stream, "\"%s\"", sbuf);
s = 0;
}
fputc ('\n', stream);
}
int
c4x_hard_regno_mode_ok (regno, mode)
int regno;
enum machine_mode mode;
{
switch (mode)
{
#if Pmode != QImode
case Pmode: /* Pointer (24/32 bits) */
#endif
case QImode: /* Integer (32 bits) */
return IS_INT_REG (regno);
case QFmode: /* Float, Double (32 bits) */
case HFmode: /* Long Double (40 bits) */
return IS_EXT_REG (regno);
case CCmode: /* Condition Codes */
case CC_NOOVmode: /* Condition Codes */
return IS_ST_REG (regno);
case HImode: /* Long Long (64 bits) */
/* We need two registers to store long longs. Note that
it is much easier to constrain the first register
to start on an even boundary. */
return IS_INT_REG (regno)
&& IS_INT_REG (regno + 1)
&& (regno & 1) == 0;
default:
return 0; /* We don't support these modes */
}
return 0;
}
/* The TI C3x C compiler register argument runtime model uses 6 registers,
AR2, R2, R3, RC, RS, RE.
The first two floating point arguments (float, double, long double)
that are found scanning from left to right are assigned to R2 and R3.
The remaining integer (char, short, int, long) or pointer arguments
are assigned to the remaining registers in the order AR2, R2, R3,
RC, RS, RE when scanning left to right, except for the last named
argument prior to an ellipsis denoting variable number of
arguments. We don't have to worry about the latter condition since
function.c treats the last named argument as anonymous (unnamed).
All arguments that cannot be passed in registers are pushed onto
the stack in reverse order (right to left). GCC handles that for us.
c4x_init_cumulative_args() is called at the start, so we can parse
the args to see how many floating point arguments and how many
integer (or pointer) arguments there are. c4x_function_arg() is
then called (sometimes repeatedly) for each argument (parsed left
to right) to obtain the register to pass the argument in, or zero
if the argument is to be passed on the stack. Once the compiler is
happy, c4x_function_arg_advance() is called.
Don't use R0 to pass arguments in, we use 0 to indicate a stack
argument. */
static int c4x_int_reglist[3][6] =
{
{AR2_REGNO, R2_REGNO, R3_REGNO, RC_REGNO, RS_REGNO, RE_REGNO},
{AR2_REGNO, R3_REGNO, RC_REGNO, RS_REGNO, RE_REGNO, 0},
{AR2_REGNO, RC_REGNO, RS_REGNO, RE_REGNO, 0, 0}
};
static int c4x_fp_reglist[2] = {R2_REGNO, R3_REGNO};
/* Initialize a variable CUM of type CUMULATIVE_ARGS for a call to a
function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
void
c4x_init_cumulative_args (cum, fntype, libname)
CUMULATIVE_ARGS *cum; /* argument info to initialize */
tree fntype; /* tree ptr for function decl */
rtx libname; /* SYMBOL_REF of library name or 0 */
{
tree param, next_param;
cum->floats = cum->ints = 0;
cum->init = 0;
cum->var = 0;
cum->args = 0;
if (TARGET_DEBUG)
{
fprintf (stderr, "\nc4x_init_cumulative_args (");
if (fntype)
{
tree ret_type = TREE_TYPE (fntype);
fprintf (stderr, "fntype code = %s, ret code = %s",
tree_code_name[(int) TREE_CODE (fntype)],
tree_code_name[(int) TREE_CODE (ret_type)]);
}
else
fprintf (stderr, "no fntype");
if (libname)
fprintf (stderr, ", libname = %s", XSTR (libname, 0));
}
cum->prototype = (fntype && TYPE_ARG_TYPES (fntype));
for (param = fntype ? TYPE_ARG_TYPES (fntype) : 0;
param; param = next_param)
{
tree type;
next_param = TREE_CHAIN (param);
type = TREE_VALUE (param);
if (type && type != void_type_node)
{
enum machine_mode mode;
/* If the last arg doesn't have void type then we have
variable arguments. */
if (! next_param)
cum->var = 1;
if ((mode = TYPE_MODE (type)))
{
if (! MUST_PASS_IN_STACK (mode, type))
{
/* Look for float, double, or long double argument. */
if (mode == QFmode || mode == HFmode)
cum->floats++;
/* Look for integer, enumeral, boolean, char, or pointer
argument. */
else if (mode == QImode || mode == Pmode)
cum->ints++;
}
}
cum->args++;
}
}
if (TARGET_DEBUG)
fprintf (stderr, "%s%s, args = %d)\n",
cum->prototype ? ", prototype" : "",
cum->var ? ", variable args" : "",
cum->args);
}
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
void
c4x_function_arg_advance (cum, mode, type, named)
CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* whether or not the argument was named */
{
if (TARGET_DEBUG)
fprintf (stderr, "c4x_function_adv(mode=%s, named=%d)\n\n",
GET_MODE_NAME (mode), named);
if (! TARGET_MEMPARM
&& named
&& type
&& ! MUST_PASS_IN_STACK (mode, type))
{
/* Look for float, double, or long double argument. */
if (mode == QFmode || mode == HFmode)
cum->floats++;
/* Look for integer, enumeral, boolean, char, or pointer argument. */
else if (mode == QImode || mode == Pmode)
cum->ints++;
}
else if (! TARGET_MEMPARM && ! type)
{
/* Handle libcall arguments. */
if (mode == QFmode || mode == HFmode)
cum->floats++;
else if (mode == QImode || mode == Pmode)
cum->ints++;
}
return;
}
/* Define where to put the arguments to a function. Value is zero to
push the argument on the stack, or a hard register in which to
store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
struct rtx_def *
c4x_function_arg (cum, mode, type, named)
CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* != 0 for normal args, == 0 for ... args */
{
int reg = 0; /* default to passing argument on stack */
if (! cum->init)
{
/* We can handle at most 2 floats in R2, R3 */
cum->maxfloats = (cum->floats > 2) ? 2 : cum->floats;
/* We can handle at most 6 integers minus number of floats passed
in registers. */
cum->maxints = (cum->ints > 6 - cum->maxfloats) ?
6 - cum->maxfloats : cum->ints;
/* If there is no prototype, assume all the arguments are integers. */
if (! cum->prototype)
cum->maxints = 6;
cum->ints = cum->floats = 0;
cum->init = 1;
}
if (! TARGET_MEMPARM
&& named
&& type
&& ! MUST_PASS_IN_STACK (mode, type))
{
/* Look for float, double, or long double argument. */
if (mode == QFmode || mode == HFmode)
{
if (cum->floats < cum->maxfloats)
reg = c4x_fp_reglist[cum->floats];
}
/* Look for integer, enumeral, boolean, char, or pointer argument. */
else if (mode == QImode || mode == Pmode)
{
if (cum->ints < cum->maxints)
reg = c4x_int_reglist[cum->maxfloats][cum->ints];
}
}
else if (! TARGET_MEMPARM && ! type)
{
/* We could use a different argument calling model for libcalls,
since we're only calling functions in libgcc. Thus we could
pass arguments for long longs in registers rather than on the
stack. In the meantime, use the odd TI format. We make the
assumption that we won't have more than two floating point
args, six integer args, and that all the arguments are of the
same mode. */
if (mode == QFmode || mode == HFmode)
reg = c4x_fp_reglist[cum->floats];
else if (mode == QImode || mode == Pmode)
reg = c4x_int_reglist[0][cum->ints];
}
if (TARGET_DEBUG)
{
fprintf (stderr, "c4x_function_arg(mode=%s, named=%d",
GET_MODE_NAME (mode), named);
if (reg)
fprintf (stderr, ", reg=%s", reg_names[reg]);
else
fprintf (stderr, ", stack");
fprintf (stderr, ")\n");
}
if (reg)
return gen_rtx_REG (mode, reg);
else
return NULL_RTX;
}
static int
c4x_isr_reg_used_p (regno)
int regno;
{
/* Don't save/restore FP or ST, we handle them separately. */
if (regno == FRAME_POINTER_REGNUM
|| IS_ST_REG (regno))
return 0;
/* We could be a little smarter abut saving/restoring DP.
We'll only save if for the big memory model or if
we're paranoid. ;-) */
if (IS_DP_REG (regno))
return ! TARGET_SMALL || TARGET_PARANOID;
/* Only save/restore regs in leaf function that are used. */
if (c4x_leaf_function)
return regs_ever_live[regno] && fixed_regs[regno] == 0;
/* Only save/restore regs that are used by the ISR and regs
that are likely to be used by functions the ISR calls
if they are not fixed. */
return IS_EXT_REG (regno)
|| ((regs_ever_live[regno] || call_used_regs[regno])
&& fixed_regs[regno] == 0);
}
static int
c4x_leaf_function_p ()
{
/* A leaf function makes no calls, so we only need
to save/restore the registers we actually use.
For the global variable leaf_function to be set, we need
to define LEAF_REGISTERS and all that it entails.
Let's check ourselves... */
if (lookup_attribute ("leaf_pretend",
TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
return 1;
/* Use the leaf_pretend attribute at your own risk. This is a hack
to speed up ISRs that call a function infrequently where the
overhead of saving and restoring the additional registers is not
warranted. You must save and restore the additional registers
required by the called function. Caveat emptor. Here's enough
rope... */
if (leaf_function_p ())
return 1;
return 0;
}
static int
c4x_assembler_function_p ()
{
tree type;
type = TREE_TYPE (current_function_decl);
return lookup_attribute ("assembler", TYPE_ATTRIBUTES (type)) != NULL;
}
static int
c4x_interrupt_function_p ()
{
if (lookup_attribute ("interrupt",
TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl))))
return 1;
/* Look for TI style c_intnn */
return current_function_name[0] == 'c'
&& current_function_name[1] == '_'
&& current_function_name[2] == 'i'
&& current_function_name[3] == 'n'
&& current_function_name[4] == 't'
&& isdigit (current_function_name[5])
&& isdigit (current_function_name[6]);
}
/* Write function prologue. */
void
c4x_function_prologue (file, size)
FILE *file;
int size;
{
int regno;
/* In functions where ar3 is not used but frame pointers are still
specified, frame pointers are not adjusted (if >= -O2) and this is
used so it won't be needlessly push the frame pointer. */
int dont_push_ar3;
/* For __assembler__ function don't build a prologue. */
if (c4x_assembler_function_p ())
{
fprintf (file, "; *** Assembler Function ***\n");
return;
}
/* For __interrupt__ function build specific prologue. */
if (c4x_interrupt_function_p ())
{
c4x_leaf_function = c4x_leaf_function_p ();
fprintf (file, "; *** Interrupt Entry %s ***\n",
c4x_leaf_function ? "(leaf)" : "");
fprintf (file, "\tpush\tst\n");
if (size)
{
fprintf (file, "\tpush\tar3\n\tldi\tsp,ar3\n");
/* FIXME: Assume ISR doesn't require more than 32767 words
of local variables. */
if (size > 32767)
error ("ISR %s requires %d words of local variables, "
"maximum is 32767.", current_function_name, size);
fprintf (file, "\taddi\t%d,sp\n", size);
}
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
if (c4x_isr_reg_used_p (regno))
{
fprintf (file, "\tpush\t%s\n", reg_names[regno]);
if (IS_EXT_REG (regno)) /* save 32MSB of R0--R11 */
fprintf (file, "\tpushf\t%s\n", float_reg_names[regno]);
}
}
/* We need to clear the repeat mode flag if the ISR is
going to use a RPTB instruction or uses the RC, RS, or RE
registers. */
if (regs_ever_live[RC_REGNO]
|| regs_ever_live[RS_REGNO]
|| regs_ever_live[RE_REGNO])
fprintf (file, "\tandn\t0100h,st\n");
/* Reload DP reg if we are paranoid about some turkey
violating small memory model rules. */
if (TARGET_SMALL && TARGET_PARANOID)
fprintf (file, TARGET_C3X ?
