blob: 8bb7536ad9869396125eb89d1faefe316230a06d [file] [log] [blame]
/* Subroutines used for code generation on IA-32.
Copyright (C) 1988, 1992, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "tree.h"
#include "tm_p.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "except.h"
#include "function.h"
#include "recog.h"
#include "expr.h"
#include "optabs.h"
#include "toplev.h"
#include "basic-block.h"
#include "ggc.h"
#include "target.h"
#include "target-def.h"
#ifndef CHECK_STACK_LIMIT
#define CHECK_STACK_LIMIT -1
#endif
/* Processor costs (relative to an add) */
static const
struct processor_costs size_cost = { /* costs for tunning for size */
2, /* cost of an add instruction */
3, /* cost of a lea instruction */
2, /* variable shift costs */
3, /* constant shift costs */
3, /* cost of starting a multiply */
0, /* cost of multiply per each bit set */
3, /* cost of a divide/mod */
3, /* cost of movsx */
3, /* cost of movzx */
0, /* "large" insn */
2, /* MOVE_RATIO */
2, /* cost for loading QImode using movzbl */
{2, 2, 2}, /* cost of loading integer registers
in QImode, HImode and SImode.
Relative to reg-reg move (2). */
{2, 2, 2}, /* cost of storing integer registers */
2, /* cost of reg,reg fld/fst */
{2, 2, 2}, /* cost of loading fp registers
in SFmode, DFmode and XFmode */
{2, 2, 2}, /* cost of loading integer registers */
3, /* cost of moving MMX register */
{3, 3}, /* cost of loading MMX registers
in SImode and DImode */
{3, 3}, /* cost of storing MMX registers
in SImode and DImode */
3, /* cost of moving SSE register */
{3, 3, 3}, /* cost of loading SSE registers
in SImode, DImode and TImode */
{3, 3, 3}, /* cost of storing SSE registers
in SImode, DImode and TImode */
3, /* MMX or SSE register to integer */
0, /* size of prefetch block */
0, /* number of parallel prefetches */
};
/* Processor costs (relative to an add) */
static const
struct processor_costs i386_cost = { /* 386 specific costs */
1, /* cost of an add instruction */
1, /* cost of a lea instruction */
3, /* variable shift costs */
2, /* constant shift costs */
6, /* cost of starting a multiply */
1, /* cost of multiply per each bit set */
23, /* cost of a divide/mod */
3, /* cost of movsx */
2, /* cost of movzx */
15, /* "large" insn */
3, /* MOVE_RATIO */
4, /* cost for loading QImode using movzbl */
{2, 4, 2}, /* cost of loading integer registers
in QImode, HImode and SImode.
Relative to reg-reg move (2). */
{2, 4, 2}, /* cost of storing integer registers */
2, /* cost of reg,reg fld/fst */
{8, 8, 8}, /* cost of loading fp registers
in SFmode, DFmode and XFmode */
{8, 8, 8}, /* cost of loading integer registers */
2, /* cost of moving MMX register */
{4, 8}, /* cost of loading MMX registers
in SImode and DImode */
{4, 8}, /* cost of storing MMX registers
in SImode and DImode */
2, /* cost of moving SSE register */
{4, 8, 16}, /* cost of loading SSE registers
in SImode, DImode and TImode */
{4, 8, 16}, /* cost of storing SSE registers
in SImode, DImode and TImode */
3, /* MMX or SSE register to integer */
0, /* size of prefetch block */
0, /* number of parallel prefetches */
};
static const
struct processor_costs i486_cost = { /* 486 specific costs */
1, /* cost of an add instruction */
1, /* cost of a lea instruction */
3, /* variable shift costs */
2, /* constant shift costs */
12, /* cost of starting a multiply */
1, /* cost of multiply per each bit set */
40, /* cost of a divide/mod */
3, /* cost of movsx */
2, /* cost of movzx */
15, /* "large" insn */
3, /* MOVE_RATIO */
4, /* cost for loading QImode using movzbl */
{2, 4, 2}, /* cost of loading integer registers
in QImode, HImode and SImode.
Relative to reg-reg move (2). */
{2, 4, 2}, /* cost of storing integer registers */
2, /* cost of reg,reg fld/fst */
{8, 8, 8}, /* cost of loading fp registers
in SFmode, DFmode and XFmode */
{8, 8, 8}, /* cost of loading integer registers */
2, /* cost of moving MMX register */
{4, 8}, /* cost of loading MMX registers
in SImode and DImode */
{4, 8}, /* cost of storing MMX registers
in SImode and DImode */
2, /* cost of moving SSE register */
{4, 8, 16}, /* cost of loading SSE registers
in SImode, DImode and TImode */
{4, 8, 16}, /* cost of storing SSE registers
in SImode, DImode and TImode */
3, /* MMX or SSE register to integer */
0, /* size of prefetch block */
0, /* number of parallel prefetches */
};
static const
struct processor_costs pentium_cost = {
1, /* cost of an add instruction */
1, /* cost of a lea instruction */
4, /* variable shift costs */
1, /* constant shift costs */
11, /* cost of starting a multiply */
0, /* cost of multiply per each bit set */
25, /* cost of a divide/mod */
3, /* cost of movsx */
2, /* cost of movzx */
8, /* "large" insn */
6, /* MOVE_RATIO */
6, /* cost for loading QImode using movzbl */
{2, 4, 2}, /* cost of loading integer registers
in QImode, HImode and SImode.
Relative to reg-reg move (2). */
{2, 4, 2}, /* cost of storing integer registers */
2, /* cost of reg,reg fld/fst */
{2, 2, 6}, /* cost of loading fp registers
in SFmode, DFmode and XFmode */
{4, 4, 6}, /* cost of loading integer registers */
8, /* cost of moving MMX register */
{8, 8}, /* cost of loading MMX registers
in SImode and DImode */
{8, 8}, /* cost of storing MMX registers
in SImode and DImode */
2, /* cost of moving SSE register */
{4, 8, 16}, /* cost of loading SSE registers
in SImode, DImode and TImode */
{4, 8, 16}, /* cost of storing SSE registers
in SImode, DImode and TImode */
3, /* MMX or SSE register to integer */
0, /* size of prefetch block */
0, /* number of parallel prefetches */
};
static const
struct processor_costs pentiumpro_cost = {
1, /* cost of an add instruction */
1, /* cost of a lea instruction */
1, /* variable shift costs */
1, /* constant shift costs */
4, /* cost of starting a multiply */
0, /* cost of multiply per each bit set */
17, /* cost of a divide/mod */
1, /* cost of movsx */
1, /* cost of movzx */
8, /* "large" insn */
6, /* MOVE_RATIO */
2, /* cost for loading QImode using movzbl */
{4, 4, 4}, /* cost of loading integer registers
in QImode, HImode and SImode.
Relative to reg-reg move (2). */
{2, 2, 2}, /* cost of storing integer registers */
2, /* cost of reg,reg fld/fst */
{2, 2, 6}, /* cost of loading fp registers
in SFmode, DFmode and XFmode */
{4, 4, 6}, /* cost of loading integer registers */
2, /* cost of moving MMX register */
{2, 2}, /* cost of loading MMX registers
in SImode and DImode */
{2, 2}, /* cost of storing MMX registers
in SImode and DImode */
2, /* cost of moving SSE register */
{2, 2, 8}, /* cost of loading SSE registers
in SImode, DImode and TImode */
{2, 2, 8}, /* cost of storing SSE registers
in SImode, DImode and TImode */
3, /* MMX or SSE register to integer */
32, /* size of prefetch block */
6, /* number of parallel prefetches */
};
static const
struct processor_costs k6_cost = {
1, /* cost of an add instruction */
2, /* cost of a lea instruction */
1, /* variable shift costs */
1, /* constant shift costs */
3, /* cost of starting a multiply */
0, /* cost of multiply per each bit set */
18, /* cost of a divide/mod */
2, /* cost of movsx */
2, /* cost of movzx */
8, /* "large" insn */
4, /* MOVE_RATIO */
3, /* cost for loading QImode using movzbl */
{4, 5, 4}, /* cost of loading integer registers
in QImode, HImode and SImode.
Relative to reg-reg move (2). */
{2, 3, 2}, /* cost of storing integer registers */
4, /* cost of reg,reg fld/fst */
{6, 6, 6}, /* cost of loading fp registers
in SFmode, DFmode and XFmode */
{4, 4, 4}, /* cost of loading integer registers */
2, /* cost of moving MMX register */
{2, 2}, /* cost of loading MMX registers
in SImode and DImode */
{2, 2}, /* cost of storing MMX registers
in SImode and DImode */
2, /* cost of moving SSE register */
{2, 2, 8}, /* cost of loading SSE registers
in SImode, DImode and TImode */
{2, 2, 8}, /* cost of storing SSE registers
in SImode, DImode and TImode */
6, /* MMX or SSE register to integer */
32, /* size of prefetch block */
1, /* number of parallel prefetches */
};
static const
struct processor_costs athlon_cost = {
1, /* cost of an add instruction */
2, /* cost of a lea instruction */
1, /* variable shift costs */
1, /* constant shift costs */
5, /* cost of starting a multiply */
0, /* cost of multiply per each bit set */
42, /* cost of a divide/mod */
1, /* cost of movsx */
1, /* cost of movzx */
8, /* "large" insn */
9, /* MOVE_RATIO */
4, /* cost for loading QImode using movzbl */
{4, 5, 4}, /* cost of loading integer registers
in QImode, HImode and SImode.
Relative to reg-reg move (2). */
{2, 3, 2}, /* cost of storing integer registers */
4, /* cost of reg,reg fld/fst */
{6, 6, 20}, /* cost of loading fp registers
in SFmode, DFmode and XFmode */
{4, 4, 16}, /* cost of loading integer registers */
2, /* cost of moving MMX register */
{2, 2}, /* cost of loading MMX registers
in SImode and DImode */
{2, 2}, /* cost of storing MMX registers
in SImode and DImode */
2, /* cost of moving SSE register */
{2, 2, 8}, /* cost of loading SSE registers
in SImode, DImode and TImode */
{2, 2, 8}, /* cost of storing SSE registers
in SImode, DImode and TImode */
6, /* MMX or SSE register to integer */
64, /* size of prefetch block */
6, /* number of parallel prefetches */
};
static const
struct processor_costs pentium4_cost = {
1, /* cost of an add instruction */
1, /* cost of a lea instruction */
8, /* variable shift costs */
8, /* constant shift costs */
30, /* cost of starting a multiply */
0, /* cost of multiply per each bit set */
112, /* cost of a divide/mod */
1, /* cost of movsx */
1, /* cost of movzx */
16, /* "large" insn */
6, /* MOVE_RATIO */
2, /* cost for loading QImode using movzbl */
{4, 5, 4}, /* cost of loading integer registers
in QImode, HImode and SImode.
Relative to reg-reg move (2). */
{2, 3, 2}, /* cost of storing integer registers */
2, /* cost of reg,reg fld/fst */
{2, 2, 6}, /* cost of loading fp registers
in SFmode, DFmode and XFmode */
{4, 4, 6}, /* cost of loading integer registers */
2, /* cost of moving MMX register */
{2, 2}, /* cost of loading MMX registers
in SImode and DImode */
{2, 2}, /* cost of storing MMX registers
in SImode and DImode */
12, /* cost of moving SSE register */
{12, 12, 12}, /* cost of loading SSE registers
in SImode, DImode and TImode */
{2, 2, 8}, /* cost of storing SSE registers
in SImode, DImode and TImode */
10, /* MMX or SSE register to integer */
64, /* size of prefetch block */
6, /* number of parallel prefetches */
};
const struct processor_costs *ix86_cost = &pentium_cost;
/* Processor feature/optimization bitmasks. */
#define m_386 (1<<PROCESSOR_I386)
#define m_486 (1<<PROCESSOR_I486)
#define m_PENT (1<<PROCESSOR_PENTIUM)
#define m_PPRO (1<<PROCESSOR_PENTIUMPRO)
#define m_K6 (1<<PROCESSOR_K6)
#define m_ATHLON (1<<PROCESSOR_ATHLON)
#define m_PENT4 (1<<PROCESSOR_PENTIUM4)
const int x86_use_leave = m_386 | m_K6 | m_ATHLON;
const int x86_push_memory = m_386 | m_K6 | m_ATHLON | m_PENT4;
const int x86_zero_extend_with_and = m_486 | m_PENT;
const int x86_movx = m_ATHLON | m_PPRO | m_PENT4 /* m_386 | m_K6 */;
const int x86_double_with_add = ~m_386;
const int x86_use_bit_test = m_386;
const int x86_unroll_strlen = m_486 | m_PENT | m_PPRO | m_ATHLON | m_K6;
const int x86_cmove = m_PPRO | m_ATHLON | m_PENT4;
const int x86_3dnow_a = m_ATHLON;
const int x86_deep_branch = m_PPRO | m_K6 | m_ATHLON | m_PENT4;
const int x86_branch_hints = m_PENT4;
const int x86_use_sahf = m_PPRO | m_K6 | m_PENT4;
const int x86_partial_reg_stall = m_PPRO;
const int x86_use_loop = m_K6;
const int x86_use_fiop = ~(m_PPRO | m_ATHLON | m_PENT);
const int x86_use_mov0 = m_K6;
const int x86_use_cltd = ~(m_PENT | m_K6);
const int x86_read_modify_write = ~m_PENT;
const int x86_read_modify = ~(m_PENT | m_PPRO);
const int x86_split_long_moves = m_PPRO;
const int x86_promote_QImode = m_K6 | m_PENT | m_386 | m_486;
const int x86_single_stringop = m_386 | m_PENT4;
const int x86_qimode_math = ~(0);
const int x86_promote_qi_regs = 0;
const int x86_himode_math = ~(m_PPRO);
const int x86_promote_hi_regs = m_PPRO;
const int x86_sub_esp_4 = m_ATHLON | m_PPRO | m_PENT4;
const int x86_sub_esp_8 = m_ATHLON | m_PPRO | m_386 | m_486 | m_PENT4;
const int x86_add_esp_4 = m_ATHLON | m_K6 | m_PENT4;
const int x86_add_esp_8 = m_ATHLON | m_PPRO | m_K6 | m_386 | m_486 | m_PENT4;
const int x86_integer_DFmode_moves = ~(m_ATHLON | m_PENT4);
const int x86_partial_reg_dependency = m_ATHLON | m_PENT4;
const int x86_memory_mismatch_stall = m_ATHLON | m_PENT4;
const int x86_accumulate_outgoing_args = m_ATHLON | m_PENT4 | m_PPRO;
const int x86_prologue_using_move = m_ATHLON | m_PENT4 | m_PPRO;
const int x86_epilogue_using_move = m_ATHLON | m_PENT4 | m_PPRO;
const int x86_decompose_lea = m_PENT4;
/* In case the avreage insn count for single function invocation is
lower than this constant, emit fast (but longer) prologue and
epilogue code. */
#define FAST_PROLOGUE_INSN_COUNT 30
/* Set by prologue expander and used by epilogue expander to determine
the style used. */
static int use_fast_prologue_epilogue;
#define AT_BP(mode) (gen_rtx_MEM ((mode), hard_frame_pointer_rtx))
static const char *const hi_reg_name[] = HI_REGISTER_NAMES; /* names for 16 bit regs */
static const char *const qi_reg_name[] = QI_REGISTER_NAMES; /* names for 8 bit regs (low) */
static const char *const qi_high_reg_name[] = QI_HIGH_REGISTER_NAMES; /* names for 8 bit regs (high) */
/* Array of the smallest class containing reg number REGNO, indexed by
REGNO. Used by REGNO_REG_CLASS in i386.h. */
enum reg_class const regclass_map[FIRST_PSEUDO_REGISTER] =
{
/* ax, dx, cx, bx */
AREG, DREG, CREG, BREG,
/* si, di, bp, sp */
SIREG, DIREG, NON_Q_REGS, NON_Q_REGS,
/* FP registers */
FP_TOP_REG, FP_SECOND_REG, FLOAT_REGS, FLOAT_REGS,
FLOAT_REGS, FLOAT_REGS, FLOAT_REGS, FLOAT_REGS,
/* arg pointer */
NON_Q_REGS,
/* flags, fpsr, dirflag, frame */
NO_REGS, NO_REGS, NO_REGS, NON_Q_REGS,
SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS,
SSE_REGS, SSE_REGS,
MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS, MMX_REGS,
MMX_REGS, MMX_REGS,
NON_Q_REGS, NON_Q_REGS, NON_Q_REGS, NON_Q_REGS,
NON_Q_REGS, NON_Q_REGS, NON_Q_REGS, NON_Q_REGS,
SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS, SSE_REGS,
SSE_REGS, SSE_REGS,
};
/* The "default" register map used in 32bit mode. */
int const dbx_register_map[FIRST_PSEUDO_REGISTER] =
{
0, 2, 1, 3, 6, 7, 4, 5, /* general regs */
12, 13, 14, 15, 16, 17, 18, 19, /* fp regs */
-1, -1, -1, -1, -1, /* arg, flags, fpsr, dir, frame */
21, 22, 23, 24, 25, 26, 27, 28, /* SSE */
29, 30, 31, 32, 33, 34, 35, 36, /* MMX */
-1, -1, -1, -1, -1, -1, -1, -1, /* extended integer registers */
-1, -1, -1, -1, -1, -1, -1, -1, /* extended SSE registers */
};
static int x86_64_int_parameter_registers[6] = {5 /*RDI*/, 4 /*RSI*/,
1 /*RDX*/, 2 /*RCX*/,
FIRST_REX_INT_REG /*R8 */,
FIRST_REX_INT_REG + 1 /*R9 */};
static int x86_64_int_return_registers[4] = {0 /*RAX*/, 1 /*RDI*/, 5, 4};
/* The "default" register map used in 64bit mode. */
int const dbx64_register_map[FIRST_PSEUDO_REGISTER] =
{
0, 1, 2, 3, 4, 5, 6, 7, /* general regs */
33, 34, 35, 36, 37, 38, 39, 40 /* fp regs */
-1, -1, -1, -1, -1, /* arg, flags, fpsr, dir, frame */
17, 18, 19, 20, 21, 22, 23, 24, /* SSE */
41, 42, 43, 44, 45, 46, 47, 48, /* MMX */
8,9,10,11,12,13,14,15, /* extended integer registers */
25, 26, 27, 28, 29, 30, 31, 32, /* extended SSE registers */
};
/* Define the register numbers to be used in Dwarf debugging information.
The SVR4 reference port C compiler uses the following register numbers
in its Dwarf output code:
0 for %eax (gcc regno = 0)
1 for %ecx (gcc regno = 2)
2 for %edx (gcc regno = 1)
3 for %ebx (gcc regno = 3)
4 for %esp (gcc regno = 7)
5 for %ebp (gcc regno = 6)
6 for %esi (gcc regno = 4)
7 for %edi (gcc regno = 5)
The following three DWARF register numbers are never generated by
the SVR4 C compiler or by the GNU compilers, but SDB on x86/svr4
believes these numbers have these meanings.
8 for %eip (no gcc equivalent)
9 for %eflags (gcc regno = 17)
10 for %trapno (no gcc equivalent)
It is not at all clear how we should number the FP stack registers
for the x86 architecture. If the version of SDB on x86/svr4 were
a bit less brain dead with respect to floating-point then we would
have a precedent to follow with respect to DWARF register numbers
for x86 FP registers, but the SDB on x86/svr4 is so completely
broken with respect to FP registers that it is hardly worth thinking
of it as something to strive for compatibility with.
The version of x86/svr4 SDB I have at the moment does (partially)
seem to believe that DWARF register number 11 is associated with
the x86 register %st(0), but that's about all. Higher DWARF
register numbers don't seem to be associated with anything in
particular, and even for DWARF regno 11, SDB only seems to under-
stand that it should say that a variable lives in %st(0) (when
asked via an `=' command) if we said it was in DWARF regno 11,
but SDB still prints garbage when asked for the value of the
variable in question (via a `/' command).
(Also note that the labels SDB prints for various FP stack regs
when doing an `x' command are all wrong.)
Note that these problems generally don't affect the native SVR4
C compiler because it doesn't allow the use of -O with -g and
because when it is *not* optimizing, it allocates a memory
location for each floating-point variable, and the memory
location is what gets described in the DWARF AT_location
attribute for the variable in question.
Regardless of the severe mental illness of the x86/svr4 SDB, we
do something sensible here and we use the following DWARF
register numbers. Note that these are all stack-top-relative
numbers.
11 for %st(0) (gcc regno = 8)
12 for %st(1) (gcc regno = 9)
13 for %st(2) (gcc regno = 10)
14 for %st(3) (gcc regno = 11)
15 for %st(4) (gcc regno = 12)
16 for %st(5) (gcc regno = 13)
17 for %st(6) (gcc regno = 14)
18 for %st(7) (gcc regno = 15)
*/
int const svr4_dbx_register_map[FIRST_PSEUDO_REGISTER] =
{
0, 2, 1, 3, 6, 7, 5, 4, /* general regs */
11, 12, 13, 14, 15, 16, 17, 18, /* fp regs */
-1, 9, -1, -1, -1, /* arg, flags, fpsr, dir, frame */
21, 22, 23, 24, 25, 26, 27, 28, /* SSE registers */
29, 30, 31, 32, 33, 34, 35, 36, /* MMX registers */
-1, -1, -1, -1, -1, -1, -1, -1, /* extemded integer registers */
-1, -1, -1, -1, -1, -1, -1, -1, /* extemded SSE registers */
};
/* Test and compare insns in i386.md store the information needed to
generate branch and scc insns here. */
struct rtx_def *ix86_compare_op0 = NULL_RTX;
struct rtx_def *ix86_compare_op1 = NULL_RTX;
#define MAX_386_STACK_LOCALS 3
/* Size of the register save area. */
#define X86_64_VARARGS_SIZE (REGPARM_MAX * UNITS_PER_WORD + SSE_REGPARM_MAX * 16)
/* Define the structure for the machine field in struct function. */
struct machine_function
{
rtx stack_locals[(int) MAX_MACHINE_MODE][MAX_386_STACK_LOCALS];
int save_varrargs_registers;
int accesses_prev_frame;
};
#define ix86_stack_locals (cfun->machine->stack_locals)
#define ix86_save_varrargs_registers (cfun->machine->save_varrargs_registers)
/* Structure describing stack frame layout.
Stack grows downward:
[arguments]
<- ARG_POINTER
saved pc
saved frame pointer if frame_pointer_needed
<- HARD_FRAME_POINTER
[saved regs]
[padding1] \
)
[va_arg registers] (
> to_allocate <- FRAME_POINTER
[frame] (
)
[padding2] /
*/
struct ix86_frame
{
int nregs;
int padding1;
int va_arg_size;
HOST_WIDE_INT frame;
int padding2;
int outgoing_arguments_size;
int red_zone_size;
HOST_WIDE_INT to_allocate;
/* The offsets relative to ARG_POINTER. */
HOST_WIDE_INT frame_pointer_offset;
HOST_WIDE_INT hard_frame_pointer_offset;
HOST_WIDE_INT stack_pointer_offset;
};
/* Used to enable/disable debugging features. */
const char *ix86_debug_arg_string, *ix86_debug_addr_string;
/* Code model option as passed by user. */
const char *ix86_cmodel_string;
/* Asm dialect. */
const char *ix86_asm_string;
enum cmodel ix86_asm_dialect = ASM_ATT;
/* Parsed value. */
enum cmodel ix86_cmodel;
/* which cpu are we scheduling for */
enum processor_type ix86_cpu;
/* which unit we are generating floating point math for */
enum fpmath_unit ix86_fpmath;
/* which instruction set architecture to use. */
int ix86_arch;
/* Strings to hold which cpu and instruction set architecture to use. */
const char *ix86_cpu_string; /* for -mcpu=<xxx> */
const char *ix86_arch_string; /* for -march=<xxx> */
const char *ix86_fpmath_string; /* for -mfpmath=<xxx> */
/* # of registers to use to pass arguments. */
const char *ix86_regparm_string;
/* true if sse prefetch instruction is not NOOP. */
int x86_prefetch_sse;
/* ix86_regparm_string as a number */
int ix86_regparm;
/* Alignment to use for loops and jumps: */
/* Power of two alignment for loops. */
const char *ix86_align_loops_string;
/* Power of two alignment for non-loop jumps. */
const char *ix86_align_jumps_string;
/* Power of two alignment for stack boundary in bytes. */
const char *ix86_preferred_stack_boundary_string;
/* Preferred alignment for stack boundary in bits. */
int ix86_preferred_stack_boundary;
/* Values 1-5: see jump.c */
int ix86_branch_cost;
const char *ix86_branch_cost_string;
/* Power of two alignment for functions. */
const char *ix86_align_funcs_string;
/* Prefix built by ASM_GENERATE_INTERNAL_LABEL. */
static char internal_label_prefix[16];
static int internal_label_prefix_len;
static int local_symbolic_operand PARAMS ((rtx, enum machine_mode));
static void output_pic_addr_const PARAMS ((FILE *, rtx, int));
static void put_condition_code PARAMS ((enum rtx_code, enum machine_mode,
int, int, FILE *));
static rtx ix86_expand_int_compare PARAMS ((enum rtx_code, rtx, rtx));
static enum rtx_code ix86_prepare_fp_compare_args PARAMS ((enum rtx_code,
rtx *, rtx *));
static rtx gen_push PARAMS ((rtx));
static int memory_address_length PARAMS ((rtx addr));
static int ix86_flags_dependant PARAMS ((rtx, rtx, enum attr_type));
static int ix86_agi_dependant PARAMS ((rtx, rtx, enum attr_type));
static int ix86_safe_length PARAMS ((rtx));
static enum attr_memory ix86_safe_memory PARAMS ((rtx));
static enum attr_pent_pair ix86_safe_pent_pair PARAMS ((rtx));
static enum attr_ppro_uops ix86_safe_ppro_uops PARAMS ((rtx));
static void ix86_dump_ppro_packet PARAMS ((FILE *));
static void ix86_reorder_insn PARAMS ((rtx *, rtx *));
static rtx * ix86_pent_find_pair PARAMS ((rtx *, rtx *, enum attr_pent_pair,
rtx));
static void ix86_init_machine_status PARAMS ((struct function *));
static void ix86_mark_machine_status PARAMS ((struct function *));
static void ix86_free_machine_status PARAMS ((struct function *));
static int ix86_split_to_parts PARAMS ((rtx, rtx *, enum machine_mode));
static int ix86_safe_length_prefix PARAMS ((rtx));
static int ix86_nsaved_regs PARAMS((void));
static void ix86_emit_save_regs PARAMS((void));
static void ix86_emit_save_regs_using_mov PARAMS ((rtx, HOST_WIDE_INT));
static void ix86_emit_restore_regs_using_mov PARAMS ((rtx, int, int));
static void ix86_set_move_mem_attrs_1 PARAMS ((rtx, rtx, rtx, rtx, rtx));
static void ix86_sched_reorder_pentium PARAMS((rtx *, rtx *));
static void ix86_sched_reorder_ppro PARAMS((rtx *, rtx *));
static HOST_WIDE_INT ix86_GOT_alias_set PARAMS ((void));
static void ix86_adjust_counter PARAMS ((rtx, HOST_WIDE_INT));
static rtx ix86_expand_aligntest PARAMS ((rtx, int));
static void ix86_expand_strlensi_unroll_1 PARAMS ((rtx, rtx));
static int ix86_issue_rate PARAMS ((void));
static int ix86_adjust_cost PARAMS ((rtx, rtx, rtx, int));
static void ix86_sched_init PARAMS ((FILE *, int, int));
static int ix86_sched_reorder PARAMS ((FILE *, int, rtx *, int *, int));
static int ix86_variable_issue PARAMS ((FILE *, int, rtx, int));
struct ix86_address
{
rtx base, index, disp;
HOST_WIDE_INT scale;
};
static int ix86_decompose_address PARAMS ((rtx, struct ix86_address *));
struct builtin_description;
static rtx ix86_expand_sse_comi PARAMS ((const struct builtin_description *,
tree, rtx));
static rtx ix86_expand_sse_compare PARAMS ((const struct builtin_description *,
tree, rtx));
static rtx ix86_expand_unop1_builtin PARAMS ((enum insn_code, tree, rtx));
static rtx ix86_expand_unop_builtin PARAMS ((enum insn_code, tree, rtx, int));
static rtx ix86_expand_binop_builtin PARAMS ((enum insn_code, tree, rtx));
static rtx ix86_expand_store_builtin PARAMS ((enum insn_code, tree, int));
static rtx safe_vector_operand PARAMS ((rtx, enum machine_mode));
static enum rtx_code ix86_fp_compare_code_to_integer PARAMS ((enum rtx_code));
static void ix86_fp_comparison_codes PARAMS ((enum rtx_code code,
enum rtx_code *,
enum rtx_code *,
enum rtx_code *));
static rtx ix86_expand_fp_compare PARAMS ((enum rtx_code, rtx, rtx, rtx,
rtx *, rtx *));
static int ix86_fp_comparison_arithmetics_cost PARAMS ((enum rtx_code code));
static int ix86_fp_comparison_fcomi_cost PARAMS ((enum rtx_code code));
static int ix86_fp_comparison_sahf_cost PARAMS ((enum rtx_code code));
static int ix86_fp_comparison_cost PARAMS ((enum rtx_code code));
static int ix86_save_reg PARAMS ((int, int));
static void ix86_compute_frame_layout PARAMS ((struct ix86_frame *));
static int ix86_comp_type_attributes PARAMS ((tree, tree));
const struct attribute_spec ix86_attribute_table[];
static tree ix86_handle_cdecl_attribute PARAMS ((tree *, tree, tree, int, bool *));
static tree ix86_handle_regparm_attribute PARAMS ((tree *, tree, tree, int, bool *));
#ifdef DO_GLOBAL_CTORS_BODY
static void ix86_svr3_asm_out_constructor PARAMS ((rtx, int));
#endif
/* Register class used for passing given 64bit part of the argument.
These represent classes as documented by the PS ABI, with the exception
of SSESF, SSEDF classes, that are basically SSE class, just gcc will
use SF or DFmode move instead of DImode to avoid reformating penalties.
Similary we play games with INTEGERSI_CLASS to use cheaper SImode moves
whenever possible (upper half does contain padding).
*/
enum x86_64_reg_class
{
X86_64_NO_CLASS,
X86_64_INTEGER_CLASS,
X86_64_INTEGERSI_CLASS,
X86_64_SSE_CLASS,
X86_64_SSESF_CLASS,
X86_64_SSEDF_CLASS,
X86_64_SSEUP_CLASS,
X86_64_X87_CLASS,
X86_64_X87UP_CLASS,
X86_64_MEMORY_CLASS
};
const char * const x86_64_reg_class_name[] =
{"no", "integer", "integerSI", "sse", "sseSF", "sseDF", "sseup", "x87", "x87up", "no"};
#define MAX_CLASSES 4
static int classify_argument PARAMS ((enum machine_mode, tree,
enum x86_64_reg_class [MAX_CLASSES],
int));
static int examine_argument PARAMS ((enum machine_mode, tree, int, int *,
int *));
static rtx construct_container PARAMS ((enum machine_mode, tree, int, int, int,
int *, int));
static enum x86_64_reg_class merge_classes PARAMS ((enum x86_64_reg_class,
enum x86_64_reg_class));
/* Initialize the GCC target structure. */
#undef TARGET_ATTRIBUTE_TABLE
#define TARGET_ATTRIBUTE_TABLE ix86_attribute_table
#ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
# undef TARGET_MERGE_DECL_ATTRIBUTES
# define TARGET_MERGE_DECL_ATTRIBUTES merge_dllimport_decl_attributes
#endif
#undef TARGET_COMP_TYPE_ATTRIBUTES
#define TARGET_COMP_TYPE_ATTRIBUTES ix86_comp_type_attributes
#undef TARGET_INIT_BUILTINS
#define TARGET_INIT_BUILTINS ix86_init_builtins
#undef TARGET_EXPAND_BUILTIN
#define TARGET_EXPAND_BUILTIN ix86_expand_builtin
#if defined (OSF_OS) || defined (TARGET_OSF1ELF)
static void ix86_osf_output_function_prologue PARAMS ((FILE *,
HOST_WIDE_INT));
# undef TARGET_ASM_FUNCTION_PROLOGUE
# define TARGET_ASM_FUNCTION_PROLOGUE ix86_osf_output_function_prologue
#endif
#undef TARGET_ASM_OPEN_PAREN
#define TARGET_ASM_OPEN_PAREN ""
#undef TARGET_ASM_CLOSE_PAREN
#define TARGET_ASM_CLOSE_PAREN ""
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP ASM_SHORT
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP ASM_LONG
#ifdef ASM_QUAD
#undef TARGET_ASM_ALIGNED_DI_OP
#define TARGET_ASM_ALIGNED_DI_OP ASM_QUAD
#endif
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST ix86_adjust_cost
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE ix86_issue_rate
#undef TARGET_SCHED_VARIABLE_ISSUE
#define TARGET_SCHED_VARIABLE_ISSUE ix86_variable_issue
#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT ix86_sched_init
#undef TARGET_SCHED_REORDER
#define TARGET_SCHED_REORDER ix86_sched_reorder
struct gcc_target targetm = TARGET_INITIALIZER;
/* Sometimes certain combinations of command options do not make
sense on a particular target machine. You can define a macro
`OVERRIDE_OPTIONS' to take account of this. This macro, if
defined, is executed once just after all the command options have
been parsed.
Don't use this macro to turn on various extra optimizations for
`-O'. That is what `OPTIMIZATION_OPTIONS' is for. */
void
override_options ()
{
int i;
/* Comes from final.c -- no real reason to change it. */
#define MAX_CODE_ALIGN 16
static struct ptt
{
const struct processor_costs *cost; /* Processor costs */
const int target_enable; /* Target flags to enable. */
const int target_disable; /* Target flags to disable. */
const int align_loop; /* Default alignments. */
const int align_loop_max_skip;
const int align_jump;
const int align_jump_max_skip;
const int align_func;
const int branch_cost;
}
const processor_target_table[PROCESSOR_max] =
{
{&i386_cost, 0, 0, 4, 3, 4, 3, 4, 1},
{&i486_cost, 0, 0, 16, 15, 16, 15, 16, 1},
{&pentium_cost, 0, 0, 16, 7, 16, 7, 16, 1},
{&pentiumpro_cost, 0, 0, 16, 15, 16, 7, 16, 1},
{&k6_cost, 0, 0, 32, 7, 32, 7, 32, 1},
{&athlon_cost, 0, 0, 16, 7, 64, 7, 16, 1},
{&pentium4_cost, 0, 0, 0, 0, 0, 0, 0, 1}
};
static const char * const cpu_names[] = TARGET_CPU_DEFAULT_NAMES;
static struct pta
{
const char *const name; /* processor name or nickname. */
const enum processor_type processor;
const enum pta_flags
{
PTA_SSE = 1,
PTA_SSE2 = 2,
PTA_MMX = 4,
PTA_PREFETCH_SSE = 8,
PTA_3DNOW = 16,
PTA_3DNOW_A = 64
} flags;
}
const processor_alias_table[] =
{
{"i386", PROCESSOR_I386, 0},
{"i486", PROCESSOR_I486, 0},
{"i586", PROCESSOR_PENTIUM, 0},
{"pentium", PROCESSOR_PENTIUM, 0},
{"pentium-mmx", PROCESSOR_PENTIUM, PTA_MMX},
{"i686", PROCESSOR_PENTIUMPRO, 0},
{"pentiumpro", PROCESSOR_PENTIUMPRO, 0},
{"pentium2", PROCESSOR_PENTIUMPRO, PTA_MMX},
{"pentium3", PROCESSOR_PENTIUMPRO, PTA_MMX | PTA_SSE | PTA_PREFETCH_SSE},
{"pentium4", PROCESSOR_PENTIUM4, PTA_SSE | PTA_SSE2 |
PTA_MMX | PTA_PREFETCH_SSE},
{"k6", PROCESSOR_K6, PTA_MMX},
{"k6-2", PROCESSOR_K6, PTA_MMX | PTA_3DNOW},
{"k6-3", PROCESSOR_K6, PTA_MMX | PTA_3DNOW},
{"athlon", PROCESSOR_ATHLON, PTA_MMX | PTA_PREFETCH_SSE | PTA_3DNOW
| PTA_3DNOW_A},
{"athlon-tbird", PROCESSOR_ATHLON, PTA_MMX | PTA_PREFETCH_SSE
| PTA_3DNOW | PTA_3DNOW_A},
{"athlon-4", PROCESSOR_ATHLON, PTA_MMX | PTA_PREFETCH_SSE | PTA_3DNOW
| PTA_3DNOW_A | PTA_SSE},
{"athlon-xp", PROCESSOR_ATHLON, PTA_MMX | PTA_PREFETCH_SSE | PTA_3DNOW
| PTA_3DNOW_A | PTA_SSE},
{"athlon-mp", PROCESSOR_ATHLON, PTA_MMX | PTA_PREFETCH_SSE | PTA_3DNOW
| PTA_3DNOW_A | PTA_SSE},
};
int const pta_size = sizeof (processor_alias_table) / sizeof (struct pta);
#ifdef SUBTARGET_OVERRIDE_OPTIONS
SUBTARGET_OVERRIDE_OPTIONS;
#endif
if (!ix86_cpu_string && ix86_arch_string)
ix86_cpu_string = ix86_arch_string;
if (!ix86_cpu_string)
ix86_cpu_string = cpu_names [TARGET_CPU_DEFAULT];
if (!ix86_arch_string)
ix86_arch_string = TARGET_64BIT ? "athlon-4" : "i386";
if (ix86_cmodel_string != 0)
{
if (!strcmp (ix86_cmodel_string, "small"))
ix86_cmodel = flag_pic ? CM_SMALL_PIC : CM_SMALL;
else if (flag_pic)
sorry ("code model %s not supported in PIC mode", ix86_cmodel_string);
else if (!strcmp (ix86_cmodel_string, "32"))
ix86_cmodel = CM_32;
else if (!strcmp (ix86_cmodel_string, "kernel") && !flag_pic)
ix86_cmodel = CM_KERNEL;
else if (!strcmp (ix86_cmodel_string, "medium") && !flag_pic)
ix86_cmodel = CM_MEDIUM;
else if (!strcmp (ix86_cmodel_string, "large") && !flag_pic)
ix86_cmodel = CM_LARGE;
else
error ("bad value (%s) for -mcmodel= switch", ix86_cmodel_string);
}
else
{
ix86_cmodel = CM_32;
if (TARGET_64BIT)
ix86_cmodel = flag_pic ? CM_SMALL_PIC : CM_SMALL;
}
if (ix86_asm_string != 0)
{
if (!strcmp (ix86_asm_string, "intel"))
ix86_asm_dialect = ASM_INTEL;
else if (!strcmp (ix86_asm_string, "att"))
ix86_asm_dialect = ASM_ATT;
else
error ("bad value (%s) for -masm= switch", ix86_asm_string);
}
if ((TARGET_64BIT == 0) != (ix86_cmodel == CM_32))
error ("code model `%s' not supported in the %s bit mode",
ix86_cmodel_string, TARGET_64BIT ? "64" : "32");
if (ix86_cmodel == CM_LARGE)
sorry ("code model `large' not supported yet");
if ((TARGET_64BIT != 0) != ((target_flags & MASK_64BIT) != 0))
sorry ("%i-bit mode not compiled in",
(target_flags & MASK_64BIT) ? 64 : 32);
for (i = 0; i < pta_size; i++)
if (! strcmp (ix86_arch_string, processor_alias_table[i].name))
{
ix86_arch = processor_alias_table[i].processor;
/* Default cpu tuning to the architecture. */
ix86_cpu = ix86_arch;
if (processor_alias_table[i].flags & PTA_MMX
&& !(target_flags & MASK_MMX_SET))
target_flags |= MASK_MMX;
if (processor_alias_table[i].flags & PTA_3DNOW
&& !(target_flags & MASK_3DNOW_SET))
target_flags |= MASK_3DNOW;
if (processor_alias_table[i].flags & PTA_3DNOW_A
&& !(target_flags & MASK_3DNOW_A_SET))
target_flags |= MASK_3DNOW_A;
if (processor_alias_table[i].flags & PTA_SSE
&& !(target_flags & MASK_SSE_SET))
target_flags |= MASK_SSE;
if (processor_alias_table[i].flags & PTA_SSE2
&& !(target_flags & MASK_SSE2_SET))
target_flags |= MASK_SSE2;
if (processor_alias_table[i].flags & PTA_PREFETCH_SSE)
x86_prefetch_sse = true;
break;
}
if (i == pta_size)
error ("bad value (%s) for -march= switch", ix86_arch_string);
for (i = 0; i < pta_size; i++)
if (! strcmp (ix86_cpu_string, processor_alias_table[i].name))
{
ix86_cpu = processor_alias_table[i].processor;
break;
}
if (processor_alias_table[i].flags & PTA_PREFETCH_SSE)
x86_prefetch_sse = true;
if (i == pta_size)
error ("bad value (%s) for -mcpu= switch", ix86_cpu_string);
if (optimize_size)
ix86_cost = &size_cost;
else
ix86_cost = processor_target_table[ix86_cpu].cost;
target_flags |= processor_target_table[ix86_cpu].target_enable;
target_flags &= ~processor_target_table[ix86_cpu].target_disable;
/* Arrange to set up i386_stack_locals for all functions. */
init_machine_status = ix86_init_machine_status;
mark_machine_status = ix86_mark_machine_status;
free_machine_status = ix86_free_machine_status;
/* Validate -mregparm= value. */
if (ix86_regparm_string)
{
i = atoi (ix86_regparm_string);
if (i < 0 || i > REGPARM_MAX)
error ("-mregparm=%d is not between 0 and %d", i, REGPARM_MAX);
else
ix86_regparm = i;
}
else
if (TARGET_64BIT)
ix86_regparm = REGPARM_MAX;
/* If the user has provided any of the -malign-* options,
warn and use that value only if -falign-* is not set.
Remove this code in GCC 3.2 or later. */
if (ix86_align_loops_string)
{
warning ("-malign-loops is obsolete, use -falign-loops");
if (align_loops == 0)
{
i = atoi (ix86_align_loops_string);
if (i < 0 || i > MAX_CODE_ALIGN)
error ("-malign-loops=%d is not between 0 and %d", i, MAX_CODE_ALIGN);
else
align_loops = 1 << i;
}
}
if (ix86_align_jumps_string)
{
warning ("-malign-jumps is obsolete, use -falign-jumps");
if (align_jumps == 0)
{
i = atoi (ix86_align_jumps_string);
if (i < 0 || i > MAX_CODE_ALIGN)
error ("-malign-loops=%d is not between 0 and %d", i, MAX_CODE_ALIGN);
else
align_jumps = 1 << i;
}
}
if (ix86_align_funcs_string)
{
warning ("-malign-functions is obsolete, use -falign-functions");
if (align_functions == 0)
{
i = atoi (ix86_align_funcs_string);
if (i < 0 || i > MAX_CODE_ALIGN)
error ("-malign-loops=%d is not between 0 and %d", i, MAX_CODE_ALIGN);
else
align_functions = 1 << i;
}
}
/* Default align_* from the processor table. */
#define abs(n) (n < 0 ? -n : n)
if (align_loops == 0)
{
align_loops = processor_target_table[ix86_cpu].align_loop;
align_loops_max_skip = processor_target_table[ix86_cpu].align_loop_max_skip;
}
if (align_jumps == 0)
{
align_jumps = processor_target_table[ix86_cpu].align_jump;
align_jumps_max_skip = processor_target_table[ix86_cpu].align_jump_max_skip;
}
if (align_functions == 0)
{
align_functions = processor_target_table[ix86_cpu].align_func;
}
/* Validate -mpreferred-stack-boundary= value, or provide default.
