blob: e0b56c0f54a0e8dd1cbe6d2501de6c6076fd8b50 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . T A S K _ P R I M I T I V E S . O P E R A T I O N S --
-- --
-- B o d y --
-- --
-- $Revision: 1.1 $
-- --
-- Copyright (C) 1991-2001, Florida State University --
-- --
-- GNARL is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNARL; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. It is --
-- now maintained by Ada Core Technologies Inc. in cooperation with Florida --
-- State University (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
-- This is a Solaris (native) version of this package
-- This package contains all the GNULL primitives that interface directly
-- with the underlying OS.
pragma Polling (Off);
-- Turn off polling, we do not want ATC polling to take place during
-- tasking operations. It causes infinite loops and other problems.
with System.Tasking.Debug;
-- used for Known_Tasks
with Ada.Exceptions;
-- used for Raise_Exception
with GNAT.OS_Lib;
-- used for String_Access, Getenv
with Interfaces.C;
-- used for int
-- size_t
with System.Interrupt_Management;
-- used for Keep_Unmasked
-- Abort_Task_Interrupt
-- Interrupt_ID
with System.Interrupt_Management.Operations;
-- used for Set_Interrupt_Mask
-- All_Tasks_Mask
pragma Elaborate_All (System.Interrupt_Management.Operations);
with System.Parameters;
-- used for Size_Type
with System.Tasking;
-- used for Ada_Task_Control_Block
-- Task_ID
-- ATCB components and types
with System.Task_Info;
-- to initialize Task_Info for a C thread, in function Self
with System.Soft_Links;
-- used for Defer/Undefer_Abort
-- to initialize TSD for a C thread, in function Self
-- Note that we do not use System.Tasking.Initialization directly since
-- this is a higher level package that we shouldn't depend on. For example
-- when using the restricted run time, it is replaced by
-- System.Tasking.Restricted.Initialization
with System.OS_Primitives;
-- used for Delay_Modes
with Unchecked_Conversion;
with Unchecked_Deallocation;
package body System.Task_Primitives.Operations is
use System.Tasking.Debug;
use System.Tasking;
use Interfaces.C;
use System.OS_Interface;
use System.Parameters;
use Ada.Exceptions;
use System.OS_Primitives;
package SSL renames System.Soft_Links;
------------------
-- Local Data --
------------------
ATCB_Magic_Code : constant := 16#ADAADAAD#;
-- This is used to allow us to catch attempts to call Self
-- from outside an Ada task, with high probability.
-- For an Ada task, Task_Wrapper.Magic_Number = ATCB_Magic_Code.
-- The following are logically constants, but need to be initialized
-- at run time.
Environment_Task_ID : Task_ID;
-- A variable to hold Task_ID for the environment task.
-- If we use this variable to get the Task_ID, we need the following
-- ATCB_Key only for non-Ada threads.
Unblocked_Signal_Mask : aliased sigset_t;
-- The set of signals that should unblocked in all tasks
ATCB_Key : aliased thread_key_t;
-- Key used to find the Ada Task_ID associated with a thread,
-- at least for C threads unknown to the Ada run-time system.
All_Tasks_L : aliased System.Task_Primitives.RTS_Lock;
-- See comments on locking rules in System.Tasking (spec).
Next_Serial_Number : Task_Serial_Number := 100;
-- We start at 100, to reserve some special values for
-- using in error checking.
-- The following are internal configuration constants needed.
------------------------
-- Priority Support --
------------------------
Dynamic_Priority_Support : constant Boolean := True;
-- controls whether we poll for pending priority changes during sleeps
Priority_Ceiling_Emulation : constant Boolean := True;
-- controls whether we emulate priority ceiling locking
-- To get a scheduling close to annex D requirements, we use the real-time
-- class provided for LWP's and map each task/thread to a specific and
-- unique LWP (there is 1 thread per LWP, and 1 LWP per thread).
-- The real time class can only be set when the process has root
-- priviledges, so in the other cases, we use the normal thread scheduling
-- and priority handling.
Using_Real_Time_Class : Boolean := False;
-- indicates wether the real time class is being used (i.e the process
-- has root priviledges).
Prio_Param : aliased struct_pcparms;
-- Hold priority info (Real_Time) initialized during the package
-- elaboration.
-------------------------------------
-- External Configuration Values --
-------------------------------------
Time_Slice_Val : Interfaces.C.long;
pragma Import (C, Time_Slice_Val, "__gl_time_slice_val");
Locking_Policy : Character;
pragma Import (C, Locking_Policy, "__gl_locking_policy");
Dispatching_Policy : Character;
pragma Import (C, Dispatching_Policy, "__gl_task_dispatching_policy");
--------------------------------
-- Foreign Threads Detection --
--------------------------------
-- The following are used to allow the Self function to
-- automatically generate ATCB's for C threads that happen to call
-- Ada procedure, which in turn happen to call the Ada run-time system.
type Fake_ATCB;
type Fake_ATCB_Ptr is access Fake_ATCB;
type Fake_ATCB is record
Stack_Base : Interfaces.C.unsigned := 0;
-- A value of zero indicates the node is not in use.
Next : Fake_ATCB_Ptr;
Real_ATCB : aliased Ada_Task_Control_Block (0);
end record;
Fake_ATCB_List : Fake_ATCB_Ptr;
-- A linear linked list.
-- The list is protected by All_Tasks_L;
-- Nodes are added to this list from the front.
-- Once a node is added to this list, it is never removed.
Fake_Task_Elaborated : aliased Boolean := True;
-- Used to identified fake tasks (i.e., non-Ada Threads).