"\tldp\t@data_sec\n" :
"\tldpk\t@data_sec\n");
}
else
{
if (frame_pointer_needed)
{
if ((size != 0)
|| (current_function_args_size != 0)
|| (optimize < 2))
{
fprintf (file, "\tpush\tar3\n");
fprintf (file, "\tldi\tsp,ar3\n");
dont_push_ar3 = 1;
}
else
{
/* Since ar3 is not used, we don't need to push it. */
dont_push_ar3 = 1;
}
}
else
{
/* If we use ar3, we need to push it. */
dont_push_ar3 = 0;
if ((size != 0) || (current_function_args_size != 0))
{
/* If we are omitting the frame pointer, we still have
to make space for it so the offsets are correct
unless we don't use anything on the stack at all. */
size += 1;
}
}
if (size > 32767)
{
/* Local vars are too big, it will take multiple operations
to increment SP. */
if (TARGET_C3X)
{
fprintf (file, "\tldi\t%d,r1\n", size >> 16);
fprintf (file, "\tlsh\t16,r1\n");
}
else
fprintf (file, "\tldhi\t%d,r1\n", size >> 16);
fprintf (file, "\tor\t%d,r1\n", size & 0xffff);
fprintf (file, "\taddi\tr1,sp\n");
}
else if (size != 0)
{
/* Local vars take up less than 32767 words, so we can directly
add the number. */
fprintf (file, "\taddi\t%d,sp\n", size);
}
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
if ((regno == R6_REGNO) || (regno == R7_REGNO))
{
/* R6 and R7 are saved as floating point */
if (TARGET_PRESERVE_FLOAT)
fprintf (file, "\tpush\t%s\n", reg_names[regno]);
fprintf (file, "\tpushf\t%s\n", float_reg_names[regno]);
}
else if ((! dont_push_ar3) || (regno != AR3_REGNO))
{
fprintf (file, "\tpush\t%s\n", reg_names[regno]);
}
}
}
}
}
/* Write function epilogue. */
void
c4x_function_epilogue (file, size)
FILE *file;
int size;
{
int regno;
int restore_count = 0;
int delayed_jump = 0;
int dont_pop_ar3;
rtx insn;
insn = get_last_insn ();
if (insn && GET_CODE (insn) == NOTE)
insn = prev_nonnote_insn (insn);
if (insn && GET_CODE (insn) == BARRIER)
return;
/* For __assembler__ function build no epilogue. */
if (c4x_assembler_function_p ())
{
fprintf (file, "\trets\n"); /* Play it safe */
return;
}
#ifdef FUNCTION_BLOCK_PROFILER_EXIT
if (profile_block_flag == 2)
{
FUNCTION_BLOCK_PROFILER_EXIT (file);
}
#endif
/* For __interrupt__ function build specific epilogue. */
if (c4x_interrupt_function_p ())
{
for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; --regno)
{
if (! c4x_isr_reg_used_p (regno))
continue;
if (IS_EXT_REG (regno))
fprintf (file, "\tpopf\t%s\n", float_reg_names[regno]);
fprintf (file, "\tpop\t%s\n", reg_names[regno]);
}
if (size)
{
fprintf (file, "\tsubi\t%d,sp\n", size);
fprintf (file, "\tpop\tar3\n");
}
fprintf (file, "\tpop\tst\n");
fprintf (file, "\treti\n");
}
else
{
if (frame_pointer_needed)
{
if ((size != 0)
|| (current_function_args_size != 0)
|| (optimize < 2))
{
/* R2 holds the return value. */
fprintf (file, "\tldi\t*-ar3(1),r2\n");
/* We already have the return value and the fp,
so we need to add those to the stack. */
size += 2;
delayed_jump = 1;
restore_count = 1;
dont_pop_ar3 = 1;
}
else
{
/* Since ar3 is not used for anything, we don't need to
pop it. */
dont_pop_ar3 = 1;
}
}
else
{
dont_pop_ar3 = 0; /* If we use ar3, we need to pop it */
if (size || current_function_args_size)
{
/* If we are ommitting the frame pointer, we still have
to make space for it so the offsets are correct
unless we don't use anything on the stack at all. */
size += 1;
}
}
/* Now get the number of instructions required to restore the
registers. */
for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
{
if ((regs_ever_live[regno] && ! call_used_regs[regno])
&& ((! dont_pop_ar3) || (regno != AR3_REGNO)))
{
restore_count++;
if (TARGET_PRESERVE_FLOAT
&& ((regno == R6_REGNO) || (regno == R7_REGNO)))
restore_count++;
}
}
/* Get the number of instructions required to restore the stack. */
if (size > 32767)
restore_count += (TARGET_C3X ? 4 : 3);
else if (size != 0)
restore_count += 1;
if (delayed_jump && (restore_count < 3))
{
/* We don't have enough instructions to account for the delayed
branch, so put some nops in. */
fprintf (file, "\tbud\tr2\n");
while (restore_count < 3)
{
fprintf (file, "\tnop\n");
restore_count++;
}
restore_count = 0;
}
/* Now restore the saved registers, putting in the delayed branch
where required. */
for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
{
if (regs_ever_live[regno] && ! call_used_regs[regno])
{
if (regno == AR3_REGNO && dont_pop_ar3)
continue;
if (delayed_jump && (restore_count == 3))
fprintf (file, "\tbud\tr2\n");
/* R6 and R7 are saved as floating point. */
if ((regno == R6_REGNO) || (regno == R7_REGNO))
{
fprintf (file, "\tpopf\t%s\n", float_reg_names[regno]);
if (TARGET_PRESERVE_FLOAT)
{
restore_count--;
if (delayed_jump && (restore_count == 3))
fprintf (file, "\tbud\tr2\n");
fprintf (file, "\tpop\t%s\n", reg_names[regno]);
}
}
else
fprintf (file, "\tpop\t%s\n", reg_names[regno]);
restore_count--;
}
}
if (delayed_jump && (restore_count == 3))
fprintf (file, "\tbud\tr2\n");
if (frame_pointer_needed)
{
if ((size != 0)
|| (current_function_args_size != 0)
|| (optimize < 2))
{
/* Restore the old FP. */
fprintf (file, "\tldi\t*ar3,ar3\n");
restore_count--;
if (delayed_jump && (restore_count == 3))
fprintf (file, "\tbud\tr2\n");
}
}
if (size > 32767)
{
/* Local vars are too big, it will take multiple operations
to decrement SP. */
if (TARGET_C3X)
{
fprintf (file, "\tldi\t%d,r3\n", size >> 16);
if (delayed_jump)
fprintf (file, "\tbud\tr2\n");
fprintf (file, "\tlsh\t16,r3\n");
}
else
fprintf (file, "\tldhi\t%d,r3\n", size >> 16);
fprintf (file, "\tor\t%d,r3\n", size & 0xffff);
fprintf (file, "\tsubi\tr3,sp\n");
}
else if (size != 0)
{
/* Local vars take up less than 32768 words, so we can directly
subtract the number. */
fprintf (file, "\tsubi\t%d,sp\n", size);
}
if (! delayed_jump)
fprintf (file, "\trets\n");
}
}
int
c4x_null_epilogue_p ()
{
int regno;
if (reload_completed
&& ! c4x_assembler_function_p ()
&& ! c4x_interrupt_function_p ()
&& ! current_function_calls_alloca
&& ! current_function_args_size
&& ! (profile_block_flag == 2)
&& ! (optimize < 2)
&& ! get_frame_size ())
{
for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
if (regs_ever_live[regno] && ! call_used_regs[regno]
&& (regno != AR3_REGNO))
return 0;
return 1;
}
return 0;
}
int
c4x_emit_move_sequence (operands, mode)
rtx *operands;
enum machine_mode mode;
{
rtx op0 = operands[0];
rtx op1 = operands[1];
if (! reload_in_progress
&& ! REG_P (op0)
&& ! REG_P (op1)
&& ! (stik_const_operand (op1, mode) && ! push_operand (op0, mode)))
op1 = force_reg (mode, op1);
if (GET_CODE (op1) == LO_SUM
&& GET_MODE (op1) == Pmode
&& dp_reg_operand (XEXP (op1, 0), mode))
{
/* expand_increment will sometimes create a LO_SUM immediate
address. */
op1 = XEXP (op1, 1);
}
else if (symbolic_address_operand (op1, mode))
{
if (TARGET_LOAD_ADDRESS)
{
/* Alias analysis seems to do a better job if we force
constant addresses to memory after reload. */
emit_insn (gen_load_immed_address (op0, op1));
return 1;
}
else
{
/* Stick symbol or label address into the constant pool. */
op1 = force_const_mem (Pmode, op1);
}
}
else if (mode == HFmode && CONSTANT_P (op1) && ! LEGITIMATE_CONSTANT_P (op1))
{
/* We could be a lot smarter about loading some of these
constants... */
op1 = force_const_mem (mode, op1);
}
else if (mode == QImode && CONSTANT_P (op1) && ! LEGITIMATE_CONSTANT_P (op1))
{
/* We shouldn't need this test if only emit_move_insn was called.
However, some routines call gen_move_insn which doesn't check that
the constants are legitimate. */
op1 = force_const_mem (mode, op1);
}
else if (mode == HImode && CONSTANT_P (op1) && ! LEGITIMATE_CONSTANT_P (op1))
{
/* We could load all sorts of constants in two goes by pulling all
sorts of tricks... The tricky thing is that we cannot clobber CC
so that stifles most of the obvious methods. */
op1 = force_const_mem (mode, op1);
}
/* Convert (MEM (SYMREF)) to a (MEM (LO_SUM (REG) (SYMREF)))
and emit associated (HIGH (SYMREF)) if large memory model.