The default of 128 bits is for Pentium III's SSE __m128, but we
don't want additional code to keep the stack aligned when
optimizing for code size. */
ix86_preferred_stack_boundary = (optimize_size
? TARGET_64BIT ? 64 : 32
: 128);
if (ix86_preferred_stack_boundary_string)
{
i = atoi (ix86_preferred_stack_boundary_string);
if (i < (TARGET_64BIT ? 3 : 2) || i > 12)
error ("-mpreferred-stack-boundary=%d is not between %d and 12", i,
TARGET_64BIT ? 3 : 2);
else
ix86_preferred_stack_boundary = (1 << i) * BITS_PER_UNIT;
}
/* Validate -mbranch-cost= value, or provide default. */
ix86_branch_cost = processor_target_table[ix86_cpu].branch_cost;
if (ix86_branch_cost_string)
{
i = atoi (ix86_branch_cost_string);
if (i < 0 || i > 5)
error ("-mbranch-cost=%d is not between 0 and 5", i);
else
ix86_branch_cost = i;
}
/* Keep nonleaf frame pointers. */
if (TARGET_OMIT_LEAF_FRAME_POINTER)
flag_omit_frame_pointer = 1;
/* If we're doing fast math, we don't care about comparison order
wrt NaNs. This lets us use a shorter comparison sequence. */
if (flag_unsafe_math_optimizations)
target_flags &= ~MASK_IEEE_FP;
if (TARGET_64BIT)
{
if (TARGET_ALIGN_DOUBLE)
error ("-malign-double makes no sense in the 64bit mode");
if (TARGET_RTD)
error ("-mrtd calling convention not supported in the 64bit mode");
/* Enable by default the SSE and MMX builtins. */
target_flags |= (MASK_SSE2 | MASK_SSE | MASK_MMX | MASK_128BIT_LONG_DOUBLE);
ix86_fpmath = FPMATH_SSE;
}
else
ix86_fpmath = FPMATH_387;
if (ix86_fpmath_string != 0)
{
if (! strcmp (ix86_fpmath_string, "387"))
ix86_fpmath = FPMATH_387;
else if (! strcmp (ix86_fpmath_string, "sse"))
{
if (!TARGET_SSE)
{
warning ("SSE instruction set disabled, using 387 arithmetics");
ix86_fpmath = FPMATH_387;
}
else
ix86_fpmath = FPMATH_SSE;
}
else if (! strcmp (ix86_fpmath_string, "387,sse")
|| ! strcmp (ix86_fpmath_string, "sse,387"))
{
if (!TARGET_SSE)
{
warning ("SSE instruction set disabled, using 387 arithmetics");
ix86_fpmath = FPMATH_387;
}
else if (!TARGET_80387)
{
warning ("387 instruction set disabled, using SSE arithmetics");
ix86_fpmath = FPMATH_SSE;
}
else
ix86_fpmath = FPMATH_SSE | FPMATH_387;
}
else
error ("bad value (%s) for -mfpmath= switch", ix86_fpmath_string);
}
/* It makes no sense to ask for just SSE builtins, so MMX is also turned
on by -msse. */
if (TARGET_SSE)
target_flags |= MASK_MMX;
/* If it has 3DNow! it also has MMX so MMX is also turned on by -m3dnow */
if (TARGET_3DNOW)
{
target_flags |= MASK_MMX;
/* If we are targetting the Athlon architecture, enable the 3Dnow/MMX
extensions it adds. */
if (x86_3dnow_a & (1 << ix86_arch))
target_flags |= MASK_3DNOW_A;
}
if ((x86_accumulate_outgoing_args & CPUMASK)
&& !(target_flags & MASK_ACCUMULATE_OUTGOING_ARGS_SET)
&& !optimize_size)
target_flags |= MASK_ACCUMULATE_OUTGOING_ARGS;
/* Figure out what ASM_GENERATE_INTERNAL_LABEL builds as a prefix. */
{
char *p;
ASM_GENERATE_INTERNAL_LABEL (internal_label_prefix, "LX", 0);
p = strchr (internal_label_prefix, 'X');
internal_label_prefix_len = p - internal_label_prefix;
*p = '\0';
}
}
void
optimization_options (level, size)
int level;
int size ATTRIBUTE_UNUSED;
{
/* For -O2 and beyond, turn off -fschedule-insns by default. It tends to
make the problem with not enough registers even worse. */
#ifdef INSN_SCHEDULING
if (level > 1)
flag_schedule_insns = 0;
#endif
if (TARGET_64BIT && optimize >= 1)
flag_omit_frame_pointer = 1;
if (TARGET_64BIT)
{
flag_pcc_struct_return = 0;
flag_asynchronous_unwind_tables = 1;
}
}
/* Table of valid machine attributes. */
const struct attribute_spec ix86_attribute_table[] =
{
/* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
/* Stdcall attribute says callee is responsible for popping arguments
if they are not variable. */
{ "stdcall", 0, 0, false, true, true, ix86_handle_cdecl_attribute },
/* Cdecl attribute says the callee is a normal C declaration */
{ "cdecl", 0, 0, false, true, true, ix86_handle_cdecl_attribute },
/* Regparm attribute specifies how many integer arguments are to be
passed in registers. */
{ "regparm", 1, 1, false, true, true, ix86_handle_regparm_attribute },
#ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
{ "dllimport", 0, 0, false, false, false, ix86_handle_dll_attribute },
{ "dllexport", 0, 0, false, false, false, ix86_handle_dll_attribute },
{ "shared", 0, 0, true, false, false, ix86_handle_shared_attribute },
#endif
{ NULL, 0, 0, false, false, false, NULL }
};
/* Handle a "cdecl" or "stdcall" attribute;
arguments as in struct attribute_spec.handler. */
static tree
ix86_handle_cdecl_attribute (node, name, args, flags, no_add_attrs)
tree *node;
tree name;
tree args ATTRIBUTE_UNUSED;
int flags ATTRIBUTE_UNUSED;
bool *no_add_attrs;
{
if (TREE_CODE (*node) != FUNCTION_TYPE
&& TREE_CODE (*node) != METHOD_TYPE
&& TREE_CODE (*node) != FIELD_DECL
&& TREE_CODE (*node) != TYPE_DECL)
{
warning ("`%s' attribute only applies to functions",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
if (TARGET_64BIT)
{
warning ("`%s' attribute ignored", IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
return NULL_TREE;
}
/* Handle a "regparm" attribute;
arguments as in struct attribute_spec.handler. */
static tree
ix86_handle_regparm_attribute (node, name, args, flags, no_add_attrs)
tree *node;
tree name;
tree args;
int flags ATTRIBUTE_UNUSED;
bool *no_add_attrs;
{
if (TREE_CODE (*node) != FUNCTION_TYPE
&& TREE_CODE (*node) != METHOD_TYPE
&& TREE_CODE (*node) != FIELD_DECL
&& TREE_CODE (*node) != TYPE_DECL)
{
warning ("`%s' attribute only applies to functions",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
else
{
tree cst;
cst = TREE_VALUE (args);
if (TREE_CODE (cst) != INTEGER_CST)
{
warning ("`%s' attribute requires an integer constant argument",
IDENTIFIER_POINTER (name));
*no_add_attrs = true;
}
else if (compare_tree_int (cst, REGPARM_MAX) > 0)
{
warning ("argument to `%s' attribute larger than %d",
IDENTIFIER_POINTER (name), REGPARM_MAX);
*no_add_attrs = true;
}
}
return NULL_TREE;
}
#if defined (OSF_OS) || defined (TARGET_OSF1ELF)
/* Generate the assembly code for function entry. FILE is a stdio
stream to output the code to. SIZE is an int: how many units of
temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers to
save; `regs_ever_live[I]' is nonzero if register number I is ever
used in the function. This function is responsible for knowing
which registers should not be saved even if used.
We override it here to allow for the new profiling code to go before
the prologue and the old mcount code to go after the prologue (and
after %ebx has been set up for ELF shared library support). */
static void
ix86_osf_output_function_prologue (file, size)
FILE *file;
HOST_WIDE_INT size;
{
const char *prefix = "";
const char *const lprefix = LPREFIX;
int labelno = profile_label_no;
#ifdef OSF_OS
if (TARGET_UNDERSCORES)
prefix = "_";
if (profile_flag && OSF_PROFILE_BEFORE_PROLOGUE)
{
if (!flag_pic && !HALF_PIC_P ())
{
fprintf (file, "\tmovl $%sP%d,%%edx\n", lprefix, labelno);
fprintf (file, "\tcall *%s_mcount_ptr\n", prefix);
}
else if (HALF_PIC_P ())
{
rtx symref;
HALF_PIC_EXTERNAL ("_mcount_ptr");
symref = HALF_PIC_PTR (gen_rtx_SYMBOL_REF (Pmode,
"_mcount_ptr"));
fprintf (file, "\tmovl $%sP%d,%%edx\n", lprefix, labelno);
fprintf (file, "\tmovl %s%s,%%eax\n", prefix,
XSTR (symref, 0));
fprintf (file, "\tcall *(%%eax)\n");
}
else
{
static int call_no = 0;
fprintf (file, "\tcall %sPc%d\n", lprefix, call_no);
fprintf (file, "%sPc%d:\tpopl %%eax\n", lprefix, call_no);
fprintf (file, "\taddl $_GLOBAL_OFFSET_TABLE_+[.-%sPc%d],%%eax\n",
lprefix, call_no++);
fprintf (file, "\tleal %sP%d@GOTOFF(%%eax),%%edx\n",
lprefix, labelno);
fprintf (file, "\tmovl %s_mcount_ptr@GOT(%%eax),%%eax\n",
prefix);
fprintf (file, "\tcall *(%%eax)\n");
}
}
#else /* !OSF_OS */
if (profile_flag && OSF_PROFILE_BEFORE_PROLOGUE)
{
if (!flag_pic)
{
fprintf (file, "\tmovl $%sP%d,%%edx\n", lprefix, labelno);
fprintf (file, "\tcall *%s_mcount_ptr\n", prefix);
}
else
{
static int call_no = 0;
fprintf (file, "\tcall %sPc%d\n", lprefix, call_no);
fprintf (file, "%sPc%d:\tpopl %%eax\n", lprefix, call_no);
fprintf (file, "\taddl $_GLOBAL_OFFSET_TABLE_+[.-%sPc%d],%%eax\n",
lprefix, call_no++);
fprintf (file, "\tleal %sP%d@GOTOFF(%%eax),%%edx\n",
lprefix, labelno);
fprintf (file, "\tmovl %s_mcount_ptr@GOT(%%eax),%%eax\n",
prefix);
fprintf (file, "\tcall *(%%eax)\n");
}
}
#endif /* !OSF_OS */
function_prologue (file, size);
}
#endif /* OSF_OS || TARGET_OSF1ELF */
/* Return 0 if the attributes for two types are incompatible, 1 if they
are compatible, and 2 if they are nearly compatible (which causes a
warning to be generated). */
static int
ix86_comp_type_attributes (type1, type2)
tree type1;
tree type2;
{
/* Check for mismatch of non-default calling convention. */
const char *const rtdstr = TARGET_RTD ? "cdecl" : "stdcall";
if (TREE_CODE (type1) != FUNCTION_TYPE)
return 1;
/* Check for mismatched return types (cdecl vs stdcall). */
if (!lookup_attribute (rtdstr, TYPE_ATTRIBUTES (type1))
!= !lookup_attribute (rtdstr, TYPE_ATTRIBUTES (type2)))
return 0;
return 1;
}
/* Value is the number of bytes of arguments automatically
popped when returning from a subroutine call.
FUNDECL is the declaration node of the function (as a tree),
FUNTYPE is the data type of the function (as a tree),
or for a library call it is an identifier node for the subroutine name.
SIZE is the number of bytes of arguments passed on the stack.
On the 80386, the RTD insn may be used to pop them if the number
of args is fixed, but if the number is variable then the caller
must pop them all. RTD can't be used for library calls now
because the library is compiled with the Unix compiler.
Use of RTD is a selectable option, since it is incompatible with
standard Unix calling sequences. If the option is not selected,
the caller must always pop the args.
The attribute stdcall is equivalent to RTD on a per module basis. */
int
ix86_return_pops_args (fundecl, funtype, size)
tree fundecl;
tree funtype;
int size;
{
int rtd = TARGET_RTD && (!fundecl || TREE_CODE (fundecl) != IDENTIFIER_NODE);
/* Cdecl functions override -mrtd, and never pop the stack. */
if (! lookup_attribute ("cdecl", TYPE_ATTRIBUTES (funtype))) {
/* Stdcall functions will pop the stack if not variable args. */
if (lookup_attribute ("stdcall", TYPE_ATTRIBUTES (funtype)))
rtd = 1;
if (rtd
&& (TYPE_ARG_TYPES (funtype) == NULL_TREE
|| (TREE_VALUE (tree_last (TYPE_ARG_TYPES (funtype)))
== void_type_node)))
return size;
}
/* Lose any fake structure return argument. */
if (aggregate_value_p (TREE_TYPE (funtype))
&& !TARGET_64BIT)
return GET_MODE_SIZE (Pmode);
return 0;
}
/* Argument support functions. */
/* Return true when register may be used to pass function parameters. */
bool
ix86_function_arg_regno_p (regno)
int regno;
{
int i;
if (!TARGET_64BIT)
return regno < REGPARM_MAX || (TARGET_SSE && SSE_REGNO_P (regno));
if (SSE_REGNO_P (regno) && TARGET_SSE)
return true;
/* RAX is used as hidden argument to va_arg functions. */
if (!regno)
return true;
for (i = 0; i < REGPARM_MAX; i++)
if (regno == x86_64_int_parameter_registers[i])
return true;
return false;
}
/* Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
void
init_cumulative_args (cum, fntype, libname)
CUMULATIVE_ARGS *cum; /* Argument info to initialize */
tree fntype; /* tree ptr for function decl */
rtx libname; /* SYMBOL_REF of library name or 0 */
{
static CUMULATIVE_ARGS zero_cum;
tree param, next_param;
if (TARGET_DEBUG_ARG)
{
fprintf (stderr, "\ninit_cumulative_args (");
if (fntype)
fprintf (stderr, "fntype code = %s, ret code = %s",
tree_code_name[(int) TREE_CODE (fntype)],
tree_code_name[(int) TREE_CODE (TREE_TYPE (fntype))]);
else
fprintf (stderr, "no fntype");
if (libname)
fprintf (stderr, ", libname = %s", XSTR (libname, 0));
}
*cum = zero_cum;
/* Set up the number of registers to use for passing arguments. */
cum->nregs = ix86_regparm;
cum->sse_nregs = SSE_REGPARM_MAX;
if (fntype && !TARGET_64BIT)
{
tree attr = lookup_attribute ("regparm", TYPE_ATTRIBUTES (fntype));
if (attr)
cum->nregs = TREE_INT_CST_LOW (TREE_VALUE (TREE_VALUE (attr)));
}
cum->maybe_vaarg = false;
/* Determine if this function has variable arguments. This is
indicated by the last argument being 'void_type_mode' if there
are no variable arguments. If there are variable arguments, then
we won't pass anything in registers */
if (cum->nregs)
{
for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0;
param != 0; param = next_param)
{
next_param = TREE_CHAIN (param);
if (next_param == 0 && TREE_VALUE (param) != void_type_node)
{
if (!TARGET_64BIT)
cum->nregs = 0;
cum->maybe_vaarg = true;
}
}
}
if ((!fntype && !libname)
|| (fntype && !TYPE_ARG_TYPES (fntype)))
cum->maybe_vaarg = 1;
if (TARGET_DEBUG_ARG)
fprintf (stderr, ", nregs=%d )\n", cum->nregs);
return;
}
/* x86-64 register passing impleemntation. See x86-64 ABI for details. Goal
of this code is to classify each 8bytes of incoming argument by the register
class and assign registers accordingly. */
/* Return the union class of CLASS1 and CLASS2.
See the x86-64 PS ABI for details. */
static enum x86_64_reg_class
merge_classes (class1, class2)
enum x86_64_reg_class class1, class2;
{
/* Rule #1: If both classes are equal, this is the resulting class. */
if (class1 == class2)
return class1;
/* Rule #2: If one of the classes is NO_CLASS, the resulting class is
the other class. */
if (class1 == X86_64_NO_CLASS)
return class2;
if (class2 == X86_64_NO_CLASS)
return class1;
/* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */
if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
return X86_64_MEMORY_CLASS;
/* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */
if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
|| (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
return X86_64_INTEGERSI_CLASS;
if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
|| class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
return X86_64_INTEGER_CLASS;
/* Rule #5: If one of the classes is X87 or X87UP class, MEMORY is used. */
if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS
|| class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS)
return X86_64_MEMORY_CLASS;
/* Rule #6: Otherwise class SSE is used. */
return X86_64_SSE_CLASS;
}
/* Classify the argument of type TYPE and mode MODE.
CLASSES will be filled by the register class used to pass each word
of the operand. The number of words is returned. In case the parameter
should be passed in memory, 0 is returned. As a special case for zero
sized containers, classes[0] will be NO_CLASS and 1 is returned.
BIT_OFFSET is used internally for handling records and specifies offset
of the offset in bits modulo 256 to avoid overflow cases.
See the x86-64 PS ABI for details.
*/
static int
classify_argument (mode, type, classes, bit_offset)
enum machine_mode mode;
tree type;
enum x86_64_reg_class classes[MAX_CLASSES];
int bit_offset;
{
int bytes =
(mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode);
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
if (type && AGGREGATE_TYPE_P (type))
{
int i;
tree field;
enum x86_64_reg_class subclasses[MAX_CLASSES];
/* On x86-64 we pass structures larger than 16 bytes on the stack. */
if (bytes > 16)
return 0;
for (i = 0; i < words; i++)
classes[i] = X86_64_NO_CLASS;
/* Zero sized arrays or structures are NO_CLASS. We return 0 to
signalize memory class, so handle it as special case. */
if (!words)
{
classes[0] = X86_64_NO_CLASS;
return 1;
}
/* Classify each field of record and merge classes. */
if (TREE_CODE (type) == RECORD_TYPE)
{
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
{
if (TREE_CODE (field) == FIELD_DECL)
{
int num;
/* Bitfields are always classified as integer. Handle them
early, since later code would consider them to be
misaligned integers. */
if (DECL_BIT_FIELD (field))
{
for (i = int_bit_position (field) / 8 / 8;
i < (int_bit_position (field)
+ tree_low_cst (DECL_SIZE (field), 0)
+ 63) / 8 / 8; i++)
classes[i] =
merge_classes (X86_64_INTEGER_CLASS,
classes[i]);
}
else
{
num = classify_argument (TYPE_MODE (TREE_TYPE (field)),
TREE_TYPE (field), subclasses,
(int_bit_position (field)
+ bit_offset) % 256);
if (!num)
return 0;
for (i = 0; i < num; i++)
{
int pos =
(int_bit_position (field) + bit_offset) / 8 / 8;
classes[i + pos] =
merge_classes (subclasses[i], classes[i + pos]);
}
}
}
}
}
/* Arrays are handled as small records. */
else if (TREE_CODE (type) == ARRAY_TYPE)
{
int num;
num = classify_argument (TYPE_MODE (TREE_TYPE (type)),
TREE_TYPE (type), subclasses, bit_offset);
if (!num)
return 0;
/* The partial classes are now full classes. */
if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4)
subclasses[0] = X86_64_SSE_CLASS;
if (subclasses[0] == X86_64_INTEGERSI_CLASS && bytes != 4)
subclasses[0] = X86_64_INTEGER_CLASS;
for (i = 0; i < words; i++)
classes[i] = subclasses[i % num];
}
/* Unions are similar to RECORD_TYPE but offset is always 0. */
else if (TREE_CODE (type) == UNION_TYPE)
{
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
{
if (TREE_CODE (field) == FIELD_DECL)
{
int num;
num = classify_argument (TYPE_MODE (TREE_TYPE (field)),
TREE_TYPE (field), subclasses,
bit_offset);
if (!num)
return 0;
for (i = 0; i < num; i++)
classes[i] = merge_classes (subclasses[i], classes[i]);
}
}
}
else
abort ();
/* Final merger cleanup. */
for (i = 0; i < words; i++)
{
/* If one class is MEMORY, everything should be passed in
memory. */
if (classes[i] == X86_64_MEMORY_CLASS)
return 0;
/* The X86_64_SSEUP_CLASS should be always preceded by
X86_64_SSE_CLASS. */
if (classes[i] == X86_64_SSEUP_CLASS
&& (i == 0 || classes[i - 1] != X86_64_SSE_CLASS))
classes[i] = X86_64_SSE_CLASS;
/* X86_64_X87UP_CLASS should be preceded by X86_64_X87_CLASS. */
if (classes[i] == X86_64_X87UP_CLASS
&& (i == 0 || classes[i - 1] != X86_64_X87_CLASS))
classes[i] = X86_64_SSE_CLASS;
}
return words;
}
/* Compute alignment needed. We align all types to natural boundaries with
exception of XFmode that is aligned to 64bits. */
if (mode != VOIDmode && mode != BLKmode)
{
int mode_alignment = GET_MODE_BITSIZE (mode);
if (mode == XFmode)
mode_alignment = 128;
else if (mode == XCmode)
mode_alignment = 256;
/* Misaligned fields are always returned in memory. */
if (bit_offset % mode_alignment)
return 0;
}
/* Classification of atomic types. */
switch (mode)
{
case DImode:
case SImode:
case HImode:
case QImode:
case CSImode:
case CHImode:
case CQImode:
if (bit_offset + GET_MODE_BITSIZE (mode) <= 32)
classes[0] = X86_64_INTEGERSI_CLASS;
else
classes[0] = X86_64_INTEGER_CLASS;
return 1;
case CDImode:
case TImode:
classes[0] = classes[1] = X86_64_INTEGER_CLASS;
return 2;
case CTImode:
classes[0] = classes[1] = X86_64_INTEGER_CLASS;
classes[2] = classes[3] = X86_64_INTEGER_CLASS;
return 4;
case SFmode:
if (!(bit_offset % 64))
classes[0] = X86_64_SSESF_CLASS;
else
classes[0] = X86_64_SSE_CLASS;
return 1;
case DFmode:
classes[0] = X86_64_SSEDF_CLASS;
return 1;
case TFmode:
classes[0] = X86_64_X87_CLASS;
classes[1] = X86_64_X87UP_CLASS;
return 2;
case TCmode:
classes[0] = X86_64_X87_CLASS;
classes[1] = X86_64_X87UP_CLASS;
classes[2] = X86_64_X87_CLASS;
classes[3] = X86_64_X87UP_CLASS;
return 4;
case DCmode:
classes[0] = X86_64_SSEDF_CLASS;
classes[1] = X86_64_SSEDF_CLASS;
return 2;
case SCmode:
classes[0] = X86_64_SSE_CLASS;
return 1;
case BLKmode:
return 0;
default:
abort ();
}
}
/* Examine the argument and return set number of register required in each
class. Return 0 iff parameter should be passed in memory. */
static int
examine_argument (mode, type, in_return, int_nregs, sse_nregs)
enum machine_mode mode;
tree type;
int *int_nregs, *sse_nregs;
int in_return;
{
enum x86_64_reg_class class[MAX_CLASSES];
int n = classify_argument (mode, type, class, 0);
*int_nregs = 0;
*sse_nregs = 0;
if (!n)
return 0;
for (n--; n >= 0; n--)
switch (class[n])
{
case X86_64_INTEGER_CLASS:
case X86_64_INTEGERSI_CLASS:
(*int_nregs)++;
break;
case X86_64_SSE_CLASS:
case X86_64_SSESF_CLASS:
case X86_64_SSEDF_CLASS:
(*sse_nregs)++;
break;
case X86_64_NO_CLASS:
case X86_64_SSEUP_CLASS:
break;
case X86_64_X87_CLASS:
case X86_64_X87UP_CLASS:
if (!in_return)
return 0;
break;
case X86_64_MEMORY_CLASS:
abort ();
}
return 1;
}
/* Construct container for the argument used by GCC interface. See
FUNCTION_ARG for the detailed description. */
static rtx
construct_container (mode, type, in_return, nintregs, nsseregs, intreg, sse_regno)
enum machine_mode mode;
tree type;
int in_return;
int nintregs, nsseregs;
int *intreg, sse_regno;
{
enum machine_mode tmpmode;
int bytes =
(mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode);
enum x86_64_reg_class class[MAX_CLASSES];
int n;
int i;
int nexps = 0;
int needed_sseregs, needed_intregs;
rtx exp[MAX_CLASSES];
rtx ret;
n = classify_argument (mode, type, class, 0);
if (TARGET_DEBUG_ARG)
{
if (!n)
fprintf (stderr, "Memory class\n");
else
{
fprintf (stderr, "Classes:");
for (i = 0; i < n; i++)
{
fprintf (stderr, " %s", x86_64_reg_class_name[class[i]]);
}
fprintf (stderr, "\n");
}
}
if (!n)
return NULL;
if (!examine_argument (mode, type, in_return, &needed_intregs, &needed_sseregs))
return NULL;
if (needed_intregs > nintregs || needed_sseregs > nsseregs)
return NULL;
/* First construct simple cases. Avoid SCmode, since we want to use
single register to pass this type. */
if (n == 1 && mode != SCmode)
switch (class[0])
{
case X86_64_INTEGER_CLASS:
case X86_64_INTEGERSI_CLASS:
return gen_rtx_REG (mode, intreg[0]);
case X86_64_SSE_CLASS:
case X86_64_SSESF_CLASS:
case X86_64_SSEDF_CLASS:
return gen_rtx_REG (mode, SSE_REGNO (sse_regno));
case X86_64_X87_CLASS:
return gen_rtx_REG (mode, FIRST_STACK_REG);
case X86_64_NO_CLASS:
/* Zero sized array, struct or class. */
return NULL;
default:
abort ();
}
if (n == 2 && class[0] == X86_64_SSE_CLASS && class[1] == X86_64_SSEUP_CLASS)
return gen_rtx_REG (TImode, SSE_REGNO (sse_regno));
if (n == 2
&& class[0] == X86_64_X87_CLASS && class[1] == X86_64_X87UP_CLASS)
return gen_rtx_REG (TFmode, FIRST_STACK_REG);
if (n == 2 && class[0] == X86_64_INTEGER_CLASS
&& class[1] == X86_64_INTEGER_CLASS
&& (mode == CDImode || mode == TImode)
&& intreg[0] + 1 == intreg[1])
return gen_rtx_REG (mode, intreg[0]);
if (n == 4
&& class[0] == X86_64_X87_CLASS && class[1] == X86_64_X87UP_CLASS
&& class[2] == X86_64_X87_CLASS && class[3] == X86_64_X87UP_CLASS)
return gen_rtx_REG (TCmode, FIRST_STACK_REG);
/* Otherwise figure out the entries of the PARALLEL. */
for (i = 0; i < n; i++)
{
switch (class[i])
{
case X86_64_NO_CLASS:
break;
case X86_64_INTEGER_CLASS:
case X86_64_INTEGERSI_CLASS:
/* Merge TImodes on aligned occassions here too. */
if (i * 8 + 8 > bytes)
tmpmode = mode_for_size ((bytes - i * 8) * BITS_PER_UNIT, MODE_INT, 0);
else if (class[i] == X86_64_INTEGERSI_CLASS)
tmpmode = SImode;
else
tmpmode = DImode;
/* We've requested 24 bytes we don't have mode for. Use DImode. */
if (tmpmode == BLKmode)
tmpmode = DImode;
exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (tmpmode, *intreg),
GEN_INT (i*8));
intreg++;
break;
case X86_64_SSESF_CLASS:
exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (SFmode,
SSE_REGNO (sse_regno)),
GEN_INT (i*8));
sse_regno++;
break;
case X86_64_SSEDF_CLASS:
exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (DFmode,
SSE_REGNO (sse_regno)),
GEN_INT (i*8));
sse_regno++;
break;
case X86_64_SSE_CLASS:
if (i < n && class[i + 1] == X86_64_SSEUP_CLASS)
tmpmode = TImode, i++;
else
tmpmode = DImode;
exp [nexps++] = gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (tmpmode,
SSE_REGNO (sse_regno)),
GEN_INT (i*8));
sse_regno++;
break;
default:
abort ();
}
}
ret = gen_rtx_PARALLEL (mode, rtvec_alloc (nexps));
for (i = 0; i < nexps; i++)
XVECEXP (ret, 0, i) = exp [i];
return ret;
}
/* Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
(TYPE is null for libcalls where that information may not be available.) */
void
function_arg_advance (cum, mode, type, named)
CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* whether or not the argument was named */
{
int bytes =
(mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode);
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
if (TARGET_DEBUG_ARG)
fprintf (stderr,
"function_adv (sz=%d, wds=%2d, nregs=%d, mode=%s, named=%d)\n\n",
words, cum->words, cum->nregs, GET_MODE_NAME (mode), named);
if (TARGET_64BIT)
{
int int_nregs, sse_nregs;
if (!examine_argument (mode, type, 0, &int_nregs, &sse_nregs))
cum->words += words;
else if (sse_nregs <= cum->sse_nregs && int_nregs <= cum->nregs)
{
cum->nregs -= int_nregs;
cum->sse_nregs -= sse_nregs;
cum->regno += int_nregs;
cum->sse_regno += sse_nregs;
}
else
cum->words += words;
}
else
{
if (TARGET_SSE && mode == TImode)
{
cum->sse_words += words;
cum->sse_nregs -= 1;
cum->sse_regno += 1;
if (cum->sse_nregs <= 0)
{
cum->sse_nregs = 0;
cum->sse_regno = 0;
}
}
else
{
cum->words += words;
cum->nregs -= words;
cum->regno += words;
if (cum->nregs <= 0)
{
cum->nregs = 0;
cum->regno = 0;
}
}
}
return;
}
/* Define where to put the arguments to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis). */
struct rtx_def *
function_arg (cum, mode, type, named)
CUMULATIVE_ARGS *cum; /* current arg information */
enum machine_mode mode; /* current arg mode */
tree type; /* type of the argument or 0 if lib support */
int named; /* != 0 for normal args, == 0 for ... args */
{
rtx ret = NULL_RTX;
int bytes =
(mode == BLKmode) ? int_size_in_bytes (type) : (int) GET_MODE_SIZE (mode);
int words = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
/* Handle an hidden AL argument containing number of registers for varargs
x86-64 functions. For i386 ABI just return constm1_rtx to avoid
any AL settings. */
if (mode == VOIDmode)
{
if (TARGET_64BIT)
return GEN_INT (cum->maybe_vaarg
? (cum->sse_nregs < 0
? SSE_REGPARM_MAX
: cum->sse_regno)
: -1);
else
return constm1_rtx;
}
if (TARGET_64BIT)
ret = construct_container (mode, type, 0, cum->nregs, cum->sse_nregs,
&x86_64_int_parameter_registers [cum->regno],
cum->sse_regno);
else
switch (mode)
{
/* For now, pass fp/complex values on the stack. */
default:
break;
case BLKmode:
case DImode:
case SImode:
case HImode:
case QImode:
if (words <= cum->nregs)
ret = gen_rtx_REG (mode, cum->regno);
break;
case TImode:
if (cum->sse_nregs)
ret = gen_rtx_REG (mode, cum->sse_regno);
break;
}
if (TARGET_DEBUG_ARG)
{
fprintf (stderr,
"function_arg (size=%d, wds=%2d, nregs=%d, mode=%4s, named=%d",
words, cum->words, cum->nregs, GET_MODE_NAME (mode), named);
if (ret)
fprintf (stderr, ", reg=%%e%s", reg_names[ REGNO(ret) ]);
else
fprintf (stderr, ", stack");
fprintf (stderr, " )\n");
}
return ret;
}
/* Gives the alignment boundary, in bits, of an argument with the specified mode
and type. */
int
ix86_function_arg_boundary (mode, type)
enum machine_mode mode;
tree type;
{
int align;
if (!TARGET_64BIT)
return PARM_BOUNDARY;
if (type)
align = TYPE_ALIGN (type);
else
align = GET_MODE_ALIGNMENT (mode);
if (align < PARM_BOUNDARY)
align = PARM_BOUNDARY;
if (align > 128)
align = 128;
return align;
}
/* Return true if N is a possible register number of function value. */
bool
ix86_function_value_regno_p (regno)
int regno;
{
if (!TARGET_64BIT)
{
return ((regno) == 0
|| ((regno) == FIRST_FLOAT_REG && TARGET_FLOAT_RETURNS_IN_80387)
|| ((regno) == FIRST_SSE_REG && TARGET_SSE));
}
return ((regno) == 0 || (regno) == FIRST_FLOAT_REG
|| ((regno) == FIRST_SSE_REG && TARGET_SSE)
|| ((regno) == FIRST_FLOAT_REG && TARGET_FLOAT_RETURNS_IN_80387));
}
/* Define how to find the value returned by a function.
VALTYPE is the data type of the value (as a tree).
If the precise function being called is known, FUNC is its FUNCTION_DECL;
otherwise, FUNC is 0. */
rtx
ix86_function_value (valtype)
tree valtype;
{
if (TARGET_64BIT)
{
rtx ret = construct_container (TYPE_MODE (valtype), valtype, 1,
REGPARM_MAX, SSE_REGPARM_MAX,
x86_64_int_return_registers, 0);
/* For zero sized structures, construct_continer return NULL, but we need
to keep rest of compiler happy by returning meaningfull value. */
if (!ret)
ret = gen_rtx_REG (TYPE_MODE (valtype), 0);
return ret;
}
else
return gen_rtx_REG (TYPE_MODE (valtype), VALUE_REGNO (TYPE_MODE (valtype)));
}
/* Return false iff type is returned in memory. */
int
ix86_return_in_memory (type)
tree type;
{
int needed_intregs, needed_sseregs;
if (TARGET_64BIT)
{
return !examine_argument (TYPE_MODE (type), type, 1,
&needed_intregs, &needed_sseregs);
}
else
{
if (TYPE_MODE (type) == BLKmode
|| (VECTOR_MODE_P (TYPE_MODE (type))
&& int_size_in_bytes (type) == 8)
|| (int_size_in_bytes (type) > 12 && TYPE_MODE (type) != TImode
&& TYPE_MODE (type) != TFmode
&& !VECTOR_MODE_P (TYPE_MODE (type))))
return 1;
return 0;
}
}
/* Define how to find the value returned by a library function
assuming the value has mode MODE. */
rtx
ix86_libcall_value (mode)
enum machine_mode mode;
{
if (TARGET_64BIT)
{
switch (mode)
{
case SFmode:
case SCmode:
case DFmode:
case DCmode:
return gen_rtx_REG (mode, FIRST_SSE_REG);
case TFmode:
case TCmode:
return gen_rtx_REG (mode, FIRST_FLOAT_REG);
default:
return gen_rtx_REG (mode, 0);
}
}
else
return gen_rtx_REG (mode, VALUE_REGNO (mode));
}
/* Create the va_list data type. */
tree
ix86_build_va_list ()
{
tree f_gpr, f_fpr, f_ovf, f_sav, record, type_decl;
/* For i386 we use plain pointer to argument area. */
if (!TARGET_64BIT)
return build_pointer_type (char_type_node);
record = make_lang_type (RECORD_TYPE);
type_decl = build_decl (TYPE_DECL, get_identifier ("__va_list_tag"), record);
f_gpr = build_decl (FIELD_DECL, get_identifier ("gp_offset"),
unsigned_type_node);
f_fpr = build_decl (FIELD_DECL, get_identifier ("fp_offset"),
unsigned_type_node);
f_ovf = build_decl (FIELD_DECL, get_identifier ("overflow_arg_area"),
ptr_type_node);
f_sav = build_decl (FIELD_DECL, get_identifier ("reg_save_area"),
ptr_type_node);
DECL_FIELD_CONTEXT (f_gpr) = record;
DECL_FIELD_CONTEXT (f_fpr) = record;
DECL_FIELD_CONTEXT (f_ovf) = record;
DECL_FIELD_CONTEXT (f_sav) = record;
TREE_CHAIN (record) = type_decl;
TYPE_NAME (record) = type_decl;
TYPE_FIELDS (record) = f_gpr;
TREE_CHAIN (f_gpr) = f_fpr;
TREE_CHAIN (f_fpr) = f_ovf;
TREE_CHAIN (f_ovf) = f_sav;
layout_type (record);
/* The correct type is an array type of one element. */
return build_array_type (record, build_index_type (size_zero_node));
}
/* Perform any needed actions needed for a function that is receiving a
variable number of arguments.
CUM is as above.
MODE and TYPE are the mode and type of the current parameter.
PRETEND_SIZE is a variable that should be set to the amount of stack
that must be pushed by the prolog to pretend that our caller pushed
it.
Normally, this macro will push all remaining incoming registers on the
stack and set PRETEND_SIZE to the length of the registers pushed. */
void
ix86_setup_incoming_varargs (cum, mode, type, pretend_size, no_rtl)
CUMULATIVE_ARGS *cum;
enum machine_mode mode;
tree type;
int *pretend_size ATTRIBUTE_UNUSED;
int no_rtl;
{
CUMULATIVE_ARGS next_cum;
rtx save_area = NULL_RTX, mem;
rtx label;
rtx label_ref;
rtx tmp_reg;
rtx nsse_reg;
int set;
tree fntype;
int stdarg_p;
int i;
if (!TARGET_64BIT)
return;
/* Indicate to allocate space on the stack for varargs save area. */
ix86_save_varrargs_registers = 1;
fntype = TREE_TYPE (current_function_decl);
stdarg_p = (TYPE_ARG_TYPES (fntype) != 0
&& (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
!= void_type_node));
/* For varargs, we do not want to skip the dummy va_dcl argument.
For stdargs, we do want to skip the last named argument. */
next_cum = *cum;
if (stdarg_p)
function_arg_advance (&next_cum, mode, type, 1);
if (!no_rtl)
save_area = frame_pointer_rtx;
set = get_varargs_alias_set ();
for (i = next_cum.regno; i < ix86_regparm; i++)
{
mem = gen_rtx_MEM (Pmode,
plus_constant (save_area, i * UNITS_PER_WORD));
set_mem_alias_set (mem, set);
emit_move_insn (mem, gen_rtx_REG (Pmode,
x86_64_int_parameter_registers[i]));
}
if (next_cum.sse_nregs)
{
/* Now emit code to save SSE registers. The AX parameter contains number
of SSE parameter regsiters used to call this function. We use
sse_prologue_save insn template that produces computed jump across
SSE saves. We need some preparation work to get this working. */
label = gen_label_rtx ();
label_ref = gen_rtx_LABEL_REF (Pmode, label);
/* Compute address to jump to :
label - 5*eax + nnamed_sse_arguments*5 */
tmp_reg = gen_reg_rtx (Pmode);
nsse_reg = gen_reg_rtx (Pmode);
emit_insn (gen_zero_extendqidi2 (nsse_reg, gen_rtx_REG (QImode, 0)));
emit_insn (gen_rtx_SET (VOIDmode, tmp_reg,
gen_rtx_MULT (Pmode, nsse_reg,
GEN_INT (4))));
if (next_cum.sse_regno)
emit_move_insn
(nsse_reg,
gen_rtx_CONST (DImode,
gen_rtx_PLUS (DImode,
label_ref,
GEN_INT (next_cum.sse_regno * 4))));
else
emit_move_insn (nsse_reg, label_ref);
emit_insn (gen_subdi3 (nsse_reg, nsse_reg, tmp_reg));
/* Compute address of memory block we save into. We always use pointer
pointing 127 bytes after first byte to store - this is needed to keep
instruction size limited by 4 bytes. */
tmp_reg = gen_reg_rtx (Pmode);
emit_insn (gen_rtx_SET (VOIDmode, tmp_reg,
plus_constant (save_area,
8 * REGPARM_MAX + 127)));
mem = gen_rtx_MEM (BLKmode, plus_constant (tmp_reg, -127));
set_mem_alias_set (mem, set);
set_mem_align (mem, BITS_PER_WORD);
/* And finally do the dirty job! */
emit_insn (gen_sse_prologue_save (mem, nsse_reg,
GEN_INT (next_cum.sse_regno), label));
}
}
/* Implement va_start. */
void
ix86_va_start (stdarg_p, valist, nextarg)
int stdarg_p;
tree valist;
rtx nextarg;
{
HOST_WIDE_INT words, n_gpr, n_fpr;
tree f_gpr, f_fpr, f_ovf, f_sav;
tree gpr, fpr, ovf, sav, t;
/* Only 64bit target needs something special. */
if (!TARGET_64BIT)
{
std_expand_builtin_va_start (stdarg_p, valist, nextarg);
return;
}
f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
f_fpr = TREE_CHAIN (f_gpr);
f_ovf = TREE_CHAIN (f_fpr);
f_sav = TREE_CHAIN (f_ovf);
valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist);
gpr = build (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr);
fpr = build (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr);
ovf = build (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf);
sav = build (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav);
/* Count number of gp and fp argument registers used. */
words = current_function_args_info.words;
n_gpr = current_function_args_info.regno;
n_fpr = current_function_args_info.sse_regno;
if (TARGET_DEBUG_ARG)
fprintf (stderr, "va_start: words = %d, n_gpr = %d, n_fpr = %d\n",
(int)words, (int)n_gpr, (int)n_fpr);
t = build (MODIFY_EXPR, TREE_TYPE (gpr), gpr,
build_int_2 (n_gpr * 8, 0));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
t = build (MODIFY_EXPR, TREE_TYPE (fpr), fpr,
build_int_2 (n_fpr * 16 + 8*REGPARM_MAX, 0));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Find the overflow area. */
t = make_tree (TREE_TYPE (ovf), virtual_incoming_args_rtx);
if (words != 0)
t = build (PLUS_EXPR, TREE_TYPE (ovf), t,
build_int_2 (words * UNITS_PER_WORD, 0));
t = build (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Find the register save area.
Prologue of the function save it right above stack frame. */
t = make_tree (TREE_TYPE (sav), frame_pointer_rtx);
t = build (MODIFY_EXPR, TREE_TYPE (sav), sav, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
/* Implement va_arg. */
rtx
ix86_va_arg (valist, type)
tree valist, type;
{
static int intreg[6] = { 0, 1, 2, 3, 4, 5 };
tree f_gpr, f_fpr, f_ovf, f_sav;
tree gpr, fpr, ovf, sav, t;
int size, rsize;
rtx lab_false, lab_over = NULL_RTX;
rtx addr_rtx, r;
rtx container;
/* Only 64bit target needs something special. */
if (!TARGET_64BIT)
{
return std_expand_builtin_va_arg (valist, type);
}
f_gpr = TYPE_FIELDS (TREE_TYPE (va_list_type_node));
f_fpr = TREE_CHAIN (f_gpr);
f_ovf = TREE_CHAIN (f_fpr);
f_sav = TREE_CHAIN (f_ovf);
valist = build1 (INDIRECT_REF, TREE_TYPE (TREE_TYPE (valist)), valist);
gpr = build (COMPONENT_REF, TREE_TYPE (f_gpr), valist, f_gpr);
fpr = build (COMPONENT_REF, TREE_TYPE (f_fpr), valist, f_fpr);
ovf = build (COMPONENT_REF, TREE_TYPE (f_ovf), valist, f_ovf);
sav = build (COMPONENT_REF, TREE_TYPE (f_sav), valist, f_sav);
size = int_size_in_bytes (type);
rsize = (size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
container = construct_container (TYPE_MODE (type), type, 0,
REGPARM_MAX, SSE_REGPARM_MAX, intreg, 0);
/*
* Pull the value out of the saved registers ...