Next_Fake_ATCB : Fake_ATCB_Ptr;
-- Used to allocate one Fake_ATCB in advance. See comment in New_Fake_ATCB
------------
-- Checks --
------------
Check_Count : Integer := 0;
Old_Owner : Task_ID;
Lock_Count : Integer := 0;
Unlock_Count : Integer := 0;
function To_Lock_Ptr is
new Unchecked_Conversion (RTS_Lock_Ptr, Lock_Ptr);
function To_Task_ID is
new Unchecked_Conversion (Owner_ID, Task_ID);
function To_Owner_ID is
new Unchecked_Conversion (Task_ID, Owner_ID);
-----------------------
-- Local Subprograms --
-----------------------
function sysconf (name : System.OS_Interface.int)
return processorid_t;
pragma Import (C, sysconf, "sysconf");
SC_NPROCESSORS_CONF : constant System.OS_Interface.int := 14;
function Num_Procs (name : System.OS_Interface.int := SC_NPROCESSORS_CONF)
return processorid_t renames sysconf;
procedure Abort_Handler
(Sig : Signal;
Code : access siginfo_t;
Context : access ucontext_t);
function To_thread_t is new Unchecked_Conversion
(Integer, System.OS_Interface.thread_t);
function To_Task_ID is new Unchecked_Conversion (System.Address, Task_ID);
function To_Address is new Unchecked_Conversion (Task_ID, System.Address);
type Ptr is access Task_ID;
function To_Ptr is new Unchecked_Conversion (Interfaces.C.unsigned, Ptr);
function To_Ptr is new Unchecked_Conversion (System.Address, Ptr);
type Iptr is access Interfaces.C.unsigned;
function To_Iptr is new Unchecked_Conversion (Interfaces.C.unsigned, Iptr);
function Thread_Body_Access is
new Unchecked_Conversion (System.Address, Thread_Body);
function New_Fake_ATCB (Stack_Base : Interfaces.C.unsigned) return Task_ID;
-- Allocate and Initialize a new ATCB. This code can safely be called from
-- a foreign thread, as it doesn't access implicitly or explicitly
-- "self" before having initialized the new ATCB.
------------
-- Checks --
------------
function Check_Initialize_Lock (L : Lock_Ptr; Level : Lock_Level)
return Boolean;
pragma Inline (Check_Initialize_Lock);
function Check_Lock (L : Lock_Ptr) return Boolean;
pragma Inline (Check_Lock);
function Record_Lock (L : Lock_Ptr) return Boolean;
pragma Inline (Record_Lock);
function Check_Sleep (Reason : Task_States) return Boolean;
pragma Inline (Check_Sleep);
function Record_Wakeup
(L : Lock_Ptr;
Reason : Task_States) return Boolean;
pragma Inline (Record_Wakeup);
function Check_Wakeup
(T : Task_ID;
Reason : Task_States) return Boolean;
pragma Inline (Check_Wakeup);
function Check_Unlock (L : Lock_Ptr) return Boolean;
pragma Inline (Check_Lock);
function Check_Finalize_Lock (L : Lock_Ptr) return Boolean;
pragma Inline (Check_Finalize_Lock);
-------------------
-- New_Fake_ATCB --
-------------------
function New_Fake_ATCB (Stack_Base : Interfaces.C.unsigned)
return Task_ID
is
Self_ID : Task_ID;
P, Q : Fake_ATCB_Ptr;
Succeeded : Boolean;
Result : Interfaces.C.int;
begin
-- This section is ticklish.
-- We dare not call anything that might require an ATCB, until
-- we have the new ATCB in place.
-- Note: we don't use "Write_Lock (All_Tasks_L'Access);" because
-- we don't yet have an ATCB, and so can't pass the safety check.
Result := mutex_lock (All_Tasks_L.L'Access);
Q := null;
P := Fake_ATCB_List;
while P /= null loop
if P.Stack_Base = 0 then
Q := P;
elsif thr_kill (P.Real_ATCB.Common.LL.Thread, 0) /= 0 then
-- ????
-- If a C thread that has dependent Ada tasks terminates
-- abruptly, e.g. as a result of cancellation, any dependent
-- tasks are likely to hang up in termination.
P.Stack_Base := 0;
Q := P;
end if;
P := P.Next;
end loop;
if Q = null then
-- Create a new ATCB with zero entries.
Self_ID := Next_Fake_ATCB.Real_ATCB'Access;
Next_Fake_ATCB.Stack_Base := Stack_Base;
Next_Fake_ATCB.Next := Fake_ATCB_List;
Fake_ATCB_List := Next_Fake_ATCB;
Next_Fake_ATCB := null;
else
-- Reuse an existing fake ATCB.
Self_ID := Q.Real_ATCB'Access;
Q.Stack_Base := Stack_Base;
end if;
-- Do the standard initializations
System.Tasking.Initialize_ATCB
(Self_ID, null, Null_Address, Null_Task, Fake_Task_Elaborated'Access,
System.Priority'First, Task_Info.Unspecified_Task_Info, 0, Self_ID,
Succeeded);
pragma Assert (Succeeded);
-- Record this as the Task_ID for the current thread.
Self_ID.Common.LL.Thread := thr_self;
Result := thr_setspecific (ATCB_Key, To_Address (Self_ID));
pragma Assert (Result = 0);
-- Finally, it is safe to use an allocator in this thread.
if Next_Fake_ATCB = null then
Next_Fake_ATCB := new Fake_ATCB;
end if;
Self_ID.Master_of_Task := 0;
Self_ID.Master_Within := Self_ID.Master_of_Task + 1;
for L in Self_ID.Entry_Calls'Range loop
Self_ID.Entry_Calls (L).Self := Self_ID;
Self_ID.Entry_Calls (L).Level := L;
end loop;
Self_ID.Common.State := Runnable;
Self_ID.Awake_Count := 1;
-- Since this is not an ordinary Ada task, we will start out undeferred
Self_ID.Deferral_Level := 0;
-- Give the task a unique serial number.
Self_ID.Serial_Number := Next_Serial_Number;
Next_Serial_Number := Next_Serial_Number + 1;
pragma Assert (Next_Serial_Number /= 0);
System.Soft_Links.Create_TSD (Self_ID.Common.Compiler_Data);
-- ????
-- The following call is commented out to avoid dependence on
-- the System.Tasking.Initialization package.
-- It seems that if we want Ada.Task_Attributes to work correctly
-- for C threads we will need to raise the visibility of this soft
-- link to System.Soft_Links.
-- We are putting that off until this new functionality is otherwise
-- stable.
-- System.Tasking.Initialization.Initialize_Attributes_Link.all (T);
-- Must not unlock until Next_ATCB is again allocated.
for J in Known_Tasks'Range loop
if Known_Tasks (J) = null then
Known_Tasks (J) := Self_ID;
Self_ID.Known_Tasks_Index := J;
exit;
end if;
end loop;
Result := mutex_unlock (All_Tasks_L.L'Access);
-- We cannot use "Unlock (All_Tasks_L'Access);" because
-- we did not use Write_Lock, and so would not pass the checks.
return Self_ID;
end New_Fake_ATCB;
-------------------
-- Abort_Handler --
-------------------
-- Target-dependent binding of inter-thread Abort signal to
-- the raising of the Abort_Signal exception.
