blob: 4ae3c9830c6bc322864cf44b6a2c52ab829c1bf4 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNAT RUNTIME COMPONENTS --
-- --
-- S Y S T E M . E X P _ G E N --
-- --
-- B o d y --
-- --
-- $Revision: 1.11 $
-- --
-- Copyright (C) 1992-2001, Free Software Foundation, Inc. --
-- --
-- GNAT is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNAT; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNAT was originally developed by the GNAT team at New York University. --
-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
package body System.Exp_Gen is
--------------------
-- Exp_Float_Type --
--------------------
function Exp_Float_Type
(Left : Type_Of_Base;
Right : Integer)
return Type_Of_Base
is
Result : Type_Of_Base := 1.0;
Factor : Type_Of_Base := Left;
Exp : Integer := Right;
begin
-- We use the standard logarithmic approach, Exp gets shifted right
-- testing successive low order bits and Factor is the value of the
-- base raised to the next power of 2. For positive exponents we
-- multiply the result by this factor, for negative exponents, we
-- divide by this factor.
if Exp >= 0 then
-- For a positive exponent, if we get a constraint error during
-- this loop, it is an overflow, and the constraint error will
-- simply be passed on to the caller.
loop
if Exp rem 2 /= 0 then
declare
pragma Unsuppress (All_Checks);
begin
Result := Result * Factor;
end;
end if;
Exp := Exp / 2;
exit when Exp = 0;
declare
pragma Unsuppress (All_Checks);
begin
Factor := Factor * Factor;
end;
end loop;
return Result;
-- Now we know that the exponent is negative, check for case of
-- base of 0.0 which always generates a constraint error.
elsif Factor = 0.0 then
raise Constraint_Error;
-- Here we have a negative exponent with a non-zero base
else
-- For the negative exponent case, a constraint error during this
-- calculation happens if Factor gets too large, and the proper
-- response is to return 0.0, since what we essenmtially have is
-- 1.0 / infinity, and the closest model number will be zero.
begin
loop
if Exp rem 2 /= 0 then
declare
pragma Unsuppress (All_Checks);
begin
Result := Result * Factor;
end;
end if;
Exp := Exp / 2;
exit when Exp = 0;
declare
pragma Unsuppress (All_Checks);
begin
Factor := Factor * Factor;
end;
end loop;
declare
pragma Unsuppress (All_Checks);
begin
return 1.0 / Result;
end;
exception
when Constraint_Error =>
return 0.0;
end;
end if;
end Exp_Float_Type;
----------------------
-- Exp_Integer_Type --
----------------------
-- Note that negative exponents get a constraint error because the
-- subtype of the Right argument (the exponent) is Natural.
function Exp_Integer_Type
(Left : Type_Of_Base;
Right : Natural)
return Type_Of_Base
is
Result : Type_Of_Base := 1;
Factor : Type_Of_Base := Left;
Exp : Natural := Right;
begin
-- We use the standard logarithmic approach, Exp gets shifted right
-- testing successive low order bits and Factor is the value of the
-- base raised to the next power of 2.
-- Note: it is not worth special casing the cases of base values -1,0,+1
-- since the expander does this when the base is a literal, and other
-- cases will be extremely rare.
if Exp /= 0 then
loop
if Exp rem 2 /= 0 then
declare
pragma Unsuppress (All_Checks);
begin
Result := Result * Factor;
end;
end if;
Exp := Exp / 2;
exit when Exp = 0;
declare
pragma Unsuppress (All_Checks);
begin
Factor := Factor * Factor;
end;
end loop;
end if;
return Result;
end Exp_Integer_Type;
end System.Exp_Gen;