*/
addr_rtx = gen_reg_rtx (Pmode);
if (container)
{
rtx int_addr_rtx, sse_addr_rtx;
int needed_intregs, needed_sseregs;
int need_temp;
lab_over = gen_label_rtx ();
lab_false = gen_label_rtx ();
examine_argument (TYPE_MODE (type), type, 0,
&needed_intregs, &needed_sseregs);
need_temp = ((needed_intregs && TYPE_ALIGN (type) > 64)
|| TYPE_ALIGN (type) > 128);
/* In case we are passing structure, verify that it is consetuctive block
on the register save area. If not we need to do moves. */
if (!need_temp && !REG_P (container))
{
/* Verify that all registers are strictly consetuctive */
if (SSE_REGNO_P (REGNO (XEXP (XVECEXP (container, 0, 0), 0))))
{
int i;
for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++)
{
rtx slot = XVECEXP (container, 0, i);
if (REGNO (XEXP (slot, 0)) != FIRST_SSE_REG + (unsigned int)i
|| INTVAL (XEXP (slot, 1)) != i * 16)
need_temp = 1;
}
}
else
{
int i;
for (i = 0; i < XVECLEN (container, 0) && !need_temp; i++)
{
rtx slot = XVECEXP (container, 0, i);
if (REGNO (XEXP (slot, 0)) != (unsigned int)i
|| INTVAL (XEXP (slot, 1)) != i * 8)
need_temp = 1;
}
}
}
if (!need_temp)
{
int_addr_rtx = addr_rtx;
sse_addr_rtx = addr_rtx;
}
else
{
int_addr_rtx = gen_reg_rtx (Pmode);
sse_addr_rtx = gen_reg_rtx (Pmode);
}
/* First ensure that we fit completely in registers. */
if (needed_intregs)
{
emit_cmp_and_jump_insns (expand_expr
(gpr, NULL_RTX, SImode, EXPAND_NORMAL),
GEN_INT ((REGPARM_MAX - needed_intregs +
1) * 8), GE, const1_rtx, SImode,
1, lab_false);
}
if (needed_sseregs)
{
emit_cmp_and_jump_insns (expand_expr
(fpr, NULL_RTX, SImode, EXPAND_NORMAL),
GEN_INT ((SSE_REGPARM_MAX -
needed_sseregs + 1) * 16 +
REGPARM_MAX * 8), GE, const1_rtx,
SImode, 1, lab_false);
}
/* Compute index to start of area used for integer regs. */
if (needed_intregs)
{
t = build (PLUS_EXPR, ptr_type_node, sav, gpr);
r = expand_expr (t, int_addr_rtx, Pmode, EXPAND_NORMAL);
if (r != int_addr_rtx)
emit_move_insn (int_addr_rtx, r);
}
if (needed_sseregs)
{
t = build (PLUS_EXPR, ptr_type_node, sav, fpr);
r = expand_expr (t, sse_addr_rtx, Pmode, EXPAND_NORMAL);
if (r != sse_addr_rtx)
emit_move_insn (sse_addr_rtx, r);
}
if (need_temp)
{
int i;
rtx mem;
/* Never use the memory itself, as it has the alias set. */
addr_rtx = XEXP (assign_temp (type, 0, 1, 0), 0);
mem = gen_rtx_MEM (BLKmode, addr_rtx);
set_mem_alias_set (mem, get_varargs_alias_set ());
set_mem_align (mem, BITS_PER_UNIT);
for (i = 0; i < XVECLEN (container, 0); i++)
{
rtx slot = XVECEXP (container, 0, i);
rtx reg = XEXP (slot, 0);
enum machine_mode mode = GET_MODE (reg);
rtx src_addr;
rtx src_mem;
int src_offset;
rtx dest_mem;
if (SSE_REGNO_P (REGNO (reg)))
{
src_addr = sse_addr_rtx;
src_offset = (REGNO (reg) - FIRST_SSE_REG) * 16;
}
else
{
src_addr = int_addr_rtx;
src_offset = REGNO (reg) * 8;
}
src_mem = gen_rtx_MEM (mode, src_addr);
set_mem_alias_set (src_mem, get_varargs_alias_set ());
src_mem = adjust_address (src_mem, mode, src_offset);
dest_mem = adjust_address (mem, mode, INTVAL (XEXP (slot, 1)));
emit_move_insn (dest_mem, src_mem);
}
}
if (needed_intregs)
{
t =
build (PLUS_EXPR, TREE_TYPE (gpr), gpr,
build_int_2 (needed_intregs * 8, 0));
t = build (MODIFY_EXPR, TREE_TYPE (gpr), gpr, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
if (needed_sseregs)
{
t =
build (PLUS_EXPR, TREE_TYPE (fpr), fpr,
build_int_2 (needed_sseregs * 16, 0));
t = build (MODIFY_EXPR, TREE_TYPE (fpr), fpr, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
emit_jump_insn (gen_jump (lab_over));
emit_barrier ();
emit_label (lab_false);
}
/* ... otherwise out of the overflow area. */
/* Care for on-stack alignment if needed. */
if (FUNCTION_ARG_BOUNDARY (VOIDmode, type) <= 64)
t = ovf;
else
{
HOST_WIDE_INT align = FUNCTION_ARG_BOUNDARY (VOIDmode, type) / 8;
t = build (PLUS_EXPR, TREE_TYPE (ovf), ovf, build_int_2 (align - 1, 0));
t = build (BIT_AND_EXPR, TREE_TYPE (t), t, build_int_2 (-align, -1));
}
t = save_expr (t);
r = expand_expr (t, addr_rtx, Pmode, EXPAND_NORMAL);
if (r != addr_rtx)
emit_move_insn (addr_rtx, r);
t =
build (PLUS_EXPR, TREE_TYPE (t), t,
build_int_2 (rsize * UNITS_PER_WORD, 0));
t = build (MODIFY_EXPR, TREE_TYPE (ovf), ovf, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
if (container)
emit_label (lab_over);
return addr_rtx;
}
/* Return nonzero if OP is general operand representable on x86_64. */
int
x86_64_general_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (!TARGET_64BIT)
return general_operand (op, mode);
if (nonimmediate_operand (op, mode))
return 1;
return x86_64_sign_extended_value (op);
}
/* Return nonzero if OP is general operand representable on x86_64
as either sign extended or zero extended constant. */
int
x86_64_szext_general_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (!TARGET_64BIT)
return general_operand (op, mode);
if (nonimmediate_operand (op, mode))
return 1;
return x86_64_sign_extended_value (op) || x86_64_zero_extended_value (op);
}
/* Return nonzero if OP is nonmemory operand representable on x86_64. */
int
x86_64_nonmemory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (!TARGET_64BIT)
return nonmemory_operand (op, mode);
if (register_operand (op, mode))
return 1;
return x86_64_sign_extended_value (op);
}
/* Return nonzero if OP is nonmemory operand acceptable by movabs patterns. */
int
x86_64_movabs_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (!TARGET_64BIT || !flag_pic)
return nonmemory_operand (op, mode);
if (register_operand (op, mode) || x86_64_sign_extended_value (op))
return 1;
if (CONSTANT_P (op) && !symbolic_reference_mentioned_p (op))
return 1;
return 0;
}
/* Return nonzero if OP is nonmemory operand representable on x86_64. */
int
x86_64_szext_nonmemory_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (!TARGET_64BIT)
return nonmemory_operand (op, mode);
if (register_operand (op, mode))
return 1;
return x86_64_sign_extended_value (op) || x86_64_zero_extended_value (op);
}
/* Return nonzero if OP is immediate operand representable on x86_64. */
int
x86_64_immediate_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (!TARGET_64BIT)
return immediate_operand (op, mode);
return x86_64_sign_extended_value (op);
}
/* Return nonzero if OP is immediate operand representable on x86_64. */
int
x86_64_zext_immediate_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return x86_64_zero_extended_value (op);
}
/* Return nonzero if OP is (const_int 1), else return zero. */
int
const_int_1_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == CONST_INT && INTVAL (op) == 1);
}
/* Returns 1 if OP is either a symbol reference or a sum of a symbol
reference and a constant. */
int
symbolic_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
switch (GET_CODE (op))
{
case SYMBOL_REF:
case LABEL_REF:
return 1;
case CONST:
op = XEXP (op, 0);
if (GET_CODE (op) == SYMBOL_REF
|| GET_CODE (op) == LABEL_REF
|| (GET_CODE (op) == UNSPEC
&& (XINT (op, 1) == 6
|| XINT (op, 1) == 7
|| XINT (op, 1) == 15)))
return 1;
if (GET_CODE (op) != PLUS
|| GET_CODE (XEXP (op, 1)) != CONST_INT)
return 0;
op = XEXP (op, 0);
if (GET_CODE (op) == SYMBOL_REF
|| GET_CODE (op) == LABEL_REF)
return 1;
/* Only @GOTOFF gets offsets. */
if (GET_CODE (op) != UNSPEC
|| XINT (op, 1) != 7)
return 0;
op = XVECEXP (op, 0, 0);
if (GET_CODE (op) == SYMBOL_REF
|| GET_CODE (op) == LABEL_REF)
return 1;
return 0;
default:
return 0;
}
}
/* Return true if the operand contains a @GOT or @GOTOFF reference. */
int
pic_symbolic_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) != CONST)
return 0;
op = XEXP (op, 0);
if (TARGET_64BIT)
{
if (GET_CODE (XEXP (op, 0)) == UNSPEC)
return 1;
}
else
{
if (GET_CODE (op) == UNSPEC)
return 1;
if (GET_CODE (op) != PLUS
|| GET_CODE (XEXP (op, 1)) != CONST_INT)
return 0;
op = XEXP (op, 0);
if (GET_CODE (op) == UNSPEC)
return 1;
}
return 0;
}
/* Return true if OP is a symbolic operand that resolves locally. */
static int
local_symbolic_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == LABEL_REF)
return 1;
if (GET_CODE (op) == CONST
&& GET_CODE (XEXP (op, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
op = XEXP (XEXP (op, 0), 0);
if (GET_CODE (op) != SYMBOL_REF)
return 0;
/* These we've been told are local by varasm and encode_section_info
respectively. */
if (CONSTANT_POOL_ADDRESS_P (op) || SYMBOL_REF_FLAG (op))
return 1;
/* There is, however, a not insubstantial body of code in the rest of
the compiler that assumes it can just stick the results of
ASM_GENERATE_INTERNAL_LABEL in a symbol_ref and have done. */
/* ??? This is a hack. Should update the body of the compiler to
always create a DECL an invoke ENCODE_SECTION_INFO. */
if (strncmp (XSTR (op, 0), internal_label_prefix,
internal_label_prefix_len) == 0)
return 1;
return 0;
}
/* Test for a valid operand for a call instruction. Don't allow the
arg pointer register or virtual regs since they may decay into
reg + const, which the patterns can't handle. */
int
call_insn_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
/* Disallow indirect through a virtual register. This leads to
compiler aborts when trying to eliminate them. */
if (GET_CODE (op) == REG
&& (op == arg_pointer_rtx
|| op == frame_pointer_rtx
|| (REGNO (op) >= FIRST_PSEUDO_REGISTER
&& REGNO (op) <= LAST_VIRTUAL_REGISTER)))
return 0;
/* Disallow `call 1234'. Due to varying assembler lameness this
gets either rejected or translated to `call .+1234'. */
if (GET_CODE (op) == CONST_INT)
return 0;
/* Explicitly allow SYMBOL_REF even if pic. */
if (GET_CODE (op) == SYMBOL_REF)
return 1;
/* Half-pic doesn't allow anything but registers and constants.
We've just taken care of the later. */
if (HALF_PIC_P ())
return register_operand (op, Pmode);
/* Otherwise we can allow any general_operand in the address. */
return general_operand (op, Pmode);
}
int
constant_call_address_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (GET_CODE (op) == CONST
&& GET_CODE (XEXP (op, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT)
op = XEXP (XEXP (op, 0), 0);
return GET_CODE (op) == SYMBOL_REF;
}
/* Match exactly zero and one. */
int
const0_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
return op == CONST0_RTX (mode);
}
int
const1_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return op == const1_rtx;
}
/* Match 2, 4, or 8. Used for leal multiplicands. */
int
const248_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (op) == CONST_INT
&& (INTVAL (op) == 2 || INTVAL (op) == 4 || INTVAL (op) == 8));
}
/* True if this is a constant appropriate for an increment or decremenmt. */
int
incdec_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
/* On Pentium4, the inc and dec operations causes extra dependency on flag
registers, since carry flag is not set. */
if (TARGET_PENTIUM4 && !optimize_size)
return 0;
return op == const1_rtx || op == constm1_rtx;
}
/* Return nonzero if OP is acceptable as operand of DImode shift
expander. */
int
shiftdi_operand (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
if (TARGET_64BIT)
return nonimmediate_operand (op, mode);
else
return register_operand (op, mode);
}
/* Return false if this is the stack pointer, or any other fake
register eliminable to the stack pointer. Otherwise, this is
a register operand.
This is used to prevent esp from being used as an index reg.
Which would only happen in pathological cases. */
int
reg_no_sp_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
rtx t = op;
if (GET_CODE (t) == SUBREG)
t = SUBREG_REG (t);
if (t == stack_pointer_rtx || t == arg_pointer_rtx || t == frame_pointer_rtx)
return 0;
return register_operand (op, mode);
}
int
mmx_reg_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return MMX_REG_P (op);
}
/* Return false if this is any eliminable register. Otherwise
general_operand. */
int
general_no_elim_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
rtx t = op;
if (GET_CODE (t) == SUBREG)
t = SUBREG_REG (t);
if (t == arg_pointer_rtx || t == frame_pointer_rtx
|| t == virtual_incoming_args_rtx || t == virtual_stack_vars_rtx
|| t == virtual_stack_dynamic_rtx)
return 0;
if (REG_P (t)
&& REGNO (t) >= FIRST_VIRTUAL_REGISTER
&& REGNO (t) <= LAST_VIRTUAL_REGISTER)
return 0;
return general_operand (op, mode);
}
/* Return false if this is any eliminable register. Otherwise
register_operand or const_int. */
int
nonmemory_no_elim_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
rtx t = op;
if (GET_CODE (t) == SUBREG)
t = SUBREG_REG (t);
if (t == arg_pointer_rtx || t == frame_pointer_rtx
|| t == virtual_incoming_args_rtx || t == virtual_stack_vars_rtx
|| t == virtual_stack_dynamic_rtx)
return 0;
return GET_CODE (op) == CONST_INT || register_operand (op, mode);
}
/* Return true if op is a Q_REGS class register. */
int
q_regs_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (mode != VOIDmode && GET_MODE (op) != mode)
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return QI_REG_P (op);
}
/* Return true if op is a NON_Q_REGS class register. */
int
non_q_regs_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (mode != VOIDmode && GET_MODE (op) != mode)
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return NON_QI_REG_P (op);
}
/* Return 1 if OP is a comparison that can be used in the CMPSS/CMPPS
insns. */
int
sse_comparison_operator (op, mode)
rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
enum rtx_code code = GET_CODE (op);
switch (code)
{
/* Operations supported directly. */
case EQ:
case LT:
case LE:
case UNORDERED:
case NE:
case UNGE:
case UNGT:
case ORDERED:
return 1;
/* These are equivalent to ones above in non-IEEE comparisons. */
case UNEQ:
case UNLT:
case UNLE:
case LTGT:
case GE:
case GT:
return !TARGET_IEEE_FP;
default:
return 0;
}
}
/* Return 1 if OP is a valid comparison operator in valid mode. */
int
ix86_comparison_operator (op, mode)
register rtx op;
enum machine_mode mode;
{
enum machine_mode inmode;
enum rtx_code code = GET_CODE (op);
if (mode != VOIDmode && GET_MODE (op) != mode)
return 0;
if (GET_RTX_CLASS (code) != '<')
return 0;
inmode = GET_MODE (XEXP (op, 0));
if (inmode == CCFPmode || inmode == CCFPUmode)
{
enum rtx_code second_code, bypass_code;
ix86_fp_comparison_codes (code, &bypass_code, &code, &second_code);
return (bypass_code == NIL && second_code == NIL);
}
switch (code)
{
case EQ: case NE:
return 1;
case LT: case GE:
if (inmode == CCmode || inmode == CCGCmode
|| inmode == CCGOCmode || inmode == CCNOmode)
return 1;
return 0;
case LTU: case GTU: case LEU: case ORDERED: case UNORDERED: case GEU:
if (inmode == CCmode)
return 1;
return 0;
case GT: case LE:
if (inmode == CCmode || inmode == CCGCmode || inmode == CCNOmode)
return 1;
return 0;
default:
return 0;
}
}
/* Return 1 if OP is a comparison operator that can be issued by fcmov. */
int
fcmov_comparison_operator (op, mode)
register rtx op;
enum machine_mode mode;
{
enum machine_mode inmode;
enum rtx_code code = GET_CODE (op);
if (mode != VOIDmode && GET_MODE (op) != mode)
return 0;
if (GET_RTX_CLASS (code) != '<')
return 0;
inmode = GET_MODE (XEXP (op, 0));
if (inmode == CCFPmode || inmode == CCFPUmode)
{
enum rtx_code second_code, bypass_code;
ix86_fp_comparison_codes (code, &bypass_code, &code, &second_code);
if (bypass_code != NIL || second_code != NIL)
return 0;
code = ix86_fp_compare_code_to_integer (code);
}
/* i387 supports just limited amount of conditional codes. */
switch (code)
{
case LTU: case GTU: case LEU: case GEU:
if (inmode == CCmode || inmode == CCFPmode || inmode == CCFPUmode)
return 1;
return 0;
case ORDERED: case UNORDERED:
case EQ: case NE:
return 1;
default:
return 0;
}
}
/* Return 1 if OP is a binary operator that can be promoted to wider mode. */
int
promotable_binary_operator (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
switch (GET_CODE (op))
{
case MULT:
/* Modern CPUs have same latency for HImode and SImode multiply,
but 386 and 486 do HImode multiply faster. */
return ix86_cpu > PROCESSOR_I486;
case PLUS:
case AND:
case IOR:
case XOR:
case ASHIFT:
return 1;
default:
return 0;
}
}
/* Nearly general operand, but accept any const_double, since we wish
to be able to drop them into memory rather than have them get pulled
into registers. */
int
cmp_fp_expander_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (GET_CODE (op) == CONST_DOUBLE)
return 1;
return general_operand (op, mode);
}
/* Match an SI or HImode register for a zero_extract. */
int
ext_register_operand (op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
int regno;
if ((!TARGET_64BIT || GET_MODE (op) != DImode)
&& GET_MODE (op) != SImode && GET_MODE (op) != HImode)
return 0;
if (!register_operand (op, VOIDmode))
return 0;
/* Be curefull to accept only registers having upper parts. */
regno = REG_P (op) ? REGNO (op) : REGNO (SUBREG_REG (op));
return (regno > LAST_VIRTUAL_REGISTER || regno < 4);
}
/* Return 1 if this is a valid binary floating-point operation.
OP is the expression matched, and MODE is its mode. */
int
binary_fp_operator (op, mode)
register rtx op;
enum machine_mode mode;
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
switch (GET_CODE (op))
{
case PLUS:
case MINUS:
case MULT:
case DIV:
return GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT;
default:
return 0;
}
}
int
mult_operator(op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return GET_CODE (op) == MULT;
}
int
div_operator(op, mode)
register rtx op;
enum machine_mode mode ATTRIBUTE_UNUSED;
{
return GET_CODE (op) == DIV;
}
int
arith_or_logical_operator (op, mode)
rtx op;
enum machine_mode mode;
{
return ((mode == VOIDmode || GET_MODE (op) == mode)
&& (GET_RTX_CLASS (GET_CODE (op)) == 'c'
|| GET_RTX_CLASS (GET_CODE (op)) == '2'));
}
/* Returns 1 if OP is memory operand with a displacement. */
int
memory_displacement_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
struct ix86_address parts;
if (! memory_operand (op, mode))
return 0;
if (! ix86_decompose_address (XEXP (op, 0), &parts))
abort ();
return parts.disp != NULL_RTX;
}
/* To avoid problems when jump re-emits comparisons like testqi_ext_ccno_0,
re-recognize the operand to avoid a copy_to_mode_reg that will fail.
??? It seems likely that this will only work because cmpsi is an
expander, and no actual insns use this. */
int
cmpsi_operand (op, mode)
rtx op;
enum machine_mode mode;
{
if (nonimmediate_operand (op, mode))
return 1;
if (GET_CODE (op) == AND
&& GET_MODE (op) == SImode
&& GET_CODE (XEXP (op, 0)) == ZERO_EXTRACT
&& GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
&& GET_CODE (XEXP (XEXP (op, 0), 2)) == CONST_INT
&& INTVAL (XEXP (XEXP (op, 0), 1)) == 8
&& INTVAL (XEXP (XEXP (op, 0), 2)) == 8
&& GET_CODE (XEXP (op, 1)) == CONST_INT)
return 1;
return 0;
}
/* Returns 1 if OP is memory operand that can not be represented by the
modRM array. */
int
long_memory_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
if (! memory_operand (op, mode))
return 0;
return memory_address_length (op) != 0;
}
/* Return nonzero if the rtx is known aligned. */
int
aligned_operand (op, mode)
rtx op;
enum machine_mode mode;
{
struct ix86_address parts;
if (!general_operand (op, mode))
return 0;
/* Registers and immediate operands are always "aligned". */
if (GET_CODE (op) != MEM)
return 1;
/* Don't even try to do any aligned optimizations with volatiles. */
if (MEM_VOLATILE_P (op))
return 0;
op = XEXP (op, 0);
/* Pushes and pops are only valid on the stack pointer. */
if (GET_CODE (op) == PRE_DEC
|| GET_CODE (op) == POST_INC)
return 1;
/* Decode the address. */
if (! ix86_decompose_address (op, &parts))
abort ();
/* Look for some component that isn't known to be aligned. */
if (parts.index)
{
if (parts.scale < 4
&& REGNO_POINTER_ALIGN (REGNO (parts.index)) < 32)
return 0;
}
if (parts.base)
{
if (REGNO_POINTER_ALIGN (REGNO (parts.base)) < 32)
return 0;
}
if (parts.disp)
{
if (GET_CODE (parts.disp) != CONST_INT
|| (INTVAL (parts.disp) & 3) != 0)
return 0;
}
/* Didn't find one -- this must be an aligned address. */
return 1;
}
/* Return true if the constant is something that can be loaded with
a special instruction. Only handle 0.0 and 1.0; others are less
worthwhile. */
int
standard_80387_constant_p (x)
rtx x;
{
if (GET_CODE (x) != CONST_DOUBLE || !FLOAT_MODE_P (GET_MODE (x)))
return -1;
/* Note that on the 80387, other constants, such as pi, that we should support
too. On some machines, these are much slower to load as standard constant,
than to load from doubles in memory. */
if (x == CONST0_RTX (GET_MODE (x)))
return 1;
if (x == CONST1_RTX (GET_MODE (x)))
return 2;
return 0;
}
/* Return 1 if X is FP constant we can load to SSE register w/o using memory.
*/
int
standard_sse_constant_p (x)
rtx x;
{
if (GET_CODE (x) != CONST_DOUBLE)
return -1;
return (x == CONST0_RTX (GET_MODE (x)));
}
/* Returns 1 if OP contains a symbol reference */
int
symbolic_reference_mentioned_p (op)
rtx op;
{
register const char *fmt;
register int i;
if (GET_CODE (op) == SYMBOL_REF || GET_CODE (op) == LABEL_REF)
return 1;
fmt = GET_RTX_FORMAT (GET_CODE (op));
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
if (symbolic_reference_mentioned_p (XVECEXP (op, i, j)))
return 1;
}
else if (fmt[i] == 'e' && symbolic_reference_mentioned_p (XEXP (op, i)))
return 1;
}
return 0;
}
/* Return 1 if it is appropriate to emit `ret' instructions in the
body of a function. Do this only if the epilogue is simple, needing a
couple of insns. Prior to reloading, we can't tell how many registers
must be saved, so return 0 then. Return 0 if there is no frame
marker to de-allocate.
If NON_SAVING_SETJMP is defined and true, then it is not possible
for the epilogue to be simple, so return 0. This is a special case
since NON_SAVING_SETJMP will not cause regs_ever_live to change
until final, but jump_optimize may need to know sooner if a
`return' is OK. */
int
ix86_can_use_return_insn_p ()
{
struct ix86_frame frame;
#ifdef NON_SAVING_SETJMP
if (NON_SAVING_SETJMP && current_function_calls_setjmp)
return 0;
#endif
if (! reload_completed || frame_pointer_needed)
return 0;
/* Don't allow more than 32 pop, since that's all we can do
with one instruction. */
if (current_function_pops_args
&& current_function_args_size >= 32768)
return 0;
ix86_compute_frame_layout (&frame);
return frame.to_allocate == 0 && frame.nregs == 0;
}
/* Return 1 if VALUE can be stored in the sign extended immediate field. */
int
x86_64_sign_extended_value (value)
rtx value;
{
switch (GET_CODE (value))
{
/* CONST_DOUBLES never match, since HOST_BITS_PER_WIDE_INT is known
to be at least 32 and this all acceptable constants are
represented as CONST_INT. */
case CONST_INT:
if (HOST_BITS_PER_WIDE_INT == 32)
return 1;
else
{
HOST_WIDE_INT val = trunc_int_for_mode (INTVAL (value), DImode);
return trunc_int_for_mode (val, SImode) == val;
}
break;
/* For certain code models, the symbolic references are known to fit. */
case SYMBOL_REF:
return ix86_cmodel == CM_SMALL || ix86_cmodel == CM_KERNEL;
/* For certain code models, the code is near as well. */
case LABEL_REF:
return ix86_cmodel != CM_LARGE && ix86_cmodel != CM_SMALL_PIC;
/* We also may accept the offsetted memory references in certain special
cases. */
case CONST:
if (GET_CODE (XEXP (value, 0)) == UNSPEC
&& XVECLEN (XEXP (value, 0), 0) == 1
&& XINT (XEXP (value, 0), 1) == 15)
return 1;
else if (GET_CODE (XEXP (value, 0)) == PLUS)
{
rtx op1 = XEXP (XEXP (value, 0), 0);
rtx op2 = XEXP (XEXP (value, 0), 1);
HOST_WIDE_INT offset;
if (ix86_cmodel == CM_LARGE)
return 0;
if (GET_CODE (op2) != CONST_INT)
return 0;
offset = trunc_int_for_mode (INTVAL (op2), DImode);
switch (GET_CODE (op1))
{
case SYMBOL_REF:
/* For CM_SMALL assume that latest object is 1MB before
end of 31bits boundary. We may also accept pretty
large negative constants knowing that all objects are
in the positive half of address space. */
if (ix86_cmodel == CM_SMALL
&& offset < 1024*1024*1024
&& trunc_int_for_mode (offset, SImode) == offset)
return 1;
/* For CM_KERNEL we know that all object resist in the
negative half of 32bits address space. We may not
accept negative offsets, since they may be just off
and we may accept pretty large positive ones. */
if (ix86_cmodel == CM_KERNEL
&& offset > 0
&& trunc_int_for_mode (offset, SImode) == offset)
return 1;
break;
case LABEL_REF:
/* These conditions are similar to SYMBOL_REF ones, just the
constraints for code models differ. */
if ((ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM)
&& offset < 1024*1024*1024
&& trunc_int_for_mode (offset, SImode) == offset)
return 1;
if (ix86_cmodel == CM_KERNEL
&& offset > 0
&& trunc_int_for_mode (offset, SImode) == offset)
return 1;
break;
default:
return 0;
}
}
return 0;
default:
return 0;
}
}
/* Return 1 if VALUE can be stored in the zero extended immediate field. */
int
x86_64_zero_extended_value (value)
rtx value;
{
switch (GET_CODE (value))
{
case CONST_DOUBLE:
if (HOST_BITS_PER_WIDE_INT == 32)
return (GET_MODE (value) == VOIDmode
&& !CONST_DOUBLE_HIGH (value));
else
return 0;
case CONST_INT:
if (HOST_BITS_PER_WIDE_INT == 32)
return INTVAL (value) >= 0;
else
return !(INTVAL (value) & ~(HOST_WIDE_INT)0xffffffff);
break;
/* For certain code models, the symbolic references are known to fit. */
case SYMBOL_REF:
return ix86_cmodel == CM_SMALL;
/* For certain code models, the code is near as well. */
case LABEL_REF:
return ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM;
/* We also may accept the offsetted memory references in certain special
cases. */
case CONST:
if (GET_CODE (XEXP (value, 0)) == PLUS)
{
rtx op1 = XEXP (XEXP (value, 0), 0);
rtx op2 = XEXP (XEXP (value, 0), 1);
if (ix86_cmodel == CM_LARGE)
return 0;
switch (GET_CODE (op1))
{
case SYMBOL_REF:
return 0;
/* For small code model we may accept pretty large positive
offsets, since one bit is available for free. Negative
offsets are limited by the size of NULL pointer area
specified by the ABI. */
if (ix86_cmodel == CM_SMALL
&& GET_CODE (op2) == CONST_INT
&& trunc_int_for_mode (INTVAL (op2), DImode) > -0x10000
&& (trunc_int_for_mode (INTVAL (op2), SImode)
== INTVAL (op2)))
return 1;
/* ??? For the kernel, we may accept adjustment of
-0x10000000, since we know that it will just convert
negative address space to positive, but perhaps this
is not worthwhile. */
break;
case LABEL_REF:
/* These conditions are similar to SYMBOL_REF ones, just the
constraints for code models differ. */
if ((ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM)
&& GET_CODE (op2) == CONST_INT
&& trunc_int_for_mode (INTVAL (op2), DImode) > -0x10000
&& (trunc_int_for_mode (INTVAL (op2), SImode)
== INTVAL (op2)))
return 1;
break;
default:
return 0;
}
}
return 0;
default:
return 0;
}
}
/* Value should be nonzero if functions must have frame pointers.
Zero means the frame pointer need not be set up (and parms may
be accessed via the stack pointer) in functions that seem suitable. */
int
ix86_frame_pointer_required ()
{
/* If we accessed previous frames, then the generated code expects
to be able to access the saved ebp value in our frame. */
if (cfun->machine->accesses_prev_frame)
return 1;
/* Several x86 os'es need a frame pointer for other reasons,
usually pertaining to setjmp. */
if (SUBTARGET_FRAME_POINTER_REQUIRED)
return 1;
/* In override_options, TARGET_OMIT_LEAF_FRAME_POINTER turns off
the frame pointer by default. Turn it back on now if we've not
got a leaf function. */
if (TARGET_OMIT_LEAF_FRAME_POINTER && ! leaf_function_p ())
return 1;
return 0;
}
/* Record that the current function accesses previous call frames. */
void
ix86_setup_frame_addresses ()
{
cfun->machine->accesses_prev_frame = 1;
}
static char pic_label_name[32];
/* This function generates code for -fpic that loads %ebx with
the return address of the caller and then returns. */
void
ix86_asm_file_end (file)
FILE *file;
{
rtx xops[2];
if (! TARGET_DEEP_BRANCH_PREDICTION || pic_label_name[0] == 0)
return;
/* ??? Binutils 2.10 and earlier has a linkonce elimination bug related
to updating relocations to a section being discarded such that this
doesn't work. Ought to detect this at configure time. */
#if 0
/* The trick here is to create a linkonce section containing the
pic label thunk, but to refer to it with an internal label.
Because the label is internal, we don't have inter-dso name
binding issues on hosts that don't support ".hidden".
In order to use these macros, however, we must create a fake
function decl. */
if (targetm.have_named_sections)
{
tree decl = build_decl (FUNCTION_DECL,
get_identifier ("i686.get_pc_thunk"),
error_mark_node);
DECL_ONE_ONLY (decl) = 1;
UNIQUE_SECTION (decl, 0);
named_section (decl, NULL);
}
else
#else
text_section ();
#endif
/* This used to call ASM_DECLARE_FUNCTION_NAME() but since it's an
internal (non-global) label that's being emitted, it didn't make
sense to have .type information for local labels. This caused
the SCO OpenServer 5.0.4 ELF assembler grief (why are you giving
me debug info for a label that you're declaring non-global?) this
was changed to call ASM_OUTPUT_LABEL() instead. */
ASM_OUTPUT_LABEL (file, pic_label_name);
xops[0] = pic_offset_table_rtx;
xops[1] = gen_rtx_MEM (SImode, stack_pointer_rtx);
output_asm_insn ("mov{l}\t{%1, %0|%0, %1}", xops);
output_asm_insn ("ret", xops);
}
void
load_pic_register ()
{
rtx gotsym, pclab;
if (TARGET_64BIT)
abort();
gotsym = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
if (TARGET_DEEP_BRANCH_PREDICTION)
{
if (! pic_label_name[0])
ASM_GENERATE_INTERNAL_LABEL (pic_label_name, "LPR", 0);
pclab = gen_rtx_MEM (QImode, gen_rtx_SYMBOL_REF (Pmode, pic_label_name));
}
else
{
pclab = gen_rtx_LABEL_REF (VOIDmode, gen_label_rtx ());
}
emit_insn (gen_prologue_get_pc (pic_offset_table_rtx, pclab));
if (! TARGET_DEEP_BRANCH_PREDICTION)
emit_insn (gen_popsi1 (pic_offset_table_rtx));
emit_insn (gen_prologue_set_got (pic_offset_table_rtx, gotsym, pclab));
}
/* Generate an "push" pattern for input ARG. */
static rtx
gen_push (arg)
rtx arg;
{
return gen_rtx_SET (VOIDmode,
gen_rtx_MEM (Pmode,
gen_rtx_PRE_DEC (Pmode,
stack_pointer_rtx)),
arg);
}
/* Return 1 if we need to save REGNO. */
static int
ix86_save_reg (regno, maybe_eh_return)
int regno;
int maybe_eh_return;
{
if (flag_pic
&& ! TARGET_64BIT
&& regno == PIC_OFFSET_TABLE_REGNUM
&& (current_function_uses_pic_offset_table
|| current_function_uses_const_pool
|| current_function_calls_eh_return))
return 1;
if (current_function_calls_eh_return && maybe_eh_return)
{
unsigned i;
for (i = 0; ; i++)
{
unsigned test = EH_RETURN_DATA_REGNO(i);
if (test == INVALID_REGNUM)
break;
if (test == (unsigned) regno)
return 1;
}
}
return (regs_ever_live[regno]
&& !call_used_regs[regno]
&& !fixed_regs[regno]
&& (regno != HARD_FRAME_POINTER_REGNUM || !frame_pointer_needed));
}
/* Return number of registers to be saved on the stack. */
static int
ix86_nsaved_regs ()
{
int nregs = 0;
int regno;
for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
if (ix86_save_reg (regno, true))
nregs++;
return nregs;
}
/* Return the offset between two registers, one to be eliminated, and the other
its replacement, at the start of a routine. */
HOST_WIDE_INT
ix86_initial_elimination_offset (from, to)
int from;
int to;
{
struct ix86_frame frame;
ix86_compute_frame_layout (&frame);
if (from == ARG_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
return frame.hard_frame_pointer_offset;
else if (from == FRAME_POINTER_REGNUM
&& to == HARD_FRAME_POINTER_REGNUM)
return frame.hard_frame_pointer_offset - frame.frame_pointer_offset;
else
{
if (to != STACK_POINTER_REGNUM)
abort ();
else if (from == ARG_POINTER_REGNUM)
return frame.stack_pointer_offset;
else if (from != FRAME_POINTER_REGNUM)
abort ();
else
return frame.stack_pointer_offset - frame.frame_pointer_offset;
}
}
/* Fill structure ix86_frame about frame of currently computed function. */
static void
ix86_compute_frame_layout (frame)
struct ix86_frame *frame;
{
HOST_WIDE_INT total_size;
int stack_alignment_needed = cfun->stack_alignment_needed / BITS_PER_UNIT;
int offset;
int preferred_alignment = cfun->preferred_stack_boundary / BITS_PER_UNIT;
HOST_WIDE_INT size = get_frame_size ();
frame->nregs = ix86_nsaved_regs ();
total_size = size;
/* Skip return value and save base pointer. */
offset = frame_pointer_needed ? UNITS_PER_WORD * 2 : UNITS_PER_WORD;
frame->hard_frame_pointer_offset = offset;
/* Do some sanity checking of stack_alignment_needed and
preferred_alignment, since i386 port is the only using those features
that may break easily. */
if (size && !stack_alignment_needed)
abort ();
if (preferred_alignment < STACK_BOUNDARY / BITS_PER_UNIT)
abort ();
if (preferred_alignment > PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
abort ();
if (stack_alignment_needed > PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
abort ();
if (stack_alignment_needed < STACK_BOUNDARY / BITS_PER_UNIT)
stack_alignment_needed = STACK_BOUNDARY / BITS_PER_UNIT;
/* Register save area */
offset += frame->nregs * UNITS_PER_WORD;
/* Va-arg area */
if (ix86_save_varrargs_registers)
{
offset += X86_64_VARARGS_SIZE;
frame->va_arg_size = X86_64_VARARGS_SIZE;
}
else
frame->va_arg_size = 0;
/* Align start of frame for local function. */
frame->padding1 = ((offset + stack_alignment_needed - 1)
& -stack_alignment_needed) - offset;
offset += frame->padding1;
/* Frame pointer points here. */
frame->frame_pointer_offset = offset;
offset += size;
/* Add outgoing arguments area. */
if (ACCUMULATE_OUTGOING_ARGS)
{
offset += current_function_outgoing_args_size;
frame->outgoing_arguments_size = current_function_outgoing_args_size;
}
else
frame->outgoing_arguments_size = 0;
/* Align stack boundary. */
frame->padding2 = ((offset + preferred_alignment - 1)
& -preferred_alignment) - offset;
offset += frame->padding2;
/* We've reached end of stack frame. */
frame->stack_pointer_offset = offset;
/* Size prologue needs to allocate. */
frame->to_allocate =
(size + frame->padding1 + frame->padding2
+ frame->outgoing_arguments_size + frame->va_arg_size);
if (TARGET_64BIT && TARGET_RED_ZONE && current_function_sp_is_unchanging
&& current_function_is_leaf)
{
frame->red_zone_size = frame->to_allocate;
if (frame->red_zone_size > RED_ZONE_SIZE - RED_ZONE_RESERVE)
frame->red_zone_size = RED_ZONE_SIZE - RED_ZONE_RESERVE;
}
else
frame->red_zone_size = 0;
frame->to_allocate -= frame->red_zone_size;
frame->stack_pointer_offset -= frame->red_zone_size;
#if 0
fprintf (stderr, "nregs: %i\n", frame->nregs);
fprintf (stderr, "size: %i\n", size);
fprintf (stderr, "alignment1: %i\n", stack_alignment_needed);
fprintf (stderr, "padding1: %i\n", frame->padding1);
fprintf (stderr, "va_arg: %i\n", frame->va_arg_size);
fprintf (stderr, "padding2: %i\n", frame->padding2);
fprintf (stderr, "to_allocate: %i\n", frame->to_allocate);
fprintf (stderr, "red_zone_size: %i\n", frame->red_zone_size);
fprintf (stderr, "frame_pointer_offset: %i\n", frame->frame_pointer_offset);
fprintf (stderr, "hard_frame_pointer_offset: %i\n",
frame->hard_frame_pointer_offset);
fprintf (stderr, "stack_pointer_offset: %i\n", frame->stack_pointer_offset);
#endif
}
/* Emit code to save registers in the prologue. */
static void
ix86_emit_save_regs ()
{
register int regno;
rtx insn;
for (regno = FIRST_PSEUDO_REGISTER - 1; regno >= 0; regno--)
if (ix86_save_reg (regno, true))
{
insn = emit_insn (gen_push (gen_rtx_REG (Pmode, regno)));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
/* Emit code to save registers using MOV insns. First register
is restored from POINTER + OFFSET. */
static void
ix86_emit_save_regs_using_mov (pointer, offset)
rtx pointer;
HOST_WIDE_INT offset;
{
int regno;
rtx insn;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (ix86_save_reg (regno, true))
{
insn = emit_move_insn (adjust_address (gen_rtx_MEM (Pmode, pointer),
Pmode, offset),
gen_rtx_REG (Pmode, regno));
RTX_FRAME_RELATED_P (insn) = 1;
offset += UNITS_PER_WORD;
}
}
/* Expand the prologue into a bunch of separate insns. */
void
ix86_expand_prologue ()
{
rtx insn;
int pic_reg_used = (flag_pic && (current_function_uses_pic_offset_table
|| current_function_uses_const_pool)
&& !TARGET_64BIT);
struct ix86_frame frame;
int use_mov = 0;
HOST_WIDE_INT allocate;
if (!optimize_size)
{
use_fast_prologue_epilogue
= !expensive_function_p (FAST_PROLOGUE_INSN_COUNT);
if (TARGET_PROLOGUE_USING_MOVE)
use_mov = use_fast_prologue_epilogue;
}
ix86_compute_frame_layout (&frame);
/* Note: AT&T enter does NOT have reversed args. Enter is probably
slower on all targets. Also sdb doesn't like it. */
if (frame_pointer_needed)
{
insn = emit_insn (gen_push (hard_frame_pointer_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
RTX_FRAME_RELATED_P (insn) = 1;
}
allocate = frame.to_allocate;
/* In case we are dealing only with single register and empty frame,
push is equivalent of the mov+add sequence. */
if (allocate == 0 && frame.nregs <= 1)
use_mov = 0;
if (!use_mov)
ix86_emit_save_regs ();
else
allocate += frame.nregs * UNITS_PER_WORD;
if (allocate == 0)
;
else if (! TARGET_STACK_PROBE || allocate < CHECK_STACK_LIMIT)
{
insn = emit_insn (gen_pro_epilogue_adjust_stack
(stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-allocate)));
RTX_FRAME_RELATED_P (insn) = 1;
}
else
{
/* ??? Is this only valid for Win32? */
rtx arg0, sym;
if (TARGET_64BIT)
abort();
arg0 = gen_rtx_REG (SImode, 0);
emit_move_insn (arg0, GEN_INT (allocate));
sym = gen_rtx_MEM (FUNCTION_MODE,
gen_rtx_SYMBOL_REF (Pmode, "_alloca"));
insn = emit_call_insn (gen_call (sym, const0_rtx, constm1_rtx));
CALL_INSN_FUNCTION_USAGE (insn)
= gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_USE (VOIDmode, arg0),
CALL_INSN_FUNCTION_USAGE (insn));
}
if (use_mov)
{
if (!frame_pointer_needed || !frame.to_allocate)
ix86_emit_save_regs_using_mov (stack_pointer_rtx, frame.to_allocate);
else
ix86_emit_save_regs_using_mov (hard_frame_pointer_rtx,
-frame.nregs * UNITS_PER_WORD);
}
#ifdef SUBTARGET_PROLOGUE
SUBTARGET_PROLOGUE;
#endif
if (pic_reg_used)
load_pic_register ();
/* If we are profiling, make sure no instructions are scheduled before
the call to mcount. However, if -fpic, the above call will have
done that. */
if (profile_flag && ! pic_reg_used)
emit_insn (gen_blockage ());
}
/* Emit code to restore saved registers using MOV insns. First register
is restored from POINTER + OFFSET. */
static void
ix86_emit_restore_regs_using_mov (pointer, offset, maybe_eh_return)
rtx pointer;
int offset;
int maybe_eh_return;
{
int regno;
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (ix86_save_reg (regno, maybe_eh_return))
{
emit_move_insn (gen_rtx_REG (Pmode, regno),
adjust_address (gen_rtx_MEM (Pmode, pointer),
Pmode, offset));
offset += UNITS_PER_WORD;
}
}
/* Restore function stack, frame, and registers. */
void
ix86_expand_epilogue (style)
int style;
{
int regno;
int sp_valid = !frame_pointer_needed || current_function_sp_is_unchanging;
struct ix86_frame frame;
HOST_WIDE_INT offset;
ix86_compute_frame_layout (&frame);
/* Calculate start of saved registers relative to ebp. Special care
must be taken for the normal return case of a function using
eh_return: the eax and edx registers are marked as saved, but not
restored along this path. */
offset = frame.nregs;
if (current_function_calls_eh_return && style != 2)
offset -= 2;
offset *= -UNITS_PER_WORD;
/* If we're only restoring one register and sp is not valid then
using a move instruction to restore the register since it's
less work than reloading sp and popping the register.
The default code result in stack adjustment using add/lea instruction,
while this code results in LEAVE instruction (or discrete equivalent),
so it is profitable in some other cases as well. Especially when there
are no registers to restore. We also use this code when TARGET_USE_LEAVE
and there is exactly one register to pop. This heruistic may need some
tuning in future. */
if ((!sp_valid && frame.nregs <= 1)
|| (TARGET_EPILOGUE_USING_MOVE
&& use_fast_prologue_epilogue
&& (frame.nregs > 1 || frame.to_allocate))
|| (frame_pointer_needed && !frame.nregs && frame.to_allocate)
|| (frame_pointer_needed && TARGET_USE_LEAVE
&& use_fast_prologue_epilogue && frame.nregs == 1)
|| current_function_calls_eh_return)
{
/* Restore registers. We can use ebp or esp to address the memory
locations. If both are available, default to ebp, since offsets
are known to be small. Only exception is esp pointing directly to the
end of block of saved registers, where we may simplify addressing
mode. */
if (!frame_pointer_needed || (sp_valid && !frame.to_allocate))
ix86_emit_restore_regs_using_mov (stack_pointer_rtx,
frame.to_allocate, style == 2);
else
ix86_emit_restore_regs_using_mov (hard_frame_pointer_rtx,
offset, style == 2);
/* eh_return epilogues need %ecx added to the stack pointer. */
if (style == 2)
{
rtx tmp, sa = EH_RETURN_STACKADJ_RTX;
if (frame_pointer_needed)
{
tmp = gen_rtx_PLUS (Pmode, hard_frame_pointer_rtx, sa);
tmp = plus_constant (tmp, UNITS_PER_WORD);
emit_insn (gen_rtx_SET (VOIDmode, sa, tmp));
tmp = gen_rtx_MEM (Pmode, hard_frame_pointer_rtx);
emit_move_insn (hard_frame_pointer_rtx, tmp);
emit_insn (gen_pro_epilogue_adjust_stack
(stack_pointer_rtx, sa, const0_rtx));
}
else
{
tmp = gen_rtx_PLUS (Pmode, stack_pointer_rtx, sa);
tmp = plus_constant (tmp, (frame.to_allocate
+ frame.nregs * UNITS_PER_WORD));
emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx, tmp));
}
}
else if (!frame_pointer_needed)
emit_insn (gen_pro_epilogue_adjust_stack
(stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (frame.to_allocate
+ frame.nregs * UNITS_PER_WORD)));
/* If not an i386, mov & pop is faster than "leave". */
else if (TARGET_USE_LEAVE || optimize_size || !use_fast_prologue_epilogue)
emit_insn (TARGET_64BIT ? gen_leave_rex64 () : gen_leave ());
else
{
emit_insn (gen_pro_epilogue_adjust_stack (stack_pointer_rtx,
hard_frame_pointer_rtx,
const0_rtx));
if (TARGET_64BIT)
emit_insn (gen_popdi1 (hard_frame_pointer_rtx));
else
emit_insn (gen_popsi1 (hard_frame_pointer_rtx));
}
}
else
{
/* First step is to deallocate the stack frame so that we can
pop the registers. */
if (!sp_valid)
{
if (!frame_pointer_needed)
abort ();
emit_insn (gen_pro_epilogue_adjust_stack (stack_pointer_rtx,
hard_frame_pointer_rtx,
GEN_INT (offset)));
}
else if (frame.to_allocate)
emit_insn (gen_pro_epilogue_adjust_stack
(stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (frame.to_allocate)));
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
if (ix86_save_reg (regno, false))
{
if (TARGET_64BIT)
emit_insn (gen_popdi1 (gen_rtx_REG (Pmode, regno)));
else
emit_insn (gen_popsi1 (gen_rtx_REG (Pmode, regno)));
}
if (frame_pointer_needed)
{
/* Leave results in shorter dependency chains on CPUs that are
able to grok it fast. */
if (TARGET_USE_LEAVE)
emit_insn (TARGET_64BIT ? gen_leave_rex64 () : gen_leave ());
else if (TARGET_64BIT)
emit_insn (gen_popdi1 (hard_frame_pointer_rtx));
else
emit_insn (gen_popsi1 (hard_frame_pointer_rtx));
}
}
/* Sibcall epilogues don't want a return instruction. */
if (style == 0)
return;
if (current_function_pops_args && current_function_args_size)
{
rtx popc = GEN_INT (current_function_pops_args);
/* i386 can only pop 64K bytes. If asked to pop more, pop
return address, do explicit add, and jump indirectly to the
caller. */
if (current_function_pops_args >= 65536)
{
rtx ecx = gen_rtx_REG (SImode, 2);
/* There are is no "pascal" calling convention in 64bit ABI. */
if (TARGET_64BIT)
abort();
emit_insn (gen_popsi1 (ecx));
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, popc));
emit_jump_insn (gen_return_indirect_internal (ecx));
}
else
emit_jump_insn (gen_return_pop_internal (popc));
}
else
emit_jump_insn (gen_return_internal ());
}
/* Extract the parts of an RTL expression that is a valid memory address
for an instruction. Return false if the structure of the address is
grossly off. */
static int
ix86_decompose_address (addr, out)
register rtx addr;
struct ix86_address *out;
{
rtx base = NULL_RTX;
rtx index = NULL_RTX;
rtx disp = NULL_RTX;
HOST_WIDE_INT scale = 1;
rtx scale_rtx = NULL_RTX;
if (GET_CODE (addr) == REG || GET_CODE (addr) == SUBREG)
base = addr;
else if (GET_CODE (addr) == PLUS)
{
rtx op0 = XEXP (addr, 0);
rtx op1 = XEXP (addr, 1);
enum rtx_code code0 = GET_CODE (op0);
enum rtx_code code1 = GET_CODE (op1);
if (code0 == REG || code0 == SUBREG)
{
if (code1 == REG || code1 == SUBREG)
index = op0, base = op1; /* index + base */
else
base = op0, disp = op1; /* base + displacement */
}
else if (code0 == MULT)
{
index = XEXP (op0, 0);
scale_rtx = XEXP (op0, 1);
if (code1 == REG || code1 == SUBREG)
base = op1; /* index*scale + base */
else
disp = op1; /* index*scale + disp */
}
else if (code0 == PLUS && GET_CODE (XEXP (op0, 0)) == MULT)
{
index = XEXP (XEXP (op0, 0), 0); /* index*scale + base + disp */
scale_rtx = XEXP (XEXP (op0, 0), 1);
base = XEXP (op0, 1);
disp = op1;
}
else if (code0 == PLUS)
{
index = XEXP (op0, 0); /* index + base + disp */
base = XEXP (op0, 1);
disp = op1;
}
else
return FALSE;
}
else if (GET_CODE (addr) == MULT)
{
index = XEXP (addr, 0); /* index*scale */
scale_rtx = XEXP (addr, 1);
}
else if (GET_CODE (addr) == ASHIFT)
{
rtx tmp;
/* We're called for lea too, which implements ashift on occasion. */
index = XEXP (addr, 0);
tmp = XEXP (addr, 1);
if (GET_CODE (tmp) != CONST_INT)
return FALSE;
scale = INTVAL (tmp);
if ((unsigned HOST_WIDE_INT) scale > 3)
return FALSE;
scale = 1 << scale;
}
else
disp = addr; /* displacement */
/* Extract the integral value of scale. */
if (scale_rtx)
{
if (GET_CODE (scale_rtx) != CONST_INT)
return FALSE;
scale = INTVAL (scale_rtx);
}
/* Allow arg pointer and stack pointer as index if there is not scaling */
if (base && index && scale == 1
&& (index == arg_pointer_rtx || index == frame_pointer_rtx
|| index == stack_pointer_rtx))
{
rtx tmp = base;
base = index;
index = tmp;
}
/* Special case: %ebp cannot be encoded as a base without a displacement. */
if ((base == hard_frame_pointer_rtx
|| base == frame_pointer_rtx
|| base == arg_pointer_rtx) && !disp)
disp = const0_rtx;
/* Special case: on K6, [%esi] makes the instruction vector decoded.