-- The technical issues and alternatives here are essentially
-- the same as for raising exceptions in response to other
-- signals (e.g. Storage_Error). See code and comments in
-- the package body System.Interrupt_Management.
-- Some implementations may not allow an exception to be propagated
-- out of a handler, and others might leave the signal or
-- interrupt that invoked this handler masked after the exceptional
-- return to the application code.
-- GNAT exceptions are originally implemented using setjmp()/longjmp().
-- On most UNIX systems, this will allow transfer out of a signal handler,
-- which is usually the only mechanism available for implementing
-- asynchronous handlers of this kind. However, some
-- systems do not restore the signal mask on longjmp(), leaving the
-- abort signal masked.
-- Alternative solutions include:
-- 1. Change the PC saved in the system-dependent Context
-- parameter to point to code that raises the exception.
-- Normal return from this handler will then raise
-- the exception after the mask and other system state has
-- been restored (see example below).
-- 2. Use siglongjmp()/sigsetjmp() to implement exceptions.
-- 3. Unmask the signal in the Abortion_Signal exception handler
-- (in the RTS).
-- The following procedure would be needed if we can't longjmp out of
-- a signal handler. (See below.)
-- procedure Raise_Abort_Signal is
-- begin
-- raise Standard'Abort_Signal;
-- end if;
-- ???
-- The comments above need revising. They are partly obsolete.
procedure Abort_Handler
(Sig : Signal;
Code : access siginfo_t;
Context : access ucontext_t)
is
Self_ID : Task_ID := Self;
Result : Interfaces.C.int;
Old_Set : aliased sigset_t;
begin
-- Assuming it is safe to longjmp out of a signal handler, the
-- following code can be used:
if Self_ID.Deferral_Level = 0
and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
and then not Self_ID.Aborting
then
-- You can comment the following out,
-- to make all aborts synchronous, for debugging.
Self_ID.Aborting := True;
-- Make sure signals used for RTS internal purpose are unmasked
Result := thr_sigsetmask (SIG_UNBLOCK,
Unblocked_Signal_Mask'Unchecked_Access, Old_Set'Unchecked_Access);
pragma Assert (Result = 0);
raise Standard'Abort_Signal;
-- ?????
-- Must be certain that the implementation of "raise"
-- does not make any OS/thread calls, or at least that
-- if it makes any, they are safe for interruption by
-- async. signals.
end if;
-- Otherwise, something like this is required:
-- if not Abort_Is_Deferred.all then
-- -- Overwrite the return PC address with the address of the
-- -- special raise routine, and "return" to that routine's
-- -- starting address.
-- Context.PC := Raise_Abort_Signal'Address;
-- return;
-- end if;
end Abort_Handler;
-------------------
-- Stack_Guard --
-------------------
-- The underlying thread system sets a guard page at the
-- bottom of a thread stack, so nothing is needed.
procedure Stack_Guard (T : ST.Task_ID; On : Boolean) is
begin
null;
end Stack_Guard;
--------------------
-- Get_Thread_Id --
--------------------
function Get_Thread_Id (T : ST.Task_ID) return OSI.Thread_Id is
begin
return T.Common.LL.Thread;
end Get_Thread_Id;
-----------
-- Self --
-----------
function Self return Task_ID is separate;
---------------------
-- Initialize_Lock --
---------------------
-- Note: mutexes and cond_variables needed per-task basis are
-- initialized in Initialize_TCB and the Storage_Error is
-- handled. Other mutexes (such as All_Tasks_L, Memory_Lock...)
-- used in RTS is initialized before any status change of RTS.
-- Therefore rasing Storage_Error in the following routines
-- should be able to be handled safely.
procedure Initialize_Lock
(Prio : System.Any_Priority;
L : access Lock)
is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Initialize_Lock (Lock_Ptr (L), PO_Level));
if Priority_Ceiling_Emulation then
L.Ceiling := Prio;
end if;
Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = ENOMEM then
Raise_Exception (Storage_Error'Identity, "Failed to allocate a lock");
end if;
end Initialize_Lock;
procedure Initialize_Lock
(L : access RTS_Lock;
Level : Lock_Level)
is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Initialize_Lock
(To_Lock_Ptr (RTS_Lock_Ptr (L)), Level));
Result := mutex_init (L.L'Access, USYNC_THREAD, System.Null_Address);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = ENOMEM then
Raise_Exception (Storage_Error'Identity, "Failed to allocate a lock");
end if;
end Initialize_Lock;
-------------------
-- Finalize_Lock --
-------------------
procedure Finalize_Lock (L : access Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Finalize_Lock (Lock_Ptr (L)));
Result := mutex_destroy (L.L'Access);
pragma Assert (Result = 0);
end Finalize_Lock;
procedure Finalize_Lock (L : access RTS_Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Finalize_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
Result := mutex_destroy (L.L'Access);
pragma Assert (Result = 0);
end Finalize_Lock;
----------------
-- Write_Lock --
----------------
procedure Write_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Lock (Lock_Ptr (L)));
if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
declare
Self_Id : constant Task_ID := Self;
Saved_Priority : System.Any_Priority;
begin
if Self_Id.Common.LL.Active_Priority > L.Ceiling then
Ceiling_Violation := True;
return;
end if;
Saved_Priority := Self_Id.Common.LL.Active_Priority;
if Self_Id.Common.LL.Active_Priority < L.Ceiling then
Set_Priority (Self_Id, L.Ceiling);
end if;
Result := mutex_lock (L.L'Access);
pragma Assert (Result = 0);
Ceiling_Violation := False;
L.Saved_Priority := Saved_Priority;
end;
else
Result := mutex_lock (L.L'Access);
pragma Assert (Result = 0);
Ceiling_Violation := False;
end if;
pragma Assert (Record_Lock (Lock_Ptr (L)));
end Write_Lock;
procedure Write_Lock (L : access RTS_Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
Result := mutex_lock (L.L'Access);
pragma Assert (Result = 0);
pragma Assert (Record_Lock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
end Write_Lock;
procedure Write_Lock (T : Task_ID) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
Result := mutex_lock (T.Common.LL.L.L'Access);
pragma Assert (Result = 0);
pragma Assert (Record_Lock (To_Lock_Ptr (T.Common.LL.L'Access)));
end Write_Lock;
---------------
-- Read_Lock --
---------------
procedure Read_Lock (L : access Lock; Ceiling_Violation : out Boolean) is
begin
Write_Lock (L, Ceiling_Violation);
end Read_Lock;
------------
-- Unlock --
------------
procedure Unlock (L : access Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Unlock (Lock_Ptr (L)));
if Priority_Ceiling_Emulation and then Locking_Policy = 'C' then
declare
Self_Id : constant Task_ID := Self;
begin
Result := mutex_unlock (L.L'Access);
pragma Assert (Result = 0);
if Self_Id.Common.LL.Active_Priority > L.Saved_Priority then
Set_Priority (Self_Id, L.Saved_Priority);
end if;
end;
else
Result := mutex_unlock (L.L'Access);
pragma Assert (Result = 0);
end if;
end Unlock;
procedure Unlock (L : access RTS_Lock) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Unlock (To_Lock_Ptr (RTS_Lock_Ptr (L))));
Result := mutex_unlock (L.L'Access);
pragma Assert (Result = 0);
end Unlock;
procedure Unlock (T : Task_ID) is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Unlock (To_Lock_Ptr (T.Common.LL.L'Access)));
Result := mutex_unlock (T.Common.LL.L.L'Access);
pragma Assert (Result = 0);
end Unlock;
-- For the time delay implementation, we need to make sure we
-- achieve following criteria:
-- 1) We have to delay at least for the amount requested.
