blob: 6b5538c30d47161fb665efaad1154c716847f057 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNU ADA RUNTIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . B I T _ O P S --
-- --
-- B o d y --
-- --
-- $Revision: 1.10 $
-- --
-- Copyright (C) 1996-2000 Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
with GNAT.Exceptions; use GNAT.Exceptions;
with System; use System;
with System.Unsigned_Types; use System.Unsigned_Types;
with Unchecked_Conversion;
package body System.Bit_Ops is
subtype Bits_Array is System.Unsigned_Types.Packed_Bytes1 (Positive);
-- Unconstrained array used to interprete the address values. We use the
-- unaligned version always, since this will handle both the aligned and
-- unaligned cases, and we always do these operations by bytes anyway.
-- Note: we use a ones origin array here so that the computations of the
-- length in bytes work correctly (give a non-negative value) for the
-- case of zero length bit strings).
type Bits is access Bits_Array;
-- This is the actual type into which address values are converted
function To_Bits is new Unchecked_Conversion (Address, Bits);
LE : constant := Standard'Default_Bit_Order;
-- Static constant set to 0 for big-endian, 1 for little-endian
-- The following is an array of masks used to mask the final byte, either
-- at the high end (big-endian case) or the low end (little-endian case).
Masks : constant array (1 .. 7) of Packed_Byte := (
(1 - LE) * 2#1000_0000# + LE * 2#0000_0001#,
(1 - LE) * 2#1100_0000# + LE * 2#0000_0011#,
(1 - LE) * 2#1110_0000# + LE * 2#0000_0111#,
(1 - LE) * 2#1111_0000# + LE * 2#0000_1111#,
(1 - LE) * 2#1111_1000# + LE * 2#0001_1111#,
(1 - LE) * 2#1111_1100# + LE * 2#0011_1111#,
(1 - LE) * 2#1111_1110# + LE * 2#0111_1111#);
-----------------------
-- Local Subprograms --
-----------------------
procedure Raise_Error;
-- Raise Constraint_Error, complaining about unequal lengths
-------------
-- Bit_And --
-------------
procedure Bit_And
(Left : Address;
Llen : Natural;
Right : Address;
Rlen : Natural;
Result : Address)
is
LeftB : constant Bits := To_Bits (Left);
RightB : constant Bits := To_Bits (Right);
ResultB : constant Bits := To_Bits (Result);
begin
if Llen /= Rlen then
Raise_Error;
end if;
for J in 1 .. (Rlen + 7) / 8 loop
ResultB (J) := LeftB (J) and RightB (J);
end loop;
end Bit_And;
------------
-- Bit_Eq --
------------
function Bit_Eq
(Left : Address;
Llen : Natural;
Right : Address;
Rlen : Natural)
return Boolean
is
LeftB : constant Bits := To_Bits (Left);
RightB : constant Bits := To_Bits (Right);
begin
if Llen /= Rlen then
return False;
else
declare
BLen : constant Natural := Llen / 8;
Bitc : constant Natural := Llen mod 8;
begin
if Llen /= Rlen then
return False;
elsif LeftB (1 .. BLen) /= RightB (1 .. BLen) then
return False;
elsif Bitc /= 0 then
return
((LeftB (BLen + 1) xor RightB (BLen + 1))
and Masks (Bitc)) = 0;
else -- Bitc = 0
return True;
end if;
end;
end if;
end Bit_Eq;
-------------
-- Bit_Not --
-------------
procedure Bit_Not
(Opnd : System.Address;
Len : Natural;
Result : System.Address)
is
OpndB : constant Bits := To_Bits (Opnd);
ResultB : constant Bits := To_Bits (Result);
begin
for J in 1 .. (Len + 7) / 8 loop
ResultB (J) := not OpndB (J);
end loop;
end Bit_Not;
------------
-- Bit_Or --
------------
procedure Bit_Or
(Left : Address;
Llen : Natural;
Right : Address;
Rlen : Natural;
Result : Address)
is
LeftB : constant Bits := To_Bits (Left);
RightB : constant Bits := To_Bits (Right);
ResultB : constant Bits := To_Bits (Result);
begin
if Llen /= Rlen then
Raise_Error;
end if;
for J in 1 .. (Rlen + 7) / 8 loop
ResultB (J) := LeftB (J) or RightB (J);
end loop;
end Bit_Or;
-------------
-- Bit_Xor --
-------------
procedure Bit_Xor
(Left : Address;
Llen : Natural;
Right : Address;
Rlen : Natural;
Result : Address)
is
LeftB : constant Bits := To_Bits (Left);
RightB : constant Bits := To_Bits (Right);
ResultB : constant Bits := To_Bits (Result);
begin
if Llen /= Rlen then
Raise_Error;
end if;
for J in 1 .. (Rlen + 7) / 8 loop
ResultB (J) := LeftB (J) xor RightB (J);
end loop;
end Bit_Xor;
-----------------
-- Raise_Error --
-----------------
procedure Raise_Error is
begin
Raise_Exception (CE, "unequal lengths in logical operation");
end Raise_Error;
end System.Bit_Ops;