Avoid this by transforming to [%esi+0]. */
if (ix86_cpu == PROCESSOR_K6 && !optimize_size
&& base && !index && !disp
&& REG_P (base)
&& REGNO_REG_CLASS (REGNO (base)) == SIREG)
disp = const0_rtx;
/* Special case: encode reg+reg instead of reg*2. */
if (!base && index && scale && scale == 2)
base = index, scale = 1;
/* Special case: scaling cannot be encoded without base or displacement. */
if (!base && !disp && index && scale != 1)
disp = const0_rtx;
out->base = base;
out->index = index;
out->disp = disp;
out->scale = scale;
return TRUE;
}
/* Return cost of the memory address x.
For i386, it is better to use a complex address than let gcc copy
the address into a reg and make a new pseudo. But not if the address
requires to two regs - that would mean more pseudos with longer
lifetimes. */
int
ix86_address_cost (x)
rtx x;
{
struct ix86_address parts;
int cost = 1;
if (!ix86_decompose_address (x, &parts))
abort ();
/* More complex memory references are better. */
if (parts.disp && parts.disp != const0_rtx)
cost--;
/* Attempt to minimize number of registers in the address. */
if ((parts.base
&& (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER))
|| (parts.index
&& (!REG_P (parts.index)
|| REGNO (parts.index) >= FIRST_PSEUDO_REGISTER)))
cost++;
if (parts.base
&& (!REG_P (parts.base) || REGNO (parts.base) >= FIRST_PSEUDO_REGISTER)
&& parts.index
&& (!REG_P (parts.index) || REGNO (parts.index) >= FIRST_PSEUDO_REGISTER)
&& parts.base != parts.index)
cost++;
/* AMD-K6 don't like addresses with ModR/M set to 00_xxx_100b,
since it's predecode logic can't detect the length of instructions
and it degenerates to vector decoded. Increase cost of such
addresses here. The penalty is minimally 2 cycles. It may be worthwhile
to split such addresses or even refuse such addresses at all.
Following addressing modes are affected:
[base+scale*index]
[scale*index+disp]
[base+index]
The first and last case may be avoidable by explicitly coding the zero in
memory address, but I don't have AMD-K6 machine handy to check this
theory. */
if (TARGET_K6
&& ((!parts.disp && parts.base && parts.index && parts.scale != 1)
|| (parts.disp && !parts.base && parts.index && parts.scale != 1)
|| (!parts.disp && parts.base && parts.index && parts.scale == 1)))
cost += 10;
return cost;
}
/* If X is a machine specific address (i.e. a symbol or label being
referenced as a displacement from the GOT implemented using an
UNSPEC), then return the base term. Otherwise return X. */
rtx
ix86_find_base_term (x)
rtx x;
{
rtx term;
if (TARGET_64BIT)
{
if (GET_CODE (x) != CONST)
return x;
term = XEXP (x, 0);
if (GET_CODE (term) == PLUS
&& (GET_CODE (XEXP (term, 1)) == CONST_INT
|| GET_CODE (XEXP (term, 1)) == CONST_DOUBLE))
term = XEXP (term, 0);
if (GET_CODE (term) != UNSPEC
|| XVECLEN (term, 0) != 1
|| XINT (term, 1) != 15)
return x;
term = XVECEXP (term, 0, 0);
if (GET_CODE (term) != SYMBOL_REF
&& GET_CODE (term) != LABEL_REF)
return x;
return term;
}
if (GET_CODE (x) != PLUS
|| XEXP (x, 0) != pic_offset_table_rtx
|| GET_CODE (XEXP (x, 1)) != CONST)
return x;
term = XEXP (XEXP (x, 1), 0);
if (GET_CODE (term) == PLUS && GET_CODE (XEXP (term, 1)) == CONST_INT)
term = XEXP (term, 0);
if (GET_CODE (term) != UNSPEC
|| XVECLEN (term, 0) != 1
|| XINT (term, 1) != 7)
return x;
term = XVECEXP (term, 0, 0);
if (GET_CODE (term) != SYMBOL_REF
&& GET_CODE (term) != LABEL_REF)
return x;
return term;
}
/* Determine if a given CONST RTX is a valid memory displacement
in PIC mode. */
int
legitimate_pic_address_disp_p (disp)
register rtx disp;
{
/* In 64bit mode we can allow direct addresses of symbols and labels
when they are not dynamic symbols. */
if (TARGET_64BIT)
{
rtx x = disp;
if (GET_CODE (disp) == CONST)
x = XEXP (disp, 0);
/* ??? Handle PIC code models */
if (GET_CODE (x) == PLUS
&& (GET_CODE (XEXP (x, 1)) == CONST_INT
&& ix86_cmodel == CM_SMALL_PIC
&& INTVAL (XEXP (x, 1)) < 1024*1024*1024
&& INTVAL (XEXP (x, 1)) > -1024*1024*1024))
x = XEXP (x, 0);
if (local_symbolic_operand (x, Pmode))
return 1;
}
if (GET_CODE (disp) != CONST)
return 0;
disp = XEXP (disp, 0);
if (TARGET_64BIT)
{
/* We are unsafe to allow PLUS expressions. This limit allowed distance
of GOT tables. We should not need these anyway. */
if (GET_CODE (disp) != UNSPEC
|| XVECLEN (disp, 0) != 1
|| XINT (disp, 1) != 15)
return 0;
if (GET_CODE (XVECEXP (disp, 0, 0)) != SYMBOL_REF
&& GET_CODE (XVECEXP (disp, 0, 0)) != LABEL_REF)
return 0;
return 1;
}
if (GET_CODE (disp) == PLUS)
{
if (GET_CODE (XEXP (disp, 1)) != CONST_INT)
return 0;
disp = XEXP (disp, 0);
}
if (GET_CODE (disp) != UNSPEC
|| XVECLEN (disp, 0) != 1)
return 0;
/* Must be @GOT or @GOTOFF. */
switch (XINT (disp, 1))
{
case 6: /* @GOT */
return GET_CODE (XVECEXP (disp, 0, 0)) == SYMBOL_REF;
case 7: /* @GOTOFF */
return local_symbolic_operand (XVECEXP (disp, 0, 0), Pmode);
}
return 0;
}
/* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a valid
memory address for an instruction. The MODE argument is the machine mode
for the MEM expression that wants to use this address.
It only recognizes address in canonical form. LEGITIMIZE_ADDRESS should
convert common non-canonical forms to canonical form so that they will
be recognized. */
int
legitimate_address_p (mode, addr, strict)
enum machine_mode mode;
register rtx addr;
int strict;
{
struct ix86_address parts;
rtx base, index, disp;
HOST_WIDE_INT scale;
const char *reason = NULL;
rtx reason_rtx = NULL_RTX;
if (TARGET_DEBUG_ADDR)
{
fprintf (stderr,
"\n======\nGO_IF_LEGITIMATE_ADDRESS, mode = %s, strict = %d\n",
GET_MODE_NAME (mode), strict);
debug_rtx (addr);
}
if (! ix86_decompose_address (addr, &parts))
{
reason = "decomposition failed";
goto report_error;
}
base = parts.base;
index = parts.index;
disp = parts.disp;
scale = parts.scale;
/* Validate base register.
Don't allow SUBREG's here, it can lead to spill failures when the base
is one word out of a two word structure, which is represented internally
as a DImode int. */
if (base)
{
reason_rtx = base;
if (GET_CODE (base) != REG)
{
reason = "base is not a register";
goto report_error;
}
if (GET_MODE (base) != Pmode)
{
reason = "base is not in Pmode";
goto report_error;
}
if ((strict && ! REG_OK_FOR_BASE_STRICT_P (base))
|| (! strict && ! REG_OK_FOR_BASE_NONSTRICT_P (base)))
{
reason = "base is not valid";
goto report_error;
}
}
/* Validate index register.
Don't allow SUBREG's here, it can lead to spill failures when the index
is one word out of a two word structure, which is represented internally
as a DImode int. */
if (index)
{
reason_rtx = index;
if (GET_CODE (index) != REG)
{
reason = "index is not a register";
goto report_error;
}
if (GET_MODE (index) != Pmode)
{
reason = "index is not in Pmode";
goto report_error;
}
if ((strict && ! REG_OK_FOR_INDEX_STRICT_P (index))
|| (! strict && ! REG_OK_FOR_INDEX_NONSTRICT_P (index)))
{
reason = "index is not valid";
goto report_error;
}
}
/* Validate scale factor. */
if (scale != 1)
{
reason_rtx = GEN_INT (scale);
if (!index)
{
reason = "scale without index";
goto report_error;
}
if (scale != 2 && scale != 4 && scale != 8)
{
reason = "scale is not a valid multiplier";
goto report_error;
}
}
/* Validate displacement. */
if (disp)
{
reason_rtx = disp;
if (!CONSTANT_ADDRESS_P (disp))
{
reason = "displacement is not constant";
goto report_error;
}
if (TARGET_64BIT)
{
if (!x86_64_sign_extended_value (disp))
{
reason = "displacement is out of range";
goto report_error;
}
}
else
{
if (GET_CODE (disp) == CONST_DOUBLE)
{
reason = "displacement is a const_double";
goto report_error;
}
}
if (flag_pic && SYMBOLIC_CONST (disp))
{
if (TARGET_64BIT && (index || base))
{
reason = "non-constant pic memory reference";
goto report_error;
}
if (! legitimate_pic_address_disp_p (disp))
{
reason = "displacement is an invalid pic construct";
goto report_error;
}
/* This code used to verify that a symbolic pic displacement
includes the pic_offset_table_rtx register.
While this is good idea, unfortunately these constructs may
be created by "adds using lea" optimization for incorrect
code like:
int a;
int foo(int i)
{
return *(&a+i);
}
This code is nonsensical, but results in addressing
GOT table with pic_offset_table_rtx base. We can't
just refuse it easily, since it gets matched by
"addsi3" pattern, that later gets split to lea in the
case output register differs from input. While this
can be handled by separate addsi pattern for this case
that never results in lea, this seems to be easier and
correct fix for crash to disable this test. */
}
else if (HALF_PIC_P ())
{
if (! HALF_PIC_ADDRESS_P (disp)
|| (base != NULL_RTX || index != NULL_RTX))
{
reason = "displacement is an invalid half-pic reference";
goto report_error;
}
}
}
/* Everything looks valid. */
if (TARGET_DEBUG_ADDR)
fprintf (stderr, "Success.\n");
return TRUE;
report_error:
if (TARGET_DEBUG_ADDR)
{
fprintf (stderr, "Error: %s\n", reason);
debug_rtx (reason_rtx);
}
return FALSE;
}
/* Return an unique alias set for the GOT. */
static HOST_WIDE_INT
ix86_GOT_alias_set ()
{
static HOST_WIDE_INT set = -1;
if (set == -1)
set = new_alias_set ();
return set;
}
/* Return a legitimate reference for ORIG (an address) using the
register REG. If REG is 0, a new pseudo is generated.
There are two types of references that must be handled:
1. Global data references must load the address from the GOT, via
the PIC reg. An insn is emitted to do this load, and the reg is
returned.
2. Static data references, constant pool addresses, and code labels
compute the address as an offset from the GOT, whose base is in
the PIC reg. Static data objects have SYMBOL_REF_FLAG set to
differentiate them from global data objects. The returned
address is the PIC reg + an unspec constant.
GO_IF_LEGITIMATE_ADDRESS rejects symbolic references unless the PIC
reg also appears in the address. */
rtx
legitimize_pic_address (orig, reg)
rtx orig;
rtx reg;
{
rtx addr = orig;
rtx new = orig;
rtx base;
if (local_symbolic_operand (addr, Pmode))
{
/* In 64bit mode we can address such objects directly. */
if (TARGET_64BIT)
new = addr;
else
{
/* This symbol may be referenced via a displacement from the PIC
base address (@GOTOFF). */
current_function_uses_pic_offset_table = 1;
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 7);
new = gen_rtx_CONST (Pmode, new);
new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
if (reg != 0)
{
emit_move_insn (reg, new);
new = reg;
}
}
}
else if (GET_CODE (addr) == SYMBOL_REF)
{
if (TARGET_64BIT)
{
current_function_uses_pic_offset_table = 1;
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 15);
new = gen_rtx_CONST (Pmode, new);
new = gen_rtx_MEM (Pmode, new);
RTX_UNCHANGING_P (new) = 1;
set_mem_alias_set (new, ix86_GOT_alias_set ());
if (reg == 0)
reg = gen_reg_rtx (Pmode);
/* Use directly gen_movsi, otherwise the address is loaded
into register for CSE. We don't want to CSE this addresses,
instead we CSE addresses from the GOT table, so skip this. */
emit_insn (gen_movsi (reg, new));
new = reg;
}
else
{
/* This symbol must be referenced via a load from the
Global Offset Table (@GOT). */
current_function_uses_pic_offset_table = 1;
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, addr), 6);
new = gen_rtx_CONST (Pmode, new);
new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
new = gen_rtx_MEM (Pmode, new);
RTX_UNCHANGING_P (new) = 1;
set_mem_alias_set (new, ix86_GOT_alias_set ());
if (reg == 0)
reg = gen_reg_rtx (Pmode);
emit_move_insn (reg, new);
new = reg;
}
}
else
{
if (GET_CODE (addr) == CONST)
{
addr = XEXP (addr, 0);
if (GET_CODE (addr) == UNSPEC)
{
/* Check that the unspec is one of the ones we generate? */
}
else if (GET_CODE (addr) != PLUS)
abort ();
}
if (GET_CODE (addr) == PLUS)
{
rtx op0 = XEXP (addr, 0), op1 = XEXP (addr, 1);
/* Check first to see if this is a constant offset from a @GOTOFF
symbol reference. */
if (local_symbolic_operand (op0, Pmode)
&& GET_CODE (op1) == CONST_INT)
{
if (!TARGET_64BIT)
{
current_function_uses_pic_offset_table = 1;
new = gen_rtx_UNSPEC (Pmode, gen_rtvec (1, op0), 7);
new = gen_rtx_PLUS (Pmode, new, op1);
new = gen_rtx_CONST (Pmode, new);
new = gen_rtx_PLUS (Pmode, pic_offset_table_rtx, new);
if (reg != 0)
{
emit_move_insn (reg, new);
new = reg;
}
}
else
{
/* ??? We need to limit offsets here. */
}
}
else
{
base = legitimize_pic_address (XEXP (addr, 0), reg);
new = legitimize_pic_address (XEXP (addr, 1),
base == reg ? NULL_RTX : reg);
if (GET_CODE (new) == CONST_INT)
new = plus_constant (base, INTVAL (new));
else
{
if (GET_CODE (new) == PLUS && CONSTANT_P (XEXP (new, 1)))
{
base = gen_rtx_PLUS (Pmode, base, XEXP (new, 0));
new = XEXP (new, 1);
}
new = gen_rtx_PLUS (Pmode, base, new);
}
}
}
}
return new;
}
/* Try machine-dependent ways of modifying an illegitimate address
to be legitimate. If we find one, return the new, valid address.
This macro is used in only one place: `memory_address' in explow.c.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE and WIN are passed so that this macro can use
GO_IF_LEGITIMATE_ADDRESS.
It is always safe for this macro to do nothing. It exists to recognize
opportunities to optimize the output.
For the 80386, we handle X+REG by loading X into a register R and
using R+REG. R will go in a general reg and indexing will be used.
However, if REG is a broken-out memory address or multiplication,
nothing needs to be done because REG can certainly go in a general reg.
When -fpic is used, special handling is needed for symbolic references.
See comments by legitimize_pic_address in i386.c for details. */
rtx
legitimize_address (x, oldx, mode)
register rtx x;
register rtx oldx ATTRIBUTE_UNUSED;
enum machine_mode mode;
{
int changed = 0;
unsigned log;
if (TARGET_DEBUG_ADDR)
{
fprintf (stderr, "\n==========\nLEGITIMIZE_ADDRESS, mode = %s\n",
GET_MODE_NAME (mode));
debug_rtx (x);
}
if (flag_pic && SYMBOLIC_CONST (x))
return legitimize_pic_address (x, 0);
/* Canonicalize shifts by 0, 1, 2, 3 into multiply */
if (GET_CODE (x) == ASHIFT
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& (log = (unsigned)exact_log2 (INTVAL (XEXP (x, 1)))) < 4)
{
changed = 1;
x = gen_rtx_MULT (Pmode, force_reg (Pmode, XEXP (x, 0)),
GEN_INT (1 << log));
}
if (GET_CODE (x) == PLUS)
{
/* Canonicalize shifts by 0, 1, 2, 3 into multiply. */
if (GET_CODE (XEXP (x, 0)) == ASHIFT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& (log = (unsigned)exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) < 4)
{
changed = 1;
XEXP (x, 0) = gen_rtx_MULT (Pmode,
force_reg (Pmode, XEXP (XEXP (x, 0), 0)),
GEN_INT (1 << log));
}
if (GET_CODE (XEXP (x, 1)) == ASHIFT
&& GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
&& (log = (unsigned)exact_log2 (INTVAL (XEXP (XEXP (x, 1), 1)))) < 4)
{
changed = 1;
XEXP (x, 1) = gen_rtx_MULT (Pmode,
force_reg (Pmode, XEXP (XEXP (x, 1), 0)),
GEN_INT (1 << log));
}
/* Put multiply first if it isn't already. */
if (GET_CODE (XEXP (x, 1)) == MULT)
{
rtx tmp = XEXP (x, 0);
XEXP (x, 0) = XEXP (x, 1);
XEXP (x, 1) = tmp;
changed = 1;
}
/* Canonicalize (plus (mult (reg) (const)) (plus (reg) (const)))
into (plus (plus (mult (reg) (const)) (reg)) (const)). This can be
created by virtual register instantiation, register elimination, and
similar optimizations. */
if (GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == PLUS)
{
changed = 1;
x = gen_rtx_PLUS (Pmode,
gen_rtx_PLUS (Pmode, XEXP (x, 0),
XEXP (XEXP (x, 1), 0)),
XEXP (XEXP (x, 1), 1));
}
/* Canonicalize
(plus (plus (mult (reg) (const)) (plus (reg) (const))) const)
into (plus (plus (mult (reg) (const)) (reg)) (const)). */
else if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == PLUS
&& CONSTANT_P (XEXP (x, 1)))
{
rtx constant;
rtx other = NULL_RTX;
if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
constant = XEXP (x, 1);
other = XEXP (XEXP (XEXP (x, 0), 1), 1);
}
else if (GET_CODE (XEXP (XEXP (XEXP (x, 0), 1), 1)) == CONST_INT)
{
constant = XEXP (XEXP (XEXP (x, 0), 1), 1);
other = XEXP (x, 1);
}
else
constant = 0;
if (constant)
{
changed = 1;
x = gen_rtx_PLUS (Pmode,
gen_rtx_PLUS (Pmode, XEXP (XEXP (x, 0), 0),
XEXP (XEXP (XEXP (x, 0), 1), 0)),
plus_constant (other, INTVAL (constant)));
}
}
if (changed && legitimate_address_p (mode, x, FALSE))
return x;
if (GET_CODE (XEXP (x, 0)) == MULT)
{
changed = 1;
XEXP (x, 0) = force_operand (XEXP (x, 0), 0);
}
if (GET_CODE (XEXP (x, 1)) == MULT)
{
changed = 1;
XEXP (x, 1) = force_operand (XEXP (x, 1), 0);
}
if (changed
&& GET_CODE (XEXP (x, 1)) == REG
&& GET_CODE (XEXP (x, 0)) == REG)
return x;
if (flag_pic && SYMBOLIC_CONST (XEXP (x, 1)))
{
changed = 1;
x = legitimize_pic_address (x, 0);
}
if (changed && legitimate_address_p (mode, x, FALSE))
return x;
if (GET_CODE (XEXP (x, 0)) == REG)
{
register rtx temp = gen_reg_rtx (Pmode);
register rtx val = force_operand (XEXP (x, 1), temp);
if (val != temp)
emit_move_insn (temp, val);
XEXP (x, 1) = temp;
return x;
}
else if (GET_CODE (XEXP (x, 1)) == REG)
{
register rtx temp = gen_reg_rtx (Pmode);
register rtx val = force_operand (XEXP (x, 0), temp);
if (val != temp)
emit_move_insn (temp, val);
XEXP (x, 0) = temp;
return x;
}
}
return x;
}
/* Print an integer constant expression in assembler syntax. Addition
and subtraction are the only arithmetic that may appear in these
expressions. FILE is the stdio stream to write to, X is the rtx, and
CODE is the operand print code from the output string. */
static void
output_pic_addr_const (file, x, code)
FILE *file;
rtx x;
int code;
{
char buf[256];
switch (GET_CODE (x))
{
case PC:
if (flag_pic)
putc ('.', file);
else
abort ();
break;
case SYMBOL_REF:
assemble_name (file, XSTR (x, 0));
if (code == 'P' && ! SYMBOL_REF_FLAG (x))
fputs ("@PLT", file);
break;
case LABEL_REF:
x = XEXP (x, 0);
/* FALLTHRU */
case CODE_LABEL:
ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
assemble_name (asm_out_file, buf);
break;
case CONST_INT:
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
break;
case CONST:
/* This used to output parentheses around the expression,
but that does not work on the 386 (either ATT or BSD assembler). */
output_pic_addr_const (file, XEXP (x, 0), code);
break;
case CONST_DOUBLE:
if (GET_MODE (x) == VOIDmode)
{
/* We can use %d if the number is <32 bits and positive. */
if (CONST_DOUBLE_HIGH (x) || CONST_DOUBLE_LOW (x) < 0)
fprintf (file, "0x%lx%08lx",
(unsigned long) CONST_DOUBLE_HIGH (x),
(unsigned long) CONST_DOUBLE_LOW (x));
else
fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
}
else
/* We can't handle floating point constants;
PRINT_OPERAND must handle them. */
output_operand_lossage ("floating constant misused");
break;
case PLUS:
/* Some assemblers need integer constants to appear first. */
if (GET_CODE (XEXP (x, 0)) == CONST_INT)
{
output_pic_addr_const (file, XEXP (x, 0), code);
putc ('+', file);
output_pic_addr_const (file, XEXP (x, 1), code);
}
else if (GET_CODE (XEXP (x, 1)) == CONST_INT)
{
output_pic_addr_const (file, XEXP (x, 1), code);
putc ('+', file);
output_pic_addr_const (file, XEXP (x, 0), code);
}
else
abort ();
break;
case MINUS:
putc (ASSEMBLER_DIALECT ? '(' : '[', file);
output_pic_addr_const (file, XEXP (x, 0), code);
putc ('-', file);
output_pic_addr_const (file, XEXP (x, 1), code);
putc (ASSEMBLER_DIALECT ? ')' : ']', file);
break;
case UNSPEC:
if (XVECLEN (x, 0) != 1)
abort ();
output_pic_addr_const (file, XVECEXP (x, 0, 0), code);
switch (XINT (x, 1))
{
case 6:
fputs ("@GOT", file);
break;
case 7:
fputs ("@GOTOFF", file);
break;
case 8:
fputs ("@PLT", file);
break;
case 15:
fputs ("@GOTPCREL(%RIP)", file);
break;
default:
output_operand_lossage ("invalid UNSPEC as operand");
break;
}
break;
default:
output_operand_lossage ("invalid expression as operand");
}
}
/* This is called from dwarfout.c via ASM_OUTPUT_DWARF_ADDR_CONST.
We need to handle our special PIC relocations. */
void
i386_dwarf_output_addr_const (file, x)
FILE *file;
rtx x;
{
#ifdef ASM_QUAD
fprintf (file, "%s", TARGET_64BIT ? ASM_QUAD : ASM_LONG);
#else
if (TARGET_64BIT)
abort ();
fprintf (file, "%s", ASM_LONG);
#endif
if (flag_pic)
output_pic_addr_const (file, x, '\0');
else
output_addr_const (file, x);
fputc ('\n', file);
}
/* In the name of slightly smaller debug output, and to cater to
general assembler losage, recognize PIC+GOTOFF and turn it back
into a direct symbol reference. */
rtx
i386_simplify_dwarf_addr (orig_x)
rtx orig_x;
{
rtx x = orig_x;
if (TARGET_64BIT)
{
if (GET_CODE (x) != CONST
|| GET_CODE (XEXP (x, 0)) != UNSPEC
|| XINT (XEXP (x, 0), 1) != 15)
return orig_x;
return XVECEXP (XEXP (x, 0), 0, 0);
}
if (GET_CODE (x) != PLUS
|| GET_CODE (XEXP (x, 0)) != REG
|| GET_CODE (XEXP (x, 1)) != CONST)
return orig_x;
x = XEXP (XEXP (x, 1), 0);
if (GET_CODE (x) == UNSPEC
&& (XINT (x, 1) == 6
|| XINT (x, 1) == 7))
return XVECEXP (x, 0, 0);
if (GET_CODE (x) == PLUS
&& GET_CODE (XEXP (x, 0)) == UNSPEC
&& GET_CODE (XEXP (x, 1)) == CONST_INT
&& (XINT (XEXP (x, 0), 1) == 6
|| XINT (XEXP (x, 0), 1) == 7))
return gen_rtx_PLUS (VOIDmode, XVECEXP (XEXP (x, 0), 0, 0), XEXP (x, 1));
return orig_x;
}
static void
put_condition_code (code, mode, reverse, fp, file)
enum rtx_code code;
enum machine_mode mode;
int reverse, fp;
FILE *file;
{
const char *suffix;
if (mode == CCFPmode || mode == CCFPUmode)
{
enum rtx_code second_code, bypass_code;
ix86_fp_comparison_codes (code, &bypass_code, &code, &second_code);
if (bypass_code != NIL || second_code != NIL)
abort();
code = ix86_fp_compare_code_to_integer (code);
mode = CCmode;
}
if (reverse)
code = reverse_condition (code);
switch (code)
{
case EQ:
suffix = "e";
break;
case NE:
suffix = "ne";
break;
case GT:
if (mode != CCmode && mode != CCNOmode && mode != CCGCmode)
abort ();
suffix = "g";
break;
case GTU:
/* ??? Use "nbe" instead of "a" for fcmov losage on some assemblers.
Those same assemblers have the same but opposite losage on cmov. */
if (mode != CCmode)
abort ();
suffix = fp ? "nbe" : "a";
break;
case LT:
if (mode == CCNOmode || mode == CCGOCmode)
suffix = "s";
else if (mode == CCmode || mode == CCGCmode)
suffix = "l";
else
abort ();
break;
case LTU:
if (mode != CCmode)
abort ();
suffix = "b";
break;
case GE:
if (mode == CCNOmode || mode == CCGOCmode)
suffix = "ns";
else if (mode == CCmode || mode == CCGCmode)
suffix = "ge";
else
abort ();
break;
case GEU:
/* ??? As above. */
if (mode != CCmode)
abort ();
suffix = fp ? "nb" : "ae";
break;
case LE:
if (mode != CCmode && mode != CCGCmode && mode != CCNOmode)
abort ();
suffix = "le";
break;
case LEU:
if (mode != CCmode)
abort ();
suffix = "be";
break;
case UNORDERED:
suffix = fp ? "u" : "p";
break;
case ORDERED:
suffix = fp ? "nu" : "np";
break;
default:
abort ();
}
fputs (suffix, file);
}
void
print_reg (x, code, file)
rtx x;
int code;
FILE *file;
{
if (REGNO (x) == ARG_POINTER_REGNUM
|| REGNO (x) == FRAME_POINTER_REGNUM
|| REGNO (x) == FLAGS_REG
|| REGNO (x) == FPSR_REG)
abort ();
if (ASSEMBLER_DIALECT == 0 || USER_LABEL_PREFIX[0] == 0)
putc ('%', file);
if (code == 'w' || MMX_REG_P (x))
code = 2;
else if (code == 'b')
code = 1;
else if (code == 'k')
code = 4;
else if (code == 'q')
code = 8;
else if (code == 'y')
code = 3;
else if (code == 'h')
code = 0;
else
code = GET_MODE_SIZE (GET_MODE (x));
/* Irritatingly, AMD extended registers use different naming convention
from the normal registers. */
if (REX_INT_REG_P (x))
{
if (!TARGET_64BIT)
abort ();
switch (code)
{
case 0:
error ("extended registers have no high halves");
break;
case 1:
fprintf (file, "r%ib", REGNO (x) - FIRST_REX_INT_REG + 8);
break;
case 2:
fprintf (file, "r%iw", REGNO (x) - FIRST_REX_INT_REG + 8);
break;
case 4:
fprintf (file, "r%id", REGNO (x) - FIRST_REX_INT_REG + 8);
break;
case 8:
fprintf (file, "r%i", REGNO (x) - FIRST_REX_INT_REG + 8);
break;
default:
error ("unsupported operand size for extended register");
break;
}
return;
}
switch (code)
{
case 3:
if (STACK_TOP_P (x))
{
fputs ("st(0)", file);
break;
}
/* FALLTHRU */
case 8:
case 4:
case 12:
if (! ANY_FP_REG_P (x))
putc (code == 8 && TARGET_64BIT ? 'r' : 'e', file);
/* FALLTHRU */
case 16:
case 2:
fputs (hi_reg_name[REGNO (x)], file);
break;
case 1:
fputs (qi_reg_name[REGNO (x)], file);
break;
case 0:
fputs (qi_high_reg_name[REGNO (x)], file);
break;
default:
abort ();
}
}
/* Meaning of CODE:
L,W,B,Q,S,T -- print the opcode suffix for specified size of operand.
C -- print opcode suffix for set/cmov insn.
c -- like C, but print reversed condition
F,f -- likewise, but for floating-point.
R -- print the prefix for register names.
z -- print the opcode suffix for the size of the current operand.
* -- print a star (in certain assembler syntax)
A -- print an absolute memory reference.
w -- print the operand as if it's a "word" (HImode) even if it isn't.
s -- print a shift double count, followed by the assemblers argument
delimiter.
b -- print the QImode name of the register for the indicated operand.
%b0 would print %al if operands[0] is reg 0.
w -- likewise, print the HImode name of the register.
k -- likewise, print the SImode name of the register.
q -- likewise, print the DImode name of the register.
h -- print the QImode name for a "high" register, either ah, bh, ch or dh.
y -- print "st(0)" instead of "st" as a register.
D -- print condition for SSE cmp instruction.
P -- if PIC, print an @PLT suffix.
X -- don't print any sort of PIC '@' suffix for a symbol.
*/
void
print_operand (file, x, code)
FILE *file;
rtx x;
int code;
{
if (code)
{
switch (code)
{
case '*':
if (ASSEMBLER_DIALECT == 0)
putc ('*', file);
return;
case 'A':
if (ASSEMBLER_DIALECT == 0)
putc ('*', file);
else if (ASSEMBLER_DIALECT == 1)
{
/* Intel syntax. For absolute addresses, registers should not
be surrounded by braces. */
if (GET_CODE (x) != REG)
{
putc ('[', file);
PRINT_OPERAND (file, x, 0);
putc (']', file);
return;
}
}
PRINT_OPERAND (file, x, 0);
return;
case 'L':
if (ASSEMBLER_DIALECT == 0)
putc ('l', file);
return;
case 'W':
if (ASSEMBLER_DIALECT == 0)
putc ('w', file);
return;
case 'B':
if (ASSEMBLER_DIALECT == 0)
putc ('b', file);
return;
case 'Q':
if (ASSEMBLER_DIALECT == 0)
putc ('l', file);
return;
case 'S':
if (ASSEMBLER_DIALECT == 0)
putc ('s', file);
return;
case 'T':
if (ASSEMBLER_DIALECT == 0)
putc ('t', file);
return;
case 'z':
/* 387 opcodes don't get size suffixes if the operands are
registers. */
if (STACK_REG_P (x))
return;
/* this is the size of op from size of operand */
switch (GET_MODE_SIZE (GET_MODE (x)))
{
case 2:
#ifdef HAVE_GAS_FILDS_FISTS
putc ('s', file);
#endif
return;
case 4:
if (GET_MODE (x) == SFmode)
{
putc ('s', file);
return;
}
else
putc ('l', file);
return;
case 12:
case 16:
putc ('t', file);
return;
case 8:
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
{
#ifdef GAS_MNEMONICS
putc ('q', file);
#else
putc ('l', file);
putc ('l', file);
#endif
}
else
putc ('l', file);
return;
default:
abort ();
}
case 'b':
case 'w':
case 'k':
case 'q':
case 'h':
case 'y':
case 'X':
case 'P':
break;
case 's':
if (GET_CODE (x) == CONST_INT || ! SHIFT_DOUBLE_OMITS_COUNT)
{
PRINT_OPERAND (file, x, 0);
putc (',', file);
}
return;
case 'D':
/* Little bit of braindamage here. The SSE compare instructions
does use completely different names for the comparisons that the
fp conditional moves. */
switch (GET_CODE (x))
{
case EQ:
case UNEQ:
fputs ("eq", file);
break;
case LT:
case UNLT:
fputs ("lt", file);
break;
case LE:
case UNLE:
fputs ("le", file);
break;
case UNORDERED:
fputs ("unord", file);
break;
case NE:
case LTGT:
fputs ("neq", file);
break;
case UNGE:
case GE:
fputs ("nlt", file);
break;
case UNGT:
case GT:
fputs ("nle", file);
break;
case ORDERED:
fputs ("ord", file);
break;
default:
abort ();
break;
}
return;
case 'C':
put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 0, 0, file);
return;
case 'F':
put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 0, 1, file);
return;
/* Like above, but reverse condition */
case 'c':
/* Check to see if argument to %c is really a constant
and not a condition code which needs to be reversed. */
if (GET_RTX_CLASS (GET_CODE (x)) != '<')
{
output_operand_lossage ("operand is neither a constant nor a condition code, invalid operand code 'c'");
return;
}
put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 1, 0, file);
return;
case 'f':
put_condition_code (GET_CODE (x), GET_MODE (XEXP (x, 0)), 1, 1, file);
return;
case '+':
{
rtx x;
if (!optimize || optimize_size || !TARGET_BRANCH_PREDICTION_HINTS)
return;
x = find_reg_note (current_output_insn, REG_BR_PROB, 0);
if (x)
{
int pred_val = INTVAL (XEXP (x, 0));
if (pred_val < REG_BR_PROB_BASE * 45 / 100
|| pred_val > REG_BR_PROB_BASE * 55 / 100)
{
int taken = pred_val > REG_BR_PROB_BASE / 2;
int cputaken = final_forward_branch_p (current_output_insn) == 0;
/* Emit hints only in the case default branch prediction
heruistics would fail. */
if (taken != cputaken)
{
/* We use 3e (DS) prefix for taken branches and
2e (CS) prefix for not taken branches. */
if (taken)
fputs ("ds ; ", file);
else
fputs ("cs ; ", file);
}
}
}
return;
}
default:
{
char str[50];
sprintf (str, "invalid operand code `%c'", code);
output_operand_lossage (str);
}
}
}
if (GET_CODE (x) == REG)
{
PRINT_REG (x, code, file);
}
else if (GET_CODE (x) == MEM)
{
/* No `byte ptr' prefix for call instructions. */
if (ASSEMBLER_DIALECT != 0 && code != 'X' && code != 'P')
{
const char * size;
switch (GET_MODE_SIZE (GET_MODE (x)))
{
case 1: size = "BYTE"; break;
case 2: size = "WORD"; break;
case 4: size = "DWORD"; break;
case 8: size = "QWORD"; break;
case 12: size = "XWORD"; break;
case 16: size = "XMMWORD"; break;
default:
abort ();
}
/* Check for explicit size override (codes 'b', 'w' and 'k') */
if (code == 'b')
size = "BYTE";
else if (code == 'w')
size = "WORD";
else if (code == 'k')
size = "DWORD";
fputs (size, file);
fputs (" PTR ", file);
}
x = XEXP (x, 0);
if (flag_pic && CONSTANT_ADDRESS_P (x))
output_pic_addr_const (file, x, code);
/* Avoid (%rip) for call operands. */
else if (CONSTANT_ADDRESS_P (x) && code =='P'
&& GET_CODE (x) != CONST_INT)
output_addr_const (file, x);
else
output_address (x);
}
else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == SFmode)
{
REAL_VALUE_TYPE r;
long l;
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_TARGET_SINGLE (r, l);
if (ASSEMBLER_DIALECT == 0)
putc ('$', file);
fprintf (file, "0x%lx", l);
}
/* These float cases don't actually occur as immediate operands. */
else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) == DFmode)
{
REAL_VALUE_TYPE r;
char dstr[30];
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_DECIMAL (r, "%.22e", dstr);
fprintf (file, "%s", dstr);
}
else if (GET_CODE (x) == CONST_DOUBLE
&& (GET_MODE (x) == XFmode || GET_MODE (x) == TFmode))
{
REAL_VALUE_TYPE r;
char dstr[30];
REAL_VALUE_FROM_CONST_DOUBLE (r, x);
REAL_VALUE_TO_DECIMAL (r, "%.22e", dstr);
fprintf (file, "%s", dstr);
}
else
{
if (code != 'P')
{
if (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
{
if (ASSEMBLER_DIALECT == 0)
putc ('$', file);
}
else if (GET_CODE (x) == CONST || GET_CODE (x) == SYMBOL_REF
|| GET_CODE (x) == LABEL_REF)
{
if (ASSEMBLER_DIALECT == 0)
putc ('$', file);
else
fputs ("OFFSET FLAT:", file);
}
}
if (GET_CODE (x) == CONST_INT)
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
else if (flag_pic)
output_pic_addr_const (file, x, code);
else
output_addr_const (file, x);
}
}
/* Print a memory operand whose address is ADDR. */
void
print_operand_address (file, addr)
FILE *file;
register rtx addr;
{
struct ix86_address parts;
rtx base, index, disp;
int scale;
if (! ix86_decompose_address (addr, &parts))
abort ();
base = parts.base;
index = parts.index;
disp = parts.disp;
scale = parts.scale;
if (!base && !index)
{
/* Displacement only requires special attention. */
if (GET_CODE (disp) == CONST_INT)
{
if (ASSEMBLER_DIALECT != 0)
{
if (USER_LABEL_PREFIX[0] == 0)
putc ('%', file);
fputs ("ds:", file);
}
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (addr));
}
else if (flag_pic)
output_pic_addr_const (file, addr, 0);
else
output_addr_const (file, addr);
/* Use one byte shorter RIP relative addressing for 64bit mode. */
if (GET_CODE (disp) != CONST_INT && TARGET_64BIT)
fputs ("(%rip)", file);
}
else
{
if (ASSEMBLER_DIALECT == 0)
{
if (disp)
{
if (flag_pic)
output_pic_addr_const (file, disp, 0);
else if (GET_CODE (disp) == LABEL_REF)
output_asm_label (disp);
else
output_addr_const (file, disp);
}
putc ('(', file);
if (base)
PRINT_REG (base, 0, file);
if (index)
{
putc (',', file);
PRINT_REG (index, 0, file);
if (scale != 1)
fprintf (file, ",%d", scale);
}
putc (')', file);
}
else
{
rtx offset = NULL_RTX;
if (disp)
{
/* Pull out the offset of a symbol; print any symbol itself. */
if (GET_CODE (disp) == CONST
&& GET_CODE (XEXP (disp, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (disp, 0), 1)) == CONST_INT)
{
offset = XEXP (XEXP (disp, 0), 1);
disp = gen_rtx_CONST (VOIDmode,
XEXP (XEXP (disp, 0), 0));
}
if (flag_pic)
output_pic_addr_const (file, disp, 0);
else if (GET_CODE (disp) == LABEL_REF)
output_asm_label (disp);
else if (GET_CODE (disp) == CONST_INT)
offset = disp;
else
output_addr_const (file, disp);
}
putc ('[', file);
if (base)
{
PRINT_REG (base, 0, file);
if (offset)
{
if (INTVAL (offset) >= 0)
putc ('+', file);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset));
}
}
else if (offset)
fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (offset));
else
putc ('0', file);
if (index)
{
putc ('+', file);
PRINT_REG (index, 0, file);
if (scale != 1)
fprintf (file, "*%d", scale);
}
putc (']', file);
}
}
}
/* Split one or more DImode RTL references into pairs of SImode
references. The RTL can be REG, offsettable MEM, integer constant, or
CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
split and "num" is its length. lo_half and hi_half are output arrays
that parallel "operands". */
void
split_di (operands, num, lo_half, hi_half)
rtx operands[];
int num;
rtx lo_half[], hi_half[];
{
while (num--)
{
rtx op = operands[num];
/* simplify_subreg refuse to split volatile memory addresses,
but we still have to handle it. */
if (GET_CODE (op) == MEM)
{
lo_half[num] = adjust_address (op, SImode, 0);
hi_half[num] = adjust_address (op, SImode, 4);
}
else
{
lo_half[num] = simplify_gen_subreg (SImode, op,
GET_MODE (op) == VOIDmode
? DImode : GET_MODE (op), 0);
hi_half[num] = simplify_gen_subreg (SImode, op,
GET_MODE (op) == VOIDmode
? DImode : GET_MODE (op), 4);
}
}
}
/* Split one or more TImode RTL references into pairs of SImode
references. The RTL can be REG, offsettable MEM, integer constant, or
CONST_DOUBLE. "operands" is a pointer to an array of DImode RTL to
split and "num" is its length. lo_half and hi_half are output arrays
that parallel "operands". */
void
split_ti (operands, num, lo_half, hi_half)
rtx operands[];
int num;
rtx lo_half[], hi_half[];
{
while (num--)
{
rtx op = operands[num];
/* simplify_subreg refuse to split volatile memory addresses, but we
still have to handle it. */
if (GET_CODE (op) == MEM)
{
lo_half[num] = adjust_address (op, DImode, 0);
hi_half[num] = adjust_address (op, DImode, 8);
}
else
{
lo_half[num] = simplify_gen_subreg (DImode, op, TImode, 0);
hi_half[num] = simplify_gen_subreg (DImode, op, TImode, 8);
}
}
}
/* Output code to perform a 387 binary operation in INSN, one of PLUS,
MINUS, MULT or DIV. OPERANDS are the insn operands, where operands[3]
is the expression of the binary operation. The output may either be
emitted here, or returned to the caller, like all output_* functions.