c4x_legitimize_address could be used to do this,
perhaps by calling validize_address. */
if (! (reload_in_progress || reload_completed)
&& GET_CODE (op1) == MEM
&& symbolic_address_operand (XEXP (op1, 0), Pmode))
{
rtx dp_reg = gen_rtx_REG (Pmode, DP_REGNO);
if (! TARGET_SMALL)
emit_insn (gen_set_ldp (dp_reg, XEXP (op1, 0)));
op1 = change_address (op1, mode,
gen_rtx_LO_SUM (Pmode, dp_reg, XEXP (op1, 0)));
}
if (! (reload_in_progress || reload_completed)
&& GET_CODE (op0) == MEM
&& symbolic_address_operand (XEXP (op0, 0), Pmode))
{
rtx dp_reg = gen_rtx_REG (Pmode, DP_REGNO);
if (! TARGET_SMALL)
emit_insn (gen_set_ldp (dp_reg, XEXP (op0, 0)));
op0 = change_address (op0, mode,
gen_rtx_LO_SUM (Pmode, dp_reg, XEXP (op0, 0)));
}
/* Adjust operands in case we have modified them. */
operands[0] = op0;
operands[1] = op1;
/* Emit normal pattern. */
return 0;
}
void
c4x_emit_libcall (name, code, dmode, smode, noperands, operands)
char *name;
enum rtx_code code;
enum machine_mode dmode;
enum machine_mode smode;
int noperands;
rtx *operands;
{
rtx ret;
rtx insns;
rtx libcall;
rtx equiv;
start_sequence ();
libcall = gen_rtx_SYMBOL_REF (Pmode, name);
switch (noperands)
{
case 2:
ret = emit_library_call_value (libcall, NULL_RTX, 1, dmode, 1,
operands[1], smode);
equiv = gen_rtx (code, dmode, operands[1]);
break;
case 3:
ret = emit_library_call_value (libcall, NULL_RTX, 1, dmode, 2,
operands[1], smode, operands[2], smode);
equiv = gen_rtx (code, dmode, operands[1], operands[2]);
break;
default:
fatal ("c4x_emit_libcall: Bad number of operands");
}
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, operands[0], ret, equiv);
}
void
c4x_emit_libcall3 (name, code, mode, operands)
const char *name;
enum rtx_code code;
enum machine_mode mode;
rtx *operands;
{
return c4x_emit_libcall (name, code, mode, mode, 3, operands);
}
void
c4x_emit_libcall_mulhi (name, code, mode, operands)
char *name;
enum rtx_code code;
enum machine_mode mode;
rtx *operands;
{
rtx ret;
rtx insns;
rtx libcall;
rtx equiv;
start_sequence ();
libcall = gen_rtx_SYMBOL_REF (Pmode, name);
ret = emit_library_call_value (libcall, NULL_RTX, 1, mode, 2,
operands[1], mode, operands[2], mode);
equiv = gen_rtx_TRUNCATE (mode,
gen_rtx_LSHIFTRT (HImode,
gen_rtx_MULT (HImode,
gen_rtx (code, HImode, operands[1]),
gen_rtx (code, HImode, operands[2])),
GEN_INT (32)));
insns = get_insns ();
end_sequence ();
emit_libcall_block (insns, operands[0], ret, equiv);
}
enum reg_class
c4x_preferred_reload_class (x, class)
rtx x ATTRIBUTE_UNUSED;
enum reg_class class;
{
return class;
}
enum reg_class
c4x_limit_reload_class (mode, class)
enum machine_mode mode ATTRIBUTE_UNUSED;
enum reg_class class;
{
return class;
}
enum reg_class
c4x_secondary_memory_needed (class1, class2, mode)
enum reg_class class1 ATTRIBUTE_UNUSED;
enum reg_class class2 ATTRIBUTE_UNUSED;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return 0;
}
/* Set the SYMBOL_REF_FLAG for a function decl. However, wo do not
yet use this info. */
void
c4x_encode_section_info (decl)
tree decl;
{
#if 0
if (TREE_CODE (TREE_TYPE (decl)) == FUNCTION_TYPE)
SYMBOL_REF_FLAG (XEXP (DECL_RTL (decl), 0)) = 1;
#else
if (TREE_CODE (decl) == FUNCTION_DECL)
SYMBOL_REF_FLAG (XEXP (DECL_RTL (decl), 0)) = 1;
#endif
}
int
c4x_check_legit_addr (mode, addr, strict)
enum machine_mode mode;
rtx addr;
int strict;
{
rtx base = NULL_RTX; /* Base register (AR0-AR7) */
rtx indx = NULL_RTX; /* Index register (IR0,IR1) */
rtx disp = NULL_RTX; /* Displacement */
enum rtx_code code;
code = GET_CODE (addr);
switch (code)
{
/* Register indirect with auto increment/decrement. We don't
allow SP here---push_operand should recognise an operand
being pushed on the stack. */
case PRE_DEC:
case POST_DEC:
if (mode != QImode && mode != QFmode)
return 0;
case PRE_INC:
case POST_INC:
base = XEXP (addr, 0);
if (! REG_P (base))
return 0;
break;
case PRE_MODIFY:
case POST_MODIFY:
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
if (mode != QImode && mode != QFmode)
return 0;
if (! REG_P (op0)
|| (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS))
return 0;
base = XEXP (op1, 0);
if (base != op0)
return 0;
if (REG_P (XEXP (op1, 1)))
indx = XEXP (op1, 1);
else
disp = XEXP (op1, 1);
}
break;
/* Register indirect. */
case REG:
base = addr;
break;
/* Register indirect with displacement or index. */
case PLUS:
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
enum rtx_code code0 = GET_CODE (op0);
switch (code0)
{
case REG:
if (REG_P (op1))
{
base = op0; /* base + index */
indx = op1;
if (IS_INDEX_REGNO (base) || IS_ADDR_REGNO (indx))
{
base = op1;
indx = op0;
}
}
else
{
base = op0; /* base + displacement */
disp = op1;
}
break;
default:
return 0;
}
}
break;
/* Direct addressing with DP register. */
case LO_SUM:
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
/* HImode and HFmode direct memory references aren't truly
offsettable (consider case at end of data page). We
probably get better code by loading a pointer and using an
indirect memory reference. */
if (mode == HImode || mode == HFmode)
return 0;
if (!REG_P (op0) || REGNO (op0) != DP_REGNO)
return 0;
if ((GET_CODE (op1) == SYMBOL_REF || GET_CODE (op1) == LABEL_REF))
return 1;
if (GET_CODE (op1) == CONST)
{
addr = XEXP (op1, 0);
if (GET_CODE (addr) == PLUS
&& (GET_CODE (XEXP (addr, 0)) == SYMBOL_REF
|| GET_CODE (XEXP (addr, 0)) == LABEL_REF)
&& GET_CODE (XEXP (addr, 1)) == CONST_INT)
return 1;
}
return 0;
}
break;
/* Direct addressing with some work for the assembler... */
case CONST:
/* Direct addressing. */
case LABEL_REF:
case SYMBOL_REF:
/* These need to be converted to a LO_SUM (...).
c4x_legitimize_address will fix them up. */
return 0;
/* Do not allow direct memory access to absolute addresses.
This is more pain than its worth, especially for the
small memory model where we can't guarantee that
this address is within the data page---we don't want
to modify the DP register in the small memory model,
even temporarily, since an interrupt can sneak in.... */
case CONST_INT:
return 0;
/* Indirect indirect addressing. */
case MEM:
return 0;
case CONST_DOUBLE:
fatal_insn ("Using CONST_DOUBLE for address", addr);
default:
return 0;
}
/* Validate the base register. */
if (base)
{
/* Check that the address is offsettable for HImode and HFmode. */
if (indx && (mode == HImode || mode == HFmode))
return 0;
/* Handle DP based stuff. */
if (REGNO (base) == DP_REGNO)
return 1;
if (strict && ! REGNO_OK_FOR_BASE_P (REGNO (base)))
return 0;
else if (! strict && ! IS_ADDR_OR_PSEUDO_REGNO (base))
return 0;
}
/* Now validate the index register. */
if (indx)
{
if (GET_CODE (indx) != REG)
return 0;
if (strict && ! REGNO_OK_FOR_INDEX_P (REGNO (indx)))
return 0;
else if (! strict && ! IS_INDEX_OR_PSEUDO_REGNO (indx))
return 0;
}
/* Validate displacement. */
if (disp)
{
if (GET_CODE (disp) != CONST_INT)
return 0;
if (mode == HImode || mode == HFmode)
{
/* The offset displacement must be legitimate. */
if (! IS_DISP8_OFF_CONST (INTVAL (disp)))
return 0;
}
else
{
if (! IS_DISP8_CONST (INTVAL (disp)))
return 0;
}
/* Can't add an index with a disp. */
if (indx)
return 0;
}
return 1;
}
rtx
c4x_legitimize_address (orig, mode)
rtx orig ATTRIBUTE_UNUSED;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (orig) == SYMBOL_REF
|| GET_CODE (orig) == LABEL_REF)
{
if (mode == HImode || mode == HFmode)
{
/* We need to force the address into
a register so that it is offsettable. */
rtx addr_reg = gen_reg_rtx (Pmode);
emit_move_insn (addr_reg, orig);
return addr_reg;
}
else
{
rtx dp_reg = gen_rtx_REG (Pmode, DP_REGNO);
if (! TARGET_SMALL)
emit_insn (gen_set_ldp (dp_reg, orig));
return gen_rtx_LO_SUM (Pmode, dp_reg, orig);
}
}
return NULL_RTX;
}
/* Provide the costs of an addressing mode that contains ADDR.
If ADDR is not a valid address, its cost is irrelevant.
This is used in cse and loop optimisation to determine
if it is worthwhile storing a common address into a register.
Unfortunately, the C4x address cost depends on other operands. */
int
c4x_address_cost (addr)
rtx addr;
{
switch (GET_CODE (addr))
{
case REG:
return 1;
case POST_INC:
case POST_DEC:
case PRE_INC:
case PRE_DEC:
return 1;
/* These shouldn't be directly generated. */
case SYMBOL_REF:
case LABEL_REF:
case CONST:
return 10;
case LO_SUM:
{
rtx op1 = XEXP (addr, 1);
if (GET_CODE (op1) == LABEL_REF || GET_CODE (op1) == SYMBOL_REF)
return TARGET_SMALL ? 3 : 4;
if (GET_CODE (op1) == CONST)
{
rtx offset = const0_rtx;
op1 = eliminate_constant_term (op1, &offset);
/* ??? These costs need rethinking... */
if (GET_CODE (op1) == LABEL_REF)
return 3;
if (GET_CODE (op1) != SYMBOL_REF)
return 4;
if (INTVAL (offset) == 0)
return 3;
return 4;
}
fatal_insn ("c4x_address_cost: Invalid addressing mode", addr);
}
break;
case PLUS:
{
register rtx op0 = XEXP (addr, 0);
register rtx op1 = XEXP (addr, 1);
if (GET_CODE (op0) != REG)
break;
switch (GET_CODE (op1))
{
default:
break;
case REG:
/* This cost for REG+REG must be greater than the cost
for REG if we want autoincrement addressing modes. */
return 2;
case CONST_INT:
if (IS_DISP1_CONST (INTVAL (op1)))
return 1;
if (! TARGET_C3X && IS_UINT5_CONST (INTVAL (op1)))
return 2;
return 3;
}
}
default:
}
return 4;
}
rtx
c4x_gen_compare_reg (code, x, y)
enum rtx_code code;
rtx x, y;
{
enum machine_mode mode = SELECT_CC_MODE (code, x, y);
rtx cc_reg;
if (mode == CC_NOOVmode
&& (code == LE || code == GE || code == LT || code == GT))
return NULL_RTX;
cc_reg = gen_rtx_REG (mode, ST_REGNO);
emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
gen_rtx_COMPARE (mode, x, y)));
return cc_reg;
}
char *
c4x_output_cbranch (form, seq)
char *form;
rtx seq;
{
int delayed = 0;
int annultrue = 0;
int annulfalse = 0;
rtx delay;
char *cp;
static char str[100];
if (final_sequence)
{
delay = XVECEXP (final_sequence, 0, 1);
delayed = ! INSN_ANNULLED_BRANCH_P (seq);
annultrue = INSN_ANNULLED_BRANCH_P (seq) && ! INSN_FROM_TARGET_P (delay);
annulfalse = INSN_ANNULLED_BRANCH_P (seq) && INSN_FROM_TARGET_P (delay);
}
strcpy (str, form);
cp = &str [strlen (str)];
if (delayed)
{
*cp++ = '%';
*cp++ = '#';
}
if (annultrue)
{
*cp++ = 'a';
*cp++ = 't';
}
if (annulfalse)
{
*cp++ = 'a';
*cp++ = 'f';
}
*cp++ = '\t';
*cp++ = '%';
*cp++ = 'l';
*cp++ = '1';
*cp = 0;
return str;
}
void
c4x_print_operand (file, op, letter)
FILE *file; /* file to write to */
rtx op; /* operand to print */
int letter; /* %<letter> or 0 */
{
rtx op1;
enum rtx_code code;
switch (letter)
{
case '#': /* delayed */
if (final_sequence)
asm_fprintf (file, "d");
return;
}
code = GET_CODE (op);
switch (letter)
{
case 'A': /* direct address */
if (code == CONST_INT || code == SYMBOL_REF)
asm_fprintf (file, "@");
break;
case 'H': /* sethi */
output_addr_const (file, op);
return;
case 'I': /* reversed condition */
code = reverse_condition (code);
break;
case 'L': /* log 2 of constant */
if (code != CONST_INT)
fatal_insn ("c4x_print_operand: %%L inconsistency", op);
fprintf (file, "%d", exact_log2 (INTVAL (op)));
return;
case 'N': /* ones complement of small constant */
if (code != CONST_INT)
fatal_insn ("c4x_print_operand: %%N inconsistency", op);
fprintf (file, "%d", ~INTVAL (op));
return;
case 'K': /* generate ldp(k) if direct address */
if (! TARGET_SMALL
&& code == MEM
&& GET_CODE (XEXP (op, 0)) == LO_SUM
&& GET_CODE (XEXP (XEXP (op, 0), 0)) == REG