-- 2) We have to give up CPU even though the actual delay does not
-- result in blocking.
-- 3) Except for restricted run-time systems that do not support
-- ATC or task abort, the delay must be interrupted by the
-- abort_task operation.
-- 4) The implementation has to be efficient so that the delay overhead
-- is relatively cheap.
-- (1)-(3) are Ada requirements. Even though (2) is an Annex-D
-- requirement we still want to provide the effect in all cases.
-- The reason is that users may want to use short delays to implement
-- their own scheduling effect in the absence of language provided
-- scheduling policies.
---------------------
-- Monotonic_Clock --
---------------------
function Monotonic_Clock return Duration is
TS : aliased timespec;
Result : Interfaces.C.int;
begin
Result := clock_gettime (CLOCK_REALTIME, TS'Unchecked_Access);
pragma Assert (Result = 0);
return To_Duration (TS);
end Monotonic_Clock;
-------------------
-- RT_Resolution --
-------------------
function RT_Resolution return Duration is
begin
return 10#1.0#E-6;
end RT_Resolution;
-----------
-- Yield --
-----------
procedure Yield (Do_Yield : Boolean := True) is
begin
if Do_Yield then
System.OS_Interface.thr_yield;
end if;
end Yield;
------------------
-- Set_Priority --
------------------
procedure Set_Priority
(T : Task_ID;
Prio : System.Any_Priority;
Loss_Of_Inheritance : Boolean := False)
is
Result : Interfaces.C.int;
Param : aliased struct_pcparms;
use Task_Info;
begin
T.Common.Current_Priority := Prio;
if Priority_Ceiling_Emulation then
T.Common.LL.Active_Priority := Prio;
end if;
if Using_Real_Time_Class then
Param.pc_cid := Prio_Param.pc_cid;
Param.rt_pri := pri_t (Prio);
Param.rt_tqsecs := Prio_Param.rt_tqsecs;
Param.rt_tqnsecs := Prio_Param.rt_tqnsecs;
Result := Interfaces.C.int (
priocntl (PC_VERSION, P_LWPID, T.Common.LL.LWP, PC_SETPARMS,
Param'Address));
else
if T.Common.Task_Info /= null
and then not T.Common.Task_Info.Bound_To_LWP
then
-- The task is not bound to a LWP, so use thr_setprio
Result :=
thr_setprio (T.Common.LL.Thread, Interfaces.C.int (Prio));
else
-- The task is bound to a LWP, use priocntl
-- ??? TBD
null;
end if;
end if;
end Set_Priority;
------------------
-- Get_Priority --
------------------
function Get_Priority (T : Task_ID) return System.Any_Priority is
begin
return T.Common.Current_Priority;
end Get_Priority;
----------------
-- Enter_Task --
----------------
procedure Enter_Task (Self_ID : Task_ID) is
Result : Interfaces.C.int;
Proc : processorid_t; -- User processor #
Last_Proc : processorid_t; -- Last processor #
use System.Task_Info;
begin
Self_ID.Common.LL.Thread := thr_self;
Self_ID.Common.LL.LWP := lwp_self;
if Self_ID.Common.Task_Info /= null then
if Self_ID.Common.Task_Info.New_LWP
and then Self_ID.Common.Task_Info.CPU /= CPU_UNCHANGED
then
Last_Proc := Num_Procs - 1;
if Self_ID.Common.Task_Info.CPU = ANY_CPU then
Result := 0;
Proc := 0;
while Proc < Last_Proc loop
Result := p_online (Proc, PR_STATUS);
exit when Result = PR_ONLINE;
Proc := Proc + 1;
end loop;
Result := processor_bind (P_LWPID, P_MYID, Proc, null);
pragma Assert (Result = 0);
else
-- Use specified processor
if Self_ID.Common.Task_Info.CPU < 0
or else Self_ID.Common.Task_Info.CPU > Last_Proc
then
raise Invalid_CPU_Number;
end if;
Result := processor_bind
(P_LWPID, P_MYID, Self_ID.Common.Task_Info.CPU, null);
pragma Assert (Result = 0);
end if;
end if;
end if;
Result := thr_setspecific (ATCB_Key, To_Address (Self_ID));
pragma Assert (Result = 0);
-- We need the above code even if we do direct fetch of Task_ID in Self
-- for the main task on Sun, x86 Solaris and for gcc 2.7.2.
Lock_All_Tasks_List;
for I in Known_Tasks'Range loop
if Known_Tasks (I) = null then
Known_Tasks (I) := Self_ID;
Self_ID.Known_Tasks_Index := I;
exit;
end if;
end loop;
Unlock_All_Tasks_List;
end Enter_Task;
--------------
-- New_ATCB --
--------------
function New_ATCB (Entry_Num : Task_Entry_Index) return Task_ID is
begin
return new Ada_Task_Control_Block (Entry_Num);
end New_ATCB;
----------------------
-- Initialize_TCB --
----------------------
procedure Initialize_TCB (Self_ID : Task_ID; Succeeded : out Boolean) is
Result : Interfaces.C.int;
begin
-- Give the task a unique serial number.