There is no guarantee that the operands are the same mode, as they
might be within FLOAT or FLOAT_EXTEND expressions. */
#ifndef SYSV386_COMPAT
/* Set to 1 for compatibility with brain-damaged assemblers. No-one
wants to fix the assemblers because that causes incompatibility
with gcc. No-one wants to fix gcc because that causes
incompatibility with assemblers... You can use the option of
-DSYSV386_COMPAT=0 if you recompile both gcc and gas this way. */
#define SYSV386_COMPAT 1
#endif
const char *
output_387_binary_op (insn, operands)
rtx insn;
rtx *operands;
{
static char buf[30];
const char *p;
const char *ssep;
int is_sse = SSE_REG_P (operands[0]) | SSE_REG_P (operands[1]) | SSE_REG_P (operands[2]);
#ifdef ENABLE_CHECKING
/* Even if we do not want to check the inputs, this documents input
constraints. Which helps in understanding the following code. */
if (STACK_REG_P (operands[0])
&& ((REG_P (operands[1])
&& REGNO (operands[0]) == REGNO (operands[1])
&& (STACK_REG_P (operands[2]) || GET_CODE (operands[2]) == MEM))
|| (REG_P (operands[2])
&& REGNO (operands[0]) == REGNO (operands[2])
&& (STACK_REG_P (operands[1]) || GET_CODE (operands[1]) == MEM)))
&& (STACK_TOP_P (operands[1]) || STACK_TOP_P (operands[2])))
; /* ok */
else if (!is_sse)
abort ();
#endif
switch (GET_CODE (operands[3]))
{
case PLUS:
if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
|| GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
p = "fiadd";
else
p = "fadd";
ssep = "add";
break;
case MINUS:
if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
|| GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
p = "fisub";
else
p = "fsub";
ssep = "sub";
break;
case MULT:
if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
|| GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
p = "fimul";
else
p = "fmul";
ssep = "mul";
break;
case DIV:
if (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT
|| GET_MODE_CLASS (GET_MODE (operands[2])) == MODE_INT)
p = "fidiv";
else
p = "fdiv";
ssep = "div";
break;
default:
abort ();
}
if (is_sse)
{
strcpy (buf, ssep);
if (GET_MODE (operands[0]) == SFmode)
strcat (buf, "ss\t{%2, %0|%0, %2}");
else
strcat (buf, "sd\t{%2, %0|%0, %2}");
return buf;
}
strcpy (buf, p);
switch (GET_CODE (operands[3]))
{
case MULT:
case PLUS:
if (REG_P (operands[2]) && REGNO (operands[0]) == REGNO (operands[2]))
{
rtx temp = operands[2];
operands[2] = operands[1];
operands[1] = temp;
}
/* know operands[0] == operands[1]. */
if (GET_CODE (operands[2]) == MEM)
{
p = "%z2\t%2";
break;
}
if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
{
if (STACK_TOP_P (operands[0]))
/* How is it that we are storing to a dead operand[2]?
Well, presumably operands[1] is dead too. We can't
store the result to st(0) as st(0) gets popped on this
instruction. Instead store to operands[2] (which I
think has to be st(1)). st(1) will be popped later.
gcc <= 2.8.1 didn't have this check and generated
assembly code that the Unixware assembler rejected. */
p = "p\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */
else
p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */
break;
}
if (STACK_TOP_P (operands[0]))
p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */
else
p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */
break;
case MINUS:
case DIV:
if (GET_CODE (operands[1]) == MEM)
{
p = "r%z1\t%1";
break;
}
if (GET_CODE (operands[2]) == MEM)
{
p = "%z2\t%2";
break;
}
if (find_regno_note (insn, REG_DEAD, REGNO (operands[2])))
{
#if SYSV386_COMPAT
/* The SystemV/386 SVR3.2 assembler, and probably all AT&T
derived assemblers, confusingly reverse the direction of
the operation for fsub{r} and fdiv{r} when the
destination register is not st(0). The Intel assembler
doesn't have this brain damage. Read !SYSV386_COMPAT to
figure out what the hardware really does. */
if (STACK_TOP_P (operands[0]))
p = "{p\t%0, %2|rp\t%2, %0}";
else
p = "{rp\t%2, %0|p\t%0, %2}";
#else
if (STACK_TOP_P (operands[0]))
/* As above for fmul/fadd, we can't store to st(0). */
p = "rp\t{%0, %2|%2, %0}"; /* st(1) = st(0) op st(1); pop */
else
p = "p\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0); pop */
#endif
break;
}
if (find_regno_note (insn, REG_DEAD, REGNO (operands[1])))
{
#if SYSV386_COMPAT
if (STACK_TOP_P (operands[0]))
p = "{rp\t%0, %1|p\t%1, %0}";
else
p = "{p\t%1, %0|rp\t%0, %1}";
#else
if (STACK_TOP_P (operands[0]))
p = "p\t{%0, %1|%1, %0}"; /* st(1) = st(1) op st(0); pop */
else
p = "rp\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2); pop */
#endif
break;
}
if (STACK_TOP_P (operands[0]))
{
if (STACK_TOP_P (operands[1]))
p = "\t{%y2, %0|%0, %y2}"; /* st(0) = st(0) op st(r2) */
else
p = "r\t{%y1, %0|%0, %y1}"; /* st(0) = st(r1) op st(0) */
break;
}
else if (STACK_TOP_P (operands[1]))
{
#if SYSV386_COMPAT
p = "{\t%1, %0|r\t%0, %1}";
#else
p = "r\t{%1, %0|%0, %1}"; /* st(r2) = st(0) op st(r2) */
#endif
}
else
{
#if SYSV386_COMPAT
p = "{r\t%2, %0|\t%0, %2}";
#else
p = "\t{%2, %0|%0, %2}"; /* st(r1) = st(r1) op st(0) */
#endif
}
break;
default:
abort ();
}
strcat (buf, p);
return buf;
}
/* Output code to initialize control word copies used by
trunc?f?i patterns. NORMAL is set to current control word, while ROUND_DOWN
is set to control word rounding downwards. */
void
emit_i387_cw_initialization (normal, round_down)
rtx normal, round_down;
{
rtx reg = gen_reg_rtx (HImode);
emit_insn (gen_x86_fnstcw_1 (normal));
emit_move_insn (reg, normal);
if (!TARGET_PARTIAL_REG_STALL && !optimize_size
&& !TARGET_64BIT)
emit_insn (gen_movsi_insv_1 (reg, GEN_INT (0xc)));
else
emit_insn (gen_iorhi3 (reg, reg, GEN_INT (0xc00)));
emit_move_insn (round_down, reg);
}
/* Output code for INSN to convert a float to a signed int. OPERANDS
are the insn operands. The output may be [HSD]Imode and the input
operand may be [SDX]Fmode. */
const char *
output_fix_trunc (insn, operands)
rtx insn;
rtx *operands;
{
int stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
int dimode_p = GET_MODE (operands[0]) == DImode;
/* Jump through a hoop or two for DImode, since the hardware has no
non-popping instruction. We used to do this a different way, but
that was somewhat fragile and broke with post-reload splitters. */
if (dimode_p && !stack_top_dies)
output_asm_insn ("fld\t%y1", operands);
if (!STACK_TOP_P (operands[1]))
abort ();
if (GET_CODE (operands[0]) != MEM)
abort ();
output_asm_insn ("fldcw\t%3", operands);
if (stack_top_dies || dimode_p)
output_asm_insn ("fistp%z0\t%0", operands);
else
output_asm_insn ("fist%z0\t%0", operands);
output_asm_insn ("fldcw\t%2", operands);
return "";
}
/* Output code for INSN to compare OPERANDS. EFLAGS_P is 1 when fcomi
should be used and 2 when fnstsw should be used. UNORDERED_P is true
when fucom should be used. */
const char *
output_fp_compare (insn, operands, eflags_p, unordered_p)
rtx insn;
rtx *operands;
int eflags_p, unordered_p;
{
int stack_top_dies;
rtx cmp_op0 = operands[0];
rtx cmp_op1 = operands[1];
int is_sse = SSE_REG_P (operands[0]) | SSE_REG_P (operands[1]);
if (eflags_p == 2)
{
cmp_op0 = cmp_op1;
cmp_op1 = operands[2];
}
if (is_sse)
{
if (GET_MODE (operands[0]) == SFmode)
if (unordered_p)
return "ucomiss\t{%1, %0|%0, %1}";
else
return "comiss\t{%1, %0|%0, %y}";
else
if (unordered_p)
return "ucomisd\t{%1, %0|%0, %1}";
else
return "comisd\t{%1, %0|%0, %y}";
}
if (! STACK_TOP_P (cmp_op0))
abort ();
stack_top_dies = find_regno_note (insn, REG_DEAD, FIRST_STACK_REG) != 0;
if (STACK_REG_P (cmp_op1)
&& stack_top_dies
&& find_regno_note (insn, REG_DEAD, REGNO (cmp_op1))
&& REGNO (cmp_op1) != FIRST_STACK_REG)
{
/* If both the top of the 387 stack dies, and the other operand
is also a stack register that dies, then this must be a
`fcompp' float compare */
if (eflags_p == 1)
{
/* There is no double popping fcomi variant. Fortunately,
eflags is immune from the fstp's cc clobbering. */
if (unordered_p)
output_asm_insn ("fucomip\t{%y1, %0|%0, %y1}", operands);
else
output_asm_insn ("fcomip\t{%y1, %0|%0, %y1}", operands);
return "fstp\t%y0";
}
else
{
if (eflags_p == 2)
{
if (unordered_p)
return "fucompp\n\tfnstsw\t%0";
else
return "fcompp\n\tfnstsw\t%0";
}
else
{
if (unordered_p)
return "fucompp";
else
return "fcompp";
}
}
}
else
{
/* Encoded here as eflags_p | intmode | unordered_p | stack_top_dies. */
static const char * const alt[24] =
{
"fcom%z1\t%y1",
"fcomp%z1\t%y1",
"fucom%z1\t%y1",
"fucomp%z1\t%y1",
"ficom%z1\t%y1",
"ficomp%z1\t%y1",
NULL,
NULL,
"fcomi\t{%y1, %0|%0, %y1}",
"fcomip\t{%y1, %0|%0, %y1}",
"fucomi\t{%y1, %0|%0, %y1}",
"fucomip\t{%y1, %0|%0, %y1}",
NULL,
NULL,
NULL,
NULL,
"fcom%z2\t%y2\n\tfnstsw\t%0",
"fcomp%z2\t%y2\n\tfnstsw\t%0",
"fucom%z2\t%y2\n\tfnstsw\t%0",
"fucomp%z2\t%y2\n\tfnstsw\t%0",
"ficom%z2\t%y2\n\tfnstsw\t%0",
"ficomp%z2\t%y2\n\tfnstsw\t%0",
NULL,
NULL
};
int mask;
const char *ret;
mask = eflags_p << 3;
mask |= (GET_MODE_CLASS (GET_MODE (operands[1])) == MODE_INT) << 2;
mask |= unordered_p << 1;
mask |= stack_top_dies;
if (mask >= 24)
abort ();
ret = alt[mask];
if (ret == NULL)
abort ();
return ret;
}
}
void
ix86_output_addr_vec_elt (file, value)
FILE *file;
int value;
{
const char *directive = ASM_LONG;
if (TARGET_64BIT)
{
#ifdef ASM_QUAD
directive = ASM_QUAD;
#else
abort ();
#endif
}
fprintf (file, "%s%s%d\n", directive, LPREFIX, value);
}
void
ix86_output_addr_diff_elt (file, value, rel)
FILE *file;
int value, rel;
{
if (TARGET_64BIT)
fprintf (file, "%s%s%d-.+4+(.-%s%d)\n",
ASM_LONG, LPREFIX, value, LPREFIX, rel);
else if (HAVE_AS_GOTOFF_IN_DATA)
fprintf (file, "%s%s%d@GOTOFF\n", ASM_LONG, LPREFIX, value);
else
asm_fprintf (file, "%s%U_GLOBAL_OFFSET_TABLE_+[.-%s%d]\n",
ASM_LONG, LPREFIX, value);
}
/* Generate either "mov $0, reg" or "xor reg, reg", as appropriate
for the target. */
void
ix86_expand_clear (dest)
rtx dest;
{
rtx tmp;
/* We play register width games, which are only valid after reload. */
if (!reload_completed)
abort ();
/* Avoid HImode and its attendant prefix byte. */
if (GET_MODE_SIZE (GET_MODE (dest)) < 4)
dest = gen_rtx_REG (SImode, REGNO (dest));
tmp = gen_rtx_SET (VOIDmode, dest, const0_rtx);
/* This predicate should match that for movsi_xor and movdi_xor_rex64. */
if (reload_completed && (!TARGET_USE_MOV0 || optimize_size))
{
rtx clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, 17));
tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, tmp, clob));
}
emit_insn (tmp);
}
void
ix86_expand_move (mode, operands)
enum machine_mode mode;
rtx operands[];
{
int strict = (reload_in_progress || reload_completed);
rtx insn;
if (flag_pic && mode == Pmode && symbolic_operand (operands[1], Pmode))
{
/* Emit insns to move operands[1] into operands[0]. */
if (GET_CODE (operands[0]) == MEM)
operands[1] = force_reg (Pmode, operands[1]);
else
{
rtx temp = operands[0];
if (GET_CODE (temp) != REG)
temp = gen_reg_rtx (Pmode);
temp = legitimize_pic_address (operands[1], temp);
if (temp == operands[0])
return;
operands[1] = temp;
}
}
else
{
if (GET_CODE (operands[0]) == MEM
&& (PUSH_ROUNDING (GET_MODE_SIZE (mode)) != GET_MODE_SIZE (mode)
|| !push_operand (operands[0], mode))
&& GET_CODE (operands[1]) == MEM)
operands[1] = force_reg (mode, operands[1]);
if (push_operand (operands[0], mode)
&& ! general_no_elim_operand (operands[1], mode))
operands[1] = copy_to_mode_reg (mode, operands[1]);
/* Force large constants in 64bit compilation into register
to get them CSEed. */
if (TARGET_64BIT && mode == DImode
&& immediate_operand (operands[1], mode)
&& !x86_64_zero_extended_value (operands[1])
&& !register_operand (operands[0], mode)
&& optimize && !reload_completed && !reload_in_progress)
operands[1] = copy_to_mode_reg (mode, operands[1]);
if (FLOAT_MODE_P (mode))
{
/* If we are loading a floating point constant to a register,
force the value to memory now, since we'll get better code
out the back end. */
if (strict)
;
else if (GET_CODE (operands[1]) == CONST_DOUBLE
&& register_operand (operands[0], mode))
operands[1] = validize_mem (force_const_mem (mode, operands[1]));
}
}
insn = gen_rtx_SET (VOIDmode, operands[0], operands[1]);
emit_insn (insn);
}
/* Attempt to expand a binary operator. Make the expansion closer to the
actual machine, then just general_operand, which will allow 3 separate
memory references (one output, two input) in a single insn. */
void
ix86_expand_binary_operator (code, mode, operands)
enum rtx_code code;
enum machine_mode mode;
rtx operands[];
{
int matching_memory;
rtx src1, src2, dst, op, clob;
dst = operands[0];
src1 = operands[1];
src2 = operands[2];
/* Recognize <var1> = <value> <op> <var1> for commutative operators */
if (GET_RTX_CLASS (code) == 'c'
&& (rtx_equal_p (dst, src2)
|| immediate_operand (src1, mode)))
{
rtx temp = src1;
src1 = src2;
src2 = temp;
}
/* If the destination is memory, and we do not have matching source
operands, do things in registers. */
matching_memory = 0;
if (GET_CODE (dst) == MEM)
{
if (rtx_equal_p (dst, src1))
matching_memory = 1;
else if (GET_RTX_CLASS (code) == 'c'
&& rtx_equal_p (dst, src2))
matching_memory = 2;
else
dst = gen_reg_rtx (mode);
}
/* Both source operands cannot be in memory. */
if (GET_CODE (src1) == MEM && GET_CODE (src2) == MEM)
{
if (matching_memory != 2)
src2 = force_reg (mode, src2);
else
src1 = force_reg (mode, src1);
}
/* If the operation is not commutable, source 1 cannot be a constant
or non-matching memory. */
if ((CONSTANT_P (src1)
|| (!matching_memory && GET_CODE (src1) == MEM))
&& GET_RTX_CLASS (code) != 'c')
src1 = force_reg (mode, src1);
/* If optimizing, copy to regs to improve CSE */
if (optimize && ! no_new_pseudos)
{
if (GET_CODE (dst) == MEM)
dst = gen_reg_rtx (mode);
if (GET_CODE (src1) == MEM)
src1 = force_reg (mode, src1);
if (GET_CODE (src2) == MEM)
src2 = force_reg (mode, src2);
}
/* Emit the instruction. */
op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_ee (code, mode, src1, src2));
if (reload_in_progress)
{
/* Reload doesn't know about the flags register, and doesn't know that
it doesn't want to clobber it. We can only do this with PLUS. */
if (code != PLUS)
abort ();
emit_insn (op);
}
else
{
clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG));
emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob)));
}
/* Fix up the destination if needed. */
if (dst != operands[0])
emit_move_insn (operands[0], dst);
}
/* Return TRUE or FALSE depending on whether the binary operator meets the
appropriate constraints. */
int
ix86_binary_operator_ok (code, mode, operands)
enum rtx_code code;
enum machine_mode mode ATTRIBUTE_UNUSED;
rtx operands[3];
{
/* Both source operands cannot be in memory. */
if (GET_CODE (operands[1]) == MEM && GET_CODE (operands[2]) == MEM)
return 0;
/* If the operation is not commutable, source 1 cannot be a constant. */
if (CONSTANT_P (operands[1]) && GET_RTX_CLASS (code) != 'c')
return 0;
/* If the destination is memory, we must have a matching source operand. */
if (GET_CODE (operands[0]) == MEM
&& ! (rtx_equal_p (operands[0], operands[1])
|| (GET_RTX_CLASS (code) == 'c'
&& rtx_equal_p (operands[0], operands[2]))))
return 0;
/* If the operation is not commutable and the source 1 is memory, we must
have a matching destination. */
if (GET_CODE (operands[1]) == MEM
&& GET_RTX_CLASS (code) != 'c'
&& ! rtx_equal_p (operands[0], operands[1]))
return 0;
return 1;
}
/* Attempt to expand a unary operator. Make the expansion closer to the
actual machine, then just general_operand, which will allow 2 separate
memory references (one output, one input) in a single insn. */
void
ix86_expand_unary_operator (code, mode, operands)
enum rtx_code code;
enum machine_mode mode;
rtx operands[];
{
int matching_memory;
rtx src, dst, op, clob;
dst = operands[0];
src = operands[1];
/* If the destination is memory, and we do not have matching source
operands, do things in registers. */
matching_memory = 0;
if (GET_CODE (dst) == MEM)
{
if (rtx_equal_p (dst, src))
matching_memory = 1;
else
dst = gen_reg_rtx (mode);
}
/* When source operand is memory, destination must match. */
if (!matching_memory && GET_CODE (src) == MEM)
src = force_reg (mode, src);
/* If optimizing, copy to regs to improve CSE */
if (optimize && ! no_new_pseudos)
{
if (GET_CODE (dst) == MEM)
dst = gen_reg_rtx (mode);
if (GET_CODE (src) == MEM)
src = force_reg (mode, src);
}
/* Emit the instruction. */
op = gen_rtx_SET (VOIDmode, dst, gen_rtx_fmt_e (code, mode, src));
if (reload_in_progress || code == NOT)
{
/* Reload doesn't know about the flags register, and doesn't know that
it doesn't want to clobber it. */
if (code != NOT)
abort ();
emit_insn (op);
}
else
{
clob = gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, FLAGS_REG));
emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, op, clob)));
}
/* Fix up the destination if needed. */
if (dst != operands[0])
emit_move_insn (operands[0], dst);
}
/* Return TRUE or FALSE depending on whether the unary operator meets the
appropriate constraints. */
int
ix86_unary_operator_ok (code, mode, operands)
enum rtx_code code ATTRIBUTE_UNUSED;
enum machine_mode mode ATTRIBUTE_UNUSED;
rtx operands[2] ATTRIBUTE_UNUSED;
{
/* If one of operands is memory, source and destination must match. */
if ((GET_CODE (operands[0]) == MEM
|| GET_CODE (operands[1]) == MEM)
&& ! rtx_equal_p (operands[0], operands[1]))
return FALSE;
return TRUE;
}
/* Return TRUE or FALSE depending on whether the first SET in INSN
has source and destination with matching CC modes, and that the
CC mode is at least as constrained as REQ_MODE. */
int
ix86_match_ccmode (insn, req_mode)
rtx insn;
enum machine_mode req_mode;
{
rtx set;
enum machine_mode set_mode;
set = PATTERN (insn);
if (GET_CODE (set) == PARALLEL)
set = XVECEXP (set, 0, 0);
if (GET_CODE (set) != SET)
abort ();
if (GET_CODE (SET_SRC (set)) != COMPARE)
abort ();
set_mode = GET_MODE (SET_DEST (set));
switch (set_mode)
{
case CCNOmode:
if (req_mode != CCNOmode
&& (req_mode != CCmode
|| XEXP (SET_SRC (set), 1) != const0_rtx))
return 0;
break;
case CCmode:
if (req_mode == CCGCmode)
return 0;
/* FALLTHRU */
case CCGCmode:
if (req_mode == CCGOCmode || req_mode == CCNOmode)
return 0;
/* FALLTHRU */
case CCGOCmode:
if (req_mode == CCZmode)
return 0;
/* FALLTHRU */
case CCZmode:
break;
default:
abort ();
}
return (GET_MODE (SET_SRC (set)) == set_mode);
}
/* Generate insn patterns to do an integer compare of OPERANDS. */
static rtx
ix86_expand_int_compare (code, op0, op1)
enum rtx_code code;
rtx op0, op1;
{
enum machine_mode cmpmode;
rtx tmp, flags;
cmpmode = SELECT_CC_MODE (code, op0, op1);
flags = gen_rtx_REG (cmpmode, FLAGS_REG);
/* This is very simple, but making the interface the same as in the
FP case makes the rest of the code easier. */
tmp = gen_rtx_COMPARE (cmpmode, op0, op1);
emit_insn (gen_rtx_SET (VOIDmode, flags, tmp));
/* Return the test that should be put into the flags user, i.e.
the bcc, scc, or cmov instruction. */
return gen_rtx_fmt_ee (code, VOIDmode, flags, const0_rtx);
}
/* Figure out whether to use ordered or unordered fp comparisons.
Return the appropriate mode to use. */
enum machine_mode
ix86_fp_compare_mode (code)
enum rtx_code code ATTRIBUTE_UNUSED;
{
/* ??? In order to make all comparisons reversible, we do all comparisons
non-trapping when compiling for IEEE. Once gcc is able to distinguish
all forms trapping and nontrapping comparisons, we can make inequality
comparisons trapping again, since it results in better code when using
FCOM based compares. */
return TARGET_IEEE_FP ? CCFPUmode : CCFPmode;
}
enum machine_mode
ix86_cc_mode (code, op0, op1)
enum rtx_code code;
rtx op0, op1;
{
if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
return ix86_fp_compare_mode (code);
switch (code)
{
/* Only zero flag is needed. */
case EQ: /* ZF=0 */
case NE: /* ZF!=0 */
return CCZmode;
/* Codes needing carry flag. */
case GEU: /* CF=0 */
case GTU: /* CF=0 & ZF=0 */
case LTU: /* CF=1 */
case LEU: /* CF=1 | ZF=1 */
return CCmode;
/* Codes possibly doable only with sign flag when
comparing against zero. */
case GE: /* SF=OF or SF=0 */
case LT: /* SF<>OF or SF=1 */
if (op1 == const0_rtx)
return CCGOCmode;
else
/* For other cases Carry flag is not required. */
return CCGCmode;
/* Codes doable only with sign flag when comparing
against zero, but we miss jump instruction for it
so we need to use relational tests agains overflow
that thus needs to be zero. */
case GT: /* ZF=0 & SF=OF */
case LE: /* ZF=1 | SF<>OF */
if (op1 == const0_rtx)
return CCNOmode;
else
return CCGCmode;
/* strcmp pattern do (use flags) and combine may ask us for proper
mode. */
case USE:
return CCmode;
default:
abort ();
}
}
/* Return true if we should use an FCOMI instruction for this fp comparison. */
int
ix86_use_fcomi_compare (code)
enum rtx_code code ATTRIBUTE_UNUSED;
{
enum rtx_code swapped_code = swap_condition (code);
return ((ix86_fp_comparison_cost (code) == ix86_fp_comparison_fcomi_cost (code))
|| (ix86_fp_comparison_cost (swapped_code)
== ix86_fp_comparison_fcomi_cost (swapped_code)));
}
/* Swap, force into registers, or otherwise massage the two operands
to a fp comparison. The operands are updated in place; the new
comparsion code is returned. */
static enum rtx_code
ix86_prepare_fp_compare_args (code, pop0, pop1)
enum rtx_code code;
rtx *pop0, *pop1;
{
enum machine_mode fpcmp_mode = ix86_fp_compare_mode (code);
rtx op0 = *pop0, op1 = *pop1;
enum machine_mode op_mode = GET_MODE (op0);
int is_sse = SSE_REG_P (op0) | SSE_REG_P (op1);
/* All of the unordered compare instructions only work on registers.
The same is true of the XFmode compare instructions. The same is
true of the fcomi compare instructions. */
if (!is_sse
&& (fpcmp_mode == CCFPUmode
|| op_mode == XFmode
|| op_mode == TFmode
|| ix86_use_fcomi_compare (code)))
{
op0 = force_reg (op_mode, op0);
op1 = force_reg (op_mode, op1);
}
else
{
/* %%% We only allow op1 in memory; op0 must be st(0). So swap
things around if they appear profitable, otherwise force op0
into a register. */
if (standard_80387_constant_p (op0) == 0
|| (GET_CODE (op0) == MEM
&& ! (standard_80387_constant_p (op1) == 0
|| GET_CODE (op1) == MEM)))
{
rtx tmp;
tmp = op0, op0 = op1, op1 = tmp;
code = swap_condition (code);
}
if (GET_CODE (op0) != REG)
op0 = force_reg (op_mode, op0);
if (CONSTANT_P (op1))
{
if (standard_80387_constant_p (op1))
op1 = force_reg (op_mode, op1);
else
op1 = validize_mem (force_const_mem (op_mode, op1));
}
}
/* Try to rearrange the comparison to make it cheaper. */
if (ix86_fp_comparison_cost (code)
> ix86_fp_comparison_cost (swap_condition (code))
&& (GET_CODE (op0) == REG || !reload_completed))
{
rtx tmp;
tmp = op0, op0 = op1, op1 = tmp;
code = swap_condition (code);
if (GET_CODE (op0) != REG)
op0 = force_reg (op_mode, op0);
}
*pop0 = op0;
*pop1 = op1;
return code;
}
/* Convert comparison codes we use to represent FP comparison to integer
code that will result in proper branch. Return UNKNOWN if no such code
is available. */
static enum rtx_code
ix86_fp_compare_code_to_integer (code)
enum rtx_code code;
{
switch (code)
{
case GT:
return GTU;
case GE:
return GEU;
case ORDERED:
case UNORDERED:
return code;
break;
case UNEQ:
return EQ;
break;
case UNLT:
return LTU;
break;
case UNLE:
return LEU;
break;
case LTGT:
return NE;
break;
default:
return UNKNOWN;
}
}
/* Split comparison code CODE into comparisons we can do using branch
instructions. BYPASS_CODE is comparison code for branch that will
branch around FIRST_CODE and SECOND_CODE. If some of branches
is not required, set value to NIL.
We never require more than two branches. */
static void
ix86_fp_comparison_codes (code, bypass_code, first_code, second_code)
enum rtx_code code, *bypass_code, *first_code, *second_code;
{
*first_code = code;
*bypass_code = NIL;
*second_code = NIL;
/* The fcomi comparison sets flags as follows:
cmp ZF PF CF
> 0 0 0
< 0 0 1
= 1 0 0
un 1 1 1 */
switch (code)
{
case GT: /* GTU - CF=0 & ZF=0 */
case GE: /* GEU - CF=0 */
case ORDERED: /* PF=0 */
case UNORDERED: /* PF=1 */
case UNEQ: /* EQ - ZF=1 */
case UNLT: /* LTU - CF=1 */
case UNLE: /* LEU - CF=1 | ZF=1 */
case LTGT: /* EQ - ZF=0 */
break;
case LT: /* LTU - CF=1 - fails on unordered */
*first_code = UNLT;
*bypass_code = UNORDERED;
break;
case LE: /* LEU - CF=1 | ZF=1 - fails on unordered */
*first_code = UNLE;
*bypass_code = UNORDERED;
break;
case EQ: /* EQ - ZF=1 - fails on unordered */
*first_code = UNEQ;
*bypass_code = UNORDERED;
break;
case NE: /* NE - ZF=0 - fails on unordered */
*first_code = LTGT;
*second_code = UNORDERED;
break;
case UNGE: /* GEU - CF=0 - fails on unordered */
*first_code = GE;
*second_code = UNORDERED;
break;
case UNGT: /* GTU - CF=0 & ZF=0 - fails on unordered */
*first_code = GT;
*second_code = UNORDERED;
break;
default:
abort ();
}
if (!TARGET_IEEE_FP)
{
*second_code = NIL;
*bypass_code = NIL;
}
}
/* Return cost of comparison done fcom + arithmetics operations on AX.
All following functions do use number of instructions as an cost metrics.
In future this should be tweaked to compute bytes for optimize_size and
take into account performance of various instructions on various CPUs. */
static int
ix86_fp_comparison_arithmetics_cost (code)
enum rtx_code code;
{
if (!TARGET_IEEE_FP)
return 4;
/* The cost of code output by ix86_expand_fp_compare. */
switch (code)
{
case UNLE:
case UNLT:
case LTGT:
case GT:
case GE:
case UNORDERED:
case ORDERED:
case UNEQ:
return 4;
break;
case LT:
case NE:
case EQ:
case UNGE:
return 5;
break;
case LE:
case UNGT:
return 6;
break;
default:
abort ();
}
}
/* Return cost of comparison done using fcomi operation.
See ix86_fp_comparison_arithmetics_cost for the metrics. */
static int
ix86_fp_comparison_fcomi_cost (code)
enum rtx_code code;
{
enum rtx_code bypass_code, first_code, second_code;
/* Return arbitarily high cost when instruction is not supported - this
prevents gcc from using it. */
if (!TARGET_CMOVE)
return 1024;
ix86_fp_comparison_codes (code, &bypass_code, &first_code, &second_code);
return (bypass_code != NIL || second_code != NIL) + 2;
}
/* Return cost of comparison done using sahf operation.
See ix86_fp_comparison_arithmetics_cost for the metrics. */
static int
ix86_fp_comparison_sahf_cost (code)
enum rtx_code code;
{
enum rtx_code bypass_code, first_code, second_code;
/* Return arbitarily high cost when instruction is not preferred - this
avoids gcc from using it. */
if (!TARGET_USE_SAHF && !optimize_size)
return 1024;
ix86_fp_comparison_codes (code, &bypass_code, &first_code, &second_code);
return (bypass_code != NIL || second_code != NIL) + 3;
}
/* Compute cost of the comparison done using any method.
See ix86_fp_comparison_arithmetics_cost for the metrics. */
static int
ix86_fp_comparison_cost (code)
enum rtx_code code;
{
int fcomi_cost, sahf_cost, arithmetics_cost = 1024;
int min;
fcomi_cost = ix86_fp_comparison_fcomi_cost (code);
sahf_cost = ix86_fp_comparison_sahf_cost (code);
min = arithmetics_cost = ix86_fp_comparison_arithmetics_cost (code);
if (min > sahf_cost)
min = sahf_cost;
if (min > fcomi_cost)
min = fcomi_cost;
return min;
}
/* Generate insn patterns to do a floating point compare of OPERANDS. */
static rtx
ix86_expand_fp_compare (code, op0, op1, scratch, second_test, bypass_test)
enum rtx_code code;
rtx op0, op1, scratch;
rtx *second_test;
rtx *bypass_test;
{
enum machine_mode fpcmp_mode, intcmp_mode;
rtx tmp, tmp2;
int cost = ix86_fp_comparison_cost (code);
enum rtx_code bypass_code, first_code, second_code;
fpcmp_mode = ix86_fp_compare_mode (code);
code = ix86_prepare_fp_compare_args (code, &op0, &op1);
if (second_test)
*second_test = NULL_RTX;
if (bypass_test)
*bypass_test = NULL_RTX;
ix86_fp_comparison_codes (code, &bypass_code, &first_code, &second_code);
/* Do fcomi/sahf based test when profitable. */
if ((bypass_code == NIL || bypass_test)
&& (second_code == NIL || second_test)
&& ix86_fp_comparison_arithmetics_cost (code) > cost)
{
if (TARGET_CMOVE)
{
tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1);
tmp = gen_rtx_SET (VOIDmode, gen_rtx_REG (fpcmp_mode, FLAGS_REG),
tmp);
emit_insn (tmp);
}
else
{
tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1);
tmp2 = gen_rtx_UNSPEC (HImode, gen_rtvec (1, tmp), 9);
if (!scratch)
scratch = gen_reg_rtx (HImode);
emit_insn (gen_rtx_SET (VOIDmode, scratch, tmp2));
emit_insn (gen_x86_sahf_1 (scratch));
}
/* The FP codes work out to act like unsigned. */
intcmp_mode = fpcmp_mode;
code = first_code;
if (bypass_code != NIL)
*bypass_test = gen_rtx_fmt_ee (bypass_code, VOIDmode,
gen_rtx_REG (intcmp_mode, FLAGS_REG),
const0_rtx);
if (second_code != NIL)
*second_test = gen_rtx_fmt_ee (second_code, VOIDmode,
gen_rtx_REG (intcmp_mode, FLAGS_REG),
const0_rtx);
}
else
{
/* Sadness wrt reg-stack pops killing fpsr -- gotta get fnstsw first. */
tmp = gen_rtx_COMPARE (fpcmp_mode, op0, op1);
tmp2 = gen_rtx_UNSPEC (HImode, gen_rtvec (1, tmp), 9);
if (!scratch)
scratch = gen_reg_rtx (HImode);
emit_insn (gen_rtx_SET (VOIDmode, scratch, tmp2));
/* In the unordered case, we have to check C2 for NaN's, which
doesn't happen to work out to anything nice combination-wise.
So do some bit twiddling on the value we've got in AH to come
up with an appropriate set of condition codes. */
intcmp_mode = CCNOmode;
switch (code)
{
case GT:
case UNGT:
if (code == GT || !TARGET_IEEE_FP)
{
emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x45)));
code = EQ;
}
else
{
emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45)));
emit_insn (gen_addqi_ext_1 (scratch, scratch, constm1_rtx));
emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x44)));
intcmp_mode = CCmode;
code = GEU;
}
break;
case LT:
case UNLT:
if (code == LT && TARGET_IEEE_FP)
{
emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45)));
emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x01)));
intcmp_mode = CCmode;
code = EQ;
}
else
{
emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x01)));
code = NE;
}
break;
case GE:
case UNGE:
if (code == GE || !TARGET_IEEE_FP)
{
emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x05)));
code = EQ;
}
else
{
emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45)));
emit_insn (gen_xorqi_cc_ext_1 (scratch, scratch,
GEN_INT (0x01)));
code = NE;
}
break;
case LE:
case UNLE:
if (code == LE && TARGET_IEEE_FP)
{
emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45)));
emit_insn (gen_addqi_ext_1 (scratch, scratch, constm1_rtx));
emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x40)));
intcmp_mode = CCmode;
code = LTU;
}
else
{
emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x45)));
code = NE;
}
break;
case EQ:
case UNEQ:
if (code == EQ && TARGET_IEEE_FP)
{
emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45)));
emit_insn (gen_cmpqi_ext_3 (scratch, GEN_INT (0x40)));
intcmp_mode = CCmode;
code = EQ;
}
else
{
emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x40)));
code = NE;
break;
}
break;
case NE:
case LTGT:
if (code == NE && TARGET_IEEE_FP)
{
emit_insn (gen_andqi_ext_0 (scratch, scratch, GEN_INT (0x45)));
emit_insn (gen_xorqi_cc_ext_1 (scratch, scratch,
GEN_INT (0x40)));
code = NE;
}
else
{
emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x40)));
code = EQ;
}
break;
case UNORDERED:
emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x04)));
code = NE;
break;
case ORDERED:
emit_insn (gen_testqi_ext_ccno_0 (scratch, GEN_INT (0x04)));
code = EQ;
break;
default:
abort ();
}
}
/* Return the test that should be put into the flags user, i.e.
the bcc, scc, or cmov instruction. */
return gen_rtx_fmt_ee (code, VOIDmode,
gen_rtx_REG (intcmp_mode, FLAGS_REG),
const0_rtx);
}
rtx
ix86_expand_compare (code, second_test, bypass_test)
enum rtx_code code;
rtx *second_test, *bypass_test;
{
rtx op0, op1, ret;
op0 = ix86_compare_op0;
op1 = ix86_compare_op1;
if (second_test)
*second_test = NULL_RTX;
if (bypass_test)
*bypass_test = NULL_RTX;
if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
ret = ix86_expand_fp_compare (code, op0, op1, NULL_RTX,
second_test, bypass_test);
else
ret = ix86_expand_int_compare (code, op0, op1);
return ret;
}
/* Return true if the CODE will result in nontrivial jump sequence. */
bool
ix86_fp_jump_nontrivial_p (code)
enum rtx_code code;
{
enum rtx_code bypass_code, first_code, second_code;
if (!TARGET_CMOVE)
return true;
ix86_fp_comparison_codes (code, &bypass_code, &first_code, &second_code);
return bypass_code != NIL || second_code != NIL;
}
void
ix86_expand_branch (code, label)
enum rtx_code code;
rtx label;
{
rtx tmp;
switch (GET_MODE (ix86_compare_op0))
{
case QImode:
case HImode:
case SImode:
simple:
tmp = ix86_expand_compare (code, NULL, NULL);
tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp,
gen_rtx_LABEL_REF (VOIDmode, label),
pc_rtx);
emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp));
return;
case SFmode:
case DFmode:
case XFmode:
case TFmode:
{
rtvec vec;
int use_fcomi;
enum rtx_code bypass_code, first_code, second_code;
code = ix86_prepare_fp_compare_args (code, &ix86_compare_op0,
&ix86_compare_op1);
ix86_fp_comparison_codes (code, &bypass_code, &first_code, &second_code);
/* Check whether we will use the natural sequence with one jump. If
so, we can expand jump early. Otherwise delay expansion by
creating compound insn to not confuse optimizers. */
if (bypass_code == NIL && second_code == NIL
&& TARGET_CMOVE)
{
ix86_split_fp_branch (code, ix86_compare_op0, ix86_compare_op1,
gen_rtx_LABEL_REF (VOIDmode, label),
pc_rtx, NULL_RTX);
}
else
{
tmp = gen_rtx_fmt_ee (code, VOIDmode,
ix86_compare_op0, ix86_compare_op1);
tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp,
gen_rtx_LABEL_REF (VOIDmode, label),
pc_rtx);
tmp = gen_rtx_SET (VOIDmode, pc_rtx, tmp);
use_fcomi = ix86_use_fcomi_compare (code);
vec = rtvec_alloc (3 + !use_fcomi);
RTVEC_ELT (vec, 0) = tmp;
RTVEC_ELT (vec, 1)
= gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCFPmode, 18));
RTVEC_ELT (vec, 2)
= gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCFPmode, 17));
if (! use_fcomi)
RTVEC_ELT (vec, 3)
= gen_rtx_CLOBBER (VOIDmode, gen_rtx_SCRATCH (HImode));
emit_jump_insn (gen_rtx_PARALLEL (VOIDmode, vec));
}
return;
}
case DImode:
if (TARGET_64BIT)
goto simple;
/* Expand DImode branch into multiple compare+branch. */
{
rtx lo[2], hi[2], label2;
enum rtx_code code1, code2, code3;
if (CONSTANT_P (ix86_compare_op0) && ! CONSTANT_P (ix86_compare_op1))
{
tmp = ix86_compare_op0;
ix86_compare_op0 = ix86_compare_op1;
ix86_compare_op1 = tmp;
code = swap_condition (code);
}
split_di (&ix86_compare_op0, 1, lo+0, hi+0);
split_di (&ix86_compare_op1, 1, lo+1, hi+1);
/* When comparing for equality, we can use (hi0^hi1)|(lo0^lo1) to
avoid two branches. This costs one extra insn, so disable when
optimizing for size. */
if ((code == EQ || code == NE)
&& (!optimize_size
|| hi[1] == const0_rtx || lo[1] == const0_rtx))
{
rtx xor0, xor1;
xor1 = hi[0];
if (hi[1] != const0_rtx)
xor1 = expand_binop (SImode, xor_optab, xor1, hi[1],
NULL_RTX, 0, OPTAB_WIDEN);
xor0 = lo[0];
if (lo[1] != const0_rtx)
xor0 = expand_binop (SImode, xor_optab, xor0, lo[1],
NULL_RTX, 0, OPTAB_WIDEN);
tmp = expand_binop (SImode, ior_optab, xor1, xor0,
NULL_RTX, 0, OPTAB_WIDEN);
ix86_compare_op0 = tmp;
ix86_compare_op1 = const0_rtx;
ix86_expand_branch (code, label);
return;
}
/* Otherwise, if we are doing less-than or greater-or-equal-than,
op1 is a constant and the low word is zero, then we can just
examine the high word. */
if (GET_CODE (hi[1]) == CONST_INT && lo[1] == const0_rtx)
switch (code)
{
case LT: case LTU: case GE: case GEU:
ix86_compare_op0 = hi[0];
ix86_compare_op1 = hi[1];
ix86_expand_branch (code, label);
return;
default:
break;
}
/* Otherwise, we need two or three jumps. */
label2 = gen_label_rtx ();
code1 = code;
code2 = swap_condition (code);
code3 = unsigned_condition (code);
switch (code)
{
case LT: case GT: case LTU: case GTU:
break;
case LE: code1 = LT; code2 = GT; break;
case GE: code1 = GT; code2 = LT; break;
case LEU: code1 = LTU; code2 = GTU; break;
case GEU: code1 = GTU; code2 = LTU; break;
case EQ: code1 = NIL; code2 = NE; break;
case NE: code2 = NIL; break;
default:
abort ();
}
/*
* a < b =>
* if (hi(a) < hi(b)) goto true;
* if (hi(a) > hi(b)) goto false;
* if (lo(a) < lo(b)) goto true;
* false:
*/
ix86_compare_op0 = hi[0];
ix86_compare_op1 = hi[1];
if (code1 != NIL)
ix86_expand_branch (code1, label);
if (code2 != NIL)
ix86_expand_branch (code2, label2);
ix86_compare_op0 = lo[0];
ix86_compare_op1 = lo[1];
ix86_expand_branch (code3, label);
if (code2 != NIL)
emit_label (label2);
return;
}
default:
abort ();
}
}
/* Split branch based on floating point condition. */
void
ix86_split_fp_branch (code, op1, op2, target1, target2, tmp)
enum rtx_code code;
rtx op1, op2, target1, target2, tmp;
{
rtx second, bypass;
rtx label = NULL_RTX;
rtx condition;
int bypass_probability = -1, second_probability = -1, probability = -1;
rtx i;
if (target2 != pc_rtx)
{
rtx tmp = target2;
code = reverse_condition_maybe_unordered (code);
target2 = target1;
target1 = tmp;
}
condition = ix86_expand_fp_compare (code, op1, op2,
tmp, &second, &bypass);
if (split_branch_probability >= 0)
{
/* Distribute the probabilities across the jumps.