&& REGNO (XEXP (XEXP (op, 0), 0)) == DP_REGNO)
{
op1 = XEXP (XEXP (op, 0), 1);
if (GET_CODE(op1) == CONST_INT || GET_CODE(op1) == SYMBOL_REF)
{
asm_fprintf (file, "\t%s\t", TARGET_C3X ? "ldp" : "ldpk");
output_address (XEXP (adj_offsettable_operand (op, 1), 0));
asm_fprintf (file, "\n");
}
}
return;
case 'M': /* generate ldp(k) if direct address */
if (! TARGET_SMALL /* only used in asm statements */
&& code == MEM
&& (GET_CODE (XEXP (op, 0)) == CONST
|| GET_CODE (XEXP (op, 0)) == SYMBOL_REF))
{
asm_fprintf (file, "%s\t", TARGET_C3X ? "ldp" : "ldpk");
output_address (XEXP (op, 0));
asm_fprintf (file, "\n\t");
}
return;
case 'O': /* offset address */
if (code == MEM && c4x_autoinc_operand (op, Pmode))
break;
else if (code == MEM)
output_address (XEXP (adj_offsettable_operand (op, 1), 0));
else if (code == REG)
fprintf (file, "%s", reg_names[REGNO (op) + 1]);
else
fatal_insn ("c4x_print_operand: %%O inconsistency", op);
return;
case 'C': /* call */
break;
case 'U': /* call/callu */
if (code != SYMBOL_REF)
asm_fprintf (file, "u");
return;
default:
break;
}
switch (code)
{
case REG:
if (GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT)
fprintf (file, "%s", float_reg_names[REGNO (op)]);
else
fprintf (file, "%s", reg_names[REGNO (op)]);
break;
case MEM:
output_address (XEXP (op, 0));
break;
case CONST_DOUBLE:
{
char str[30];
REAL_VALUE_TYPE r;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
REAL_VALUE_TO_DECIMAL (r, "%20f", str);
fprintf (file, "%s", str);
}
break;
case CONST_INT:
fprintf (file, "%d", INTVAL (op));
break;
case NE:
asm_fprintf (file, "ne");
break;
case EQ:
asm_fprintf (file, "eq");
break;
case GE:
asm_fprintf (file, "ge");
break;
case GT:
asm_fprintf (file, "gt");
break;
case LE:
asm_fprintf (file, "le");
break;
case LT:
asm_fprintf (file, "lt");
break;
case GEU:
asm_fprintf (file, "hs");
break;
case GTU:
asm_fprintf (file, "hi");
break;
case LEU:
asm_fprintf (file, "ls");
break;
case LTU:
asm_fprintf (file, "lo");
break;
case SYMBOL_REF:
output_addr_const (file, op);
break;
case CONST:
output_addr_const (file, XEXP (op, 0));
break;
case CODE_LABEL:
break;
default:
fatal_insn ("c4x_print_operand: Bad operand case", op);
break;
}
}
void
c4x_print_operand_address (file, addr)
FILE *file;
rtx addr;
{
switch (GET_CODE (addr))
{
case REG:
fprintf (file, "*%s", reg_names[REGNO (addr)]);
break;
case PRE_DEC:
fprintf (file, "*--%s", reg_names[REGNO (XEXP (addr, 0))]);
break;
case POST_INC:
fprintf (file, "*%s++", reg_names[REGNO (XEXP (addr, 0))]);
break;
case POST_MODIFY:
{
rtx op0 = XEXP (XEXP (addr, 1), 0);
rtx op1 = XEXP (XEXP (addr, 1), 1);
if (GET_CODE (XEXP (addr, 1)) == PLUS && REG_P (op1))
fprintf (file, "*%s++(%s)", reg_names[REGNO (op0)],
reg_names[REGNO (op1)]);
else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) > 0)
fprintf (file, "*%s++(%d)", reg_names[REGNO (op0)],
INTVAL (op1));
else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) < 0)
fprintf (file, "*%s--(%d)", reg_names[REGNO (op0)],
-INTVAL (op1));
else if (GET_CODE (XEXP (addr, 1)) == MINUS && REG_P (op1))
fprintf (file, "*%s--(%s)", reg_names[REGNO (op0)],
reg_names[REGNO (op1)]);
else
fatal_insn ("c4x_print_operand_address: Bad post_modify", addr);
}
break;
case PRE_MODIFY:
{
rtx op0 = XEXP (XEXP (addr, 1), 0);
rtx op1 = XEXP (XEXP (addr, 1), 1);
if (GET_CODE (XEXP (addr, 1)) == PLUS && REG_P (op1))
fprintf (file, "*++%s(%s)", reg_names[REGNO (op0)],
reg_names[REGNO (op1)]);
else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) > 0)
fprintf (file, "*++%s(%d)", reg_names[REGNO (op0)],
INTVAL (op1));
else if (GET_CODE (XEXP (addr, 1)) == PLUS && INTVAL (op1) < 0)
fprintf (file, "*--%s(%d)", reg_names[REGNO (op0)],
-INTVAL (op1));
else if (GET_CODE (XEXP (addr, 1)) == MINUS && REG_P (op1))
fprintf (file, "*--%s(%s)", reg_names[REGNO (op0)],
reg_names[REGNO (op1)]);
else
fatal_insn ("c4x_print_operand_address: Bad pre_modify", addr);
}
break;
case PRE_INC:
fprintf (file, "*++%s", reg_names[REGNO (XEXP (addr, 0))]);
break;
case POST_DEC:
fprintf (file, "*%s--", reg_names[REGNO (XEXP (addr, 0))]);
break;
case PLUS: /* Indirect with displacement. */
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
if (REG_P (op0))
{
if (REG_P (op1))
{
if (IS_INDEX_REGNO (op0))
{
fprintf (file, "*+%s(%s)",
reg_names[REGNO (op1)],
reg_names[REGNO (op0)]); /* index + base */
}
else
{
fprintf (file, "*+%s(%s)",
reg_names[REGNO (op0)],
reg_names[REGNO (op1)]); /* base + index */
}
}
else if (INTVAL (op1) < 0)
{
fprintf (file, "*-%s(%d)",
reg_names[REGNO (op0)],
-INTVAL (op1)); /* base - displacement */
}
else
{
fprintf (file, "*+%s(%d)",
reg_names[REGNO (op0)],
INTVAL (op1)); /* base + displacement */
}
}
else
fatal_insn ("c4x_print_operand_address: Bad operand case", addr);
}
break;
case LO_SUM:
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
if (REG_P (op0) && REGNO (op0) == DP_REGNO)
c4x_print_operand_address (file, op1);
else
fatal_insn ("c4x_print_operand_address: Bad operand case", addr);
}
break;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
fprintf (file, "@");
output_addr_const (file, addr);
break;
/* We shouldn't access CONST_INT addresses. */
case CONST_INT:
default:
fatal_insn ("c4x_print_operand_address: Bad operand case", addr);
break;
}
}
/* Return nonzero if the floating point operand will fit
in the immediate field. */
static int
c4x_immed_float_p (op)
rtx op;
{
long convval[2];
int exponent;
REAL_VALUE_TYPE r;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
if (GET_MODE (op) == HFmode)
REAL_VALUE_TO_TARGET_DOUBLE (r, convval);
else
{
REAL_VALUE_TO_TARGET_SINGLE (r, convval[0]);
convval[1] = 0;
}
/* sign extend exponent */
exponent = (((convval[0] >> 24) & 0xff) ^ 0x80) - 0x80;
if (exponent == -128)
return 1; /* 0.0 */
if ((convval[0] & 0x00000fff) != 0 || convval[1] != 0)
return 0; /* Precision doesn't fit */
return (exponent <= 7) /* Positive exp */
&& (exponent >= -7); /* Negative exp */
}
/* The last instruction in a repeat block cannot be a Bcond, DBcound,
CALL, CALLCond, TRAPcond, RETIcond, RETScond, IDLE, RPTB or RPTS.
None of the last four instructions from the bottom of the block can
be a BcondD, BRD, DBcondD, RPTBD, LAJ, LAJcond, LATcond, BcondAF,
BcondAT or RETIcondD.
This routine scans the four previous insns for a jump insn, and if
one is found, returns 1 so that we bung in a nop instruction.
This simple minded strategy will add a nop, when it may not
be required. Say when there is a JUMP_INSN near the end of the
block that doesn't get converted into a delayed branch.
Note that we cannot have a call insn, since we don't generate
repeat loops with calls in them (although I suppose we could, but
there's no benefit.)
!!! FIXME. The rptb_top insn may be sucked into a SEQUENCE. */
int
c4x_rptb_nop_p (insn)
rtx insn;
{
rtx start_label;
int i;
/* Extract the start label from the jump pattern (rptb_end). */
start_label = XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (insn), 0, 0)), 1), 0);
/* If there is a label at the end of the loop we must insert
a NOP. */
do {
insn = previous_insn (insn);
} while (GET_CODE (insn) == NOTE
|| GET_CODE (insn) == USE
|| GET_CODE (insn) == CLOBBER);
if (GET_CODE (insn) == CODE_LABEL)
return 1;
for (i = 0; i < 4; i++)
{
/* Search back for prev non-note and non-label insn. */
while (GET_CODE (insn) == NOTE || GET_CODE (insn) == CODE_LABEL
|| GET_CODE (insn) == USE || GET_CODE (insn) == CLOBBER)
{
if (insn == start_label)
return i == 0;
insn = previous_insn (insn);
};
/* If we have a jump instruction we should insert a NOP. If we
hit repeat block top we should only insert a NOP if the loop
is empty. */
if (GET_CODE (insn) == JUMP_INSN)
return 1;
insn = previous_insn (insn);
}
return 0;
}
void
c4x_rptb_insert (insn)
rtx insn;
{
rtx end_label;
rtx start_label;
rtx count_reg;
/* If the count register has not been allocated to RC, say if
there is a movstr pattern in the loop, then do not insert a
RPTB instruction. Instead we emit a decrement and branch
at the end of the loop. */
count_reg = XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (insn), 0, 0)), 0), 0);
if (REGNO (count_reg) != RC_REGNO)
return;
/* Extract the start label from the jump pattern (rptb_end). */
start_label = XEXP (XEXP (SET_SRC (XVECEXP (PATTERN (insn), 0, 0)), 1), 0);
/* We'll have to update the basic blocks. */
end_label = gen_label_rtx ();
emit_label_after (end_label, insn);
for (; insn; insn = PREV_INSN (insn))
if (insn == start_label)
break;
if (! insn)
fatal_insn ("c4x_rptb_insert: Cannot find start label", start_label);
/* We'll have to update the basic blocks. */
emit_insn_before (gen_rptb_top (start_label, end_label), insn);
}
/* This function is a C4x special called immediately before delayed
branch scheduling. We fix up RTPB style loops that didn't get RC
allocated as the loop counter. */
void
c4x_process_after_reload (first)
rtx first;
{
rtx insn;
for (insn = first; insn; insn = NEXT_INSN (insn))
{
/* Look for insn. */
if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
{
int insn_code_number;
insn_code_number = recog_memoized (insn);
if (insn_code_number < 0)
continue;
/* Insert the RTX for RPTB at the top of the loop
and a label at the end of the loop. */
if (insn_code_number == CODE_FOR_rptb_end)
c4x_rptb_insert(insn);
/* We split all insns here if they have a # for the output
template. */
if (1)
{
const char *template;
template = insn_template[insn_code_number];
if (template && template[0] == '#' && template[1] == '\0')
{
rtx new = try_split (PATTERN(insn), insn, 0);
/* If we didn't split the insn, go away. */
if (new == insn && PATTERN (new) == PATTERN(insn))
fatal_insn ("Couldn't split pattern", insn);
PUT_CODE (insn, NOTE);
NOTE_SOURCE_FILE (insn) = 0;
NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
insn = new;
}
}
}
}
}
static int
c4x_a_register (op)
rtx op;
{
return REG_P (op) && IS_ADDR_OR_PSEUDO_REGNO (op);
}
static int
c4x_x_register (op)
rtx op;
{
return REG_P (op) && IS_INDEX_OR_PSEUDO_REGNO (op);
}
static int
c4x_immed_int_constant (op)
rtx op;
{
if (GET_CODE (op) != CONST_INT)
return 0;
return GET_MODE (op) == VOIDmode
|| GET_MODE_CLASS (op) == MODE_INT
|| GET_MODE_CLASS (op) == MODE_PARTIAL_INT;
}
static int
c4x_immed_float_constant (op)
rtx op;
{
if (GET_CODE (op) != CONST_DOUBLE)
return 0;
if (GET_CODE (XEXP (op, 0)) == MEM)
return 0;
return GET_MODE (op) == QFmode || GET_MODE (op) == HFmode;
}
int
c4x_H_constant (op)
rtx op;
{
return c4x_immed_float_constant (op) && c4x_immed_float_p (op);
}
int
c4x_I_constant (op)
rtx op;
{
return c4x_immed_int_constant (op) && IS_INT16_CONST (INTVAL (op));
}
int
c4x_J_constant (op)
rtx op;
{
if (TARGET_C3X)
return 0;
return c4x_immed_int_constant (op) && IS_INT8_CONST (INTVAL (op));
}
static int
c4x_K_constant (op)
rtx op;
{
if (TARGET_C3X || ! c4x_immed_int_constant (op))
return 0;
return IS_INT5_CONST (INTVAL (op));
}
int
c4x_L_constant (op)
rtx op;
{
return c4x_immed_int_constant (op) && IS_UINT16_CONST (INTVAL (op));
}
static int
c4x_N_constant (op)
rtx op;
{
return c4x_immed_int_constant (op) && IS_NOT_UINT16_CONST (INTVAL (op));
}
static int
c4x_O_constant (op)
rtx op;
{
return c4x_immed_int_constant (op) && IS_HIGH_CONST (INTVAL (op));
}
/* The constraints do not have to check the register class,
except when needed to discriminate between the constraints.