Self_ID.Serial_Number := Next_Serial_Number;
Next_Serial_Number := Next_Serial_Number + 1;
pragma Assert (Next_Serial_Number /= 0);
Self_ID.Common.LL.Thread := To_thread_t (-1);
Result := mutex_init
(Self_ID.Common.LL.L.L'Access, USYNC_THREAD, System.Null_Address);
Self_ID.Common.LL.L.Level :=
Private_Task_Serial_Number (Self_ID.Serial_Number);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result = 0 then
Result := cond_init (Self_ID.Common.LL.CV'Access, USYNC_THREAD, 0);
pragma Assert (Result = 0 or else Result = ENOMEM);
if Result /= 0 then
Result := mutex_destroy (Self_ID.Common.LL.L.L'Access);
pragma Assert (Result = 0);
Succeeded := False;
else
Succeeded := True;
end if;
else
Succeeded := False;
end if;
end Initialize_TCB;
-----------------
-- Create_Task --
-----------------
procedure Create_Task
(T : Task_ID;
Wrapper : System.Address;
Stack_Size : System.Parameters.Size_Type;
Priority : System.Any_Priority;
Succeeded : out Boolean)
is
Result : Interfaces.C.int;
Adjusted_Stack_Size : Interfaces.C.size_t;
Opts : Interfaces.C.int := THR_DETACHED;
Page_Size : constant System.Parameters.Size_Type := 4096;
-- This constant is for reserving extra space at the
-- end of the stack, which can be used by the stack
-- checking as guard page. The idea is that we need
-- to have at least Stack_Size bytes available for
-- actual use.
use System.Task_Info;
begin
if Stack_Size = System.Parameters.Unspecified_Size then
Adjusted_Stack_Size :=
Interfaces.C.size_t (Default_Stack_Size + Page_Size);
elsif Stack_Size < Minimum_Stack_Size then
Adjusted_Stack_Size :=
Interfaces.C.size_t (Minimum_Stack_Size + Page_Size);
else
Adjusted_Stack_Size :=
Interfaces.C.size_t (Stack_Size + Page_Size);
end if;
-- Since the initial signal mask of a thread is inherited from the
-- creator, and the Environment task has all its signals masked, we
-- do not need to manipulate caller's signal mask at this point.
-- All tasks in RTS will have All_Tasks_Mask initially.
if T.Common.Task_Info /= null then
if T.Common.Task_Info.New_LWP then
Opts := Opts + THR_NEW_LWP;
end if;
if T.Common.Task_Info.Bound_To_LWP then
Opts := Opts + THR_BOUND;
end if;
else
Opts := THR_DETACHED + THR_BOUND;
end if;
Result := thr_create
(System.Null_Address,
Adjusted_Stack_Size,
Thread_Body_Access (Wrapper),
To_Address (T),
Opts,
T.Common.LL.Thread'Access);
Succeeded := Result = 0;
pragma Assert
(Result = 0
or else Result = ENOMEM
or else Result = EAGAIN);
end Create_Task;
------------------
-- Finalize_TCB --
------------------
procedure Finalize_TCB (T : Task_ID) is
Result : Interfaces.C.int;
Tmp : Task_ID := T;
procedure Free is new
Unchecked_Deallocation (Ada_Task_Control_Block, Task_ID);
begin
T.Common.LL.Thread := To_thread_t (0);
Result := mutex_destroy (T.Common.LL.L.L'Access);
pragma Assert (Result = 0);
Result := cond_destroy (T.Common.LL.CV'Access);
pragma Assert (Result = 0);
if T.Known_Tasks_Index /= -1 then
Known_Tasks (T.Known_Tasks_Index) := null;
end if;
Free (Tmp);
end Finalize_TCB;
---------------
-- Exit_Task --
---------------
-- This procedure must be called with abort deferred.
-- It can no longer call Self or access
-- the current task's ATCB, since the ATCB has been deallocated.
procedure Exit_Task is
begin
thr_exit (System.Null_Address);
end Exit_Task;
----------------
-- Abort_Task --
----------------
procedure Abort_Task (T : Task_ID) is
Result : Interfaces.C.int;
begin
pragma Assert (T /= Self);
Result := thr_kill (T.Common.LL.Thread,
Signal (System.Interrupt_Management.Abort_Task_Interrupt));
null;
pragma Assert (Result = 0);
end Abort_Task;
-------------
-- Sleep --
-------------
procedure Sleep
(Self_ID : Task_ID;
Reason : Task_States)
is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Sleep (Reason));
if Dynamic_Priority_Support
and then Self_ID.Pending_Priority_Change
then
Self_ID.Pending_Priority_Change := False;
Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
end if;
Result := cond_wait
(Self_ID.Common.LL.CV'Access, Self_ID.Common.LL.L.L'Access);
pragma Assert (Result = 0 or else Result = EINTR);
pragma Assert (Record_Wakeup
(To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
end Sleep;
-- Note that we are relying heaviliy here on the GNAT feature
-- that Calendar.Time, System.Real_Time.Time, Duration, and
-- System.Real_Time.Time_Span are all represented in the same
-- way, i.e., as a 64-bit count of nanoseconds.
-- This allows us to always pass the timeout value as a Duration.
-- ???
-- We are taking liberties here with the semantics of the delays.
-- That is, we make no distinction between delays on the Calendar clock
-- and delays on the Real_Time clock. That is technically incorrect, if
-- the Calendar clock happens to be reset or adjusted.
-- To solve this defect will require modification to the compiler
-- interface, so that it can pass through more information, to tell
-- us here which clock to use!
-- cond_timedwait will return if any of the following happens:
-- 1) some other task did cond_signal on this condition variable
-- In this case, the return value is 0
-- 2) the call just returned, for no good reason
-- This is called a "spurious wakeup".
-- In this case, the return value may also be 0.
-- 3) the time delay expires
-- In this case, the return value is ETIME
-- 4) this task received a signal, which was handled by some
-- handler procedure, and now the thread is resuming execution
-- UNIX calls this an "interrupted" system call.
-- In this case, the return value is EINTR
-- If the cond_timedwait returns 0 or EINTR, it is still
-- possible that the time has actually expired, and by chance
-- a signal or cond_signal occurred at around the same time.