Assume the BYPASS and SECOND to be always test
for UNORDERED. */
probability = split_branch_probability;
/* Value of 1 is low enough to make no need for probability
to be updated. Later we may run some experiments and see
if unordered values are more frequent in practice. */
if (bypass)
bypass_probability = 1;
if (second)
second_probability = 1;
}
if (bypass != NULL_RTX)
{
label = gen_label_rtx ();
i = emit_jump_insn (gen_rtx_SET
(VOIDmode, pc_rtx,
gen_rtx_IF_THEN_ELSE (VOIDmode,
bypass,
gen_rtx_LABEL_REF (VOIDmode,
label),
pc_rtx)));
if (bypass_probability >= 0)
REG_NOTES (i)
= gen_rtx_EXPR_LIST (REG_BR_PROB,
GEN_INT (bypass_probability),
REG_NOTES (i));
}
i = emit_jump_insn (gen_rtx_SET
(VOIDmode, pc_rtx,
gen_rtx_IF_THEN_ELSE (VOIDmode,
condition, target1, target2)));
if (probability >= 0)
REG_NOTES (i)
= gen_rtx_EXPR_LIST (REG_BR_PROB,
GEN_INT (probability),
REG_NOTES (i));
if (second != NULL_RTX)
{
i = emit_jump_insn (gen_rtx_SET
(VOIDmode, pc_rtx,
gen_rtx_IF_THEN_ELSE (VOIDmode, second, target1,
target2)));
if (second_probability >= 0)
REG_NOTES (i)
= gen_rtx_EXPR_LIST (REG_BR_PROB,
GEN_INT (second_probability),
REG_NOTES (i));
}
if (label != NULL_RTX)
emit_label (label);
}
int
ix86_expand_setcc (code, dest)
enum rtx_code code;
rtx dest;
{
rtx ret, tmp, tmpreg;
rtx second_test, bypass_test;
if (GET_MODE (ix86_compare_op0) == DImode
&& !TARGET_64BIT)
return 0; /* FAIL */
if (GET_MODE (dest) != QImode)
abort ();
ret = ix86_expand_compare (code, &second_test, &bypass_test);
PUT_MODE (ret, QImode);
tmp = dest;
tmpreg = dest;
emit_insn (gen_rtx_SET (VOIDmode, tmp, ret));
if (bypass_test || second_test)
{
rtx test = second_test;
int bypass = 0;
rtx tmp2 = gen_reg_rtx (QImode);
if (bypass_test)
{
if (second_test)
abort();
test = bypass_test;
bypass = 1;
PUT_CODE (test, reverse_condition_maybe_unordered (GET_CODE (test)));
}
PUT_MODE (test, QImode);
emit_insn (gen_rtx_SET (VOIDmode, tmp2, test));
if (bypass)
emit_insn (gen_andqi3 (tmp, tmpreg, tmp2));
else
emit_insn (gen_iorqi3 (tmp, tmpreg, tmp2));
}
return 1; /* DONE */
}
int
ix86_expand_int_movcc (operands)
rtx operands[];
{
enum rtx_code code = GET_CODE (operands[1]), compare_code;
rtx compare_seq, compare_op;
rtx second_test, bypass_test;
enum machine_mode mode = GET_MODE (operands[0]);
/* When the compare code is not LTU or GEU, we can not use sbbl case.
In case comparsion is done with immediate, we can convert it to LTU or
GEU by altering the integer. */
if ((code == LEU || code == GTU)
&& GET_CODE (ix86_compare_op1) == CONST_INT
&& mode != HImode
&& (unsigned int)INTVAL (ix86_compare_op1) != 0xffffffff
&& GET_CODE (operands[2]) == CONST_INT
&& GET_CODE (operands[3]) == CONST_INT)
{
if (code == LEU)
code = LTU;
else
code = GEU;
ix86_compare_op1 = GEN_INT (INTVAL (ix86_compare_op1) + 1);
}
start_sequence ();
compare_op = ix86_expand_compare (code, &second_test, &bypass_test);
compare_seq = gen_sequence ();
end_sequence ();
compare_code = GET_CODE (compare_op);
/* Don't attempt mode expansion here -- if we had to expand 5 or 6
HImode insns, we'd be swallowed in word prefix ops. */
if (mode != HImode
&& (mode != DImode || TARGET_64BIT)
&& GET_CODE (operands[2]) == CONST_INT
&& GET_CODE (operands[3]) == CONST_INT)
{
rtx out = operands[0];
HOST_WIDE_INT ct = INTVAL (operands[2]);
HOST_WIDE_INT cf = INTVAL (operands[3]);
HOST_WIDE_INT diff;
if ((compare_code == LTU || compare_code == GEU)
&& !second_test && !bypass_test)
{
/* Detect overlap between destination and compare sources. */
rtx tmp = out;
/* To simplify rest of code, restrict to the GEU case. */
if (compare_code == LTU)
{
int tmp = ct;
ct = cf;
cf = tmp;
compare_code = reverse_condition (compare_code);
code = reverse_condition (code);
}
diff = ct - cf;
if (reg_overlap_mentioned_p (out, ix86_compare_op0)
|| reg_overlap_mentioned_p (out, ix86_compare_op1))
tmp = gen_reg_rtx (mode);
emit_insn (compare_seq);
if (mode == DImode)
emit_insn (gen_x86_movdicc_0_m1_rex64 (tmp));
else
emit_insn (gen_x86_movsicc_0_m1 (tmp));
if (diff == 1)
{
/*
* cmpl op0,op1
* sbbl dest,dest
* [addl dest, ct]
*
* Size 5 - 8.
*/
if (ct)
tmp = expand_simple_binop (mode, PLUS,
tmp, GEN_INT (ct),
tmp, 1, OPTAB_DIRECT);
}
else if (cf == -1)
{
/*
* cmpl op0,op1
* sbbl dest,dest
* orl $ct, dest
*
* Size 8.
*/
tmp = expand_simple_binop (mode, IOR,
tmp, GEN_INT (ct),
tmp, 1, OPTAB_DIRECT);
}
else if (diff == -1 && ct)
{
/*
* cmpl op0,op1
* sbbl dest,dest
* xorl $-1, dest
* [addl dest, cf]
*
* Size 8 - 11.
*/
tmp = expand_simple_unop (mode, NOT, tmp, tmp, 1);
if (cf)
tmp = expand_simple_binop (mode, PLUS,
tmp, GEN_INT (cf),
tmp, 1, OPTAB_DIRECT);
}
else
{
/*
* cmpl op0,op1
* sbbl dest,dest
* andl cf - ct, dest
* [addl dest, ct]
*
* Size 8 - 11.
*/
tmp = expand_simple_binop (mode, AND,
tmp,
GEN_INT (trunc_int_for_mode
(cf - ct, mode)),
tmp, 1, OPTAB_DIRECT);
if (ct)
tmp = expand_simple_binop (mode, PLUS,
tmp, GEN_INT (ct),
tmp, 1, OPTAB_DIRECT);
}
if (tmp != out)
emit_move_insn (out, tmp);
return 1; /* DONE */
}
diff = ct - cf;
if (diff < 0)
{
HOST_WIDE_INT tmp;
tmp = ct, ct = cf, cf = tmp;
diff = -diff;
if (FLOAT_MODE_P (GET_MODE (ix86_compare_op0)))
{
/* We may be reversing unordered compare to normal compare, that
is not valid in general (we may convert non-trapping condition
to trapping one), however on i386 we currently emit all
comparisons unordered. */
compare_code = reverse_condition_maybe_unordered (compare_code);
code = reverse_condition_maybe_unordered (code);
}
else
{
compare_code = reverse_condition (compare_code);
code = reverse_condition (code);
}
}
if ((diff == 1 || diff == 2 || diff == 4 || diff == 8
|| diff == 3 || diff == 5 || diff == 9)
&& (mode != DImode || x86_64_sign_extended_value (GEN_INT (cf))))
{
/*
* xorl dest,dest
* cmpl op1,op2
* setcc dest
* lea cf(dest*(ct-cf)),dest
*
* Size 14.
*
* This also catches the degenerate setcc-only case.
*/
rtx tmp;
int nops;
out = emit_store_flag (out, code, ix86_compare_op0,
ix86_compare_op1, VOIDmode, 0, 1);
nops = 0;
/* On x86_64 the lea instruction operates on Pmode, so we need to get arithmetics
done in proper mode to match. */
if (diff == 1)
tmp = out;
else
{
rtx out1;
out1 = out;
tmp = gen_rtx_MULT (mode, out1, GEN_INT (diff & ~1));
nops++;
if (diff & 1)
{
tmp = gen_rtx_PLUS (mode, tmp, out1);
nops++;
}
}
if (cf != 0)
{
tmp = gen_rtx_PLUS (mode, tmp, GEN_INT (cf));
nops++;
}
if (tmp != out
&& (GET_CODE (tmp) != SUBREG || SUBREG_REG (tmp) != out))
{
if (nops == 1)
{
rtx clob;
clob = gen_rtx_REG (CCmode, FLAGS_REG);
clob = gen_rtx_CLOBBER (VOIDmode, clob);
tmp = gen_rtx_SET (VOIDmode, out, tmp);
tmp = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, tmp, clob));
emit_insn (tmp);
}
else
emit_insn (gen_rtx_SET (VOIDmode, out, tmp));
}
if (out != operands[0])
emit_move_insn (operands[0], out);
return 1; /* DONE */
}
/*
* General case: Jumpful:
* xorl dest,dest cmpl op1, op2
* cmpl op1, op2 movl ct, dest
* setcc dest jcc 1f
* decl dest movl cf, dest
* andl (cf-ct),dest 1:
* addl ct,dest
*
* Size 20. Size 14.
*
* This is reasonably steep, but branch mispredict costs are
* high on modern cpus, so consider failing only if optimizing
* for space.
*
* %%% Parameterize branch_cost on the tuning architecture, then
* use that. The 80386 couldn't care less about mispredicts.
*/
if (!optimize_size && !TARGET_CMOVE)
{
if (ct == 0)
{
ct = cf;
cf = 0;
if (FLOAT_MODE_P (GET_MODE (ix86_compare_op0)))
{
/* We may be reversing unordered compare to normal compare,
that is not valid in general (we may convert non-trapping
condition to trapping one), however on i386 we currently
emit all comparisons unordered. */
compare_code = reverse_condition_maybe_unordered (compare_code);
code = reverse_condition_maybe_unordered (code);
}
else
{
compare_code = reverse_condition (compare_code);
code = reverse_condition (code);
}
}
out = emit_store_flag (out, code, ix86_compare_op0,
ix86_compare_op1, VOIDmode, 0, 1);
out = expand_simple_binop (mode, PLUS,
out, constm1_rtx,
out, 1, OPTAB_DIRECT);
out = expand_simple_binop (mode, AND,
out,
GEN_INT (trunc_int_for_mode
(cf - ct, mode)),
out, 1, OPTAB_DIRECT);
out = expand_simple_binop (mode, PLUS,
out, GEN_INT (ct),
out, 1, OPTAB_DIRECT);
if (out != operands[0])
emit_move_insn (operands[0], out);
return 1; /* DONE */
}
}
if (!TARGET_CMOVE)
{
/* Try a few things more with specific constants and a variable. */
optab op;
rtx var, orig_out, out, tmp;
if (optimize_size)
return 0; /* FAIL */
/* If one of the two operands is an interesting constant, load a
constant with the above and mask it in with a logical operation. */
if (GET_CODE (operands[2]) == CONST_INT)
{
var = operands[3];
if (INTVAL (operands[2]) == 0)
operands[3] = constm1_rtx, op = and_optab;
else if (INTVAL (operands[2]) == -1)
operands[3] = const0_rtx, op = ior_optab;
else
return 0; /* FAIL */
}
else if (GET_CODE (operands[3]) == CONST_INT)
{
var = operands[2];
if (INTVAL (operands[3]) == 0)
operands[2] = constm1_rtx, op = and_optab;
else if (INTVAL (operands[3]) == -1)
operands[2] = const0_rtx, op = ior_optab;
else
return 0; /* FAIL */
}
else
return 0; /* FAIL */
orig_out = operands[0];
tmp = gen_reg_rtx (mode);
operands[0] = tmp;
/* Recurse to get the constant loaded. */
if (ix86_expand_int_movcc (operands) == 0)
return 0; /* FAIL */
/* Mask in the interesting variable. */
out = expand_binop (mode, op, var, tmp, orig_out, 0,
OPTAB_WIDEN);
if (out != orig_out)
emit_move_insn (orig_out, out);
return 1; /* DONE */
}
/*
* For comparison with above,
*
* movl cf,dest
* movl ct,tmp
* cmpl op1,op2
* cmovcc tmp,dest
*
* Size 15.
*/
if (! nonimmediate_operand (operands[2], mode))
operands[2] = force_reg (mode, operands[2]);
if (! nonimmediate_operand (operands[3], mode))
operands[3] = force_reg (mode, operands[3]);
if (bypass_test && reg_overlap_mentioned_p (operands[0], operands[3]))
{
rtx tmp = gen_reg_rtx (mode);
emit_move_insn (tmp, operands[3]);
operands[3] = tmp;
}
if (second_test && reg_overlap_mentioned_p (operands[0], operands[2]))
{
rtx tmp = gen_reg_rtx (mode);
emit_move_insn (tmp, operands[2]);
operands[2] = tmp;
}
if (! register_operand (operands[2], VOIDmode)
&& ! register_operand (operands[3], VOIDmode))
operands[2] = force_reg (mode, operands[2]);
emit_insn (compare_seq);
emit_insn (gen_rtx_SET (VOIDmode, operands[0],
gen_rtx_IF_THEN_ELSE (mode,
compare_op, operands[2],
operands[3])));
if (bypass_test)
emit_insn (gen_rtx_SET (VOIDmode, operands[0],
gen_rtx_IF_THEN_ELSE (mode,
bypass_test,
operands[3],
operands[0])));
if (second_test)
emit_insn (gen_rtx_SET (VOIDmode, operands[0],
gen_rtx_IF_THEN_ELSE (mode,
second_test,
operands[2],
operands[0])));
return 1; /* DONE */
}
int
ix86_expand_fp_movcc (operands)
rtx operands[];
{
enum rtx_code code;
rtx tmp;
rtx compare_op, second_test, bypass_test;
/* For SF/DFmode conditional moves based on comparisons
in same mode, we may want to use SSE min/max instructions. */
if (((TARGET_SSE_MATH && GET_MODE (operands[0]) == SFmode)
|| (TARGET_SSE2 && TARGET_SSE_MATH && GET_MODE (operands[0]) == DFmode))
&& GET_MODE (ix86_compare_op0) == GET_MODE (operands[0])
/* The SSE comparisons does not support the LTGT/UNEQ pair. */
&& (!TARGET_IEEE_FP
|| (GET_CODE (operands[1]) != LTGT && GET_CODE (operands[1]) != UNEQ))
/* We may be called from the post-reload splitter. */
&& (!REG_P (operands[0])
|| SSE_REG_P (operands[0])
|| REGNO (operands[0]) >= FIRST_PSEUDO_REGISTER))
{
rtx op0 = ix86_compare_op0, op1 = ix86_compare_op1;
code = GET_CODE (operands[1]);
/* See if we have (cross) match between comparison operands and
conditional move operands. */
if (rtx_equal_p (operands[2], op1))
{
rtx tmp = op0;
op0 = op1;
op1 = tmp;
code = reverse_condition_maybe_unordered (code);
}
if (rtx_equal_p (operands[2], op0) && rtx_equal_p (operands[3], op1))
{
/* Check for min operation. */
if (code == LT)
{
operands[0] = force_reg (GET_MODE (operands[0]), operands[0]);
if (memory_operand (op0, VOIDmode))
op0 = force_reg (GET_MODE (operands[0]), op0);
if (GET_MODE (operands[0]) == SFmode)
emit_insn (gen_minsf3 (operands[0], op0, op1));
else
emit_insn (gen_mindf3 (operands[0], op0, op1));
return 1;
}
/* Check for max operation. */
if (code == GT)
{
operands[0] = force_reg (GET_MODE (operands[0]), operands[0]);
if (memory_operand (op0, VOIDmode))
op0 = force_reg (GET_MODE (operands[0]), op0);
if (GET_MODE (operands[0]) == SFmode)
emit_insn (gen_maxsf3 (operands[0], op0, op1));
else
emit_insn (gen_maxdf3 (operands[0], op0, op1));
return 1;
}
}
/* Manage condition to be sse_comparison_operator. In case we are
in non-ieee mode, try to canonicalize the destination operand
to be first in the comparison - this helps reload to avoid extra
moves. */
if (!sse_comparison_operator (operands[1], VOIDmode)
|| (rtx_equal_p (operands[0], ix86_compare_op1) && !TARGET_IEEE_FP))
{
rtx tmp = ix86_compare_op0;
ix86_compare_op0 = ix86_compare_op1;
ix86_compare_op1 = tmp;
operands[1] = gen_rtx_fmt_ee (swap_condition (GET_CODE (operands[1])),
VOIDmode, ix86_compare_op0,
ix86_compare_op1);
}
/* Similary try to manage result to be first operand of conditional
move. We also don't support the NE comparison on SSE, so try to
avoid it. */
if ((rtx_equal_p (operands[0], operands[3])
&& (!TARGET_IEEE_FP || GET_CODE (operands[1]) != EQ))
|| (GET_CODE (operands[1]) == NE && TARGET_IEEE_FP))
{
rtx tmp = operands[2];
operands[2] = operands[3];
operands[3] = tmp;
operands[1] = gen_rtx_fmt_ee (reverse_condition_maybe_unordered
(GET_CODE (operands[1])),
VOIDmode, ix86_compare_op0,
ix86_compare_op1);
}
if (GET_MODE (operands[0]) == SFmode)
emit_insn (gen_sse_movsfcc (operands[0], operands[1],
operands[2], operands[3],
ix86_compare_op0, ix86_compare_op1));
else
emit_insn (gen_sse_movdfcc (operands[0], operands[1],
operands[2], operands[3],
ix86_compare_op0, ix86_compare_op1));
return 1;
}
/* The floating point conditional move instructions don't directly
support conditions resulting from a signed integer comparison. */
code = GET_CODE (operands[1]);
compare_op = ix86_expand_compare (code, &second_test, &bypass_test);
/* The floating point conditional move instructions don't directly
support signed integer comparisons. */
if (!fcmov_comparison_operator (compare_op, VOIDmode))
{
if (second_test != NULL || bypass_test != NULL)
abort();
tmp = gen_reg_rtx (QImode);
ix86_expand_setcc (code, tmp);
code = NE;
ix86_compare_op0 = tmp;
ix86_compare_op1 = const0_rtx;
compare_op = ix86_expand_compare (code, &second_test, &bypass_test);
}
if (bypass_test && reg_overlap_mentioned_p (operands[0], operands[3]))
{
tmp = gen_reg_rtx (GET_MODE (operands[0]));
emit_move_insn (tmp, operands[3]);
operands[3] = tmp;
}
if (second_test && reg_overlap_mentioned_p (operands[0], operands[2]))
{
tmp = gen_reg_rtx (GET_MODE (operands[0]));
emit_move_insn (tmp, operands[2]);
operands[2] = tmp;
}
emit_insn (gen_rtx_SET (VOIDmode, operands[0],
gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
compare_op,
operands[2],
operands[3])));
if (bypass_test)
emit_insn (gen_rtx_SET (VOIDmode, operands[0],
gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
bypass_test,
operands[3],
operands[0])));
if (second_test)
emit_insn (gen_rtx_SET (VOIDmode, operands[0],
gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
second_test,
operands[2],
operands[0])));
return 1;
}
/* Split operands 0 and 1 into SImode parts. Similar to split_di, but
works for floating pointer parameters and nonoffsetable memories.
For pushes, it returns just stack offsets; the values will be saved
in the right order. Maximally three parts are generated. */
static int
ix86_split_to_parts (operand, parts, mode)
rtx operand;
rtx *parts;
enum machine_mode mode;
{
int size;
if (!TARGET_64BIT)
size = mode == TFmode ? 3 : (GET_MODE_SIZE (mode) / 4);
else
size = (GET_MODE_SIZE (mode) + 4) / 8;
if (GET_CODE (operand) == REG && MMX_REGNO_P (REGNO (operand)))
abort ();
if (size < 2 || size > 3)
abort ();
/* Optimize constant pool reference to immediates. This is used by fp moves,
that force all constants to memory to allow combining. */
if (GET_CODE (operand) == MEM
&& GET_CODE (XEXP (operand, 0)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (operand, 0)))
operand = get_pool_constant (XEXP (operand, 0));
if (GET_CODE (operand) == MEM && !offsettable_memref_p (operand))
{
/* The only non-offsetable memories we handle are pushes. */
if (! push_operand (operand, VOIDmode))
abort ();
operand = copy_rtx (operand);
PUT_MODE (operand, Pmode);
parts[0] = parts[1] = parts[2] = operand;
}
else if (!TARGET_64BIT)
{
if (mode == DImode)
split_di (&operand, 1, &parts[0], &parts[1]);
else
{
if (REG_P (operand))
{
if (!reload_completed)
abort ();
parts[0] = gen_rtx_REG (SImode, REGNO (operand) + 0);
parts[1] = gen_rtx_REG (SImode, REGNO (operand) + 1);
if (size == 3)
parts[2] = gen_rtx_REG (SImode, REGNO (operand) + 2);
}
else if (offsettable_memref_p (operand))
{
operand = adjust_address (operand, SImode, 0);
parts[0] = operand;
parts[1] = adjust_address (operand, SImode, 4);
if (size == 3)
parts[2] = adjust_address (operand, SImode, 8);
}
else if (GET_CODE (operand) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r;
long l[4];
REAL_VALUE_FROM_CONST_DOUBLE (r, operand);
switch (mode)
{
case XFmode:
case TFmode:
REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
parts[2] = GEN_INT (trunc_int_for_mode (l[2], SImode));
break;
case DFmode:
REAL_VALUE_TO_TARGET_DOUBLE (r, l);
break;
default:
abort ();
}
parts[1] = GEN_INT (trunc_int_for_mode (l[1], SImode));
parts[0] = GEN_INT (trunc_int_for_mode (l[0], SImode));
}
else
abort ();
}
}
else
{
if (mode == TImode)
split_ti (&operand, 1, &parts[0], &parts[1]);
if (mode == XFmode || mode == TFmode)
{
if (REG_P (operand))
{
if (!reload_completed)
abort ();
parts[0] = gen_rtx_REG (DImode, REGNO (operand) + 0);
parts[1] = gen_rtx_REG (SImode, REGNO (operand) + 1);
}
else if (offsettable_memref_p (operand))
{
operand = adjust_address (operand, DImode, 0);
parts[0] = operand;
parts[1] = adjust_address (operand, SImode, 8);
}
else if (GET_CODE (operand) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r;
long l[3];
REAL_VALUE_FROM_CONST_DOUBLE (r, operand);
REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, l);
/* Do not use shift by 32 to avoid warning on 32bit systems. */
if (HOST_BITS_PER_WIDE_INT >= 64)
parts[0]
= GEN_INT (trunc_int_for_mode
((l[0] & (((HOST_WIDE_INT) 2 << 31) - 1))
+ ((((HOST_WIDE_INT)l[1]) << 31) << 1),
DImode));
else
parts[0] = immed_double_const (l[0], l[1], DImode);
parts[1] = GEN_INT (trunc_int_for_mode (l[2], SImode));
}
else
abort ();
}
}
return size;
}
/* Emit insns to perform a move or push of DI, DF, and XF values.
Return false when normal moves are needed; true when all required
insns have been emitted. Operands 2-4 contain the input values
int the correct order; operands 5-7 contain the output values. */
void
ix86_split_long_move (operands)
rtx operands[];
{
rtx part[2][3];
int nparts;
int push = 0;
int collisions = 0;
enum machine_mode mode = GET_MODE (operands[0]);
/* The DFmode expanders may ask us to move double.
For 64bit target this is single move. By hiding the fact
here we simplify i386.md splitters. */
if (GET_MODE_SIZE (GET_MODE (operands[0])) == 8 && TARGET_64BIT)
{
/* Optimize constant pool reference to immediates. This is used by
fp moves, that force all constants to memory to allow combining. */
if (GET_CODE (operands[1]) == MEM
&& GET_CODE (XEXP (operands[1], 0)) == SYMBOL_REF
&& CONSTANT_POOL_ADDRESS_P (XEXP (operands[1], 0)))
operands[1] = get_pool_constant (XEXP (operands[1], 0));
if (push_operand (operands[0], VOIDmode))
{
operands[0] = copy_rtx (operands[0]);
PUT_MODE (operands[0], Pmode);
}
else
operands[0] = gen_lowpart (DImode, operands[0]);
operands[1] = gen_lowpart (DImode, operands[1]);
emit_move_insn (operands[0], operands[1]);
return;
}
/* The only non-offsettable memory we handle is push. */
if (push_operand (operands[0], VOIDmode))
push = 1;
else if (GET_CODE (operands[0]) == MEM
&& ! offsettable_memref_p (operands[0]))
abort ();
nparts = ix86_split_to_parts (operands[1], part[1], GET_MODE (operands[0]));
ix86_split_to_parts (operands[0], part[0], GET_MODE (operands[0]));
/* When emitting push, take care for source operands on the stack. */
if (push && GET_CODE (operands[1]) == MEM
&& reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
{
if (nparts == 3)
part[1][1] = change_address (part[1][1], GET_MODE (part[1][1]),
XEXP (part[1][2], 0));
part[1][0] = change_address (part[1][0], GET_MODE (part[1][0]),
XEXP (part[1][1], 0));
}
/* We need to do copy in the right order in case an address register
of the source overlaps the destination. */
if (REG_P (part[0][0]) && GET_CODE (part[1][0]) == MEM)
{
if (reg_overlap_mentioned_p (part[0][0], XEXP (part[1][0], 0)))
collisions++;
if (reg_overlap_mentioned_p (part[0][1], XEXP (part[1][0], 0)))
collisions++;
if (nparts == 3
&& reg_overlap_mentioned_p (part[0][2], XEXP (part[1][0], 0)))
collisions++;
/* Collision in the middle part can be handled by reordering. */
if (collisions == 1 && nparts == 3
&& reg_overlap_mentioned_p (part[0][1], XEXP (part[1][0], 0)))
{
rtx tmp;
tmp = part[0][1]; part[0][1] = part[0][2]; part[0][2] = tmp;
tmp = part[1][1]; part[1][1] = part[1][2]; part[1][2] = tmp;
}
/* If there are more collisions, we can't handle it by reordering.
Do an lea to the last part and use only one colliding move. */
else if (collisions > 1)
{
collisions = 1;
emit_insn (gen_rtx_SET (VOIDmode, part[0][nparts - 1],
XEXP (part[1][0], 0)));
part[1][0] = change_address (part[1][0],
TARGET_64BIT ? DImode : SImode,
part[0][nparts - 1]);
part[1][1] = adjust_address (part[1][0], VOIDmode, UNITS_PER_WORD);
if (nparts == 3)
part[1][2] = adjust_address (part[1][0], VOIDmode, 8);
}
}
if (push)
{
if (!TARGET_64BIT)
{
if (nparts == 3)
{
/* We use only first 12 bytes of TFmode value, but for pushing we
are required to adjust stack as if we were pushing real 16byte
value. */
if (mode == TFmode && !TARGET_64BIT)
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
GEN_INT (-4)));
emit_move_insn (part[0][2], part[1][2]);
}
}
else
{
/* In 64bit mode we don't have 32bit push available. In case this is
register, it is OK - we will just use larger counterpart. We also
retype memory - these comes from attempt to avoid REX prefix on
moving of second half of TFmode value. */
if (GET_MODE (part[1][1]) == SImode)
{
if (GET_CODE (part[1][1]) == MEM)
part[1][1] = adjust_address (part[1][1], DImode, 0);
else if (REG_P (part[1][1]))
part[1][1] = gen_rtx_REG (DImode, REGNO (part[1][1]));
else
abort();
if (GET_MODE (part[1][0]) == SImode)
part[1][0] = part[1][1];
}
}
emit_move_insn (part[0][1], part[1][1]);
emit_move_insn (part[0][0], part[1][0]);
return;
}
/* Choose correct order to not overwrite the source before it is copied. */
if ((REG_P (part[0][0])
&& REG_P (part[1][1])
&& (REGNO (part[0][0]) == REGNO (part[1][1])
|| (nparts == 3
&& REGNO (part[0][0]) == REGNO (part[1][2]))))
|| (collisions > 0
&& reg_overlap_mentioned_p (part[0][0], XEXP (part[1][0], 0))))
{
if (nparts == 3)
{
operands[2] = part[0][2];
operands[3] = part[0][1];
operands[4] = part[0][0];
operands[5] = part[1][2];
operands[6] = part[1][1];
operands[7] = part[1][0];
}
else
{
operands[2] = part[0][1];
operands[3] = part[0][0];
operands[5] = part[1][1];
operands[6] = part[1][0];
}
}
else
{
if (nparts == 3)
{
operands[2] = part[0][0];
operands[3] = part[0][1];
operands[4] = part[0][2];
operands[5] = part[1][0];
operands[6] = part[1][1];
operands[7] = part[1][2];
}
else
{
operands[2] = part[0][0];
operands[3] = part[0][1];
operands[5] = part[1][0];
operands[6] = part[1][1];
}
}
emit_move_insn (operands[2], operands[5]);
emit_move_insn (operands[3], operands[6]);
if (nparts == 3)
emit_move_insn (operands[4], operands[7]);
return;
}
void
ix86_split_ashldi (operands, scratch)
rtx *operands, scratch;
{
rtx low[2], high[2];
int count;
if (GET_CODE (operands[2]) == CONST_INT)
{
split_di (operands, 2, low, high);
count = INTVAL (operands[2]) & 63;
if (count >= 32)
{
emit_move_insn (high[0], low[1]);
emit_move_insn (low[0], const0_rtx);
if (count > 32)
emit_insn (gen_ashlsi3 (high[0], high[0], GEN_INT (count - 32)));
}
else
{
if (!rtx_equal_p (operands[0], operands[1]))
emit_move_insn (operands[0], operands[1]);
emit_insn (gen_x86_shld_1 (high[0], low[0], GEN_INT (count)));
emit_insn (gen_ashlsi3 (low[0], low[0], GEN_INT (count)));
}
}
else
{
if (!rtx_equal_p (operands[0], operands[1]))
emit_move_insn (operands[0], operands[1]);
split_di (operands, 1, low, high);
emit_insn (gen_x86_shld_1 (high[0], low[0], operands[2]));
emit_insn (gen_ashlsi3 (low[0], low[0], operands[2]));
if (TARGET_CMOVE && (! no_new_pseudos || scratch))
{
if (! no_new_pseudos)
scratch = force_reg (SImode, const0_rtx);
else
emit_move_insn (scratch, const0_rtx);
emit_insn (gen_x86_shift_adj_1 (high[0], low[0], operands[2],
scratch));
}
else
emit_insn (gen_x86_shift_adj_2 (high[0], low[0], operands[2]));
}
}
void
ix86_split_ashrdi (operands, scratch)
rtx *operands, scratch;
{
rtx low[2], high[2];
int count;
if (GET_CODE (operands[2]) == CONST_INT)
{
split_di (operands, 2, low, high);
count = INTVAL (operands[2]) & 63;
if (count >= 32)
{
emit_move_insn (low[0], high[1]);
if (! reload_completed)
emit_insn (gen_ashrsi3 (high[0], low[0], GEN_INT (31)));
else
{
emit_move_insn (high[0], low[0]);
emit_insn (gen_ashrsi3 (high[0], high[0], GEN_INT (31)));
}
if (count > 32)
emit_insn (gen_ashrsi3 (low[0], low[0], GEN_INT (count - 32)));
}
else
{
if (!rtx_equal_p (operands[0], operands[1]))
emit_move_insn (operands[0], operands[1]);
emit_insn (gen_x86_shrd_1 (low[0], high[0], GEN_INT (count)));
emit_insn (gen_ashrsi3 (high[0], high[0], GEN_INT (count)));
}
}
else
{
if (!rtx_equal_p (operands[0], operands[1]))
emit_move_insn (operands[0], operands[1]);
split_di (operands, 1, low, high);
emit_insn (gen_x86_shrd_1 (low[0], high[0], operands[2]));
emit_insn (gen_ashrsi3 (high[0], high[0], operands[2]));
if (TARGET_CMOVE && (! no_new_pseudos || scratch))
{
if (! no_new_pseudos)
scratch = gen_reg_rtx (SImode);
emit_move_insn (scratch, high[0]);
emit_insn (gen_ashrsi3 (scratch, scratch, GEN_INT (31)));
emit_insn (gen_x86_shift_adj_1 (low[0], high[0], operands[2],
scratch));
}
else
emit_insn (gen_x86_shift_adj_3 (low[0], high[0], operands[2]));
}
}
void
ix86_split_lshrdi (operands, scratch)
rtx *operands, scratch;
{
rtx low[2], high[2];
int count;
if (GET_CODE (operands[2]) == CONST_INT)
{
split_di (operands, 2, low, high);
count = INTVAL (operands[2]) & 63;
if (count >= 32)
{
emit_move_insn (low[0], high[1]);
emit_move_insn (high[0], const0_rtx);
if (count > 32)
emit_insn (gen_lshrsi3 (low[0], low[0], GEN_INT (count - 32)));
}
else
{
if (!rtx_equal_p (operands[0], operands[1]))
emit_move_insn (operands[0], operands[1]);
emit_insn (gen_x86_shrd_1 (low[0], high[0], GEN_INT (count)));
emit_insn (gen_lshrsi3 (high[0], high[0], GEN_INT (count)));
}
}
else
{
if (!rtx_equal_p (operands[0], operands[1]))
emit_move_insn (operands[0], operands[1]);
split_di (operands, 1, low, high);
emit_insn (gen_x86_shrd_1 (low[0], high[0], operands[2]));
emit_insn (gen_lshrsi3 (high[0], high[0], operands[2]));
/* Heh. By reversing the arguments, we can reuse this pattern. */
if (TARGET_CMOVE && (! no_new_pseudos || scratch))
{
if (! no_new_pseudos)
scratch = force_reg (SImode, const0_rtx);
else
emit_move_insn (scratch, const0_rtx);
emit_insn (gen_x86_shift_adj_1 (low[0], high[0], operands[2],
scratch));
}
else
emit_insn (gen_x86_shift_adj_2 (low[0], high[0], operands[2]));
}
}
/* Helper function for the string operations below. Dest VARIABLE whether
it is aligned to VALUE bytes. If true, jump to the label. */
static rtx
ix86_expand_aligntest (variable, value)
rtx variable;
int value;
{
rtx label = gen_label_rtx ();
rtx tmpcount = gen_reg_rtx (GET_MODE (variable));
if (GET_MODE (variable) == DImode)
emit_insn (gen_anddi3 (tmpcount, variable, GEN_INT (value)));
else
emit_insn (gen_andsi3 (tmpcount, variable, GEN_INT (value)));
emit_cmp_and_jump_insns (tmpcount, const0_rtx, EQ, 0, GET_MODE (variable),
1, label);
return label;
}
/* Adjust COUNTER by the VALUE. */
static void
ix86_adjust_counter (countreg, value)
rtx countreg;
HOST_WIDE_INT value;
{
if (GET_MODE (countreg) == DImode)
emit_insn (gen_adddi3 (countreg, countreg, GEN_INT (-value)));
else
emit_insn (gen_addsi3 (countreg, countreg, GEN_INT (-value)));
}
/* Zero extend possibly SImode EXP to Pmode register. */
rtx
ix86_zero_extend_to_Pmode (exp)
rtx exp;
{
rtx r;
if (GET_MODE (exp) == VOIDmode)
return force_reg (Pmode, exp);
if (GET_MODE (exp) == Pmode)
return copy_to_mode_reg (Pmode, exp);
r = gen_reg_rtx (Pmode);
emit_insn (gen_zero_extendsidi2 (r, exp));
return r;
}
/* Expand string move (memcpy) operation. Use i386 string operations when
profitable. expand_clrstr contains similar code. */
int
ix86_expand_movstr (dst, src, count_exp, align_exp)
rtx dst, src, count_exp, align_exp;
{
rtx srcreg, destreg, countreg;
enum machine_mode counter_mode;
HOST_WIDE_INT align = 0;
unsigned HOST_WIDE_INT count = 0;
rtx insns;
start_sequence ();
if (GET_CODE (align_exp) == CONST_INT)
align = INTVAL (align_exp);
/* This simple hack avoids all inlining code and simplifies code below. */
if (!TARGET_ALIGN_STRINGOPS)
align = 64;
if (GET_CODE (count_exp) == CONST_INT)
count = INTVAL (count_exp);
/* Figure out proper mode for counter. For 32bits it is always SImode,
for 64bits use SImode when possible, otherwise DImode.
Set count to number of bytes copied when known at compile time. */
if (!TARGET_64BIT || GET_MODE (count_exp) == SImode
|| x86_64_zero_extended_value (count_exp))
counter_mode = SImode;
else
counter_mode = DImode;
if (counter_mode != SImode && counter_mode != DImode)
abort ();
destreg = copy_to_mode_reg (Pmode, XEXP (dst, 0));
srcreg = copy_to_mode_reg (Pmode, XEXP (src, 0));
emit_insn (gen_cld ());
/* When optimizing for size emit simple rep ; movsb instruction for
counts not divisible by 4. */
if ((!optimize || optimize_size) && (count == 0 || (count & 0x03)))
{
countreg = ix86_zero_extend_to_Pmode (count_exp);
if (TARGET_64BIT)
emit_insn (gen_rep_movqi_rex64 (destreg, srcreg, countreg,
destreg, srcreg, countreg));
else
emit_insn (gen_rep_movqi (destreg, srcreg, countreg,
destreg, srcreg, countreg));
}
/* For constant aligned (or small unaligned) copies use rep movsl
followed by code copying the rest. For PentiumPro ensure 8 byte
alignment to allow rep movsl acceleration. */
else if (count != 0
&& (align >= 8
|| (!TARGET_PENTIUMPRO && !TARGET_64BIT && align >= 4)
|| optimize_size || count < (unsigned int)64))
{
int size = TARGET_64BIT && !optimize_size ? 8 : 4;
if (count & ~(size - 1))
{
countreg = copy_to_mode_reg (counter_mode,
GEN_INT ((count >> (size == 4 ? 2 : 3))
& (TARGET_64BIT ? -1 : 0x3fffffff)));
countreg = ix86_zero_extend_to_Pmode (countreg);
if (size == 4)
{
if (TARGET_64BIT)
emit_insn (gen_rep_movsi_rex64 (destreg, srcreg, countreg,
destreg, srcreg, countreg));
else
emit_insn (gen_rep_movsi (destreg, srcreg, countreg,
destreg, srcreg, countreg));
}
else
emit_insn (gen_rep_movdi_rex64 (destreg, srcreg, countreg,
destreg, srcreg, countreg));
}
if (size == 8 && (count & 0x04))
emit_insn (gen_strmovsi (destreg, srcreg));
if (count & 0x02)
emit_insn (gen_strmovhi (destreg, srcreg));
if (count & 0x01)
emit_insn (gen_strmovqi (destreg, srcreg));
}
/* The generic code based on the glibc implementation:
- align destination to 4 bytes (8 byte alignment is used for PentiumPro
allowing accelerated copying there)
- copy the data using rep movsl
- copy the rest. */
else
{
rtx countreg2;
rtx label = NULL;
/* In case we don't know anything about the alignment, default to
library version, since it is usually equally fast and result in
shorter code. */
if (!TARGET_INLINE_ALL_STRINGOPS && align < UNITS_PER_WORD)
{
end_sequence ();
return 0;
}
if (TARGET_SINGLE_STRINGOP)
emit_insn (gen_cld ());
countreg2 = gen_reg_rtx (Pmode);
countreg = copy_to_mode_reg (counter_mode, count_exp);
/* We don't use loops to align destination and to copy parts smaller
than 4 bytes, because gcc is able to optimize such code better (in
the case the destination or the count really is aligned, gcc is often
able to predict the branches) and also it is friendlier to the
hardware branch prediction.
Using loops is benefical for generic case, because we can
handle small counts using the loops. Many CPUs (such as Athlon)
have large REP prefix setup costs.
This is quite costy. Maybe we can revisit this decision later or
add some customizability to this code. */
if (count == 0
&& align < (TARGET_PENTIUMPRO && (count == 0
|| count >= (unsigned int)260)
? 8 : UNITS_PER_WORD))
{
label = gen_label_rtx ();
emit_cmp_and_jump_insns (countreg, GEN_INT (UNITS_PER_WORD - 1),
LEU, 0, counter_mode, 1, label);
}
if (align <= 1)
{
rtx label = ix86_expand_aligntest (destreg, 1);
emit_insn (gen_strmovqi (destreg, srcreg));
ix86_adjust_counter (countreg, 1);
emit_label (label);
LABEL_NUSES (label) = 1;
}
if (align <= 2)
{
rtx label = ix86_expand_aligntest (destreg, 2);
emit_insn (gen_strmovhi (destreg, srcreg));
ix86_adjust_counter (countreg, 2);
emit_label (label);
LABEL_NUSES (label) = 1;
}
if (align <= 4
&& ((TARGET_PENTIUMPRO && (count == 0
|| count >= (unsigned int)260))
|| TARGET_64BIT))
{
rtx label = ix86_expand_aligntest (destreg, 4);
emit_insn (gen_strmovsi (destreg, srcreg));
ix86_adjust_counter (countreg, 4);
emit_label (label);
LABEL_NUSES (label) = 1;
}
if (!TARGET_SINGLE_STRINGOP)
emit_insn (gen_cld ());
if (TARGET_64BIT)
{
emit_insn (gen_lshrdi3 (countreg2, ix86_zero_extend_to_Pmode (countreg),
GEN_INT (3)));
emit_insn (gen_rep_movdi_rex64 (destreg, srcreg, countreg2,
destreg, srcreg, countreg2));
}
else
{
emit_insn (gen_lshrsi3 (countreg2, countreg, GEN_INT (2)));
emit_insn (gen_rep_movsi (destreg, srcreg, countreg2,
destreg, srcreg, countreg2));
}
if (label)
{
emit_label (label);
LABEL_NUSES (label) = 1;
}
if (TARGET_64BIT && align > 4 && count != 0 && (count & 4))
emit_insn (gen_strmovsi (destreg, srcreg));
if ((align <= 4 || count == 0) && TARGET_64BIT)
{
rtx label = ix86_expand_aligntest (countreg, 4);
emit_insn (gen_strmovsi (destreg, srcreg));
emit_label (label);
LABEL_NUSES (label) = 1;
}
if (align > 2 && count != 0 && (count & 2))
emit_insn (gen_strmovhi (destreg, srcreg));
if (align <= 2 || count == 0)
{
rtx label = ix86_expand_aligntest (countreg, 2);
emit_insn (gen_strmovhi (destreg, srcreg));
emit_label (label);
LABEL_NUSES (label) = 1;
}
if (align > 1 && count != 0 && (count & 1))
emit_insn (gen_strmovqi (destreg, srcreg));
if (align <= 1 || count == 0)
{
rtx label = ix86_expand_aligntest (countreg, 1);
emit_insn (gen_strmovqi (destreg, srcreg));
emit_label (label);
LABEL_NUSES (label) = 1;
}
}
insns = get_insns ();
end_sequence ();
ix86_set_move_mem_attrs (insns, dst, src, destreg, srcreg);
emit_insns (insns);
return 1;
}
/* Expand string clear operation (bzero). Use i386 string operations when
profitable. expand_movstr contains similar code. */
int
ix86_expand_clrstr (src, count_exp, align_exp)
rtx src, count_exp, align_exp;
{
rtx destreg, zeroreg, countreg;
enum machine_mode counter_mode;
HOST_WIDE_INT align = 0;
unsigned HOST_WIDE_INT count = 0;
if (GET_CODE (align_exp) == CONST_INT)
align = INTVAL (align_exp);
/* This simple hack avoids all inlining code and simplifies code below. */
if (!TARGET_ALIGN_STRINGOPS)
align = 32;
if (GET_CODE (count_exp) == CONST_INT)
count = INTVAL (count_exp);
/* Figure out proper mode for counter. For 32bits it is always SImode,
for 64bits use SImode when possible, otherwise DImode.
