blob: 84a08ac659ed89e5113735a108c66d196e1eba0c [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT COMPILER COMPONENTS --
-- --
-- I N L I N E --
-- --
-- B o d y --
-- --
-- $Revision$
-- --
-- Copyright (C) 1992-2001 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
with Atree; use Atree;
with Einfo; use Einfo;
with Elists; use Elists;
with Errout; use Errout;
with Exp_Ch7; use Exp_Ch7;
with Exp_Ch11; use Exp_Ch11;
with Exp_Tss; use Exp_Tss;
with Fname; use Fname;
with Fname.UF; use Fname.UF;
with Lib; use Lib;
with Nlists; use Nlists;
with Opt; use Opt;
with Sem_Ch8; use Sem_Ch8;
with Sem_Ch10; use Sem_Ch10;
with Sem_Ch12; use Sem_Ch12;
with Sem_Util; use Sem_Util;
with Sinfo; use Sinfo;
with Snames; use Snames;
with Stand; use Stand;
with Uname; use Uname;
package body Inline is
--------------------
-- Inlined Bodies --
--------------------
-- Inlined functions are actually placed in line by the backend if the
-- corresponding bodies are available (i.e. compiled). Whenever we find
-- a call to an inlined subprogram, we add the name of the enclosing
-- compilation unit to a worklist. After all compilation, and after
-- expansion of generic bodies, we traverse the list of pending bodies
-- and compile them as well.
package Inlined_Bodies is new Table.Table (
Table_Component_Type => Entity_Id,
Table_Index_Type => Int,
Table_Low_Bound => 0,
Table_Initial => Alloc.Inlined_Bodies_Initial,
Table_Increment => Alloc.Inlined_Bodies_Increment,
Table_Name => "Inlined_Bodies");
-----------------------
-- Inline Processing --
-----------------------
-- For each call to an inlined subprogram, we make entries in a table
-- that stores caller and callee, and indicates a prerequisite from
-- one to the other. We also record the compilation unit that contains
-- the callee. After analyzing the bodies of all such compilation units,
-- we produce a list of subprograms in topological order, for use by the
-- back-end. If P2 is a prerequisite of P1, then P1 calls P2, and for
-- proper inlining the back-end must analyze the body of P2 before that of
-- P1. The code below guarantees that the transitive closure of inlined
-- subprograms called from the main compilation unit is made available to
-- the code generator.
Last_Inlined : Entity_Id := Empty;
-- For each entry in the table we keep a list of successors in topological
-- order, i.e. callers of the current subprogram.
type Subp_Index is new Nat;
No_Subp : constant Subp_Index := 0;
-- The subprogram entities are hashed into the Inlined table.
Num_Hash_Headers : constant := 512;
Hash_Headers : array (Subp_Index range 0 .. Num_Hash_Headers - 1)
of Subp_Index;
type Succ_Index is new Nat;
No_Succ : constant Succ_Index := 0;
type Succ_Info is record
Subp : Subp_Index;
Next : Succ_Index;
end record;
-- The following table stores list elements for the successor lists.
-- These lists cannot be chained directly through entries in the Inlined
-- table, because a given subprogram can appear in several such lists.
package Successors is new Table.Table (
Table_Component_Type => Succ_Info,
Table_Index_Type => Succ_Index,
Table_Low_Bound => 1,
Table_Initial => Alloc.Successors_Initial,
Table_Increment => Alloc.Successors_Increment,
Table_Name => "Successors");
type Subp_Info is record
Name : Entity_Id := Empty;
First_Succ : Succ_Index := No_Succ;
Count : Integer := 0;
Listed : Boolean := False;
Main_Call : Boolean := False;
Next : Subp_Index := No_Subp;
Next_Nopred : Subp_Index := No_Subp;
end record;
package Inlined is new Table.Table (
Table_Component_Type => Subp_Info,
Table_Index_Type => Subp_Index,
Table_Low_Bound => 1,
Table_Initial => Alloc.Inlined_Initial,
Table_Increment => Alloc.Inlined_Increment,
Table_Name => "Inlined");
-----------------------
-- Local Subprograms --
-----------------------
function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean;
-- Return True if Scop is in the main unit or its spec, or in a
-- parent of the main unit if it is a child unit.
procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty);
-- Make two entries in Inlined table, for an inlined subprogram being
-- called, and for the inlined subprogram that contains the call. If
-- the call is in the main compilation unit, Caller is Empty.
function Add_Subp (E : Entity_Id) return Subp_Index;
-- Make entry in Inlined table for subprogram E, or return table index
-- that already holds E.
function Has_Initialized_Type (E : Entity_Id) return Boolean;
-- If a candidate for inlining contains type declarations for types with
-- non-trivial initialization procedures, they are not worth inlining.
function Is_Nested (E : Entity_Id) return Boolean;
-- If the function is nested inside some other function, it will
-- always be compiled if that function is, so don't add it to the
-- inline list. We cannot compile a nested function outside the
-- scope of the containing function anyway. This is also the case if
-- the function is defined in a task body or within an entry (for
-- example, an initialization procedure).
procedure Add_Inlined_Subprogram (Index : Subp_Index);
-- Add subprogram to Inlined List once all of its predecessors have been
-- placed on the list. Decrement the count of all its successors, and
-- add them to list (recursively) if count drops to zero.
------------------------------
-- Deferred Cleanup Actions --
------------------------------
-- The cleanup actions for scopes that contain instantiations is delayed
-- until after expansion of those instantiations, because they may
-- contain finalizable objects or tasks that affect the cleanup code.
-- A scope that contains instantiations only needs to be finalized once,
-- even if it contains more than one instance. We keep a list of scopes
-- that must still be finalized, and call cleanup_actions after all the
-- instantiations have been completed.
To_Clean : Elist_Id;
procedure Add_Scope_To_Clean (Inst : Entity_Id);
-- Build set of scopes on which cleanup actions must be performed.
procedure Cleanup_Scopes;
-- Complete cleanup actions on scopes that need it.
--------------
-- Add_Call --
--------------
procedure Add_Call (Called : Entity_Id; Caller : Entity_Id := Empty) is
P1 : Subp_Index := Add_Subp (Called);
P2 : Subp_Index;
J : Succ_Index;
begin
if Present (Caller) then
P2 := Add_Subp (Caller);
-- Add P2 to the list of successors of P1, if not already there.
-- Note that P2 may contain more than one call to P1, and only
-- one needs to be recorded.
J := Inlined.Table (P1).First_Succ;
while J /= No_Succ loop
if Successors.Table (J).Subp = P2 then
return;
end if;
J := Successors.Table (J).Next;
end loop;
-- On exit, make a successor entry for P2.
Successors.Increment_Last;
Successors.Table (Successors.Last).Subp := P2;
Successors.Table (Successors.Last).Next :=
Inlined.Table (P1).First_Succ;
Inlined.Table (P1).First_Succ := Successors.Last;
Inlined.Table (P2).Count := Inlined.Table (P2).Count + 1;
else
Inlined.Table (P1).Main_Call := True;
end if;
end Add_Call;
----------------------
-- Add_Inlined_Body --
----------------------
procedure Add_Inlined_Body (E : Entity_Id) is
Pack : Entity_Id;
Comp_Unit : Node_Id;
function Must_Inline return Boolean;
-- Inlining is only done if the call statement N is in the main unit,
-- or within the body of another inlined subprogram.
function Must_Inline return Boolean is
Scop : Entity_Id := Current_Scope;
Comp : Node_Id;
begin
-- Check if call is in main unit.
while Scope (Scop) /= Standard_Standard
and then not Is_Child_Unit (Scop)
loop
Scop := Scope (Scop);
end loop;
Comp := Parent (Scop);
while Nkind (Comp) /= N_Compilation_Unit loop
Comp := Parent (Comp);
end loop;
if (Comp = Cunit (Main_Unit)
or else Comp = Library_Unit (Cunit (Main_Unit)))
then
Add_Call (E);
return True;
end if;
-- Call is not in main unit. See if it's in some inlined
-- subprogram.
Scop := Current_Scope;
while Scope (Scop) /= Standard_Standard
and then not Is_Child_Unit (Scop)
loop
if Is_Overloadable (Scop)
and then Is_Inlined (Scop)
then
Add_Call (E, Scop);
return True;
end if;
Scop := Scope (Scop);
end loop;
return False;
end Must_Inline;
-- Start of processing for Add_Inlined_Body
begin
-- Find unit containing E, and add to list of inlined bodies if needed.