-- We have also observed that on some OS's the value ETIME
-- will be returned, but the clock will show that the full delay
-- has not yet expired.
-- For these reasons, we need to check the clock after return
-- from cond_timedwait. If the time has expired, we will set
-- Timedout = True.
-- This check might be omitted for systems on which the
-- cond_timedwait() never returns early or wakes up spuriously.
-- Annex D requires that completion of a delay cause the task
-- to go to the end of its priority queue, regardless of whether
-- the task actually was suspended by the delay. Since
-- cond_timedwait does not do this on Solaris, we add a call
-- to thr_yield at the end. We might do this at the beginning,
-- instead, but then the round-robin effect would not be the
-- same; the delayed task would be ahead of other tasks of the
-- same priority that awoke while it was sleeping.
-- For Timed_Sleep, we are expecting possible cond_signals
-- to indicate other events (e.g., completion of a RV or
-- completion of the abortable part of an async. select),
-- we want to always return if interrupted. The caller will
-- be responsible for checking the task state to see whether
-- the wakeup was spurious, and to go back to sleep again
-- in that case. We don't need to check for pending abort
-- or priority change on the way in our out; that is the
-- caller's responsibility.
-- For Timed_Delay, we are not expecting any cond_signals or
-- other interruptions, except for priority changes and aborts.
-- Therefore, we don't want to return unless the delay has
-- actually expired, or the call has been aborted. In this
-- case, since we want to implement the entire delay statement
-- semantics, we do need to check for pending abort and priority
-- changes. We can quietly handle priority changes inside the
-- procedure, since there is no entry-queue reordering involved.
-----------------
-- Timed_Sleep --
-----------------
-- This is for use within the run-time system, so abort is
-- assumed to be already deferred, and the caller should be
-- holding its own ATCB lock.
-- Yielded should be False unles we know for certain that the
-- operation resulted in the calling task going to the end of
-- the dispatching queue for its priority.
-- ???
-- This version presumes the worst, so Yielded is always False.
-- On some targets, if cond_timedwait always yields, we could
-- set Yielded to True just before the cond_timedwait call.
procedure Timed_Sleep
(Self_ID : Task_ID;
Time : Duration;
Mode : ST.Delay_Modes;
Reason : System.Tasking.Task_States;
Timedout : out Boolean;
Yielded : out Boolean)
is
Check_Time : constant Duration := Monotonic_Clock;
Abs_Time : Duration;
Request : aliased timespec;
Result : Interfaces.C.int;
begin
pragma Assert (Check_Sleep (Reason));
Timedout := True;
Yielded := False;
if Mode = Relative then
Abs_Time := Duration'Min (Time, Max_Sensible_Delay) + Check_Time;
else
Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
end if;
if Abs_Time > Check_Time then
Request := To_Timespec (Abs_Time);
loop
exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
or else (Dynamic_Priority_Support and then
Self_ID.Pending_Priority_Change);
Result := cond_timedwait (Self_ID.Common.LL.CV'Access,
Self_ID.Common.LL.L.L'Access, Request'Access);
exit when Abs_Time <= Monotonic_Clock;
if Result = 0 or Result = EINTR then
-- somebody may have called Wakeup for us
Timedout := False;
exit;
end if;
pragma Assert (Result = ETIME);
end loop;
end if;
pragma Assert (Record_Wakeup
(To_Lock_Ptr (Self_ID.Common.LL.L'Access), Reason));
end Timed_Sleep;
-----------------
-- Timed_Delay --
-----------------
-- This is for use in implementing delay statements, so
-- we assume the caller is abort-deferred but is holding
-- no locks.
procedure Timed_Delay
(Self_ID : Task_ID;
Time : Duration;
Mode : ST.Delay_Modes)
is
Check_Time : constant Duration := Monotonic_Clock;
Abs_Time : Duration;
Request : aliased timespec;
Result : Interfaces.C.int;
begin
-- Only the little window between deferring abort and
-- locking Self_ID is the reason we need to
-- check for pending abort and priority change below!
SSL.Abort_Defer.all;
Write_Lock (Self_ID);
if Mode = Relative then
Abs_Time := Time + Check_Time;
else
Abs_Time := Duration'Min (Check_Time + Max_Sensible_Delay, Time);
end if;
if Abs_Time > Check_Time then
Request := To_Timespec (Abs_Time);
Self_ID.Common.State := Delay_Sleep;
pragma Assert (Check_Sleep (Delay_Sleep));
loop
if Dynamic_Priority_Support and then
Self_ID.Pending_Priority_Change then
Self_ID.Pending_Priority_Change := False;
Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
end if;
exit when Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level;
Result := cond_timedwait (Self_ID.Common.LL.CV'Access,
Self_ID.Common.LL.L.L'Access, Request'Access);
exit when Abs_Time <= Monotonic_Clock;
pragma Assert (Result = 0 or else
Result = ETIME or else
Result = EINTR);
end loop;
pragma Assert (Record_Wakeup
(To_Lock_Ptr (Self_ID.Common.LL.L'Access), Delay_Sleep));
Self_ID.Common.State := Runnable;
end if;
Unlock (Self_ID);
thr_yield;
SSL.Abort_Undefer.all;
end Timed_Delay;
------------
-- Wakeup --
------------
procedure Wakeup
(T : Task_ID;
Reason : Task_States)
is
Result : Interfaces.C.int;
begin
pragma Assert (Check_Wakeup (T, Reason));
Result := cond_signal (T.Common.LL.CV'Access);
pragma Assert (Result = 0);
end Wakeup;
---------------------------
-- Check_Initialize_Lock --
---------------------------
-- The following code is intended to check some of the invariant
-- assertions related to lock usage, on which we depend.