Set count to number of bytes copied when known at compile time. */
if (!TARGET_64BIT || GET_MODE (count_exp) == SImode
|| x86_64_zero_extended_value (count_exp))
counter_mode = SImode;
else
counter_mode = DImode;
destreg = copy_to_mode_reg (Pmode, XEXP (src, 0));
emit_insn (gen_cld ());
/* When optimizing for size emit simple rep ; movsb instruction for
counts not divisible by 4. */
if ((!optimize || optimize_size) && (count == 0 || (count & 0x03)))
{
countreg = ix86_zero_extend_to_Pmode (count_exp);
zeroreg = copy_to_mode_reg (QImode, const0_rtx);
if (TARGET_64BIT)
emit_insn (gen_rep_stosqi_rex64 (destreg, countreg, zeroreg,
destreg, countreg));
else
emit_insn (gen_rep_stosqi (destreg, countreg, zeroreg,
destreg, countreg));
}
else if (count != 0
&& (align >= 8
|| (!TARGET_PENTIUMPRO && !TARGET_64BIT && align >= 4)
|| optimize_size || count < (unsigned int)64))
{
int size = TARGET_64BIT && !optimize_size ? 8 : 4;
zeroreg = copy_to_mode_reg (size == 4 ? SImode : DImode, const0_rtx);
if (count & ~(size - 1))
{
countreg = copy_to_mode_reg (counter_mode,
GEN_INT ((count >> (size == 4 ? 2 : 3))
& (TARGET_64BIT ? -1 : 0x3fffffff)));
countreg = ix86_zero_extend_to_Pmode (countreg);
if (size == 4)
{
if (TARGET_64BIT)
emit_insn (gen_rep_stossi_rex64 (destreg, countreg, zeroreg,
destreg, countreg));
else
emit_insn (gen_rep_stossi (destreg, countreg, zeroreg,
destreg, countreg));
}
else
emit_insn (gen_rep_stosdi_rex64 (destreg, countreg, zeroreg,
destreg, countreg));
}
if (size == 8 && (count & 0x04))
emit_insn (gen_strsetsi (destreg,
gen_rtx_SUBREG (SImode, zeroreg, 0)));
if (count & 0x02)
emit_insn (gen_strsethi (destreg,
gen_rtx_SUBREG (HImode, zeroreg, 0)));
if (count & 0x01)
emit_insn (gen_strsetqi (destreg,
gen_rtx_SUBREG (QImode, zeroreg, 0)));
}
else
{
rtx countreg2;
rtx label = NULL;
/* In case we don't know anything about the alignment, default to
library version, since it is usually equally fast and result in
shorter code. */
if (!TARGET_INLINE_ALL_STRINGOPS && align < UNITS_PER_WORD)
return 0;
if (TARGET_SINGLE_STRINGOP)
emit_insn (gen_cld ());
countreg2 = gen_reg_rtx (Pmode);
countreg = copy_to_mode_reg (counter_mode, count_exp);
zeroreg = copy_to_mode_reg (Pmode, const0_rtx);
if (count == 0
&& align < (TARGET_PENTIUMPRO && (count == 0
|| count >= (unsigned int)260)
? 8 : UNITS_PER_WORD))
{
label = gen_label_rtx ();
emit_cmp_and_jump_insns (countreg, GEN_INT (UNITS_PER_WORD - 1),
LEU, 0, counter_mode, 1, label);
}
if (align <= 1)
{
rtx label = ix86_expand_aligntest (destreg, 1);
emit_insn (gen_strsetqi (destreg,
gen_rtx_SUBREG (QImode, zeroreg, 0)));
ix86_adjust_counter (countreg, 1);
emit_label (label);
LABEL_NUSES (label) = 1;
}
if (align <= 2)
{
rtx label = ix86_expand_aligntest (destreg, 2);
emit_insn (gen_strsethi (destreg,
gen_rtx_SUBREG (HImode, zeroreg, 0)));
ix86_adjust_counter (countreg, 2);
emit_label (label);
LABEL_NUSES (label) = 1;
}
if (align <= 4 && TARGET_PENTIUMPRO && (count == 0
|| count >= (unsigned int)260))
{
rtx label = ix86_expand_aligntest (destreg, 4);
emit_insn (gen_strsetsi (destreg, (TARGET_64BIT
? gen_rtx_SUBREG (SImode, zeroreg, 0)
: zeroreg)));
ix86_adjust_counter (countreg, 4);
emit_label (label);
LABEL_NUSES (label) = 1;
}
if (!TARGET_SINGLE_STRINGOP)
emit_insn (gen_cld ());
if (TARGET_64BIT)
{
emit_insn (gen_lshrdi3 (countreg2, ix86_zero_extend_to_Pmode (countreg),
GEN_INT (3)));
emit_insn (gen_rep_stosdi_rex64 (destreg, countreg2, zeroreg,
destreg, countreg2));
}
else
{
emit_insn (gen_lshrsi3 (countreg2, countreg, GEN_INT (2)));
emit_insn (gen_rep_stossi (destreg, countreg2, zeroreg,
destreg, countreg2));
}
if (label)
{
emit_label (label);
LABEL_NUSES (label) = 1;
}
if (TARGET_64BIT && align > 4 && count != 0 && (count & 4))
emit_insn (gen_strsetsi (destreg,
gen_rtx_SUBREG (SImode, zeroreg, 0)));
if (TARGET_64BIT && (align <= 4 || count == 0))
{
rtx label = ix86_expand_aligntest (destreg, 2);
emit_insn (gen_strsetsi (destreg,
gen_rtx_SUBREG (SImode, zeroreg, 0)));
emit_label (label);
LABEL_NUSES (label) = 1;
}
if (align > 2 && count != 0 && (count & 2))
emit_insn (gen_strsethi (destreg,
gen_rtx_SUBREG (HImode, zeroreg, 0)));
if (align <= 2 || count == 0)
{
rtx label = ix86_expand_aligntest (destreg, 2);
emit_insn (gen_strsethi (destreg,
gen_rtx_SUBREG (HImode, zeroreg, 0)));
emit_label (label);
LABEL_NUSES (label) = 1;
}
if (align > 1 && count != 0 && (count & 1))
emit_insn (gen_strsetqi (destreg,
gen_rtx_SUBREG (QImode, zeroreg, 0)));
if (align <= 1 || count == 0)
{
rtx label = ix86_expand_aligntest (destreg, 1);
emit_insn (gen_strsetqi (destreg,
gen_rtx_SUBREG (QImode, zeroreg, 0)));
emit_label (label);
LABEL_NUSES (label) = 1;
}
}
return 1;
}
/* Expand strlen. */
int
ix86_expand_strlen (out, src, eoschar, align)
rtx out, src, eoschar, align;
{
rtx addr, scratch1, scratch2, scratch3, scratch4;
/* The generic case of strlen expander is long. Avoid it's
expanding unless TARGET_INLINE_ALL_STRINGOPS. */
if (TARGET_UNROLL_STRLEN && eoschar == const0_rtx && optimize > 1
&& !TARGET_INLINE_ALL_STRINGOPS
&& !optimize_size
&& (GET_CODE (align) != CONST_INT || INTVAL (align) < 4))
return 0;
addr = force_reg (Pmode, XEXP (src, 0));
scratch1 = gen_reg_rtx (Pmode);
if (TARGET_UNROLL_STRLEN && eoschar == const0_rtx && optimize > 1
&& !optimize_size)
{
/* Well it seems that some optimizer does not combine a call like
foo(strlen(bar), strlen(bar));
when the move and the subtraction is done here. It does calculate
the length just once when these instructions are done inside of
output_strlen_unroll(). But I think since &bar[strlen(bar)] is
often used and I use one fewer register for the lifetime of
output_strlen_unroll() this is better. */
emit_move_insn (out, addr);
ix86_expand_strlensi_unroll_1 (out, align);
/* strlensi_unroll_1 returns the address of the zero at the end of
the string, like memchr(), so compute the length by subtracting
the start address. */
if (TARGET_64BIT)
emit_insn (gen_subdi3 (out, out, addr));
else
emit_insn (gen_subsi3 (out, out, addr));
}
else
{
scratch2 = gen_reg_rtx (Pmode);
scratch3 = gen_reg_rtx (Pmode);
scratch4 = force_reg (Pmode, constm1_rtx);
emit_move_insn (scratch3, addr);
eoschar = force_reg (QImode, eoschar);
emit_insn (gen_cld ());
if (TARGET_64BIT)
{
emit_insn (gen_strlenqi_rex_1 (scratch1, scratch3, eoschar,
align, scratch4, scratch3));
emit_insn (gen_one_cmpldi2 (scratch2, scratch1));
emit_insn (gen_adddi3 (out, scratch2, constm1_rtx));
}
else
{
emit_insn (gen_strlenqi_1 (scratch1, scratch3, eoschar,
align, scratch4, scratch3));
emit_insn (gen_one_cmplsi2 (scratch2, scratch1));
emit_insn (gen_addsi3 (out, scratch2, constm1_rtx));
}
}
return 1;
}
/* Expand the appropriate insns for doing strlen if not just doing
repnz; scasb
out = result, initialized with the start address
align_rtx = alignment of the address.
scratch = scratch register, initialized with the startaddress when
not aligned, otherwise undefined
This is just the body. It needs the initialisations mentioned above and
some address computing at the end. These things are done in i386.md. */
static void
ix86_expand_strlensi_unroll_1 (out, align_rtx)
rtx out, align_rtx;
{
int align;
rtx tmp;
rtx align_2_label = NULL_RTX;
rtx align_3_label = NULL_RTX;
rtx align_4_label = gen_label_rtx ();
rtx end_0_label = gen_label_rtx ();
rtx mem;
rtx tmpreg = gen_reg_rtx (SImode);
rtx scratch = gen_reg_rtx (SImode);
align = 0;
if (GET_CODE (align_rtx) == CONST_INT)
align = INTVAL (align_rtx);
/* Loop to check 1..3 bytes for null to get an aligned pointer. */
/* Is there a known alignment and is it less than 4? */
if (align < 4)
{
rtx scratch1 = gen_reg_rtx (Pmode);
emit_move_insn (scratch1, out);
/* Is there a known alignment and is it not 2? */
if (align != 2)
{
align_3_label = gen_label_rtx (); /* Label when aligned to 3-byte */
align_2_label = gen_label_rtx (); /* Label when aligned to 2-byte */
/* Leave just the 3 lower bits. */
align_rtx = expand_binop (Pmode, and_optab, scratch1, GEN_INT (3),
NULL_RTX, 0, OPTAB_WIDEN);
emit_cmp_and_jump_insns (align_rtx, const0_rtx, EQ, NULL,
Pmode, 1, align_4_label);
emit_cmp_and_jump_insns (align_rtx, GEN_INT (2), EQ, NULL,
Pmode, 1, align_2_label);
emit_cmp_and_jump_insns (align_rtx, GEN_INT (2), GTU, NULL,
Pmode, 1, align_3_label);
}
else
{
/* Since the alignment is 2, we have to check 2 or 0 bytes;
check if is aligned to 4 - byte. */
align_rtx = expand_binop (Pmode, and_optab, scratch1, GEN_INT (2),
NULL_RTX, 0, OPTAB_WIDEN);
emit_cmp_and_jump_insns (align_rtx, const0_rtx, EQ, NULL,
Pmode, 1, align_4_label);
}
mem = gen_rtx_MEM (QImode, out);
/* Now compare the bytes. */
/* Compare the first n unaligned byte on a byte per byte basis. */
emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL,
QImode, 1, end_0_label);
/* Increment the address. */
if (TARGET_64BIT)
emit_insn (gen_adddi3 (out, out, const1_rtx));
else
emit_insn (gen_addsi3 (out, out, const1_rtx));
/* Not needed with an alignment of 2 */
if (align != 2)
{
emit_label (align_2_label);
emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1,
end_0_label);
if (TARGET_64BIT)
emit_insn (gen_adddi3 (out, out, const1_rtx));
else
emit_insn (gen_addsi3 (out, out, const1_rtx));
emit_label (align_3_label);
}
emit_cmp_and_jump_insns (mem, const0_rtx, EQ, NULL, QImode, 1,
end_0_label);
if (TARGET_64BIT)
emit_insn (gen_adddi3 (out, out, const1_rtx));
else
emit_insn (gen_addsi3 (out, out, const1_rtx));
}
/* Generate loop to check 4 bytes at a time. It is not a good idea to
align this loop. It gives only huge programs, but does not help to
speed up. */
emit_label (align_4_label);
mem = gen_rtx_MEM (SImode, out);
emit_move_insn (scratch, mem);
if (TARGET_64BIT)
emit_insn (gen_adddi3 (out, out, GEN_INT (4)));
else
emit_insn (gen_addsi3 (out, out, GEN_INT (4)));
/* This formula yields a nonzero result iff one of the bytes is zero.
This saves three branches inside loop and many cycles. */
emit_insn (gen_addsi3 (tmpreg, scratch, GEN_INT (-0x01010101)));
emit_insn (gen_one_cmplsi2 (scratch, scratch));
emit_insn (gen_andsi3 (tmpreg, tmpreg, scratch));
emit_insn (gen_andsi3 (tmpreg, tmpreg,
GEN_INT (trunc_int_for_mode
(0x80808080, SImode))));
emit_cmp_and_jump_insns (tmpreg, const0_rtx, EQ, 0, SImode, 1,
align_4_label);
if (TARGET_CMOVE)
{
rtx reg = gen_reg_rtx (SImode);
rtx reg2 = gen_reg_rtx (Pmode);
emit_move_insn (reg, tmpreg);
emit_insn (gen_lshrsi3 (reg, reg, GEN_INT (16)));
/* If zero is not in the first two bytes, move two bytes forward. */
emit_insn (gen_testsi_ccno_1 (tmpreg, GEN_INT (0x8080)));
tmp = gen_rtx_REG (CCNOmode, FLAGS_REG);
tmp = gen_rtx_EQ (VOIDmode, tmp, const0_rtx);
emit_insn (gen_rtx_SET (VOIDmode, tmpreg,
gen_rtx_IF_THEN_ELSE (SImode, tmp,
reg,
tmpreg)));
/* Emit lea manually to avoid clobbering of flags. */
emit_insn (gen_rtx_SET (SImode, reg2,
gen_rtx_PLUS (Pmode, out, GEN_INT (2))));
tmp = gen_rtx_REG (CCNOmode, FLAGS_REG);
tmp = gen_rtx_EQ (VOIDmode, tmp, const0_rtx);
emit_insn (gen_rtx_SET (VOIDmode, out,
gen_rtx_IF_THEN_ELSE (Pmode, tmp,
reg2,
out)));
}
else
{
rtx end_2_label = gen_label_rtx ();
/* Is zero in the first two bytes? */
emit_insn (gen_testsi_ccno_1 (tmpreg, GEN_INT (0x8080)));
tmp = gen_rtx_REG (CCNOmode, FLAGS_REG);
tmp = gen_rtx_NE (VOIDmode, tmp, const0_rtx);
tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp,
gen_rtx_LABEL_REF (VOIDmode, end_2_label),
pc_rtx);
tmp = emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp));
JUMP_LABEL (tmp) = end_2_label;
/* Not in the first two. Move two bytes forward. */
emit_insn (gen_lshrsi3 (tmpreg, tmpreg, GEN_INT (16)));
if (TARGET_64BIT)
emit_insn (gen_adddi3 (out, out, GEN_INT (2)));
else
emit_insn (gen_addsi3 (out, out, GEN_INT (2)));
emit_label (end_2_label);
}
/* Avoid branch in fixing the byte. */
tmpreg = gen_lowpart (QImode, tmpreg);
emit_insn (gen_addqi3_cc (tmpreg, tmpreg, tmpreg));
if (TARGET_64BIT)
emit_insn (gen_subdi3_carry_rex64 (out, out, GEN_INT (3)));
else
emit_insn (gen_subsi3_carry (out, out, GEN_INT (3)));
emit_label (end_0_label);
}
/* Clear stack slot assignments remembered from previous functions.
This is called from INIT_EXPANDERS once before RTL is emitted for each
function. */
static void
ix86_init_machine_status (p)
struct function *p;
{
p->machine = (struct machine_function *)
xcalloc (1, sizeof (struct machine_function));
}
/* Mark machine specific bits of P for GC. */
static void
ix86_mark_machine_status (p)
struct function *p;
{
struct machine_function *machine = p->machine;
enum machine_mode mode;
int n;
if (! machine)
return;
for (mode = VOIDmode; (int) mode < (int) MAX_MACHINE_MODE;
mode = (enum machine_mode) ((int) mode + 1))
for (n = 0; n < MAX_386_STACK_LOCALS; n++)
ggc_mark_rtx (machine->stack_locals[(int) mode][n]);
}
static void
ix86_free_machine_status (p)
struct function *p;
{
free (p->machine);
p->machine = NULL;
}
/* Return a MEM corresponding to a stack slot with mode MODE.
Allocate a new slot if necessary.
The RTL for a function can have several slots available: N is
which slot to use. */
rtx
assign_386_stack_local (mode, n)
enum machine_mode mode;
int n;
{
if (n < 0 || n >= MAX_386_STACK_LOCALS)
abort ();
if (ix86_stack_locals[(int) mode][n] == NULL_RTX)
ix86_stack_locals[(int) mode][n]
= assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
return ix86_stack_locals[(int) mode][n];
}
/* Calculate the length of the memory address in the instruction
encoding. Does not include the one-byte modrm, opcode, or prefix. */
static int
memory_address_length (addr)
rtx addr;
{
struct ix86_address parts;
rtx base, index, disp;
int len;
if (GET_CODE (addr) == PRE_DEC
|| GET_CODE (addr) == POST_INC
|| GET_CODE (addr) == PRE_MODIFY
|| GET_CODE (addr) == POST_MODIFY)
return 0;
if (! ix86_decompose_address (addr, &parts))
abort ();
base = parts.base;
index = parts.index;
disp = parts.disp;
len = 0;
/* Register Indirect. */
if (base && !index && !disp)
{
/* Special cases: ebp and esp need the two-byte modrm form. */
if (addr == stack_pointer_rtx
|| addr == arg_pointer_rtx
|| addr == frame_pointer_rtx
|| addr == hard_frame_pointer_rtx)
len = 1;
}
/* Direct Addressing. */
else if (disp && !base && !index)
len = 4;
else
{
/* Find the length of the displacement constant. */
if (disp)
{
if (GET_CODE (disp) == CONST_INT
&& CONST_OK_FOR_LETTER_P (INTVAL (disp), 'K'))
len = 1;
else
len = 4;
}
/* An index requires the two-byte modrm form. */
if (index)
len += 1;
}
return len;
}
/* Compute default value for "length_immediate" attribute. When SHORTFORM is set
expect that insn have 8bit immediate alternative. */
int
ix86_attr_length_immediate_default (insn, shortform)
rtx insn;
int shortform;
{
int len = 0;
int i;
extract_insn_cached (insn);
for (i = recog_data.n_operands - 1; i >= 0; --i)
if (CONSTANT_P (recog_data.operand[i]))
{
if (len)
abort ();
if (shortform
&& GET_CODE (recog_data.operand[i]) == CONST_INT
&& CONST_OK_FOR_LETTER_P (INTVAL (recog_data.operand[i]), 'K'))
len = 1;
else
{
switch (get_attr_mode (insn))
{
case MODE_QI:
len+=1;
break;
case MODE_HI:
len+=2;
break;
case MODE_SI:
len+=4;
break;
/* Immediates for DImode instructions are encoded as 32bit sign extended values. */
case MODE_DI:
len+=4;
break;
default:
fatal_insn ("unknown insn mode", insn);
}
}
}
return len;
}
/* Compute default value for "length_address" attribute. */
int
ix86_attr_length_address_default (insn)
rtx insn;
{
int i;
extract_insn_cached (insn);
for (i = recog_data.n_operands - 1; i >= 0; --i)
if (GET_CODE (recog_data.operand[i]) == MEM)
{
return memory_address_length (XEXP (recog_data.operand[i], 0));
break;
}
return 0;
}
/* Return the maximum number of instructions a cpu can issue. */
static int
ix86_issue_rate ()
{
switch (ix86_cpu)
{
case PROCESSOR_PENTIUM:
case PROCESSOR_K6:
return 2;
case PROCESSOR_PENTIUMPRO:
case PROCESSOR_PENTIUM4:
case PROCESSOR_ATHLON:
return 3;
default:
return 1;
}
}
/* A subroutine of ix86_adjust_cost -- return true iff INSN reads flags set
by DEP_INSN and nothing set by DEP_INSN. */
static int
ix86_flags_dependant (insn, dep_insn, insn_type)
rtx insn, dep_insn;
enum attr_type insn_type;
{
rtx set, set2;
/* Simplify the test for uninteresting insns. */
if (insn_type != TYPE_SETCC
&& insn_type != TYPE_ICMOV
&& insn_type != TYPE_FCMOV
&& insn_type != TYPE_IBR)
return 0;
if ((set = single_set (dep_insn)) != 0)
{
set = SET_DEST (set);
set2 = NULL_RTX;
}
else if (GET_CODE (PATTERN (dep_insn)) == PARALLEL
&& XVECLEN (PATTERN (dep_insn), 0) == 2
&& GET_CODE (XVECEXP (PATTERN (dep_insn), 0, 0)) == SET
&& GET_CODE (XVECEXP (PATTERN (dep_insn), 0, 1)) == SET)
{
set = SET_DEST (XVECEXP (PATTERN (dep_insn), 0, 0));
set2 = SET_DEST (XVECEXP (PATTERN (dep_insn), 0, 0));
}
else
return 0;
if (GET_CODE (set) != REG || REGNO (set) != FLAGS_REG)
return 0;
/* This test is true if the dependent insn reads the flags but
not any other potentially set register. */
if (!reg_overlap_mentioned_p (set, PATTERN (insn)))
return 0;
if (set2 && reg_overlap_mentioned_p (set2, PATTERN (insn)))
return 0;
return 1;
}
/* A subroutine of ix86_adjust_cost -- return true iff INSN has a memory
address with operands set by DEP_INSN. */
static int
ix86_agi_dependant (insn, dep_insn, insn_type)
rtx insn, dep_insn;
enum attr_type insn_type;
{
rtx addr;
if (insn_type == TYPE_LEA
&& TARGET_PENTIUM)
{
addr = PATTERN (insn);
if (GET_CODE (addr) == SET)
;
else if (GET_CODE (addr) == PARALLEL
&& GET_CODE (XVECEXP (addr, 0, 0)) == SET)
addr = XVECEXP (addr, 0, 0);
else
abort ();
addr = SET_SRC (addr);
}
else
{
int i;
extract_insn_cached (insn);
for (i = recog_data.n_operands - 1; i >= 0; --i)
if (GET_CODE (recog_data.operand[i]) == MEM)
{
addr = XEXP (recog_data.operand[i], 0);
goto found;
}
return 0;
found:;
}
return modified_in_p (addr, dep_insn);
}
static int
ix86_adjust_cost (insn, link, dep_insn, cost)
rtx insn, link, dep_insn;
int cost;
{
enum attr_type insn_type, dep_insn_type;
enum attr_memory memory, dep_memory;
rtx set, set2;
int dep_insn_code_number;
/* Anti and output depenancies have zero cost on all CPUs. */
if (REG_NOTE_KIND (link) != 0)
return 0;
dep_insn_code_number = recog_memoized (dep_insn);
/* If we can't recognize the insns, we can't really do anything. */
if (dep_insn_code_number < 0 || recog_memoized (insn) < 0)
return cost;
insn_type = get_attr_type (insn);
dep_insn_type = get_attr_type (dep_insn);
switch (ix86_cpu)
{
case PROCESSOR_PENTIUM:
/* Address Generation Interlock adds a cycle of latency. */
if (ix86_agi_dependant (insn, dep_insn, insn_type))
cost += 1;
/* ??? Compares pair with jump/setcc. */
if (ix86_flags_dependant (insn, dep_insn, insn_type))
cost = 0;
/* Floating point stores require value to be ready one cycle ealier. */
if (insn_type == TYPE_FMOV
&& get_attr_memory (insn) == MEMORY_STORE
&& !ix86_agi_dependant (insn, dep_insn, insn_type))
cost += 1;
break;
case PROCESSOR_PENTIUMPRO:
memory = get_attr_memory (insn);
dep_memory = get_attr_memory (dep_insn);
/* Since we can't represent delayed latencies of load+operation,
increase the cost here for non-imov insns. */
if (dep_insn_type != TYPE_IMOV
&& dep_insn_type != TYPE_FMOV
&& (dep_memory == MEMORY_LOAD || dep_memory == MEMORY_BOTH))
cost += 1;
/* INT->FP conversion is expensive. */
if (get_attr_fp_int_src (dep_insn))
cost += 5;
/* There is one cycle extra latency between an FP op and a store. */
if (insn_type == TYPE_FMOV
&& (set = single_set (dep_insn)) != NULL_RTX
&& (set2 = single_set (insn)) != NULL_RTX
&& rtx_equal_p (SET_DEST (set), SET_SRC (set2))
&& GET_CODE (SET_DEST (set2)) == MEM)
cost += 1;
/* Show ability of reorder buffer to hide latency of load by executing
in parallel with previous instruction in case
previous instruction is not needed to compute the address. */
if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH)
&& !ix86_agi_dependant (insn, dep_insn, insn_type))
{
/* Claim moves to take one cycle, as core can issue one load
at time and the next load can start cycle later. */
if (dep_insn_type == TYPE_IMOV
|| dep_insn_type == TYPE_FMOV)
cost = 1;
else if (cost > 1)
cost--;
}
break;
case PROCESSOR_K6:
memory = get_attr_memory (insn);
dep_memory = get_attr_memory (dep_insn);
/* The esp dependency is resolved before the instruction is really
finished. */
if ((insn_type == TYPE_PUSH || insn_type == TYPE_POP)
&& (dep_insn_type == TYPE_PUSH || dep_insn_type == TYPE_POP))
return 1;
/* Since we can't represent delayed latencies of load+operation,
increase the cost here for non-imov insns. */
if (dep_memory == MEMORY_LOAD || dep_memory == MEMORY_BOTH)
cost += (dep_insn_type != TYPE_IMOV) ? 2 : 1;
/* INT->FP conversion is expensive. */
if (get_attr_fp_int_src (dep_insn))
cost += 5;
/* Show ability of reorder buffer to hide latency of load by executing
in parallel with previous instruction in case
previous instruction is not needed to compute the address. */
if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH)
&& !ix86_agi_dependant (insn, dep_insn, insn_type))
{
/* Claim moves to take one cycle, as core can issue one load
at time and the next load can start cycle later. */
if (dep_insn_type == TYPE_IMOV
|| dep_insn_type == TYPE_FMOV)
cost = 1;
else if (cost > 2)
cost -= 2;
else
cost = 1;
}
break;
case PROCESSOR_ATHLON:
memory = get_attr_memory (insn);
dep_memory = get_attr_memory (dep_insn);
if (dep_memory == MEMORY_LOAD || dep_memory == MEMORY_BOTH)
{
if (dep_insn_type == TYPE_IMOV || dep_insn_type == TYPE_FMOV)
cost += 2;
else
cost += 3;
}
/* Show ability of reorder buffer to hide latency of load by executing
in parallel with previous instruction in case
previous instruction is not needed to compute the address. */
if ((memory == MEMORY_LOAD || memory == MEMORY_BOTH)
&& !ix86_agi_dependant (insn, dep_insn, insn_type))
{
/* Claim moves to take one cycle, as core can issue one load
at time and the next load can start cycle later. */
if (dep_insn_type == TYPE_IMOV
|| dep_insn_type == TYPE_FMOV)
cost = 0;
else if (cost >= 3)
cost -= 3;
else
cost = 0;
}
default:
break;
}
return cost;
}
static union
{
struct ppro_sched_data
{
rtx decode[3];
int issued_this_cycle;
} ppro;
} ix86_sched_data;
static int
ix86_safe_length (insn)
rtx insn;
{
if (recog_memoized (insn) >= 0)
return get_attr_length(insn);
else
return 128;
}
static int
ix86_safe_length_prefix (insn)
rtx insn;
{
if (recog_memoized (insn) >= 0)
return get_attr_length(insn);
else
return 0;
}
static enum attr_memory
ix86_safe_memory (insn)
rtx insn;
{
if (recog_memoized (insn) >= 0)
return get_attr_memory(insn);
else
return MEMORY_UNKNOWN;
}
static enum attr_pent_pair
ix86_safe_pent_pair (insn)
rtx insn;
{
if (recog_memoized (insn) >= 0)
return get_attr_pent_pair(insn);
else
return PENT_PAIR_NP;
}
static enum attr_ppro_uops
ix86_safe_ppro_uops (insn)
rtx insn;
{
if (recog_memoized (insn) >= 0)
return get_attr_ppro_uops (insn);
else
return PPRO_UOPS_MANY;
}
static void
ix86_dump_ppro_packet (dump)
FILE *dump;
{
if (ix86_sched_data.ppro.decode[0])
{
fprintf (dump, "PPRO packet: %d",
INSN_UID (ix86_sched_data.ppro.decode[0]));
if (ix86_sched_data.ppro.decode[1])
fprintf (dump, " %d", INSN_UID (ix86_sched_data.ppro.decode[1]));
if (ix86_sched_data.ppro.decode[2])
fprintf (dump, " %d", INSN_UID (ix86_sched_data.ppro.decode[2]));
fputc ('\n', dump);
}
}
/* We're beginning a new block. Initialize data structures as necessary. */
static void
ix86_sched_init (dump, sched_verbose, veclen)
FILE *dump ATTRIBUTE_UNUSED;
int sched_verbose ATTRIBUTE_UNUSED;
int veclen ATTRIBUTE_UNUSED;
{
memset (&ix86_sched_data, 0, sizeof (ix86_sched_data));
}
/* Shift INSN to SLOT, and shift everything else down. */
static void
ix86_reorder_insn (insnp, slot)
rtx *insnp, *slot;
{
if (insnp != slot)
{
rtx insn = *insnp;
do
insnp[0] = insnp[1];
while (++insnp != slot);
*insnp = insn;
}
}
/* Find an instruction with given pairability and minimal amount of cycles
lost by the fact that the CPU waits for both pipelines to finish before
reading next instructions. Also take care that both instructions together
can not exceed 7 bytes. */
static rtx *
ix86_pent_find_pair (e_ready, ready, type, first)
rtx *e_ready;
rtx *ready;
enum attr_pent_pair type;
rtx first;
{
int mincycles, cycles;
enum attr_pent_pair tmp;
enum attr_memory memory;
rtx *insnp, *bestinsnp = NULL;
if (ix86_safe_length (first) > 7 + ix86_safe_length_prefix (first))
return NULL;
memory = ix86_safe_memory (first);
cycles = result_ready_cost (first);
mincycles = INT_MAX;
for (insnp = e_ready; insnp >= ready && mincycles; --insnp)
if ((tmp = ix86_safe_pent_pair (*insnp)) == type
&& ix86_safe_length (*insnp) <= 7 + ix86_safe_length_prefix (*insnp))
{
enum attr_memory second_memory;
int secondcycles, currentcycles;
second_memory = ix86_safe_memory (*insnp);
secondcycles = result_ready_cost (*insnp);
currentcycles = abs (cycles - secondcycles);
if (secondcycles >= 1 && cycles >= 1)
{
/* Two read/modify/write instructions together takes two
cycles longer. */
if (memory == MEMORY_BOTH && second_memory == MEMORY_BOTH)
currentcycles += 2;
/* Read modify/write instruction followed by read/modify
takes one cycle longer. */
if (memory == MEMORY_BOTH && second_memory == MEMORY_LOAD
&& tmp != PENT_PAIR_UV
&& ix86_safe_pent_pair (first) != PENT_PAIR_UV)
currentcycles += 1;
}
if (currentcycles < mincycles)
bestinsnp = insnp, mincycles = currentcycles;
}
return bestinsnp;
}
/* Subroutines of ix86_sched_reorder. */
static void
ix86_sched_reorder_pentium (ready, e_ready)
rtx *ready;
rtx *e_ready;
{
enum attr_pent_pair pair1, pair2;
rtx *insnp;
/* This wouldn't be necessary if Haifa knew that static insn ordering
is important to which pipe an insn is issued to. So we have to make
some minor rearrangements. */
pair1 = ix86_safe_pent_pair (*e_ready);
/* If the first insn is non-pairable, let it be. */
if (pair1 == PENT_PAIR_NP)
return;
pair2 = PENT_PAIR_NP;
insnp = 0;
/* If the first insn is UV or PV pairable, search for a PU
insn to go with. */
if (pair1 == PENT_PAIR_UV || pair1 == PENT_PAIR_PV)
{
insnp = ix86_pent_find_pair (e_ready-1, ready,
PENT_PAIR_PU, *e_ready);
if (insnp)
pair2 = PENT_PAIR_PU;
}
/* If the first insn is PU or UV pairable, search for a PV
insn to go with. */
if (pair2 == PENT_PAIR_NP
&& (pair1 == PENT_PAIR_PU || pair1 == PENT_PAIR_UV))
{
insnp = ix86_pent_find_pair (e_ready-1, ready,
PENT_PAIR_PV, *e_ready);
if (insnp)
pair2 = PENT_PAIR_PV;
}
/* If the first insn is pairable, search for a UV
insn to go with. */
if (pair2 == PENT_PAIR_NP)
{
insnp = ix86_pent_find_pair (e_ready-1, ready,
PENT_PAIR_UV, *e_ready);
if (insnp)
pair2 = PENT_PAIR_UV;
}
if (pair2 == PENT_PAIR_NP)
return;
/* Found something! Decide if we need to swap the order. */
if (pair1 == PENT_PAIR_PV || pair2 == PENT_PAIR_PU
|| (pair1 == PENT_PAIR_UV && pair2 == PENT_PAIR_UV
&& ix86_safe_memory (*e_ready) == MEMORY_BOTH
&& ix86_safe_memory (*insnp) == MEMORY_LOAD))
ix86_reorder_insn (insnp, e_ready);
else
ix86_reorder_insn (insnp, e_ready - 1);
}
static void
ix86_sched_reorder_ppro (ready, e_ready)
rtx *ready;
rtx *e_ready;
{
rtx decode[3];
enum attr_ppro_uops cur_uops;
int issued_this_cycle;
rtx *insnp;
int i;
/* At this point .ppro.decode contains the state of the three
decoders from last "cycle". That is, those insns that were
actually independent. But here we're scheduling for the
decoder, and we may find things that are decodable in the
same cycle. */
memcpy (decode, ix86_sched_data.ppro.decode, sizeof (decode));
issued_this_cycle = 0;
insnp = e_ready;
cur_uops = ix86_safe_ppro_uops (*insnp);
/* If the decoders are empty, and we've a complex insn at the
head of the priority queue, let it issue without complaint. */
if (decode[0] == NULL)
{
if (cur_uops == PPRO_UOPS_MANY)
{
decode[0] = *insnp;
goto ppro_done;
}
/* Otherwise, search for a 2-4 uop unsn to issue. */
while (cur_uops != PPRO_UOPS_FEW)
{
if (insnp == ready)
break;
cur_uops = ix86_safe_ppro_uops (*--insnp);
}
/* If so, move it to the head of the line. */
if (cur_uops == PPRO_UOPS_FEW)
ix86_reorder_insn (insnp, e_ready);
/* Issue the head of the queue. */
issued_this_cycle = 1;
decode[0] = *e_ready--;
}
/* Look for simple insns to fill in the other two slots. */
for (i = 1; i < 3; ++i)
if (decode[i] == NULL)
{
if (ready >= e_ready)
goto ppro_done;
insnp = e_ready;
cur_uops = ix86_safe_ppro_uops (*insnp);
while (cur_uops != PPRO_UOPS_ONE)
{
if (insnp == ready)
break;
cur_uops = ix86_safe_ppro_uops (*--insnp);
}
/* Found one. Move it to the head of the queue and issue it. */
if (cur_uops == PPRO_UOPS_ONE)
{
ix86_reorder_insn (insnp, e_ready);
decode[i] = *e_ready--;
issued_this_cycle++;
continue;
}
/* ??? Didn't find one. Ideally, here we would do a lazy split
of 2-uop insns, issue one and queue the other. */
}
ppro_done:
if (issued_this_cycle == 0)
issued_this_cycle = 1;
ix86_sched_data.ppro.issued_this_cycle = issued_this_cycle;
}
/* We are about to being issuing insns for this clock cycle.
Override the default sort algorithm to better slot instructions. */
static int
ix86_sched_reorder (dump, sched_verbose, ready, n_readyp, clock_var)
FILE *dump ATTRIBUTE_UNUSED;
int sched_verbose ATTRIBUTE_UNUSED;
rtx *ready;
int *n_readyp;
int clock_var ATTRIBUTE_UNUSED;
{
int n_ready = *n_readyp;
rtx *e_ready = ready + n_ready - 1;
if (n_ready < 2)
goto out;
switch (ix86_cpu)
{
default:
break;
case PROCESSOR_PENTIUM:
ix86_sched_reorder_pentium (ready, e_ready);
break;
case PROCESSOR_PENTIUMPRO:
ix86_sched_reorder_ppro (ready, e_ready);
break;
}
out:
return ix86_issue_rate ();
}
/* We are about to issue INSN. Return the number of insns left on the
ready queue that can be issued this cycle. */
static int
ix86_variable_issue (dump, sched_verbose, insn, can_issue_more)
FILE *dump;
int sched_verbose;
rtx insn;
int can_issue_more;
{
int i;
switch (ix86_cpu)
{
default:
return can_issue_more - 1;
case PROCESSOR_PENTIUMPRO:
{
enum attr_ppro_uops uops = ix86_safe_ppro_uops (insn);
if (uops == PPRO_UOPS_MANY)
{
if (sched_verbose)
ix86_dump_ppro_packet (dump);
ix86_sched_data.ppro.decode[0] = insn;
ix86_sched_data.ppro.decode[1] = NULL;
ix86_sched_data.ppro.decode[2] = NULL;
if (sched_verbose)
ix86_dump_ppro_packet (dump);
ix86_sched_data.ppro.decode[0] = NULL;
}
else if (uops == PPRO_UOPS_FEW)
{
if (sched_verbose)
ix86_dump_ppro_packet (dump);
ix86_sched_data.ppro.decode[0] = insn;
ix86_sched_data.ppro.decode[1] = NULL;
ix86_sched_data.ppro.decode[2] = NULL;
}
else
{
for (i = 0; i < 3; ++i)
if (ix86_sched_data.ppro.decode[i] == NULL)
{
ix86_sched_data.ppro.decode[i] = insn;
break;
}
if (i == 3)
abort ();
if (i == 2)
{
if (sched_verbose)
ix86_dump_ppro_packet (dump);
ix86_sched_data.ppro.decode[0] = NULL;
ix86_sched_data.ppro.decode[1] = NULL;
ix86_sched_data.ppro.decode[2] = NULL;
}
}
}
return --ix86_sched_data.ppro.issued_this_cycle;
}
}
/* Walk through INSNS and look for MEM references whose address is DSTREG or
SRCREG and set the memory attribute to those of DSTREF and SRCREF, as
appropriate. */
void
ix86_set_move_mem_attrs (insns, dstref, srcref, dstreg, srcreg)
rtx insns;
rtx dstref, srcref, dstreg, srcreg;
{
rtx insn;
for (insn = insns; insn != 0 ; insn = NEXT_INSN (insn))
if (INSN_P (insn))
ix86_set_move_mem_attrs_1 (PATTERN (insn), dstref, srcref,
dstreg, srcreg);
}
/* Subroutine of above to actually do the updating by recursively walking
the rtx. */
static void
ix86_set_move_mem_attrs_1 (x, dstref, srcref, dstreg, srcreg)
rtx x;
rtx dstref, srcref, dstreg, srcreg;
{
enum rtx_code code = GET_CODE (x);
const char *format_ptr = GET_RTX_FORMAT (code);
int i, j;
if (code == MEM && XEXP (x, 0) == dstreg)
MEM_COPY_ATTRIBUTES (x, dstref);
else if (code == MEM && XEXP (x, 0) == srcreg)
MEM_COPY_ATTRIBUTES (x, srcref);
for (i = 0; i < GET_RTX_LENGTH (code); i++, format_ptr++)
{
if (*format_ptr == 'e')
ix86_set_move_mem_attrs_1 (XEXP (x, i), dstref, srcref,
dstreg, srcreg);
else if (*format_ptr == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
ix86_set_move_mem_attrs_1 (XVECEXP (x, i, j), dstref, srcref,
dstreg, srcreg);
}
}
/* Compute the alignment given to a constant that is being placed in memory.
EXP is the constant and ALIGN is the alignment that the object would
ordinarily have.
The value of this function is used instead of that alignment to align
the object. */
int
ix86_constant_alignment (exp, align)
tree exp;
int align;
{
if (TREE_CODE (exp) == REAL_CST)
{
if (TYPE_MODE (TREE_TYPE (exp)) == DFmode && align < 64)
return 64;
else if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (exp))) && align < 128)
return 128;
}
else if (TREE_CODE (exp) == STRING_CST && TREE_STRING_LENGTH (exp) >= 31
&& align < 256)
return 256;
return align;
}
/* Compute the alignment for a static variable.
TYPE is the data type, and ALIGN is the alignment that
the object would ordinarily have. The value of this function is used
instead of that alignment to align the object. */
int
ix86_data_alignment (type, align)
tree type;
int align;
{
if (AGGREGATE_TYPE_P (type)
&& TYPE_SIZE (type)
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
&& (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 256
|| TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 256)
return 256;
/* x86-64 ABI requires arrays greater than 16 bytes to be aligned
to 16byte boundary. */
if (TARGET_64BIT)
{
if (AGGREGATE_TYPE_P (type)
&& TYPE_SIZE (type)
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
&& (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 128
|| TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 128)
return 128;
}
if (TREE_CODE (type) == ARRAY_TYPE)
{
if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64)
return 64;
if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128)
return 128;
}
else if (TREE_CODE (type) == COMPLEX_TYPE)
{
if (TYPE_MODE (type) == DCmode && align < 64)
return 64;
if (TYPE_MODE (type) == XCmode && align < 128)
return 128;
}
else if ((TREE_CODE (type) == RECORD_TYPE
|| TREE_CODE (type) == UNION_TYPE
|| TREE_CODE (type) == QUAL_UNION_TYPE)
&& TYPE_FIELDS (type))
{
if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64)
return 64;
if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128)
return 128;
}
else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE
|| TREE_CODE (type) == INTEGER_TYPE)
{
if (TYPE_MODE (type) == DFmode && align < 64)
return 64;
if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128)
return 128;
}
return align;
}
/* Compute the alignment for a local variable.
TYPE is the data type, and ALIGN is the alignment that
the object would ordinarily have. The value of this macro is used
instead of that alignment to align the object. */
int
ix86_local_alignment (type, align)
tree type;
int align;
{
/* x86-64 ABI requires arrays greater than 16 bytes to be aligned
to 16byte boundary. */
if (TARGET_64BIT)
{
if (AGGREGATE_TYPE_P (type)
&& TYPE_SIZE (type)
&& TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
&& (TREE_INT_CST_LOW (TYPE_SIZE (type)) >= 16
|| TREE_INT_CST_HIGH (TYPE_SIZE (type))) && align < 128)
return 128;
}
if (TREE_CODE (type) == ARRAY_TYPE)
{
if (TYPE_MODE (TREE_TYPE (type)) == DFmode && align < 64)
return 64;
if (ALIGN_MODE_128 (TYPE_MODE (TREE_TYPE (type))) && align < 128)
return 128;
}
else if (TREE_CODE (type) == COMPLEX_TYPE)
{
if (TYPE_MODE (type) == DCmode && align < 64)
return 64;
if (TYPE_MODE (type) == XCmode && align < 128)
return 128;
}
else if ((TREE_CODE (type) == RECORD_TYPE
|| TREE_CODE (type) == UNION_TYPE
|| TREE_CODE (type) == QUAL_UNION_TYPE)
&& TYPE_FIELDS (type))
{
if (DECL_MODE (TYPE_FIELDS (type)) == DFmode && align < 64)
return 64;
if (ALIGN_MODE_128 (DECL_MODE (TYPE_FIELDS (type))) && align < 128)
return 128;
}
else if (TREE_CODE (type) == REAL_TYPE || TREE_CODE (type) == VECTOR_TYPE
|| TREE_CODE (type) == INTEGER_TYPE)
{
if (TYPE_MODE (type) == DFmode && align < 64)
return 64;
if (ALIGN_MODE_128 (TYPE_MODE (type)) && align < 128)
return 128;
}
return align;
}
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function. */
void
x86_initialize_trampoline (tramp, fnaddr, cxt)
rtx tramp, fnaddr, cxt;
{
if (!TARGET_64BIT)
{
/* Compute offset from the end of the jmp to the target function. */
rtx disp = expand_binop (SImode, sub_optab, fnaddr,
plus_constant (tramp, 10),
NULL_RTX, 1, OPTAB_DIRECT);
emit_move_insn (gen_rtx_MEM (QImode, tramp),
GEN_INT (trunc_int_for_mode (0xb9, QImode)));
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 1)), cxt);
emit_move_insn (gen_rtx_MEM (QImode, plus_constant (tramp, 5)),
GEN_INT (trunc_int_for_mode (0xe9, QImode)));
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 6)), disp);
}
else
{
int offset = 0;
/* Try to load address using shorter movl instead of movabs.