The operand has been checked by the predicates to be valid. */
/* ARx + 9-bit signed const or IRn
*ARx, *+ARx(n), *-ARx(n), *+ARx(IRn), *-Arx(IRn) for -256 < n < 256
We don't include the pre/post inc/dec forms here since
they are handled by the <> constraints. */
int
c4x_Q_constraint (op)
rtx op;
{
enum machine_mode mode = GET_MODE (op);
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case REG:
return 1;
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (! REG_P (op0))
return 0;
if (REG_P (op1))
return 1;
if (GET_CODE (op1) != CONST_INT)
return 0;
/* HImode and HFmode must be offsettable. */
if (mode == HImode || mode == HFmode)
return IS_DISP8_OFF_CONST (INTVAL (op1));
return IS_DISP8_CONST (INTVAL (op1));
}
break;
default:
break;
}
return 0;
}
/* ARx + 5-bit unsigned const
*ARx, *+ARx(n) for n < 32 */
int
c4x_R_constraint (op)
rtx op;
{
enum machine_mode mode = GET_MODE (op);
if (TARGET_C3X)
return 0;
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case REG:
return 1;
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (! REG_P (op0))
return 0;
if (GET_CODE (op1) != CONST_INT)
return 0;
/* HImode and HFmode must be offsettable. */
if (mode == HImode || mode == HFmode)
return IS_UINT5_CONST (INTVAL (op1) + 1);
return IS_UINT5_CONST (INTVAL (op1));
}
break;
default:
break;
}
return 0;
}
static int
c4x_R_indirect (op)
rtx op;
{
enum machine_mode mode = GET_MODE (op);
if (TARGET_C3X || GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case REG:
return IS_ADDR_OR_PSEUDO_REGNO (op);
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
/* HImode and HFmode must be offsettable. */
if (mode == HImode || mode == HFmode)
return IS_ADDR_OR_PSEUDO_REGNO (op0)
&& GET_CODE (op1) == CONST_INT
&& IS_UINT5_CONST (INTVAL (op1) + 1);
return REG_P (op0)
&& IS_ADDR_OR_PSEUDO_REGNO (op0)
&& GET_CODE (op1) == CONST_INT
&& IS_UINT5_CONST (INTVAL (op1));
}
break;
default:
break;
}
return 0;
}
/* ARx + 1-bit unsigned const or IRn
*ARx, *+ARx(1), *-ARx(1), *+ARx(IRn), *-Arx(IRn)
We don't include the pre/post inc/dec forms here since
they are handled by the <> constraints. */
int
c4x_S_constraint (op)
rtx op;
{
enum machine_mode mode = GET_MODE (op);
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case REG:
return 1;
case PRE_MODIFY:
case POST_MODIFY:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if ((GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
|| (op0 != XEXP (op1, 0)))
return 0;
op0 = XEXP (op1, 0);
op1 = XEXP (op1, 1);
return REG_P (op0) && REG_P (op1);
/* pre or post_modify with a displacement of 0 or 1
should not be generated. */
}
break;
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (!REG_P (op0))
return 0;
if (REG_P (op1))
return 1;
if (GET_CODE (op1) != CONST_INT)
return 0;
/* HImode and HFmode must be offsettable. */
if (mode == HImode || mode == HFmode)
return IS_DISP1_OFF_CONST (INTVAL (op1));
return IS_DISP1_CONST (INTVAL (op1));
}
break;
default:
break;
}
return 0;
}
static int
c4x_S_indirect (op)
rtx op;
{
enum machine_mode mode = GET_MODE (op);
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case PRE_DEC:
case POST_DEC:
if (mode != QImode && mode != QFmode)
return 0;
case PRE_INC:
case POST_INC:
op = XEXP (op, 0);
case REG:
return IS_ADDR_OR_PSEUDO_REGNO (op);
case PRE_MODIFY:
case POST_MODIFY:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (mode != QImode && mode != QFmode)
return 0;
if ((GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
|| (op0 != XEXP (op1, 0)))
return 0;
op0 = XEXP (op1, 0);
op1 = XEXP (op1, 1);
return REG_P (op0) && IS_ADDR_OR_PSEUDO_REGNO (op0)
&& REG_P (op1) && IS_INDEX_OR_PSEUDO_REGNO (op1);
/* pre or post_modify with a displacement of 0 or 1
should not be generated. */
}
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (REG_P (op0))
{
/* HImode and HFmode must be offsettable. */
if (mode == HImode || mode == HFmode)
return IS_ADDR_OR_PSEUDO_REGNO (op0)
&& GET_CODE (op1) == CONST_INT
&& IS_DISP1_OFF_CONST (INTVAL (op1));
if (REG_P (op1))
return (IS_INDEX_OR_PSEUDO_REGNO (op1)
&& IS_ADDR_OR_PSEUDO_REGNO (op0))
|| (IS_ADDR_OR_PSEUDO_REGNO (op1)
&& IS_INDEX_OR_PSEUDO_REGNO (op0));
return IS_ADDR_OR_PSEUDO_REGNO (op0)
&& GET_CODE (op1) == CONST_INT
&& IS_DISP1_CONST (INTVAL (op1));
}
}
break;
default:
break;
}
return 0;
}
/* Direct memory operand. */
int
c4x_T_constraint (op)
rtx op;
{
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
if (GET_CODE (op) != LO_SUM)
{
/* Allow call operands. */
return GET_CODE (op) == SYMBOL_REF
&& GET_MODE (op) == Pmode
&& SYMBOL_REF_FLAG (op);
}
/* HImode and HFmode are not offsettable. */
if (GET_MODE (op) == HImode || GET_CODE (op) == HFmode)
return 0;
if ((GET_CODE (XEXP (op, 0)) == REG)
&& (REGNO (XEXP (op, 0)) == DP_REGNO))
return c4x_U_constraint (XEXP (op, 1));
return 0;
}
/* Symbolic operand. */
int
c4x_U_constraint (op)
rtx op;
{
/* Don't allow direct addressing to an arbitrary constant. */
if (GET_CODE (op) == CONST
&& GET_CODE (XEXP (op, 0)) == PLUS
&& (GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
|| GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF)
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
return 1;
return GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF;
}
int
c4x_autoinc_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == MEM)
{
enum rtx_code code = GET_CODE (XEXP (op, 0));
if (code == PRE_INC
|| code == PRE_DEC
|| code == POST_INC
|| code == POST_DEC
|| code == PRE_MODIFY
|| code == POST_MODIFY
)
return 1;
}
return 0;
}
/* Match any operand. */
int
any_operand (op, mode)
register rtx op ATTRIBUTE_UNUSED;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return 1;
}
/* Nonzero if OP is a floating point value with value 0.0. */
int
fp_zero_operand (op)
rtx op;
{
REAL_VALUE_TYPE r;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
return REAL_VALUES_EQUAL (r, dconst0);
}
int
const_operand (op, mode)
register rtx op;
register enum machine_mode mode;
{
switch (mode)
{
case QFmode:
case HFmode:
if (GET_CODE (op) != CONST_DOUBLE
|| GET_MODE (op) != mode
|| GET_MODE_CLASS (mode) != MODE_FLOAT)
return 0;
return c4x_immed_float_p (op);
#if Pmode != QImode
case Pmode:
#endif
case QImode:
if (GET_CODE (op) == CONSTANT_P_RTX)
return 1;
if (GET_CODE (op) != CONST_INT
|| (GET_MODE (op) != VOIDmode && GET_MODE (op) != mode)
|| GET_MODE_CLASS (mode) != MODE_INT)
return 0;
return IS_HIGH_CONST (INTVAL (op)) || IS_INT16_CONST (INTVAL (op));
case HImode:
return 0;
default:
return 0;
}
}
int
stik_const_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return c4x_K_constant (op);
}
int
not_const_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return c4x_N_constant (op);
}
int
reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return register_operand (op, mode);
}
int
reg_imm_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (REG_P (op) || CONSTANT_P (op))
return 1;
return 0;
}
int
not_modify_reg (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (REG_P (op) || CONSTANT_P (op))
return 1;
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case REG:
return 1;
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (! REG_P (op0))
return 0;
if (REG_P (op1) || GET_CODE (op1) == CONST_INT)
return 1;
}
case LO_SUM:
{
rtx op0 = XEXP (op, 0);
if (REG_P (op0) && REGNO (op0) == DP_REGNO)
return 1;
}
break;
case CONST:
case SYMBOL_REF:
case LABEL_REF:
return 1;
default:
break;
}
return 0;
}
int
not_rc_reg (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (REG_P (op) && REGNO (op) == RC_REGNO)
return 0;
return 1;
}
/* Extended precision register R0-R1. */
int
r0r1_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (! register_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return REG_P (op) && IS_R0R1_OR_PSEUDO_REGNO (op);
}
/* Extended precision register R2-R3. */
int
r2r3_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (! register_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return REG_P (op) && IS_R2R3_OR_PSEUDO_REGNO (op);
}
/* Low extended precision register R0-R7. */
int
ext_low_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (! register_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return REG_P (op) && IS_EXT_LOW_OR_PSEUDO_REGNO (op);
}
/* Extended precision register. */
int
ext_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (! register_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (! REG_P (op))
return 0;
return IS_EXT_OR_PSEUDO_REGNO (op);
}
/* Standard precision register. */
int
std_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (! register_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return REG_P (op) && IS_STD_OR_PSEUDO_REGNO (op);
}
/* Address register. */
int
addr_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (! register_operand (op, mode))
return 0;
return c4x_a_register (op);
}
/* Index register. */
int
index_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (! register_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return c4x_x_register (op);
}
/* DP register. */
int
dp_reg_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return REG_P (op) && IS_DP_OR_PSEUDO_REGNO (op);
}
/* SP register. */
int
sp_reg_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return REG_P (op) && IS_SP_OR_PSEUDO_REGNO (op);
}
/* ST register. */
int
st_reg_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return REG_P (op) && IS_ST_OR_PSEUDO_REGNO (op);
}
/* RC register. */
int
rc_reg_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return REG_P (op) && IS_RC_OR_PSEUDO_REGNO (op);
}
int
call_address_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (REG_P (op) || symbolic_address_operand (op, mode));
}
/* Symbolic address operand. */
int
symbolic_address_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
switch (GET_CODE (op))
{
case SYMBOL_REF:
case LABEL_REF:
return 1;
case CONST:
op = XEXP (op, 0);
return ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
default:
return 0;
}
}
/* Check src operand of two operand arithmetic instructions. */
int
src_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (REG_P (op))
return reg_operand (op, mode);
if (mode == VOIDmode)
mode = GET_MODE (op);
if (GET_CODE (op) == CONST_INT)
return (mode == QImode || mode == Pmode || mode == HImode)
&& c4x_I_constant (op);
/* We don't like CONST_DOUBLE integers. */
if (GET_CODE (op) == CONST_DOUBLE)
return c4x_H_constant (op);
/* Disallow symbolic addresses. */
if (GET_CODE (op) == SYMBOL_REF
|| GET_CODE (op) == LABEL_REF
|| GET_CODE (op) == CONST)
return 0;
/* Disallow direct memory access symbolic addresses.