function Check_Initialize_Lock
(L : Lock_Ptr;
Level : Lock_Level)
return Boolean
is
Self_ID : constant Task_ID := Self;
begin
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level <= 0 then
return False;
end if;
-- Check that the lock is not yet initialized
if L.Level /= 0 then
return False;
end if;
L.Level := Lock_Level'Pos (Level) + 1;
return True;
end Check_Initialize_Lock;
----------------
-- Check_Lock --
----------------
function Check_Lock (L : Lock_Ptr) return Boolean is
Self_ID : Task_ID := Self;
P : Lock_Ptr;
begin
-- Check that the argument is not null
if L = null then
return False;
end if;
-- Check that L is not frozen
if L.Frozen then
return False;
end if;
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level <= 0 then
return False;
end if;
-- Check that caller is not holding this lock already
if L.Owner = To_Owner_ID (Self_ID) then
return False;
end if;
-- Check that TCB lock order rules are satisfied
P := Self_ID.Common.LL.Locks;
if P /= null then
if P.Level >= L.Level
and then (P.Level > 2 or else L.Level > 2)
then
return False;
end if;
end if;
return True;
end Check_Lock;
-----------------
-- Record_Lock --
-----------------
function Record_Lock (L : Lock_Ptr) return Boolean is
Self_ID : Task_ID := Self;
P : Lock_Ptr;
begin
Lock_Count := Lock_Count + 1;
-- There should be no owner for this lock at this point
if L.Owner /= null then
return False;
end if;
-- Record new owner
L.Owner := To_Owner_ID (Self_ID);
-- Check that TCB lock order rules are satisfied
P := Self_ID.Common.LL.Locks;
if P /= null then
L.Next := P;
end if;
Self_ID.Common.LL.Locking := null;
Self_ID.Common.LL.Locks := L;
return True;
end Record_Lock;
-----------------
-- Check_Sleep --
-----------------
function Check_Sleep (Reason : Task_States) return Boolean is
Self_ID : Task_ID := Self;
P : Lock_Ptr;
begin
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level <= 0 then
return False;
end if;
-- Check that caller is holding own lock, on top of list
if Self_ID.Common.LL.Locks /=
To_Lock_Ptr (Self_ID.Common.LL.L'Access)
then
return False;
end if;
-- Check that TCB lock order rules are satisfied
if Self_ID.Common.LL.Locks.Next /= null then
return False;
end if;
Self_ID.Common.LL.L.Owner := null;
P := Self_ID.Common.LL.Locks;
Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
P.Next := null;
return True;
end Check_Sleep;
-------------------
-- Record_Wakeup --
-------------------
function Record_Wakeup
(L : Lock_Ptr;
Reason : Task_States)
return Boolean
is
Self_ID : Task_ID := Self;
P : Lock_Ptr;
begin
-- Record new owner
L.Owner := To_Owner_ID (Self_ID);
-- Check that TCB lock order rules are satisfied
P := Self_ID.Common.LL.Locks;
if P /= null then
L.Next := P;
end if;
Self_ID.Common.LL.Locking := null;
Self_ID.Common.LL.Locks := L;
return True;
end Record_Wakeup;
------------------
-- Check_Wakeup --
------------------
function Check_Wakeup
(T : Task_ID;
Reason : Task_States)
return Boolean
is
Self_ID : Task_ID := Self;
begin
-- Is caller holding T's lock?
if T.Common.LL.L.Owner /= To_Owner_ID (Self_ID) then
return False;
end if;
-- Are reasons for wakeup and sleep consistent?
if T.Common.State /= Reason then
return False;
end if;
return True;
end Check_Wakeup;
------------------
-- Check_Unlock --
------------------
function Check_Unlock (L : Lock_Ptr) return Boolean is
Self_ID : Task_ID := Self;
P : Lock_Ptr;
begin
Unlock_Count := Unlock_Count + 1;
if L = null then
return False;
end if;
if L.Buddy /= null then
return False;
end if;
if L.Level = 4 then
Check_Count := Unlock_Count;
end if;
if Unlock_Count - Check_Count > 1000 then
Check_Count := Unlock_Count;
Old_Owner := To_Task_ID (All_Tasks_L.Owner);
end if;
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level <= 0 then
return False;
end if;
-- Check that caller is holding this lock, on top of list
if Self_ID.Common.LL.Locks /= L then
return False;
end if;
-- Record there is no owner now
L.Owner := null;
P := Self_ID.Common.LL.Locks;
Self_ID.Common.LL.Locks := Self_ID.Common.LL.Locks.Next;
P.Next := null;
return True;
end Check_Unlock;
--------------------
-- Check_Finalize --
--------------------
function Check_Finalize_Lock (L : Lock_Ptr) return Boolean is
Self_ID : Task_ID := Self;
begin
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level <= 0 then
return False;
end if;
-- Check that no one is holding this lock
if L.Owner /= null then
return False;
end if;
L.Frozen := True;
return True;
end Check_Finalize_Lock;
----------------
-- Check_Exit --
----------------
function Check_Exit (Self_ID : Task_ID) return Boolean is
begin
-- Check that caller is just holding Global_Task_Lock
-- and no other locks
if Self_ID.Common.LL.Locks = null then
return False;
end if;
-- 2 = Global_Task_Level
if Self_ID.Common.LL.Locks.Level /= 2 then
return False;
end if;
if Self_ID.Common.LL.Locks.Next /= null then
return False;
end if;
-- Check that caller is abort-deferred
if Self_ID.Deferral_Level <= 0 then
return False;
end if;
return True;
end Check_Exit;
--------------------
-- Check_No_Locks --
--------------------
function Check_No_Locks (Self_ID : Task_ID) return Boolean is
begin
return Self_ID.Common.LL.Locks = null;
end Check_No_Locks;
----------------------
-- Environment_Task --
----------------------
function Environment_Task return Task_ID is
begin
return Environment_Task_ID;
end Environment_Task;
-------------------------
-- Lock_All_Tasks_List --
-------------------------
procedure Lock_All_Tasks_List is
begin
Write_Lock (All_Tasks_L'Access);
end Lock_All_Tasks_List;
---------------------------
-- Unlock_All_Tasks_List --
---------------------------
procedure Unlock_All_Tasks_List is
begin
Unlock (All_Tasks_L'Access);
end Unlock_All_Tasks_List;
------------------
-- Suspend_Task --
------------------
function Suspend_Task
(T : ST.Task_ID;
Thread_Self : Thread_Id) return Boolean is
begin
if T.Common.LL.Thread /= Thread_Self then
return thr_suspend (T.Common.LL.Thread) = 0;
else
return True;
end if;
end Suspend_Task;
-----------------
-- Resume_Task --
-----------------
function Resume_Task
(T : ST.Task_ID;
Thread_Self : Thread_Id) return Boolean is
begin
if T.Common.LL.Thread /= Thread_Self then
return thr_continue (T.Common.LL.Thread) = 0;
else
return True;
end if;
end Resume_Task;
----------------
-- Initialize --
----------------
procedure Initialize (Environment_Task : ST.Task_ID) is
act : aliased struct_sigaction;
old_act : aliased struct_sigaction;
Tmp_Set : aliased sigset_t;
Result : Interfaces.C.int;
procedure Configure_Processors;
-- Processors configuration
-- The user can specify a processor which the program should run
-- on to emulate a single-processor system. This can be easily
-- done by setting environment variable GNAT_PROCESSOR to one of
-- the following :
--
-- -2 : use the default configuration (run the program on all
-- available processors) - this is the same as having
-- GNAT_PROCESSOR unset
-- -1 : let the RTS choose one processor and run the program on
-- that processor
-- 0 .. Last_Proc : run the program on the specified processor
--
-- Last_Proc is equal to the value of the system variable
-- _SC_NPROCESSORS_CONF, minus one.