-- If the body is already present, no need to load any other unit. This
-- is the case for an initialization procedure, which appears in the
-- package declaration that contains the type. It is also the case if
-- the body has already been analyzed. Finally, if the unit enclosing
-- E is an instance, the instance body will be analyzed in any case,
-- and there is no need to add the enclosing unit (whose body might not
-- be available).
-- Library-level functions must be handled specially, because there is
-- no enclosing package to retrieve. In this case, it is the body of
-- the function that will have to be loaded.
if not Is_Abstract (E) and then not Is_Nested (E)
and then Convention (E) /= Convention_Protected
then
Pack := Scope (E);
if Must_Inline
and then Ekind (Pack) = E_Package
then
Set_Is_Called (E);
Comp_Unit := Parent (Pack);
if Pack = Standard_Standard then
-- Library-level inlined function. Add function iself to
-- list of needed units.
Inlined_Bodies.Increment_Last;
Inlined_Bodies.Table (Inlined_Bodies.Last) := E;
elsif Is_Generic_Instance (Pack) then
null;
elsif not Is_Inlined (Pack)
and then not Has_Completion (E)
and then not Scope_In_Main_Unit (Pack)
then
Set_Is_Inlined (Pack);
Inlined_Bodies.Increment_Last;
Inlined_Bodies.Table (Inlined_Bodies.Last) := Pack;
end if;
end if;
end if;
end Add_Inlined_Body;
----------------------------
-- Add_Inlined_Subprogram --
----------------------------
procedure Add_Inlined_Subprogram (Index : Subp_Index) is
E : constant Entity_Id := Inlined.Table (Index).Name;
Succ : Succ_Index;
Subp : Subp_Index;
begin
-- Insert the current subprogram in the list of inlined subprograms
if not Scope_In_Main_Unit (E)
and then Is_Inlined (E)
and then not Is_Nested (E)
and then not Has_Initialized_Type (E)
then
if No (Last_Inlined) then
Set_First_Inlined_Subprogram (Cunit (Main_Unit), E);
else
Set_Next_Inlined_Subprogram (Last_Inlined, E);
end if;
Last_Inlined := E;
end if;
Inlined.Table (Index).Listed := True;
Succ := Inlined.Table (Index).First_Succ;
while Succ /= No_Succ loop
Subp := Successors.Table (Succ).Subp;
Inlined.Table (Subp).Count := Inlined.Table (Subp).Count - 1;
if Inlined.Table (Subp).Count = 0 then
Add_Inlined_Subprogram (Subp);
end if;
Succ := Successors.Table (Succ).Next;
end loop;
end Add_Inlined_Subprogram;
------------------------
-- Add_Scope_To_Clean --
------------------------
procedure Add_Scope_To_Clean (Inst : Entity_Id) is
Elmt : Elmt_Id;
Scop : Entity_Id := Enclosing_Dynamic_Scope (Inst);
begin
-- If the instance appears in a library-level package declaration,
-- all finalization is global, and nothing needs doing here.
if Scop = Standard_Standard then
return;
end if;
Elmt := First_Elmt (To_Clean);
while Present (Elmt) loop
if Node (Elmt) = Scop then
return;
end if;
Elmt := Next_Elmt (Elmt);
end loop;
Append_Elmt (Scop, To_Clean);
end Add_Scope_To_Clean;
--------------
-- Add_Subp --
--------------
function Add_Subp (E : Entity_Id) return Subp_Index is
Index : Subp_Index := Subp_Index (E) mod Num_Hash_Headers;
J : Subp_Index;
procedure New_Entry;
-- Initialize entry in Inlined table.
procedure New_Entry is
begin
Inlined.Increment_Last;
Inlined.Table (Inlined.Last).Name := E;
Inlined.Table (Inlined.Last).First_Succ := No_Succ;
Inlined.Table (Inlined.Last).Count := 0;
Inlined.Table (Inlined.Last).Listed := False;
Inlined.Table (Inlined.Last).Main_Call := False;
Inlined.Table (Inlined.Last).Next := No_Subp;
Inlined.Table (Inlined.Last).Next_Nopred := No_Subp;
end New_Entry;
-- Start of processing for Add_Subp
begin
if Hash_Headers (Index) = No_Subp then
New_Entry;
Hash_Headers (Index) := Inlined.Last;
return Inlined.Last;
else
J := Hash_Headers (Index);
while J /= No_Subp loop
if Inlined.Table (J).Name = E then
return J;
else
Index := J;
J := Inlined.Table (J).Next;
end if;
end loop;
-- On exit, subprogram was not found. Enter in table. Index is
-- the current last entry on the hash chain.