These are usually caught by the movqi expander and
converted to a LO_SUM. */
if (GET_CODE (op) == MEM
&& ((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
|| GET_CODE (XEXP (op, 0)) == LABEL_REF
|| GET_CODE (XEXP (op, 0)) == CONST)))
return 0;
return general_operand (op, mode);
}
int
src_hi_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (c4x_O_constant (op))
return 1;
return src_operand (op, mode);
}
/* Check src operand of two operand logical instructions. */
int
lsrc_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (mode == VOIDmode)
mode = GET_MODE (op);
if (mode != QImode && mode != Pmode)
fatal_insn ("Mode not QImode", op);
if (GET_CODE (op) == CONST_INT)
return c4x_L_constant (op) || c4x_J_constant (op);
return src_operand (op, mode);
}
/* Check src operand of two operand tricky instructions. */
int
tsrc_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (mode == VOIDmode)
mode = GET_MODE (op);
if (mode != QImode && mode != Pmode)
fatal_insn ("Mode not QImode", op);
if (GET_CODE (op) == CONST_INT)
return c4x_L_constant (op) || c4x_N_constant (op) || c4x_J_constant (op);
return src_operand (op, mode);
}
int
reg_or_const_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return reg_operand (op, mode) || const_operand (op, mode);
}
/* Check for indirect operands allowable in parallel instruction. */
int
par_ind_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
return c4x_S_indirect (op);
}
/* Check for operands allowable in parallel instruction. */
int
parallel_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return ext_low_reg_operand (op, mode) || par_ind_operand (op, mode);
}
static void
c4x_S_address_parse (op, base, incdec, index, disp)
rtx op;
int *base;
int *incdec;
int *index;
int *disp;
{
*base = 0;
*incdec = 0;
*index = 0;
*disp = 0;
if (GET_CODE (op) != MEM)
fatal_insn ("Invalid indirect memory address", op);
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case PRE_DEC:
*base = REGNO (XEXP (op, 0));
*incdec = 1;
*disp = -1;
return;
case POST_DEC:
*base = REGNO (XEXP (op, 0));
*incdec = 1;
*disp = 0;
return;
case PRE_INC:
*base = REGNO (XEXP (op, 0));
*incdec = 1;
*disp = 1;
return;
case POST_INC:
*base = REGNO (XEXP (op, 0));
*incdec = 1;
*disp = 0;
return;
case POST_MODIFY:
*base = REGNO (XEXP (op, 0));
if (REG_P (XEXP (XEXP (op, 1), 1)))
{
*index = REGNO (XEXP (XEXP (op, 1), 1));
*disp = 0; /* ??? */
}
else
*disp = INTVAL (XEXP (XEXP (op, 1), 1));
*incdec = 1;
return;
case PRE_MODIFY:
*base = REGNO (XEXP (op, 0));
if (REG_P (XEXP (XEXP (op, 1), 1)))
{
*index = REGNO (XEXP (XEXP (op, 1), 1));
*disp = 1; /* ??? */
}
else
*disp = INTVAL (XEXP (XEXP (op, 1), 1));
*incdec = 1;
return;
case REG:
*base = REGNO (op);
return;
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (c4x_a_register (op0))
{
if (c4x_x_register (op1))
{
*base = REGNO (op0);
*index = REGNO (op1);
return;
}
else if ((GET_CODE (op1) == CONST_INT
&& IS_DISP1_CONST (INTVAL (op1))))
{
*base = REGNO (op0);
*disp = INTVAL (op1);
return;
}
}
else if (c4x_x_register (op0) && c4x_a_register (op1))
{
*base = REGNO (op1);
*index = REGNO (op0);
return;
}
}
/* Fallthrough */
default:
fatal_insn ("Invalid indirect (S) memory address", op);
}
}
int
c4x_address_conflict (op0, op1, store0, store1)
rtx op0;
rtx op1;
int store0;
int store1;
{
int base0;
int base1;
int incdec0;
int incdec1;
int index0;
int index1;
int disp0;
int disp1;
if (MEM_VOLATILE_P (op0) && MEM_VOLATILE_P (op1))
return 1;
c4x_S_address_parse (op0, &base0, &incdec0, &index0, &disp0);
c4x_S_address_parse (op1, &base1, &incdec1, &index1, &disp1);
if (store0 && store1)
{
/* If we have two stores in parallel to the same address, then
the C4x only executes one of the stores. This is unlikely to
cause problems except when writing to a hardware device such
as a FIFO since the second write will be lost. The user
should flag the hardware location as being volatile so that
we don't do this optimisation. While it is unlikely that we
have an aliased address if both locations are not marked
volatile, it is probably safer to flag a potential conflict
if either location is volatile. */
if (! flag_argument_noalias)
{
if (MEM_VOLATILE_P (op0) || MEM_VOLATILE_P (op1))
return 1;
}
}
/* If have a parallel load and a store to the same address, the load
is performed first, so there is no conflict. Similarly, there is
no conflict if have parallel loads from the same address. */
/* Cannot use auto increment or auto decrement twice for same
base register. */
if (base0 == base1 && incdec0 && incdec0)
return 1;
/* It might be too confusing for GCC if we have use a base register
with a side effect and a memory reference using the same register
in parallel. */
if (! TARGET_DEVEL && base0 == base1 && (incdec0 || incdec1))
return 1;
/* We can not optimize the case where op1 and op2 refer to the same
address. */
if (base0 == base1 && disp0 == disp1 && index0 == index1)
return 1;
/* No conflict. */
return 0;
}
/* Check for while loop inside a decrement and branch loop. */
int
c4x_label_conflict (insn, jump, db)
rtx insn;
rtx jump;
rtx db;
{
while (insn)
{
if (GET_CODE (insn) == CODE_LABEL)
{
if (CODE_LABEL_NUMBER (jump) == CODE_LABEL_NUMBER (insn))
return 1;
if (CODE_LABEL_NUMBER (db) == CODE_LABEL_NUMBER (insn))
return 0;
}
insn = PREV_INSN (insn);
}
return 1;
}
/* Validate combination of operands for parallel load/store instructions. */
int
valid_parallel_load_store (operands, mode)
rtx *operands;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
rtx op0 = operands[0];
rtx op1 = operands[1];
rtx op2 = operands[2];
rtx op3 = operands[3];
if (GET_CODE (op0) == SUBREG)
op0 = SUBREG_REG (op0);
if (GET_CODE (op1) == SUBREG)
op1 = SUBREG_REG (op1);
if (GET_CODE (op2) == SUBREG)
op2 = SUBREG_REG (op2);
if (GET_CODE (op3) == SUBREG)
op3 = SUBREG_REG (op3);
/* The patterns should only allow ext_low_reg_operand() or
par_ind_operand() operands. Thus of the 4 operands, only 2
should be REGs and the other 2 should be MEMs. */
/* This test prevents the multipack pass from using this pattern if
op0 is used as an index or base register in op2 or op3, since
this combination will require reloading. */
if (GET_CODE (op0) == REG
&& ((GET_CODE (op2) == MEM && reg_mentioned_p (op0, XEXP (op2, 0)))
|| (GET_CODE (op3) == MEM && reg_mentioned_p (op0, XEXP (op3, 0)))))
return 0;
/* LDI||LDI */
if (GET_CODE (op0) == REG && GET_CODE (op2) == REG)
return (REGNO (op0) != REGNO (op2))
&& GET_CODE (op1) == MEM && GET_CODE (op3) == MEM
&& ! c4x_address_conflict (op1, op3, 0, 0);
/* STI||STI */
if (GET_CODE (op1) == REG && GET_CODE (op3) == REG)
return GET_CODE (op0) == MEM && GET_CODE (op2) == MEM
&& ! c4x_address_conflict (op0, op2, 1, 1);
/* LDI||STI */
if (GET_CODE (op0) == REG && GET_CODE (op3) == REG)
return GET_CODE (op1) == MEM && GET_CODE (op2) == MEM
&& ! c4x_address_conflict (op1, op2, 0, 1);
/* STI||LDI */
if (GET_CODE (op1) == REG && GET_CODE (op2) == REG)
return GET_CODE (op0) == MEM && GET_CODE (op3) == MEM
&& ! c4x_address_conflict (op0, op3, 1, 0);
return 0;
}
int
valid_parallel_operands_4 (operands, mode)
rtx *operands;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
rtx op0 = operands[0];
rtx op2 = operands[2];
if (GET_CODE (op0) == SUBREG)
op0 = SUBREG_REG (op0);
if (GET_CODE (op2) == SUBREG)
op2 = SUBREG_REG (op2);
/* This test prevents the multipack pass from using this pattern if
op0 is used as an index or base register in op2, since this combination
will require reloading. */
if (GET_CODE (op0) == REG
&& GET_CODE (op2) == MEM
&& reg_mentioned_p (op0, XEXP (op2, 0)))
return 0;
return 1;
}
int
valid_parallel_operands_5 (operands, mode)
rtx *operands;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
int regs = 0;
rtx op0 = operands[0];
rtx op1 = operands[1];
rtx op2 = operands[2];
rtx op3 = operands[3];
if (GET_CODE (op0) == SUBREG)
op0 = SUBREG_REG (op0);
if (GET_CODE (op1) == SUBREG)
op1 = SUBREG_REG (op1);
if (GET_CODE (op2) == SUBREG)
op2 = SUBREG_REG (op2);
/* The patterns should only allow ext_low_reg_operand() or
par_ind_operand() operands. Operands 1 and 2 may be commutative
but only one of them can be a register. */
if (GET_CODE (op1) == REG)
regs++;
if (GET_CODE (op2) == REG)
regs++;
if (regs != 1)
return 0;
/* This test prevents the multipack pass from using this pattern if
op0 is used as an index or base register in op3, since this combination
will require reloading. */
if (GET_CODE (op0) == REG
&& GET_CODE (op3) == MEM
&& reg_mentioned_p (op0, XEXP (op3, 0)))
return 0;
return 1;
}
int
valid_parallel_operands_6 (operands, mode)
rtx *operands;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
int regs = 0;
rtx op0 = operands[0];
rtx op1 = operands[1];
rtx op2 = operands[2];
rtx op4 = operands[4];
rtx op5 = operands[5];
if (GET_CODE (op1) == SUBREG)
op1 = SUBREG_REG (op1);
if (GET_CODE (op2) == SUBREG)
op2 = SUBREG_REG (op2);
if (GET_CODE (op4) == SUBREG)
op4 = SUBREG_REG (op4);
if (GET_CODE (op5) == SUBREG)
op5 = SUBREG_REG (op5);
/* The patterns should only allow ext_low_reg_operand() or
par_ind_operand() operands. Thus of the 4 input operands, only 2
should be REGs and the other 2 should be MEMs. */
if (GET_CODE (op1) == REG)
regs++;
if (GET_CODE (op2) == REG)
regs++;
if (GET_CODE (op4) == REG)
regs++;
if (GET_CODE (op5) == REG)
regs++;
/* The new C30/C40 silicon dies allow 3 regs of the 4 input operands.