procedure Configure_Processors is
Proc_Acc : constant GNAT.OS_Lib.String_Access :=
GNAT.OS_Lib.Getenv ("GNAT_PROCESSOR");
begin
if Proc_Acc.all'Length /= 0 then
-- Environment variable is defined
declare
Proc : aliased processorid_t; -- User processor #
Last_Proc : processorid_t; -- Last processor #
begin
Last_Proc := Num_Procs - 1;
if Last_Proc = -1 then
-- Unable to read system variable _SC_NPROCESSORS_CONF
-- Ignore environment variable GNAT_PROCESSOR
null;
else
Proc := processorid_t'Value (Proc_Acc.all);
if Proc < -2 or Proc > Last_Proc then
raise Constraint_Error;
elsif Proc = -2 then
-- Use the default configuration
null;
elsif Proc = -1 then
-- Choose a processor
Result := 0;
while Proc < Last_Proc loop
Proc := Proc + 1;
Result := p_online (Proc, PR_STATUS);
exit when Result = PR_ONLINE;
end loop;
pragma Assert (Result = PR_ONLINE);
Result := processor_bind (P_PID, P_MYID, Proc, null);
pragma Assert (Result = 0);
else
-- Use user processor
Result := processor_bind (P_PID, P_MYID, Proc, null);
pragma Assert (Result = 0);
end if;
end if;
exception
when Constraint_Error =>
-- Illegal environment variable GNAT_PROCESSOR - ignored
null;
end;
end if;
end Configure_Processors;
-- Start of processing for Initialize
begin
Environment_Task_ID := Environment_Task;
-- This is done in Enter_Task, but this is too late for the
-- Environment Task, since we need to call Self in Check_Locks when
-- the run time is compiled with assertions on.
Result := thr_setspecific (ATCB_Key, To_Address (Environment_Task));
pragma Assert (Result = 0);
-- Initialize the lock used to synchronize chain of all ATCBs.
Initialize_Lock (All_Tasks_L'Access, All_Tasks_Level);
Enter_Task (Environment_Task);
-- Install the abort-signal handler
-- Set sa_flags to SA_NODEFER so that during the handler execution
-- we do not change the Signal_Mask to be masked for the Abort_Signal.
-- This is a temporary fix to the problem that the Signal_Mask is
-- not restored after the exception (longjmp) from the handler.
-- The right fix should be made in sigsetjmp so that we save
-- the Signal_Set and restore it after a longjmp.
-- In that case, this field should be changed back to 0. ???
act.sa_flags := 16;
act.sa_handler := Abort_Handler'Address;
Result := sigemptyset (Tmp_Set'Access);
pragma Assert (Result = 0);
act.sa_mask := Tmp_Set;
Result :=
sigaction (
Signal (System.Interrupt_Management.Abort_Task_Interrupt),
act'Unchecked_Access,
old_act'Unchecked_Access);
pragma Assert (Result = 0);
Configure_Processors;
-- Create a free ATCB for use on the Fake_ATCB_List.
Next_Fake_ATCB := new Fake_ATCB;
end Initialize;
-- Package elaboration
begin
declare
Result : Interfaces.C.int;
begin
-- Mask Environment task for all signals. The original mask of the
-- Environment task will be recovered by Interrupt_Server task
-- during the elaboration of s-interr.adb.
System.Interrupt_Management.Operations.Set_Interrupt_Mask
(System.Interrupt_Management.Operations.All_Tasks_Mask'Access);
-- Prepare the set of signals that should unblocked in all tasks
Result := sigemptyset (Unblocked_Signal_Mask'Access);
pragma Assert (Result = 0);
for J in Interrupt_Management.Interrupt_ID loop
if System.Interrupt_Management.Keep_Unmasked (J) then
Result := sigaddset (Unblocked_Signal_Mask'Access, Signal (J));
pragma Assert (Result = 0);
end if;
end loop;
-- We need the following code to support automatic creation of fake
-- ATCB's for C threads that call the Ada run-time system, even if
-- we use a faster way of getting Self for real Ada tasks.
Result := thr_keycreate (ATCB_Key'Access, System.Null_Address);
pragma Assert (Result = 0);
end;
if Dispatching_Policy = 'F' then
declare
Result : Interfaces.C.long;
Class_Info : aliased struct_pcinfo;
Secs, Nsecs : Interfaces.C.long;
begin
-- If a pragma Time_Slice is specified, takes the value in account.
if Time_Slice_Val > 0 then
-- Convert Time_Slice_Val (microseconds) into seconds and
-- nanoseconds
Secs := Time_Slice_Val / 1_000_000;
Nsecs := (Time_Slice_Val rem 1_000_000) * 1_000;
-- Otherwise, default to no time slicing (i.e run until blocked)
else
Secs := RT_TQINF;
Nsecs := RT_TQINF;
end if;
-- Get the real time class id.
Class_Info.pc_clname (1) := 'R';
Class_Info.pc_clname (2) := 'T';
Class_Info.pc_clname (3) := ASCII.Nul;
Result := priocntl (PC_VERSION, P_LWPID, P_MYID, PC_GETCID,
Class_Info'Address);
-- Request the real time class
Prio_Param.pc_cid := Class_Info.pc_cid;
Prio_Param.rt_pri := pri_t (Class_Info.rt_maxpri);
Prio_Param.rt_tqsecs := Secs;
Prio_Param.rt_tqnsecs := Nsecs;
Result := priocntl (PC_VERSION, P_LWPID, P_MYID, PC_SETPARMS,
Prio_Param'Address);
Using_Real_Time_Class := Result /= -1;
end;
end if;
end System.Task_Primitives.Operations;