New_Entry;
Inlined.Table (Index).Next := Inlined.Last;
return Inlined.Last;
end if;
end Add_Subp;
----------------------------
-- Analyze_Inlined_Bodies --
----------------------------
procedure Analyze_Inlined_Bodies is
Comp_Unit : Node_Id;
J : Int;
Pack : Entity_Id;
S : Succ_Index;
begin
Analyzing_Inlined_Bodies := False;
if Errors_Detected = 0 then
New_Scope (Standard_Standard);
J := 0;
while J <= Inlined_Bodies.Last
and then Errors_Detected = 0
loop
Pack := Inlined_Bodies.Table (J);
while Present (Pack)
and then Scope (Pack) /= Standard_Standard
and then not Is_Child_Unit (Pack)
loop
Pack := Scope (Pack);
end loop;
Comp_Unit := Parent (Pack);
while Present (Comp_Unit)
and then Nkind (Comp_Unit) /= N_Compilation_Unit
loop
Comp_Unit := Parent (Comp_Unit);
end loop;
if Present (Comp_Unit)
and then Comp_Unit /= Cunit (Main_Unit)
and then Body_Required (Comp_Unit)
then
declare
Bname : constant Unit_Name_Type :=
Get_Body_Name (Get_Unit_Name (Unit (Comp_Unit)));
OK : Boolean;
begin
if not Is_Loaded (Bname) then
Load_Needed_Body (Comp_Unit, OK);
if not OK then
Error_Msg_Unit_1 := Bname;
Error_Msg_N
("one or more inlined subprograms accessed in $!",
Comp_Unit);
Error_Msg_Name_1 :=
Get_File_Name (Bname, Subunit => False);
Error_Msg_N ("\but file{ was not found!", Comp_Unit);
raise Unrecoverable_Error;
end if;
end if;
end;
end if;
J := J + 1;
end loop;
-- The analysis of required bodies may have produced additional
-- generic instantiations. To obtain further inlining, we perform
-- another round of generic body instantiations. Establishing a
-- fully recursive loop between inlining and generic instantiations
-- is unlikely to yield more than this one additional pass.
Instantiate_Bodies;
-- The list of inlined subprograms is an overestimate, because
-- it includes inlined functions called from functions that are
-- compiled as part of an inlined package, but are not themselves
-- called. An accurate computation of just those subprograms that
-- are needed requires that we perform a transitive closure over
-- the call graph, starting from calls in the main program. Here
-- we do one step of the inverse transitive closure, and reset
-- the Is_Called flag on subprograms all of whose callers are not.
for Index in Inlined.First .. Inlined.Last loop
S := Inlined.Table (Index).First_Succ;
if S /= No_Succ
and then not Inlined.Table (Index).Main_Call
then
Set_Is_Called (Inlined.Table (Index).Name, False);
while S /= No_Succ loop
if Is_Called
(Inlined.Table (Successors.Table (S).Subp).Name)
or else Inlined.Table (Successors.Table (S).Subp).Main_Call
then
Set_Is_Called (Inlined.Table (Index).Name);
exit;
end if;
S := Successors.Table (S).Next;
end loop;
end if;
end loop;
-- Now that the units are compiled, chain the subprograms within
-- that are called and inlined. Produce list of inlined subprograms
-- sorted in topological order. Start with all subprograms that
-- have no prerequisites, i.e. inlined subprograms that do not call
-- other inlined subprograms.
for Index in Inlined.First .. Inlined.Last loop
if Is_Called (Inlined.Table (Index).Name)
and then Inlined.Table (Index).Count = 0
and then not Inlined.Table (Index).Listed
then
Add_Inlined_Subprogram (Index);
end if;
end loop;
-- Because Add_Inlined_Subprogram treats recursively nodes that have
-- no prerequisites left, at the end of the loop all subprograms
-- must have been listed. If there are any unlisted subprograms
-- left, there must be some recursive chains that cannot be inlined.