Perhaps we should count the MEMs as well? */
if (regs != 2)
return 0;
/* This test prevents the multipack pass from using this pattern if
op0 is used as an index or base register in op4 or op5, since
this combination will require reloading. */
if (GET_CODE (op0) == REG
&& ((GET_CODE (op4) == MEM && reg_mentioned_p (op0, XEXP (op4, 0)))
|| (GET_CODE (op5) == MEM && reg_mentioned_p (op0, XEXP (op5, 0)))))
return 0;
return 1;
}
/* Validate combination of src operands. Note that the operands have
been screened by the src_operand predicate. We just have to check
that the combination of operands is valid. If FORCE is set, ensure
that the destination regno is valid if we have a 2 operand insn. */
static int
c4x_valid_operands (code, operands, mode, force)
enum rtx_code code;
rtx *operands;
enum machine_mode mode;
int force;
{
rtx op1;
rtx op2;
enum rtx_code code1;
enum rtx_code code2;
if (code == COMPARE)
{
op1 = operands[0];
op2 = operands[1];
}
else
{
op1 = operands[1];
op2 = operands[2];
}
if (GET_CODE (op1) == SUBREG)
op1 = SUBREG_REG (op1);
if (GET_CODE (op2) == SUBREG)
op2 = SUBREG_REG (op2);
code1 = GET_CODE (op1);
code2 = GET_CODE (op2);
if (code1 == REG && code2 == REG)
return 1;
if (code1 == MEM && code2 == MEM)
{
if (c4x_S_indirect (op1, mode) && c4x_S_indirect (op2, mode))
return 1;
return c4x_R_indirect (op1, mode) && c4x_R_indirect (op2, mode);
}
if (code1 == code2)
return 0;
if (code1 == REG)
{
switch (code2)
{
case CONST_INT:
if (c4x_J_constant (op2) && c4x_R_indirect (op1))
return 1;
break;
case CONST_DOUBLE:
if (! c4x_H_constant (op2))
return 0;
break;
/* Any valid memory operand screened by src_operand is OK. */
case MEM:
/* After CSE, any remaining (ADDRESSOF:P reg) gets converted
into a stack slot memory address comprising a PLUS and a
constant. */
case ADDRESSOF:
break;
default:
fatal_insn ("c4x_valid_operands: Internal error", op2);
break;
}
/* Check that we have a valid destination register for a two operand
instruction. */
return ! force || code == COMPARE || REGNO (op1) == REGNO (operands[0]);
}
/* We assume MINUS is commutative since the subtract patterns
also support the reverse subtract instructions. Since op1
is not a register, and op2 is a register, op1 can only
be a restricted memory operand for a shift instruction. */
if (code == ASHIFTRT || code == LSHIFTRT
|| code == ASHIFT || code == COMPARE)
return code2 == REG
&& (c4x_S_indirect (op1) || c4x_R_indirect (op1));
switch (code1)
{
case CONST_INT:
if (c4x_J_constant (op1) && c4x_R_indirect (op2))
return 1;
break;
case CONST_DOUBLE:
if (! c4x_H_constant (op1))
return 0;
break;
/* Any valid memory operand screened by src_operand is OK. */
case MEM:
/* After CSE, any remaining (ADDRESSOF:P reg) gets converted
into a stack slot memory address comprising a PLUS and a
constant. */
case ADDRESSOF:
break;
default:
fatal ("c4x_valid_operands: Internal error");
break;
}
/* Check that we have a valid destination register for a two operand
instruction. */
return ! force || REGNO (op1) == REGNO (operands[0]);
}
int valid_operands (code, operands, mode)
enum rtx_code code;
rtx *operands;
enum machine_mode mode;
{
/* If we are not optimizing then we have to let anything go and let
reload fix things up. instantiate_decl in function.c can produce
invalid insns by changing the offset of a memory operand from a
valid one into an invalid one, when the second operand is also a
memory operand. The alternative is not to allow two memory
operands for an insn when not optimizing. The problem only rarely
occurs, for example with the C-torture program DFcmp.c */
return ! optimize || c4x_valid_operands (code, operands, mode, 0);
}
int
legitimize_operands (code, operands, mode)
enum rtx_code code;
rtx *operands;
enum machine_mode mode;
{
/* Compare only has 2 operands. */
if (code == COMPARE)
{
/* During RTL generation, force constants into pseudos so that
they can get hoisted out of loops. This will tie up an extra
register but can save an extra cycle. Only do this if loop
optimisation enabled. (We cannot pull this trick for add and
sub instructions since the flow pass won't find
autoincrements etc.) This allows us to generate compare
instructions like CMPI R0, *AR0++ where R0 = 42, say, instead
of LDI *AR0++, R0; CMPI 42, R0.
Note that expand_binops will try to load an expensive constant
into a register if it is used within a loop. Unfortunately,
the cost mechanism doesn't allow us to look at the other
operand to decide whether the constant is expensive. */
if (! reload_in_progress
&& TARGET_HOIST
&& optimize > 0
&& ((GET_CODE (operands[1]) == CONST_INT
&& ! c4x_J_constant (operands[1])
&& INTVAL (operands[1]) != 0)
|| GET_CODE (operands[1]) == CONST_DOUBLE))
operands[1] = force_reg (mode, operands[1]);
if (! reload_in_progress
&& ! c4x_valid_operands (code, operands, mode, 0))
operands[0] = force_reg (mode, operands[0]);
return 1;
}
/* We cannot do this for ADDI/SUBI insns since we will
defeat the flow pass from finding autoincrement addressing
opportunities. */
if (! reload_in_progress
&& ! ((code == PLUS || code == MINUS) && mode == Pmode)
&& (TARGET_HOIST && optimize > 1
&& ((GET_CODE (operands[2]) == CONST_INT
&& ! c4x_J_constant (operands[2])
&& INTVAL (operands[2]) != 0)
|| GET_CODE (operands[2]) == CONST_DOUBLE)))
operands[2] = force_reg (mode, operands[2]);
/* We can get better code on a C30 if we force constant shift counts
into a register. This way they can get hoisted out of loops,
tying up a register, but saving an instruction. The downside is
that they may get allocated to an address or index register, and
thus we will get a pipeline conflict if there is a nearby
indirect address using an address register.
Note that expand_binops will not try to load an expensive constant
into a register if it is used within a loop for a shift insn. */
if (! reload_in_progress
&& ! c4x_valid_operands (code, operands, mode, TARGET_FORCE))
{
/* If the operand combination is invalid, we force operand1 into a
register, preventing reload from having doing to do this at a
later stage. */
operands[1] = force_reg (mode, operands[1]);
if (TARGET_FORCE)
{
emit_move_insn (operands[0], operands[1]);
operands[1] = copy_rtx (operands[0]);
}
else
{
/* Just in case... */
if (! c4x_valid_operands (code, operands, mode, 0))
operands[2] = force_reg (mode, operands[2]);
}
}
/* Right shifts require a negative shift count, but GCC expects
a positive count, so we emit a NEG. */
if ((code == ASHIFTRT || code == LSHIFTRT)
&& (GET_CODE (operands[2]) != CONST_INT))
operands[2] = gen_rtx_NEG (mode, negate_rtx (mode, operands[2]));
return 1;
}
/* The following predicates are used for instruction scheduling. */
int
group1_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return REG_P (op) && IS_GROUP1_REG (REGNO (op));
}
int
group1_mem_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_CODE (op) == MEM)
{
op = XEXP (op, 0);
if (GET_CODE (op) == PLUS)
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (((GET_CODE (op0) == REG) && IS_GROUP1_REGNO (op0))
|| ((GET_CODE (op1) == REG) && IS_GROUP1_REGNO (op1)))
return 1;
}
else if ((REG_P (op)) && IS_GROUP1_REGNO (op))
return 1;
}
return 0;
}
/* Return true if any one of the address registers. */
int
arx_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return REG_P (op) && IS_ADDR_REGNO (op);
}
static int
c4x_arn_reg_operand (op, mode, regno)
rtx op;
enum machine_mode mode;
int regno;
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return REG_P (op) && (REGNO (op) == regno);
}
static int
c4x_arn_mem_operand (op, mode, regno)
rtx op;
enum machine_mode mode;
int regno;
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_CODE (op) == MEM)
{
op = XEXP (op, 0);
switch (GET_CODE (op))
{
case PRE_DEC:
case POST_DEC:
case PRE_INC:
case POST_INC:
op = XEXP (op, 0);
case REG:
if (REG_P (op) && (REGNO (op) == regno))
return 1;
break;
case PRE_MODIFY:
case POST_MODIFY:
if (REG_P (XEXP (op, 0)) && (REGNO (XEXP (op, 0)) == regno))
return 1;
if (REG_P (XEXP (XEXP (op, 1), 1))
&& (REGNO (XEXP (XEXP (op, 1), 1)) == regno))
return 1;
break;
case PLUS:
{
rtx op0 = XEXP (op, 0);
rtx op1 = XEXP (op, 1);
if (((GET_CODE (op0) == REG) && (REGNO (op0) == regno))
|| ((GET_CODE (op1) == REG) && (REGNO (op1) == regno)))
return 1;
}
break;
default:
break;
}
}
return 0;
}
int
ar0_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_reg_operand (op, mode, AR0_REGNO);
}
int
ar0_mem_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_mem_operand (op, mode, AR0_REGNO);
}
int
ar1_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_reg_operand (op, mode, AR1_REGNO);
}
int
ar1_mem_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_mem_operand (op, mode, AR1_REGNO);
}
int
ar2_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_reg_operand (op, mode, AR2_REGNO);
}
int
ar2_mem_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_mem_operand (op, mode, AR2_REGNO);
}
int
ar3_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_reg_operand (op, mode, AR3_REGNO);
}
int
ar3_mem_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_mem_operand (op, mode, AR3_REGNO);
}
int
ar4_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_reg_operand (op, mode, AR4_REGNO);
}
int
ar4_mem_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_mem_operand (op, mode, AR4_REGNO);
}
int
ar5_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_reg_operand (op, mode, AR5_REGNO);
}
int
ar5_mem_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_mem_operand (op, mode, AR5_REGNO);
}
int
ar6_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_reg_operand (op, mode, AR6_REGNO);
}
int
ar6_mem_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_mem_operand (op, mode, AR6_REGNO);
}
int
ar7_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_reg_operand (op, mode, AR7_REGNO);
}
int
ar7_mem_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_mem_operand (op, mode, AR7_REGNO);
}
int
ir0_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_reg_operand (op, mode, IR0_REGNO);
}
int
ir0_mem_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_mem_operand (op, mode, IR0_REGNO);
}
int
ir1_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_reg_operand (op, mode, IR1_REGNO);
}
int
ir1_mem_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return c4x_arn_mem_operand (op, mode, IR1_REGNO);
}
/* We allow autoincrement addressing. */
rtx
c4x_operand_subword (op, i, validate_address, mode)
rtx op;
int i;
int validate_address;
enum machine_mode mode;
{
if (mode != HImode && mode != HFmode)
fatal_insn ("c4x_operand_subword: invalid mode", op);
if (mode == HFmode && REG_P (op))
fatal_insn ("c4x_operand_subword: invalid operand", op);
if (GET_CODE (op) == MEM)
{
enum rtx_code code = GET_CODE (XEXP (op, 0));
enum machine_mode mode = GET_MODE (XEXP (op, 0));
enum machine_mode submode;
submode = mode;
if (mode == HImode)
submode = QImode;
else if (mode == HFmode)
submode = QFmode;
switch (code)
{
case POST_INC:
case PRE_INC:
return gen_rtx_MEM (submode, XEXP (op, 0));
case POST_DEC:
case PRE_DEC:
case PRE_MODIFY:
case POST_MODIFY:
/* We could handle these with some difficulty.