for Index in Inlined.First .. Inlined.Last loop
if Is_Called (Inlined.Table (Index).Name)
and then Inlined.Table (Index).Count /= 0
and then not Is_Predefined_File_Name
(Unit_File_Name
(Get_Source_Unit (Inlined.Table (Index).Name)))
then
Error_Msg_N
("& cannot be inlined?", Inlined.Table (Index).Name);
-- A warning on the first one might be sufficient.
end if;
end loop;
Pop_Scope;
end if;
end Analyze_Inlined_Bodies;
--------------------------------
-- Check_Body_For_Inlining --
--------------------------------
procedure Check_Body_For_Inlining (N : Node_Id; P : Entity_Id) is
Bname : Unit_Name_Type;
E : Entity_Id;
OK : Boolean;
begin
if Is_Compilation_Unit (P)
and then not Is_Generic_Instance (P)
then
Bname := Get_Body_Name (Get_Unit_Name (Unit (N)));
E := First_Entity (P);
while Present (E) loop
if Has_Pragma_Inline (E) then
if not Is_Loaded (Bname) then
Load_Needed_Body (N, OK);
if not OK
and then Ineffective_Inline_Warnings
then
Error_Msg_Unit_1 := Bname;
Error_Msg_N
("unable to inline subprograms defined in $?", P);
Error_Msg_N ("\body not found?", P);
return;
end if;
end if;
return;
end if;
Next_Entity (E);
end loop;
end if;
end Check_Body_For_Inlining;
--------------------
-- Cleanup_Scopes --
--------------------
procedure Cleanup_Scopes is
Elmt : Elmt_Id;
Decl : Node_Id;
Scop : Entity_Id;
begin
Elmt := First_Elmt (To_Clean);
while Present (Elmt) loop
Scop := Node (Elmt);
if Ekind (Scop) = E_Entry then
Scop := Protected_Body_Subprogram (Scop);
end if;
if Ekind (Scop) = E_Block then
Decl := Parent (Block_Node (Scop));
else
Decl := Unit_Declaration_Node (Scop);
if Nkind (Decl) = N_Subprogram_Declaration
or else Nkind (Decl) = N_Task_Type_Declaration
or else Nkind (Decl) = N_Subprogram_Body_Stub
then
Decl := Unit_Declaration_Node (Corresponding_Body (Decl));
end if;
end if;
New_Scope (Scop);
Expand_Cleanup_Actions (Decl);
End_Scope;
Elmt := Next_Elmt (Elmt);
end loop;
end Cleanup_Scopes;
--------------------------
-- Has_Initialized_Type --
--------------------------
function Has_Initialized_Type (E : Entity_Id) return Boolean is
E_Body : constant Node_Id := Get_Subprogram_Body (E);
Decl : Node_Id;
begin
if No (E_Body) then -- imported subprogram
return False;
else
Decl := First (Declarations (E_Body));
while Present (Decl) loop
if Nkind (Decl) = N_Full_Type_Declaration
and then Present (Init_Proc (Defining_Identifier (Decl)))
then
return True;
end if;
Next (Decl);
end loop;
end if;
return False;
end Has_Initialized_Type;
----------------
-- Initialize --
----------------
procedure Initialize is
begin
Analyzing_Inlined_Bodies := False;
Pending_Descriptor.Init;
Pending_Instantiations.Init;
Inlined_Bodies.Init;
Successors.Init;
Inlined.Init;
for J in Hash_Headers'Range loop
Hash_Headers (J) := No_Subp;
end loop;
end Initialize;
------------------------
-- Instantiate_Bodies --
------------------------
-- Generic bodies contain all the non-local references, so an
-- instantiation does not need any more context than Standard
-- itself, even if the instantiation appears in an inner scope.
-- Generic associations have verified that the contract model is
-- satisfied, so that any error that may occur in the analysis of
-- the body is an internal error.
procedure Instantiate_Bodies is
J : Int;
Info : Pending_Body_Info;
begin
if Errors_Detected = 0 then
Expander_Active := (Operating_Mode = Opt.Generate_Code);
New_Scope (Standard_Standard);
To_Clean := New_Elmt_List;
if Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
Start_Generic;
end if;
-- A body instantiation may generate additional instantiations, so
-- the following loop must scan to the end of a possibly expanding
-- set (that's why we can't simply use a FOR loop here).