e.g., *p-- => *(p-=2); *(p+1). */
fatal_insn ("c4x_operand_subword: invalid autoincrement", op);
case SYMBOL_REF:
case LABEL_REF:
case CONST:
case CONST_INT:
fatal_insn ("c4x_operand_subword: invalid address", op);
/* Even though offsettable_address_p considers (MEM
(LO_SUM)) to be offsettable, it is not safe if the
address is at the end of the data page since we also have
to fix up the associated high PART. In this case where
we are trying to split a HImode or HFmode memory
reference, we would have to emit another insn to reload a
new HIGH value. It's easier to disable LO_SUM memory references
in HImode or HFmode and we probably get better code. */
case LO_SUM:
fatal_insn ("c4x_operand_subword: address not offsettable", op);
default:
break;
}
}
return operand_subword (op, i, validate_address, mode);
}
/* Handle machine specific pragmas for compatibility with existing
compilers for the C3x/C4x.
pragma attribute
----------------------------------------------------------
CODE_SECTION(symbol,"section") section("section")
DATA_SECTION(symbol,"section") section("section")
FUNC_CANNOT_INLINE(function)
FUNC_EXT_CALLED(function)
FUNC_IS_PURE(function) const
FUNC_IS_SYSTEM(function)
FUNC_NEVER_RETURNS(function) noreturn
FUNC_NO_GLOBAL_ASG(function)
FUNC_NO_IND_ASG(function)
INTERRUPT(function) interrupt
*/
int
c4x_handle_pragma (p_getc, p_ungetc, pname)
int (* p_getc) PROTO ((void));
void (* p_ungetc) PROTO ((int)) ATTRIBUTE_UNUSED;
char *pname;
{
int i;
int c;
int namesize;
char *name;
tree func;
tree sect = NULL_TREE;
tree new;
c = p_getc ();
while (c == ' ' || c == '\t') c = p_getc ();
if (c != '(')
return 0;
c = p_getc ();
while (c == ' ' || c == '\t') c = p_getc ();
if (! (isalpha(c) || c == '_' || c == '$' || c == '@'))
return 0;
i = 0;
namesize = 16;
name = xmalloc (namesize);
while (isalnum (c) || c == '_' || c == '$' || c == '@')
{
if (i >= namesize-1)
{
namesize += 16;
name = xrealloc (name, namesize);
}
name[i++] = c;
c = p_getc ();
}
name[i] = 0;
func = get_identifier (name);
free (name);
if (strcmp (pname, "CODE_SECTION") == 0
|| strcmp (pname, "DATA_SECTION") == 0)
{
while (c == ' ' || c == '\t') c = p_getc ();
if (c != ',')
return 0;
c = p_getc ();
while (c == ' ' || c == '\t') c = p_getc ();
if (c != '"')
return 0;
i = 0;
namesize = 16;
name = xmalloc (namesize);
c = p_getc ();
while (c != '"' && c != '\n' && c != '\r' && c != EOF)
{
if (i >= namesize-1)
{
namesize += 16;
name = xrealloc (name, namesize);
}
name[i++] = c;
c = p_getc ();
}
name[i] = 0;
sect = build_string (i, name);
free (name);
sect = build_tree_list (NULL_TREE, sect);
if (c != '"')
return 0;
c = p_getc ();
}
while (c == ' ' || c == '\t') c = p_getc ();
if (c != ')')
return 0;
new = build_tree_list (func, sect);
if (strcmp (pname, "CODE_SECTION") == 0)
code_tree = chainon (code_tree, new);
else if (strcmp (pname, "DATA_SECTION") == 0)
data_tree = chainon (data_tree, new);
else if (strcmp (pname, "FUNC_CANNOT_INLINE") == 0)
; /* ignore */
else if (strcmp (pname, "FUNC_EXT_CALLED") == 0)
; /* ignore */
else if (strcmp (pname, "FUNC_IS_PURE") == 0)
pure_tree = chainon (pure_tree, new);
else if (strcmp (pname, "FUNC_IS_SYSTEM") == 0)
; /* ignore */
else if (strcmp (pname, "FUNC_NEVER_RETURNS") == 0)
noreturn_tree = chainon (noreturn_tree, new);
else if (strcmp (pname, "FUNC_NO_GLOBAL_ASG") == 0)
; /* ignore */
else if (strcmp (pname, "FUNC_NO_IND_ASG") == 0)
; /* ignore */
else if (strcmp (pname, "INTERRUPT") == 0)
interrupt_tree = chainon (interrupt_tree, new);
else
return 0;
return 1;
}
static void
c4x_check_attribute(attrib, list, decl, attributes)
char *attrib;
tree list, decl, *attributes;
{
while (list != NULL_TREE
&& IDENTIFIER_POINTER (TREE_PURPOSE (list))
!= IDENTIFIER_POINTER (DECL_NAME (decl)))
list = TREE_CHAIN(list);
if (list)
*attributes = chainon (*attributes,
build_tree_list (get_identifier (attrib),
TREE_VALUE(list)));
}
void
c4x_set_default_attributes(decl, attributes)
tree decl, *attributes;
{
switch (TREE_CODE (decl))
{
case FUNCTION_DECL:
c4x_check_attribute ("section", code_tree, decl, attributes);
c4x_check_attribute ("const", pure_tree, decl, attributes);
c4x_check_attribute ("noreturn", noreturn_tree, decl, attributes);
c4x_check_attribute ("interrupt", interrupt_tree, decl, attributes);
break;
case VAR_DECL:
c4x_check_attribute ("section", data_tree, decl, attributes);
break;
default:
break;
}
}
/* Return nonzero if IDENTIFIER with arguments ARGS is a valid machine
specific attribute for TYPE. The attributes in ATTRIBUTES have
previously been assigned to TYPE. */
int
c4x_valid_type_attribute_p (type, attributes, identifier, args)
tree type;
tree attributes ATTRIBUTE_UNUSED;
tree identifier;
tree args ATTRIBUTE_UNUSED;
{
if (TREE_CODE (type) != FUNCTION_TYPE)
return 0;
if (is_attribute_p ("interrupt", identifier))
return 1;
if (is_attribute_p ("assembler", identifier))
return 1;
if (is_attribute_p ("leaf_pretend", identifier))
return 1;
return 0;
}
/* !!! FIXME to emit RPTS correctly. */
int
c4x_rptb_rpts_p (insn, op)
rtx insn, op;
{
/* The next insn should be our label marking where the
repeat block starts. */
insn = NEXT_INSN (insn);
if (GET_CODE (insn) != CODE_LABEL)
{
/* Some insns may have been shifted between the RPTB insn
and the top label... They were probably destined to
be moved out of the loop. For now, let's leave them
where they are and print a warning. We should
probably move these insns before the repeat block insn. */
if (TARGET_DEBUG)
fatal_insn("c4x_rptb_rpts_p: Repeat block top label moved\n",
insn);
return 0;
}
/* Skip any notes. */
insn = next_nonnote_insn (insn);
/* This should be our first insn in the loop. */
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
return 0;
/* Skip any notes. */
insn = next_nonnote_insn (insn);
if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
return 0;
if (recog_memoized (insn) != CODE_FOR_rptb_end)
return 0;
if (TARGET_RPTS)
return 1;
return (GET_CODE (op) == CONST_INT) && TARGET_RPTS_CYCLES (INTVAL (op));
}
/* Adjust the cost of a scheduling dependency. Return the new cost of
a dependency LINK or INSN on DEP_INSN. COST is the current cost.
A set of an address register followed by a use occurs a 2 cycle
stall (reduced to a single cycle on the c40 using LDA), while
a read of an address register followed by a use occurs a single cycle. */
#define SET_USE_COST 3
#define SETLDA_USE_COST 2
#define READ_USE_COST 2
int
c4x_adjust_cost (insn, link, dep_insn, cost)
rtx insn;
rtx link;
rtx dep_insn;
int cost;
{
/* Don't worry about this until we know what registers have been
assigned. */
if (! reload_completed)
return 0;
/* How do we handle dependencies where a read followed by another
read causes a pipeline stall? For example, a read of ar0 followed
by the use of ar0 for a memory reference. It looks like we
need to extend the scheduler to handle this case. */
/* Reload sometimes generates a CLOBBER of a stack slot, e.g.,
(clobber (mem:QI (plus:QI (reg:QI 11 ar3) (const_int 261)))),
so only deal with insns we know about. */
if (recog_memoized (dep_insn) < 0)
return 0;
if (REG_NOTE_KIND (link) == 0)
{
int max = 0;
/* Data dependency; DEP_INSN writes a register that INSN reads some
cycles later. */
if (TARGET_C3X)
{
if (get_attr_setgroup1 (dep_insn) && get_attr_usegroup1 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_readarx (dep_insn) && get_attr_usegroup1 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
}
else
{
/* This could be significantly optimized. We should look
to see if dep_insn sets ar0-ar7 or ir0-ir1 and if
insn uses ar0-ar7. We then test if the same register
is used. The tricky bit is that some operands will
use several registers... */
if (get_attr_setar0 (dep_insn) && get_attr_usear0 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar0 (dep_insn) && get_attr_usear0 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar0 (dep_insn) && get_attr_usear0 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setar1 (dep_insn) && get_attr_usear1 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar1 (dep_insn) && get_attr_usear1 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar1 (dep_insn) && get_attr_usear1 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setar2 (dep_insn) && get_attr_usear2 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar2 (dep_insn) && get_attr_usear2 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar2 (dep_insn) && get_attr_usear2 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setar3 (dep_insn) && get_attr_usear3 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar3 (dep_insn) && get_attr_usear3 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar3 (dep_insn) && get_attr_usear3 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setar4 (dep_insn) && get_attr_usear4 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar4 (dep_insn) && get_attr_usear4 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar4 (dep_insn) && get_attr_usear4 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setar5 (dep_insn) && get_attr_usear5 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar5 (dep_insn) && get_attr_usear5 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar5 (dep_insn) && get_attr_usear5 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setar6 (dep_insn) && get_attr_usear6 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar6 (dep_insn) && get_attr_usear6 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar6 (dep_insn) && get_attr_usear6 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setar7 (dep_insn) && get_attr_usear7 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ar7 (dep_insn) && get_attr_usear7 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_readar7 (dep_insn) && get_attr_usear7 (insn))
max = READ_USE_COST > max ? READ_USE_COST : max;
if (get_attr_setir0 (dep_insn) && get_attr_useir0 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ir0 (dep_insn) && get_attr_useir0 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
if (get_attr_setir1 (dep_insn) && get_attr_useir1 (insn))
max = SET_USE_COST > max ? SET_USE_COST : max;
if (get_attr_setlda_ir1 (dep_insn) && get_attr_useir1 (insn))
max = SETLDA_USE_COST > max ? SETLDA_USE_COST : max;
}
if (max)
cost = max;
/* For other data dependencies, the default cost specified in the
md is correct. */
return cost;
}
else if (REG_NOTE_KIND (link) == REG_DEP_ANTI)
{
/* Anti dependency; DEP_INSN reads a register that INSN writes some
cycles later. */
/* For c4x anti dependencies, the cost is 0. */
return 0;
}
else if (REG_NOTE_KIND (link) == REG_DEP_OUTPUT)
{
/* Output dependency; DEP_INSN writes a register that INSN writes some
cycles later. */
/* For c4x output dependencies, the cost is 0. */
return 0;
}
else
abort ();
}