J := 0;
while J <= Pending_Instantiations.Last
and then Errors_Detected = 0
loop
Info := Pending_Instantiations.Table (J);
-- If the instantiation node is absent, it has been removed
-- as part of unreachable code.
if No (Info.Inst_Node) then
null;
elsif Nkind (Info. Act_Decl) = N_Package_Declaration then
Instantiate_Package_Body (Info);
Add_Scope_To_Clean (Defining_Entity (Info.Act_Decl));
else
Instantiate_Subprogram_Body (Info);
end if;
J := J + 1;
end loop;
-- Reset the table of instantiations. Additional instantiations
-- may be added through inlining, when additional bodies are
-- analyzed.
Pending_Instantiations.Init;
-- We can now complete the cleanup actions of scopes that contain
-- pending instantiations (skipped for generic units, since we
-- never need any cleanups in generic units).
-- pending instantiations.
if Expander_Active
and then not Is_Generic_Unit (Main_Unit_Entity)
then
Cleanup_Scopes;
-- Also generate subprogram descriptors that were delayed
for J in Pending_Descriptor.First .. Pending_Descriptor.Last loop
declare
Ent : constant Entity_Id := Pending_Descriptor.Table (J);
begin
if Is_Subprogram (Ent) then
Generate_Subprogram_Descriptor_For_Subprogram
(Get_Subprogram_Body (Ent), Ent);
elsif Ekind (Ent) = E_Package then
Generate_Subprogram_Descriptor_For_Package
(Parent (Declaration_Node (Ent)), Ent);
elsif Ekind (Ent) = E_Package_Body then
Generate_Subprogram_Descriptor_For_Package
(Declaration_Node (Ent), Ent);
end if;
end;
end loop;
elsif Is_Generic_Unit (Cunit_Entity (Main_Unit)) then
End_Generic;
end if;
Pop_Scope;
end if;
end Instantiate_Bodies;
---------------
-- Is_Nested --
---------------
function Is_Nested (E : Entity_Id) return Boolean is
Scop : Entity_Id := Scope (E);
begin
while Scop /= Standard_Standard loop
if Ekind (Scop) in Subprogram_Kind then
return True;
elsif Ekind (Scop) = E_Task_Type
or else Ekind (Scop) = E_Entry
or else Ekind (Scop) = E_Entry_Family then
return True;
end if;
Scop := Scope (Scop);
end loop;
return False;
end Is_Nested;
----------
-- Lock --
----------
procedure Lock is
begin
Pending_Instantiations.Locked := True;
Inlined_Bodies.Locked := True;
Successors.Locked := True;
Inlined.Locked := True;
Pending_Instantiations.Release;
Inlined_Bodies.Release;
Successors.Release;
Inlined.Release;
end Lock;
--------------------------
-- Remove_Dead_Instance --
--------------------------
procedure Remove_Dead_Instance (N : Node_Id) is
J : Int;
begin
J := 0;
while J <= Pending_Instantiations.Last loop
if Pending_Instantiations.Table (J).Inst_Node = N then
Pending_Instantiations.Table (J).Inst_Node := Empty;
return;
end if;
J := J + 1;
end loop;
end Remove_Dead_Instance;
------------------------
-- Scope_In_Main_Unit --
------------------------
function Scope_In_Main_Unit (Scop : Entity_Id) return Boolean is
Comp : Node_Id;
S : Entity_Id := Scop;
Ent : Entity_Id := Cunit_Entity (Main_Unit);
begin
-- The scope may be within the main unit, or it may be an ancestor
-- of the main unit, if the main unit is a child unit. In both cases
-- it makes no sense to process the body before the main unit. In
-- the second case, this may lead to circularities if a parent body
-- depends on a child spec, and we are analyzing the child.
while Scope (S) /= Standard_Standard
and then not Is_Child_Unit (S)
loop
S := Scope (S);
end loop;
Comp := Parent (S);
while Present (Comp)
and then Nkind (Comp) /= N_Compilation_Unit
loop
Comp := Parent (Comp);
end loop;
if Is_Child_Unit (Ent) then
while Present (Ent)
and then Is_Child_Unit (Ent)
loop
if Scope (Ent) = S then
return True;
end if;
Ent := Scope (Ent);
end loop;
end if;
return
Comp = Cunit (Main_Unit)
or else Comp = Library_Unit (Cunit (Main_Unit));
end Scope_In_Main_Unit;
end Inline;