We may want to support movq for kernel mode, but kernel does not use
trampolines at the moment. */
if (x86_64_zero_extended_value (fnaddr))
{
fnaddr = copy_to_mode_reg (DImode, fnaddr);
emit_move_insn (gen_rtx_MEM (HImode, plus_constant (tramp, offset)),
GEN_INT (trunc_int_for_mode (0xbb41, HImode)));
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, offset + 2)),
gen_lowpart (SImode, fnaddr));
offset += 6;
}
else
{
emit_move_insn (gen_rtx_MEM (HImode, plus_constant (tramp, offset)),
GEN_INT (trunc_int_for_mode (0xbb49, HImode)));
emit_move_insn (gen_rtx_MEM (DImode, plus_constant (tramp, offset + 2)),
fnaddr);
offset += 10;
}
/* Load static chain using movabs to r10. */
emit_move_insn (gen_rtx_MEM (HImode, plus_constant (tramp, offset)),
GEN_INT (trunc_int_for_mode (0xba49, HImode)));
emit_move_insn (gen_rtx_MEM (DImode, plus_constant (tramp, offset + 2)),
cxt);
offset += 10;
/* Jump to the r11 */
emit_move_insn (gen_rtx_MEM (HImode, plus_constant (tramp, offset)),
GEN_INT (trunc_int_for_mode (0xff49, HImode)));
emit_move_insn (gen_rtx_MEM (QImode, plus_constant (tramp, offset+2)),
GEN_INT (trunc_int_for_mode (0xe3, QImode)));
offset += 3;
if (offset > TRAMPOLINE_SIZE)
abort();
}
}
#define def_builtin(MASK, NAME, TYPE, CODE) \
do { \
if ((MASK) & target_flags) \
builtin_function ((NAME), (TYPE), (CODE), BUILT_IN_MD, NULL); \
} while (0)
struct builtin_description
{
const unsigned int mask;
const enum insn_code icode;
const char *const name;
const enum ix86_builtins code;
const enum rtx_code comparison;
const unsigned int flag;
};
static const struct builtin_description bdesc_comi[] =
{
{ MASK_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comieq", IX86_BUILTIN_COMIEQSS, EQ, 0 },
{ MASK_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comilt", IX86_BUILTIN_COMILTSS, LT, 0 },
{ MASK_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comile", IX86_BUILTIN_COMILESS, LE, 0 },
{ MASK_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comigt", IX86_BUILTIN_COMIGTSS, LT, 1 },
{ MASK_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comige", IX86_BUILTIN_COMIGESS, LE, 1 },
{ MASK_SSE, CODE_FOR_sse_comi, "__builtin_ia32_comineq", IX86_BUILTIN_COMINEQSS, NE, 0 },
{ MASK_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomieq", IX86_BUILTIN_UCOMIEQSS, EQ, 0 },
{ MASK_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomilt", IX86_BUILTIN_UCOMILTSS, LT, 0 },
{ MASK_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomile", IX86_BUILTIN_UCOMILESS, LE, 0 },
{ MASK_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomigt", IX86_BUILTIN_UCOMIGTSS, LT, 1 },
{ MASK_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomige", IX86_BUILTIN_UCOMIGESS, LE, 1 },
{ MASK_SSE, CODE_FOR_sse_ucomi, "__builtin_ia32_ucomineq", IX86_BUILTIN_UCOMINEQSS, NE, 0 }
};
static const struct builtin_description bdesc_2arg[] =
{
/* SSE */
{ MASK_SSE, CODE_FOR_addv4sf3, "__builtin_ia32_addps", IX86_BUILTIN_ADDPS, 0, 0 },
{ MASK_SSE, CODE_FOR_subv4sf3, "__builtin_ia32_subps", IX86_BUILTIN_SUBPS, 0, 0 },
{ MASK_SSE, CODE_FOR_mulv4sf3, "__builtin_ia32_mulps", IX86_BUILTIN_MULPS, 0, 0 },
{ MASK_SSE, CODE_FOR_divv4sf3, "__builtin_ia32_divps", IX86_BUILTIN_DIVPS, 0, 0 },
{ MASK_SSE, CODE_FOR_vmaddv4sf3, "__builtin_ia32_addss", IX86_BUILTIN_ADDSS, 0, 0 },
{ MASK_SSE, CODE_FOR_vmsubv4sf3, "__builtin_ia32_subss", IX86_BUILTIN_SUBSS, 0, 0 },
{ MASK_SSE, CODE_FOR_vmmulv4sf3, "__builtin_ia32_mulss", IX86_BUILTIN_MULSS, 0, 0 },
{ MASK_SSE, CODE_FOR_vmdivv4sf3, "__builtin_ia32_divss", IX86_BUILTIN_DIVSS, 0, 0 },
{ MASK_SSE, CODE_FOR_maskcmpv4sf3, "__builtin_ia32_cmpeqps", IX86_BUILTIN_CMPEQPS, EQ, 0 },
{ MASK_SSE, CODE_FOR_maskcmpv4sf3, "__builtin_ia32_cmpltps", IX86_BUILTIN_CMPLTPS, LT, 0 },
{ MASK_SSE, CODE_FOR_maskcmpv4sf3, "__builtin_ia32_cmpleps", IX86_BUILTIN_CMPLEPS, LE, 0 },
{ MASK_SSE, CODE_FOR_maskcmpv4sf3, "__builtin_ia32_cmpgtps", IX86_BUILTIN_CMPGTPS, LT, 1 },
{ MASK_SSE, CODE_FOR_maskcmpv4sf3, "__builtin_ia32_cmpgeps", IX86_BUILTIN_CMPGEPS, LE, 1 },
{ MASK_SSE, CODE_FOR_maskcmpv4sf3, "__builtin_ia32_cmpunordps", IX86_BUILTIN_CMPUNORDPS, UNORDERED, 0 },
{ MASK_SSE, CODE_FOR_maskncmpv4sf3, "__builtin_ia32_cmpneqps", IX86_BUILTIN_CMPNEQPS, EQ, 0 },
{ MASK_SSE, CODE_FOR_maskncmpv4sf3, "__builtin_ia32_cmpnltps", IX86_BUILTIN_CMPNLTPS, LT, 0 },
{ MASK_SSE, CODE_FOR_maskncmpv4sf3, "__builtin_ia32_cmpnleps", IX86_BUILTIN_CMPNLEPS, LE, 0 },
{ MASK_SSE, CODE_FOR_maskncmpv4sf3, "__builtin_ia32_cmpngtps", IX86_BUILTIN_CMPNGTPS, LT, 1 },
{ MASK_SSE, CODE_FOR_maskncmpv4sf3, "__builtin_ia32_cmpngeps", IX86_BUILTIN_CMPNGEPS, LE, 1 },
{ MASK_SSE, CODE_FOR_maskncmpv4sf3, "__builtin_ia32_cmpordps", IX86_BUILTIN_CMPORDPS, UNORDERED, 0 },
{ MASK_SSE, CODE_FOR_vmmaskcmpv4sf3, "__builtin_ia32_cmpeqss", IX86_BUILTIN_CMPEQSS, EQ, 0 },
{ MASK_SSE, CODE_FOR_vmmaskcmpv4sf3, "__builtin_ia32_cmpltss", IX86_BUILTIN_CMPLTSS, LT, 0 },
{ MASK_SSE, CODE_FOR_vmmaskcmpv4sf3, "__builtin_ia32_cmpless", IX86_BUILTIN_CMPLESS, LE, 0 },
{ MASK_SSE, CODE_FOR_vmmaskcmpv4sf3, "__builtin_ia32_cmpgtss", IX86_BUILTIN_CMPGTSS, LT, 1 },
{ MASK_SSE, CODE_FOR_vmmaskcmpv4sf3, "__builtin_ia32_cmpgess", IX86_BUILTIN_CMPGESS, LE, 1 },
{ MASK_SSE, CODE_FOR_vmmaskcmpv4sf3, "__builtin_ia32_cmpunordss", IX86_BUILTIN_CMPUNORDSS, UNORDERED, 0 },
{ MASK_SSE, CODE_FOR_vmmaskncmpv4sf3, "__builtin_ia32_cmpneqss", IX86_BUILTIN_CMPNEQSS, EQ, 0 },
{ MASK_SSE, CODE_FOR_vmmaskncmpv4sf3, "__builtin_ia32_cmpnltss", IX86_BUILTIN_CMPNLTSS, LT, 0 },
{ MASK_SSE, CODE_FOR_vmmaskncmpv4sf3, "__builtin_ia32_cmpnless", IX86_BUILTIN_CMPNLESS, LE, 0 },
{ MASK_SSE, CODE_FOR_vmmaskncmpv4sf3, "__builtin_ia32_cmpngtss", IX86_BUILTIN_CMPNGTSS, LT, 1 },
{ MASK_SSE, CODE_FOR_vmmaskncmpv4sf3, "__builtin_ia32_cmpngess", IX86_BUILTIN_CMPNGESS, LE, 1 },
{ MASK_SSE, CODE_FOR_vmmaskncmpv4sf3, "__builtin_ia32_cmpordss", IX86_BUILTIN_CMPORDSS, UNORDERED, 0 },
{ MASK_SSE, CODE_FOR_sminv4sf3, "__builtin_ia32_minps", IX86_BUILTIN_MINPS, 0, 0 },
{ MASK_SSE, CODE_FOR_smaxv4sf3, "__builtin_ia32_maxps", IX86_BUILTIN_MAXPS, 0, 0 },
{ MASK_SSE, CODE_FOR_vmsminv4sf3, "__builtin_ia32_minss", IX86_BUILTIN_MINSS, 0, 0 },
{ MASK_SSE, CODE_FOR_vmsmaxv4sf3, "__builtin_ia32_maxss", IX86_BUILTIN_MAXSS, 0, 0 },
{ MASK_SSE, CODE_FOR_sse_andti3, "__builtin_ia32_andps", IX86_BUILTIN_ANDPS, 0, 0 },
{ MASK_SSE, CODE_FOR_sse_nandti3, "__builtin_ia32_andnps", IX86_BUILTIN_ANDNPS, 0, 0 },
{ MASK_SSE, CODE_FOR_sse_iorti3, "__builtin_ia32_orps", IX86_BUILTIN_ORPS, 0, 0 },
{ MASK_SSE, CODE_FOR_sse_xorti3, "__builtin_ia32_xorps", IX86_BUILTIN_XORPS, 0, 0 },
{ MASK_SSE, CODE_FOR_sse_movss, "__builtin_ia32_movss", IX86_BUILTIN_MOVSS, 0, 0 },
{ MASK_SSE, CODE_FOR_sse_movhlps, "__builtin_ia32_movhlps", IX86_BUILTIN_MOVHLPS, 0, 0 },
{ MASK_SSE, CODE_FOR_sse_movlhps, "__builtin_ia32_movlhps", IX86_BUILTIN_MOVLHPS, 0, 0 },
{ MASK_SSE, CODE_FOR_sse_unpckhps, "__builtin_ia32_unpckhps", IX86_BUILTIN_UNPCKHPS, 0, 0 },
{ MASK_SSE, CODE_FOR_sse_unpcklps, "__builtin_ia32_unpcklps", IX86_BUILTIN_UNPCKLPS, 0, 0 },
/* MMX */
{ MASK_MMX, CODE_FOR_addv8qi3, "__builtin_ia32_paddb", IX86_BUILTIN_PADDB, 0, 0 },
{ MASK_MMX, CODE_FOR_addv4hi3, "__builtin_ia32_paddw", IX86_BUILTIN_PADDW, 0, 0 },
{ MASK_MMX, CODE_FOR_addv2si3, "__builtin_ia32_paddd", IX86_BUILTIN_PADDD, 0, 0 },
{ MASK_MMX, CODE_FOR_subv8qi3, "__builtin_ia32_psubb", IX86_BUILTIN_PSUBB, 0, 0 },
{ MASK_MMX, CODE_FOR_subv4hi3, "__builtin_ia32_psubw", IX86_BUILTIN_PSUBW, 0, 0 },
{ MASK_MMX, CODE_FOR_subv2si3, "__builtin_ia32_psubd", IX86_BUILTIN_PSUBD, 0, 0 },
{ MASK_MMX, CODE_FOR_ssaddv8qi3, "__builtin_ia32_paddsb", IX86_BUILTIN_PADDSB, 0, 0 },
{ MASK_MMX, CODE_FOR_ssaddv4hi3, "__builtin_ia32_paddsw", IX86_BUILTIN_PADDSW, 0, 0 },
{ MASK_MMX, CODE_FOR_sssubv8qi3, "__builtin_ia32_psubsb", IX86_BUILTIN_PSUBSB, 0, 0 },
{ MASK_MMX, CODE_FOR_sssubv4hi3, "__builtin_ia32_psubsw", IX86_BUILTIN_PSUBSW, 0, 0 },
{ MASK_MMX, CODE_FOR_usaddv8qi3, "__builtin_ia32_paddusb", IX86_BUILTIN_PADDUSB, 0, 0 },
{ MASK_MMX, CODE_FOR_usaddv4hi3, "__builtin_ia32_paddusw", IX86_BUILTIN_PADDUSW, 0, 0 },
{ MASK_MMX, CODE_FOR_ussubv8qi3, "__builtin_ia32_psubusb", IX86_BUILTIN_PSUBUSB, 0, 0 },
{ MASK_MMX, CODE_FOR_ussubv4hi3, "__builtin_ia32_psubusw", IX86_BUILTIN_PSUBUSW, 0, 0 },
{ MASK_MMX, CODE_FOR_mulv4hi3, "__builtin_ia32_pmullw", IX86_BUILTIN_PMULLW, 0, 0 },
{ MASK_MMX, CODE_FOR_smulv4hi3_highpart, "__builtin_ia32_pmulhw", IX86_BUILTIN_PMULHW, 0, 0 },
{ MASK_SSE | MASK_3DNOW_A, CODE_FOR_umulv4hi3_highpart, "__builtin_ia32_pmulhuw", IX86_BUILTIN_PMULHUW, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_anddi3, "__builtin_ia32_pand", IX86_BUILTIN_PAND, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_nanddi3, "__builtin_ia32_pandn", IX86_BUILTIN_PANDN, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_iordi3, "__builtin_ia32_por", IX86_BUILTIN_POR, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_xordi3, "__builtin_ia32_pxor", IX86_BUILTIN_PXOR, 0, 0 },
{ MASK_SSE | MASK_3DNOW_A, CODE_FOR_mmx_uavgv8qi3, "__builtin_ia32_pavgb", IX86_BUILTIN_PAVGB, 0, 0 },
{ MASK_SSE | MASK_3DNOW_A, CODE_FOR_mmx_uavgv4hi3, "__builtin_ia32_pavgw", IX86_BUILTIN_PAVGW, 0, 0 },
{ MASK_MMX, CODE_FOR_eqv8qi3, "__builtin_ia32_pcmpeqb", IX86_BUILTIN_PCMPEQB, 0, 0 },
{ MASK_MMX, CODE_FOR_eqv4hi3, "__builtin_ia32_pcmpeqw", IX86_BUILTIN_PCMPEQW, 0, 0 },
{ MASK_MMX, CODE_FOR_eqv2si3, "__builtin_ia32_pcmpeqd", IX86_BUILTIN_PCMPEQD, 0, 0 },
{ MASK_MMX, CODE_FOR_gtv8qi3, "__builtin_ia32_pcmpgtb", IX86_BUILTIN_PCMPGTB, 0, 0 },
{ MASK_MMX, CODE_FOR_gtv4hi3, "__builtin_ia32_pcmpgtw", IX86_BUILTIN_PCMPGTW, 0, 0 },
{ MASK_MMX, CODE_FOR_gtv2si3, "__builtin_ia32_pcmpgtd", IX86_BUILTIN_PCMPGTD, 0, 0 },
{ MASK_SSE | MASK_3DNOW_A, CODE_FOR_umaxv8qi3, "__builtin_ia32_pmaxub", IX86_BUILTIN_PMAXUB, 0, 0 },
{ MASK_SSE | MASK_3DNOW_A, CODE_FOR_smaxv4hi3, "__builtin_ia32_pmaxsw", IX86_BUILTIN_PMAXSW, 0, 0 },
{ MASK_SSE | MASK_3DNOW_A, CODE_FOR_uminv8qi3, "__builtin_ia32_pminub", IX86_BUILTIN_PMINUB, 0, 0 },
{ MASK_SSE | MASK_3DNOW_A, CODE_FOR_sminv4hi3, "__builtin_ia32_pminsw", IX86_BUILTIN_PMINSW, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_punpckhbw, "__builtin_ia32_punpckhbw", IX86_BUILTIN_PUNPCKHBW, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_punpckhwd, "__builtin_ia32_punpckhwd", IX86_BUILTIN_PUNPCKHWD, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_punpckhdq, "__builtin_ia32_punpckhdq", IX86_BUILTIN_PUNPCKHDQ, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_punpcklbw, "__builtin_ia32_punpcklbw", IX86_BUILTIN_PUNPCKLBW, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_punpcklwd, "__builtin_ia32_punpcklwd", IX86_BUILTIN_PUNPCKLWD, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_punpckldq, "__builtin_ia32_punpckldq", IX86_BUILTIN_PUNPCKLDQ, 0, 0 },
/* Special. */
{ MASK_MMX, CODE_FOR_mmx_packsswb, 0, IX86_BUILTIN_PACKSSWB, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_packssdw, 0, IX86_BUILTIN_PACKSSDW, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_packuswb, 0, IX86_BUILTIN_PACKUSWB, 0, 0 },
{ MASK_SSE, CODE_FOR_cvtpi2ps, 0, IX86_BUILTIN_CVTPI2PS, 0, 0 },
{ MASK_SSE, CODE_FOR_cvtsi2ss, 0, IX86_BUILTIN_CVTSI2SS, 0, 0 },
{ MASK_MMX, CODE_FOR_ashlv4hi3, 0, IX86_BUILTIN_PSLLW, 0, 0 },
{ MASK_MMX, CODE_FOR_ashlv4hi3, 0, IX86_BUILTIN_PSLLWI, 0, 0 },
{ MASK_MMX, CODE_FOR_ashlv2si3, 0, IX86_BUILTIN_PSLLD, 0, 0 },
{ MASK_MMX, CODE_FOR_ashlv2si3, 0, IX86_BUILTIN_PSLLDI, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_ashldi3, 0, IX86_BUILTIN_PSLLQ, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_ashldi3, 0, IX86_BUILTIN_PSLLQI, 0, 0 },
{ MASK_MMX, CODE_FOR_lshrv4hi3, 0, IX86_BUILTIN_PSRLW, 0, 0 },
{ MASK_MMX, CODE_FOR_lshrv4hi3, 0, IX86_BUILTIN_PSRLWI, 0, 0 },
{ MASK_MMX, CODE_FOR_lshrv2si3, 0, IX86_BUILTIN_PSRLD, 0, 0 },
{ MASK_MMX, CODE_FOR_lshrv2si3, 0, IX86_BUILTIN_PSRLDI, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_lshrdi3, 0, IX86_BUILTIN_PSRLQ, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_lshrdi3, 0, IX86_BUILTIN_PSRLQI, 0, 0 },
{ MASK_MMX, CODE_FOR_ashrv4hi3, 0, IX86_BUILTIN_PSRAW, 0, 0 },
{ MASK_MMX, CODE_FOR_ashrv4hi3, 0, IX86_BUILTIN_PSRAWI, 0, 0 },
{ MASK_MMX, CODE_FOR_ashrv2si3, 0, IX86_BUILTIN_PSRAD, 0, 0 },
{ MASK_MMX, CODE_FOR_ashrv2si3, 0, IX86_BUILTIN_PSRADI, 0, 0 },
{ MASK_SSE, CODE_FOR_mmx_psadbw, 0, IX86_BUILTIN_PSADBW, 0, 0 },
{ MASK_MMX, CODE_FOR_mmx_pmaddwd, 0, IX86_BUILTIN_PMADDWD, 0, 0 }
};
static const struct builtin_description bdesc_1arg[] =
{
{ MASK_SSE | MASK_3DNOW_A, CODE_FOR_mmx_pmovmskb, 0, IX86_BUILTIN_PMOVMSKB, 0, 0 },
{ MASK_SSE, CODE_FOR_sse_movmskps, 0, IX86_BUILTIN_MOVMSKPS, 0, 0 },
{ MASK_SSE, CODE_FOR_sqrtv4sf2, 0, IX86_BUILTIN_SQRTPS, 0, 0 },
{ MASK_SSE, CODE_FOR_rsqrtv4sf2, 0, IX86_BUILTIN_RSQRTPS, 0, 0 },
{ MASK_SSE, CODE_FOR_rcpv4sf2, 0, IX86_BUILTIN_RCPPS, 0, 0 },
{ MASK_SSE, CODE_FOR_cvtps2pi, 0, IX86_BUILTIN_CVTPS2PI, 0, 0 },
{ MASK_SSE, CODE_FOR_cvtss2si, 0, IX86_BUILTIN_CVTSS2SI, 0, 0 },
{ MASK_SSE, CODE_FOR_cvttps2pi, 0, IX86_BUILTIN_CVTTPS2PI, 0, 0 },
{ MASK_SSE, CODE_FOR_cvttss2si, 0, IX86_BUILTIN_CVTTSS2SI, 0, 0 }
};
void
ix86_init_builtins ()
{
if (TARGET_MMX)
ix86_init_mmx_sse_builtins ();
}
/* Set up all the MMX/SSE builtins. This is not called if TARGET_MMX
is zero. Otherwise, if TARGET_SSE is not set, only expand the MMX
builtins. */
void
ix86_init_mmx_sse_builtins ()
{
const struct builtin_description * d;
size_t i;
tree endlink = void_list_node;
tree pchar_type_node = build_pointer_type (char_type_node);
tree pfloat_type_node = build_pointer_type (float_type_node);
tree pv2si_type_node = build_pointer_type (V2SI_type_node);
tree pdi_type_node = build_pointer_type (long_long_unsigned_type_node);
/* Comparisons. */
tree int_ftype_v4sf_v4sf
= build_function_type (integer_type_node,
tree_cons (NULL_TREE, V4SF_type_node,
tree_cons (NULL_TREE,
V4SF_type_node,
endlink)));
tree v4si_ftype_v4sf_v4sf
= build_function_type (V4SI_type_node,
tree_cons (NULL_TREE, V4SF_type_node,
tree_cons (NULL_TREE,
V4SF_type_node,
endlink)));
/* MMX/SSE/integer conversions. */
tree int_ftype_v4sf
= build_function_type (integer_type_node,
tree_cons (NULL_TREE, V4SF_type_node,
endlink));
tree int_ftype_v8qi
= build_function_type (integer_type_node,
tree_cons (NULL_TREE, V8QI_type_node,
endlink));
tree int_ftype_v2si
= build_function_type (integer_type_node,
tree_cons (NULL_TREE, V2SI_type_node,
endlink));
tree v2si_ftype_int
= build_function_type (V2SI_type_node,
tree_cons (NULL_TREE, integer_type_node,
endlink));
tree v4sf_ftype_v4sf_int
= build_function_type (V4SF_type_node,
tree_cons (NULL_TREE, V4SF_type_node,
tree_cons (NULL_TREE, integer_type_node,
endlink)));
tree v4sf_ftype_v4sf_v2si
= build_function_type (V4SF_type_node,
tree_cons (NULL_TREE, V4SF_type_node,
tree_cons (NULL_TREE, V2SI_type_node,
endlink)));
tree int_ftype_v4hi_int
= build_function_type (integer_type_node,
tree_cons (NULL_TREE, V4HI_type_node,
tree_cons (NULL_TREE, integer_type_node,
endlink)));
tree v4hi_ftype_v4hi_int_int
= build_function_type (V4HI_type_node,
tree_cons (NULL_TREE, V4HI_type_node,
tree_cons (NULL_TREE, integer_type_node,
tree_cons (NULL_TREE,
integer_type_node,
endlink))));
/* Miscellaneous. */
tree v8qi_ftype_v4hi_v4hi
= build_function_type (V8QI_type_node,
tree_cons (NULL_TREE, V4HI_type_node,
tree_cons (NULL_TREE, V4HI_type_node,
endlink)));
tree v4hi_ftype_v2si_v2si
= build_function_type (V4HI_type_node,
tree_cons (NULL_TREE, V2SI_type_node,
tree_cons (NULL_TREE, V2SI_type_node,
endlink)));
tree v4sf_ftype_v4sf_v4sf_int
= build_function_type (V4SF_type_node,
tree_cons (NULL_TREE, V4SF_type_node,
tree_cons (NULL_TREE, V4SF_type_node,
tree_cons (NULL_TREE,
integer_type_node,
endlink))));
tree v4hi_ftype_v8qi_v8qi
= build_function_type (V4HI_type_node,
tree_cons (NULL_TREE, V8QI_type_node,
tree_cons (NULL_TREE, V8QI_type_node,
endlink)));
tree v2si_ftype_v4hi_v4hi
= build_function_type (V2SI_type_node,
tree_cons (NULL_TREE, V4HI_type_node,
tree_cons (NULL_TREE, V4HI_type_node,
endlink)));
tree v4hi_ftype_v4hi_int
= build_function_type (V4HI_type_node,
tree_cons (NULL_TREE, V4HI_type_node,
tree_cons (NULL_TREE, integer_type_node,
endlink)));
tree v4hi_ftype_v4hi_di
= build_function_type (V4HI_type_node,
tree_cons (NULL_TREE, V4HI_type_node,
tree_cons (NULL_TREE,
long_long_integer_type_node,
endlink)));
tree v2si_ftype_v2si_di
= build_function_type (V2SI_type_node,
tree_cons (NULL_TREE, V2SI_type_node,
tree_cons (NULL_TREE,
long_long_integer_type_node,
endlink)));
tree void_ftype_void
= build_function_type (void_type_node, endlink);
tree void_ftype_pchar_int
= build_function_type (void_type_node,
tree_cons (NULL_TREE, pchar_type_node,
tree_cons (NULL_TREE, integer_type_node,
endlink)));
tree void_ftype_unsigned
= build_function_type (void_type_node,
tree_cons (NULL_TREE, unsigned_type_node,
endlink));
tree unsigned_ftype_void
= build_function_type (unsigned_type_node, endlink);
tree di_ftype_void
= build_function_type (long_long_unsigned_type_node, endlink);
tree ti_ftype_void
= build_function_type (intTI_type_node, endlink);
tree v2si_ftype_v4sf
= build_function_type (V2SI_type_node,
tree_cons (NULL_TREE, V4SF_type_node,
endlink));
/* Loads/stores. */
tree maskmovq_args = tree_cons (NULL_TREE, V8QI_type_node,
tree_cons (NULL_TREE, V8QI_type_node,
tree_cons (NULL_TREE,
pchar_type_node,
endlink)));
tree void_ftype_v8qi_v8qi_pchar
= build_function_type (void_type_node, maskmovq_args);
tree v4sf_ftype_pfloat
= build_function_type (V4SF_type_node,
tree_cons (NULL_TREE, pfloat_type_node,
endlink));
tree v4sf_ftype_float
= build_function_type (V4SF_type_node,
tree_cons (NULL_TREE, float_type_node,
endlink));
tree v4sf_ftype_float_float_float_float
= build_function_type (V4SF_type_node,
tree_cons (NULL_TREE, float_type_node,
tree_cons (NULL_TREE, float_type_node,
tree_cons (NULL_TREE,
float_type_node,
tree_cons (NULL_TREE,
float_type_node,
endlink)))));
/* @@@ the type is bogus */
tree v4sf_ftype_v4sf_pv2si
= build_function_type (V4SF_type_node,
tree_cons (NULL_TREE, V4SF_type_node,
tree_cons (NULL_TREE, pv2si_type_node,
endlink)));
tree void_ftype_pv2si_v4sf
= build_function_type (void_type_node,
tree_cons (NULL_TREE, pv2si_type_node,
tree_cons (NULL_TREE, V4SF_type_node,
endlink)));
tree void_ftype_pfloat_v4sf
= build_function_type (void_type_node,
tree_cons (NULL_TREE, pfloat_type_node,
tree_cons (NULL_TREE, V4SF_type_node,
endlink)));
tree void_ftype_pdi_di
= build_function_type (void_type_node,
tree_cons (NULL_TREE, pdi_type_node,
tree_cons (NULL_TREE,
long_long_unsigned_type_node,
endlink)));
/* Normal vector unops. */
tree v4sf_ftype_v4sf
= build_function_type (V4SF_type_node,
tree_cons (NULL_TREE, V4SF_type_node,
endlink));
/* Normal vector binops. */
tree v4sf_ftype_v4sf_v4sf
= build_function_type (V4SF_type_node,
tree_cons (NULL_TREE, V4SF_type_node,
tree_cons (NULL_TREE, V4SF_type_node,
endlink)));
tree v8qi_ftype_v8qi_v8qi
= build_function_type (V8QI_type_node,
tree_cons (NULL_TREE, V8QI_type_node,
tree_cons (NULL_TREE, V8QI_type_node,
endlink)));
tree v4hi_ftype_v4hi_v4hi
= build_function_type (V4HI_type_node,
tree_cons (NULL_TREE, V4HI_type_node,
tree_cons (NULL_TREE, V4HI_type_node,
endlink)));
tree v2si_ftype_v2si_v2si
= build_function_type (V2SI_type_node,
tree_cons (NULL_TREE, V2SI_type_node,
tree_cons (NULL_TREE, V2SI_type_node,
endlink)));
tree ti_ftype_ti_ti
= build_function_type (intTI_type_node,
tree_cons (NULL_TREE, intTI_type_node,
tree_cons (NULL_TREE, intTI_type_node,
endlink)));
tree di_ftype_di_di
= build_function_type (long_long_unsigned_type_node,
tree_cons (NULL_TREE, long_long_unsigned_type_node,
tree_cons (NULL_TREE,
long_long_unsigned_type_node,
endlink)));
tree v2si_ftype_v2sf
= build_function_type (V2SI_type_node,
tree_cons (NULL_TREE, V2SF_type_node,
endlink));
tree v2sf_ftype_v2si
= build_function_type (V2SF_type_node,
tree_cons (NULL_TREE, V2SI_type_node,
endlink));
tree v2si_ftype_v2si
= build_function_type (V2SI_type_node,
tree_cons (NULL_TREE, V2SI_type_node,
endlink));
tree v2sf_ftype_v2sf
= build_function_type (V2SF_type_node,
tree_cons (NULL_TREE, V2SF_type_node,
endlink));
tree v2sf_ftype_v2sf_v2sf
= build_function_type (V2SF_type_node,
tree_cons (NULL_TREE, V2SF_type_node,
tree_cons (NULL_TREE,
V2SF_type_node,
endlink)));
tree v2si_ftype_v2sf_v2sf
= build_function_type (V2SI_type_node,
tree_cons (NULL_TREE, V2SF_type_node,
tree_cons (NULL_TREE,
V2SF_type_node,
endlink)));
tree void_ftype_pchar
= build_function_type (void_type_node,
tree_cons (NULL_TREE, pchar_type_node,
endlink));
/* Add all builtins that are more or less simple operations on two
operands. */
for (i = 0, d = bdesc_2arg; i < sizeof (bdesc_2arg) / sizeof *d; i++, d++)
{
/* Use one of the operands; the target can have a different mode for
mask-generating compares. */
enum machine_mode mode;
tree type;
if (d->name == 0)
continue;
mode = insn_data[d->icode].operand[1].mode;
switch (mode)
{
case V4SFmode:
type = v4sf_ftype_v4sf_v4sf;
break;
case V8QImode:
type = v8qi_ftype_v8qi_v8qi;
break;
case V4HImode:
type = v4hi_ftype_v4hi_v4hi;
break;
case V2SImode:
type = v2si_ftype_v2si_v2si;
break;
case TImode:
type = ti_ftype_ti_ti;
break;
case DImode:
type = di_ftype_di_di;
break;
default:
abort ();
}
/* Override for comparisons. */
if (d->icode == CODE_FOR_maskcmpv4sf3
|| d->icode == CODE_FOR_maskncmpv4sf3
|| d->icode == CODE_FOR_vmmaskcmpv4sf3
|| d->icode == CODE_FOR_vmmaskncmpv4sf3)
type = v4si_ftype_v4sf_v4sf;
def_builtin (d->mask, d->name, type, d->code);
}
/* Add the remaining MMX insns with somewhat more complicated types. */
def_builtin (MASK_MMX, "__builtin_ia32_m_from_int", v2si_ftype_int, IX86_BUILTIN_M_FROM_INT);
def_builtin (MASK_MMX, "__builtin_ia32_m_to_int", int_ftype_v2si, IX86_BUILTIN_M_TO_INT);
def_builtin (MASK_MMX, "__builtin_ia32_mmx_zero", di_ftype_void, IX86_BUILTIN_MMX_ZERO);
def_builtin (MASK_MMX, "__builtin_ia32_emms", void_ftype_void, IX86_BUILTIN_EMMS);
def_builtin (MASK_MMX, "__builtin_ia32_ldmxcsr", void_ftype_unsigned, IX86_BUILTIN_LDMXCSR);
def_builtin (MASK_MMX, "__builtin_ia32_stmxcsr", unsigned_ftype_void, IX86_BUILTIN_STMXCSR);
def_builtin (MASK_MMX, "__builtin_ia32_psllw", v4hi_ftype_v4hi_di, IX86_BUILTIN_PSLLW);
def_builtin (MASK_MMX, "__builtin_ia32_pslld", v2si_ftype_v2si_di, IX86_BUILTIN_PSLLD);
def_builtin (MASK_MMX, "__builtin_ia32_psllq", di_ftype_di_di, IX86_BUILTIN_PSLLQ);
def_builtin (MASK_MMX, "__builtin_ia32_psrlw", v4hi_ftype_v4hi_di, IX86_BUILTIN_PSRLW);
def_builtin (MASK_MMX, "__builtin_ia32_psrld", v2si_ftype_v2si_di, IX86_BUILTIN_PSRLD);
def_builtin (MASK_MMX, "__builtin_ia32_psrlq", di_ftype_di_di, IX86_BUILTIN_PSRLQ);
def_builtin (MASK_MMX, "__builtin_ia32_psraw", v4hi_ftype_v4hi_di, IX86_BUILTIN_PSRAW);
def_builtin (MASK_MMX, "__builtin_ia32_psrad", v2si_ftype_v2si_di, IX86_BUILTIN_PSRAD);
def_builtin (MASK_MMX, "__builtin_ia32_pshufw", v4hi_ftype_v4hi_int, IX86_BUILTIN_PSHUFW);
def_builtin (MASK_MMX, "__builtin_ia32_pmaddwd", v2si_ftype_v4hi_v4hi, IX86_BUILTIN_PMADDWD);
/* comi/ucomi insns. */
for (i = 0, d = bdesc_comi; i < sizeof (bdesc_comi) / sizeof *d; i++, d++)
def_builtin (d->mask, d->name, int_ftype_v4sf_v4sf, d->code);
def_builtin (MASK_MMX, "__builtin_ia32_packsswb", v8qi_ftype_v4hi_v4hi, IX86_BUILTIN_PACKSSWB);
def_builtin (MASK_MMX, "__builtin_ia32_packssdw", v4hi_ftype_v2si_v2si, IX86_BUILTIN_PACKSSDW);
def_builtin (MASK_MMX, "__builtin_ia32_packuswb", v8qi_ftype_v4hi_v4hi, IX86_BUILTIN_PACKUSWB);
def_builtin (MASK_SSE, "__builtin_ia32_cvtpi2ps", v4sf_ftype_v4sf_v2si, IX86_BUILTIN_CVTPI2PS);
def_builtin (MASK_SSE, "__builtin_ia32_cvtps2pi", v2si_ftype_v4sf, IX86_BUILTIN_CVTPS2PI);
def_builtin (MASK_SSE, "__builtin_ia32_cvtsi2ss", v4sf_ftype_v4sf_int, IX86_BUILTIN_CVTSI2SS);
def_builtin (MASK_SSE, "__builtin_ia32_cvtss2si", int_ftype_v4sf, IX86_BUILTIN_CVTSS2SI);
def_builtin (MASK_SSE, "__builtin_ia32_cvttps2pi", v2si_ftype_v4sf, IX86_BUILTIN_CVTTPS2PI);
def_builtin (MASK_SSE, "__builtin_ia32_cvttss2si", int_ftype_v4sf, IX86_BUILTIN_CVTTSS2SI);
def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_pextrw", int_ftype_v4hi_int, IX86_BUILTIN_PEXTRW);
def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_pinsrw", v4hi_ftype_v4hi_int_int, IX86_BUILTIN_PINSRW);
def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_maskmovq", void_ftype_v8qi_v8qi_pchar, IX86_BUILTIN_MASKMOVQ);
def_builtin (MASK_SSE, "__builtin_ia32_loadaps", v4sf_ftype_pfloat, IX86_BUILTIN_LOADAPS);
def_builtin (MASK_SSE, "__builtin_ia32_loadups", v4sf_ftype_pfloat, IX86_BUILTIN_LOADUPS);
def_builtin (MASK_SSE, "__builtin_ia32_loadss", v4sf_ftype_pfloat, IX86_BUILTIN_LOADSS);
def_builtin (MASK_SSE, "__builtin_ia32_storeaps", void_ftype_pfloat_v4sf, IX86_BUILTIN_STOREAPS);
def_builtin (MASK_SSE, "__builtin_ia32_storeups", void_ftype_pfloat_v4sf, IX86_BUILTIN_STOREUPS);
def_builtin (MASK_SSE, "__builtin_ia32_storess", void_ftype_pfloat_v4sf, IX86_BUILTIN_STORESS);
def_builtin (MASK_SSE, "__builtin_ia32_loadhps", v4sf_ftype_v4sf_pv2si, IX86_BUILTIN_LOADHPS);
def_builtin (MASK_SSE, "__builtin_ia32_loadlps", v4sf_ftype_v4sf_pv2si, IX86_BUILTIN_LOADLPS);
def_builtin (MASK_SSE, "__builtin_ia32_storehps", void_ftype_pv2si_v4sf, IX86_BUILTIN_STOREHPS);
def_builtin (MASK_SSE, "__builtin_ia32_storelps", void_ftype_pv2si_v4sf, IX86_BUILTIN_STORELPS);
def_builtin (MASK_SSE, "__builtin_ia32_movmskps", int_ftype_v4sf, IX86_BUILTIN_MOVMSKPS);
def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_pmovmskb", int_ftype_v8qi, IX86_BUILTIN_PMOVMSKB);
def_builtin (MASK_SSE, "__builtin_ia32_movntps", void_ftype_pfloat_v4sf, IX86_BUILTIN_MOVNTPS);
def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_movntq", void_ftype_pdi_di, IX86_BUILTIN_MOVNTQ);
def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_sfence", void_ftype_void, IX86_BUILTIN_SFENCE);
def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_prefetch", void_ftype_pchar_int, IX86_BUILTIN_PREFETCH);
def_builtin (MASK_SSE | MASK_3DNOW_A, "__builtin_ia32_psadbw", v4hi_ftype_v8qi_v8qi, IX86_BUILTIN_PSADBW);
def_builtin (MASK_SSE, "__builtin_ia32_rcpps", v4sf_ftype_v4sf, IX86_BUILTIN_RCPPS);
def_builtin (MASK_SSE, "__builtin_ia32_rcpss", v4sf_ftype_v4sf, IX86_BUILTIN_RCPSS);
def_builtin (MASK_SSE, "__builtin_ia32_rsqrtps", v4sf_ftype_v4sf, IX86_BUILTIN_RSQRTPS);
def_builtin (MASK_SSE, "__builtin_ia32_rsqrtss", v4sf_ftype_v4sf, IX86_BUILTIN_RSQRTSS);
def_builtin (MASK_SSE, "__builtin_ia32_sqrtps", v4sf_ftype_v4sf, IX86_BUILTIN_SQRTPS);
def_builtin (MASK_SSE, "__builtin_ia32_sqrtss", v4sf_ftype_v4sf, IX86_BUILTIN_SQRTSS);
def_builtin (MASK_SSE, "__builtin_ia32_shufps", v4sf_ftype_v4sf_v4sf_int, IX86_BUILTIN_SHUFPS);
/* Original 3DNow! */
def_builtin (MASK_3DNOW, "__builtin_ia32_femms", void_ftype_void, IX86_BUILTIN_FEMMS);
def_builtin (MASK_3DNOW, "__builtin_ia32_pavgusb", v8qi_ftype_v8qi_v8qi, IX86_BUILTIN_PAVGUSB);
def_builtin (MASK_3DNOW, "__builtin_ia32_pf2id", v2si_ftype_v2sf, IX86_BUILTIN_PF2ID);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfacc", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFACC);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfadd", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFADD);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfcmpeq", v2si_ftype_v2sf_v2sf, IX86_BUILTIN_PFCMPEQ);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfcmpge", v2si_ftype_v2sf_v2sf, IX86_BUILTIN_PFCMPGE);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfcmpgt", v2si_ftype_v2sf_v2sf, IX86_BUILTIN_PFCMPGT);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfmax", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFMAX);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfmin", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFMIN);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfmul", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFMUL);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfrcp", v2sf_ftype_v2sf, IX86_BUILTIN_PFRCP);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfrcpit1", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFRCPIT1);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfrcpit2", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFRCPIT2);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfrsqrt", v2sf_ftype_v2sf, IX86_BUILTIN_PFRSQRT);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfrsqit1", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFRSQIT1);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfsub", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFSUB);
def_builtin (MASK_3DNOW, "__builtin_ia32_pfsubr", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFSUBR);
def_builtin (MASK_3DNOW, "__builtin_ia32_pi2fd", v2sf_ftype_v2si, IX86_BUILTIN_PI2FD);
def_builtin (MASK_3DNOW, "__builtin_ia32_pmulhrw", v4hi_ftype_v4hi_v4hi, IX86_BUILTIN_PMULHRW);
def_builtin (MASK_3DNOW, "__builtin_ia32_prefetch_3dnow", void_ftype_pchar, IX86_BUILTIN_PREFETCH_3DNOW);
def_builtin (MASK_3DNOW, "__builtin_ia32_prefetchw", void_ftype_pchar, IX86_BUILTIN_PREFETCHW);
/* 3DNow! extension as used in the Athlon CPU. */
def_builtin (MASK_3DNOW_A, "__builtin_ia32_pf2iw", v2si_ftype_v2sf, IX86_BUILTIN_PF2IW);
def_builtin (MASK_3DNOW_A, "__builtin_ia32_pfnacc", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFNACC);
def_builtin (MASK_3DNOW_A, "__builtin_ia32_pfpnacc", v2sf_ftype_v2sf_v2sf, IX86_BUILTIN_PFPNACC);
def_builtin (MASK_3DNOW_A, "__builtin_ia32_pi2fw", v2sf_ftype_v2si, IX86_BUILTIN_PI2FW);
def_builtin (MASK_3DNOW_A, "__builtin_ia32_pswapdsf", v2sf_ftype_v2sf, IX86_BUILTIN_PSWAPDSF);
def_builtin (MASK_3DNOW_A, "__builtin_ia32_pswapdsi", v2si_ftype_v2si, IX86_BUILTIN_PSWAPDSI);
/* Composite intrinsics. */
def_builtin (MASK_SSE, "__builtin_ia32_setps1", v4sf_ftype_float, IX86_BUILTIN_SETPS1);
def_builtin (MASK_SSE, "__builtin_ia32_setps", v4sf_ftype_float_float_float_float, IX86_BUILTIN_SETPS);
def_builtin (MASK_SSE, "__builtin_ia32_setzerops", ti_ftype_void, IX86_BUILTIN_CLRPS);
def_builtin (MASK_SSE, "__builtin_ia32_loadps1", v4sf_ftype_pfloat, IX86_BUILTIN_LOADPS1);
def_builtin (MASK_SSE, "__builtin_ia32_loadrps", v4sf_ftype_pfloat, IX86_BUILTIN_LOADRPS);
def_builtin (MASK_SSE, "__builtin_ia32_storeps1", void_ftype_pfloat_v4sf, IX86_BUILTIN_STOREPS1);
def_builtin (MASK_SSE, "__builtin_ia32_storerps", void_ftype_pfloat_v4sf, IX86_BUILTIN_STORERPS);
}
/* Errors in the source file can cause expand_expr to return const0_rtx
where we expect a vector. To avoid crashing, use one of the vector
clear instructions. */
static rtx
safe_vector_operand (x, mode)
rtx x;
enum machine_mode mode;
{
if (x != const0_rtx)
return x;
x = gen_reg_rtx (mode);
if (VALID_MMX_REG_MODE (mode) || VALID_MMX_REG_MODE_3DNOW (mode))
emit_insn (gen_mmx_clrdi (mode == DImode ? x
: gen_rtx_SUBREG (DImode, x, 0)));
else
emit_insn (gen_sse_clrti (mode == TImode ? x
: gen_rtx_SUBREG (TImode, x, 0)));
return x;
}
/* Subroutine of ix86_expand_builtin to take care of binop insns. */
static rtx
ix86_expand_binop_builtin (icode, arglist, target)
enum insn_code icode;
tree arglist;
rtx target;
{
rtx pat;
tree arg0 = TREE_VALUE (arglist);
tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
enum machine_mode tmode = insn_data[icode].operand[0].mode;
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
enum machine_mode mode1 = insn_data[icode].operand[2].mode;
if (VECTOR_MODE_P (mode0))
op0 = safe_vector_operand (op0, mode0);
if (VECTOR_MODE_P (mode1))
op1 = safe_vector_operand (op1, mode1);
if (! target
|| GET_MODE (target) != tmode
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
target = gen_reg_rtx (tmode);
/* In case the insn wants input operands in modes different from
the result, abort. */
if (GET_MODE (op0) != mode0 || GET_MODE (op1) != mode1)
abort ();
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
op1 = copy_to_mode_reg (mode1, op1);
pat = GEN_FCN (icode) (target, op0, op1);
if (! pat)
return 0;
emit_insn (pat);
return target;
}
/* Subroutine of ix86_expand_builtin to take care of stores. */
static rtx
ix86_expand_store_builtin (icode, arglist, shuffle)
enum insn_code icode;
tree arglist;
int shuffle;
{
rtx pat;
tree arg0 = TREE_VALUE (arglist);
tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
enum machine_mode mode0 = insn_data[icode].operand[0].mode;
enum machine_mode mode1 = insn_data[icode].operand[1].mode;
if (VECTOR_MODE_P (mode1))
op1 = safe_vector_operand (op1, mode1);
op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
if (shuffle >= 0 || ! (*insn_data[icode].operand[1].predicate) (op1, mode1))
op1 = copy_to_mode_reg (mode1, op1);
if (shuffle >= 0)
emit_insn (gen_sse_shufps (op1, op1, op1, GEN_INT (shuffle)));
pat = GEN_FCN (icode) (op0, op1);
if (pat)
emit_insn (pat);
return 0;
}
/* Subroutine of ix86_expand_builtin to take care of unop insns. */
static rtx
ix86_expand_unop_builtin (icode, arglist, target, do_load)
enum insn_code icode;
tree arglist;
rtx target;
int do_load;
{
rtx pat;
tree arg0 = TREE_VALUE (arglist);
rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
enum machine_mode tmode = insn_data[icode].operand[0].mode;
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
if (! target
|| GET_MODE (target) != tmode
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
target = gen_reg_rtx (tmode);
if (do_load)
op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
else
{
if (VECTOR_MODE_P (mode0))
op0 = safe_vector_operand (op0, mode0);
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
}
pat = GEN_FCN (icode) (target, op0);
if (! pat)
return 0;
emit_insn (pat);
return target;
}
/* Subroutine of ix86_expand_builtin to take care of three special unop insns:
sqrtss, rsqrtss, rcpss. */
static rtx
ix86_expand_unop1_builtin (icode, arglist, target)
enum insn_code icode;
tree arglist;
rtx target;
{
rtx pat;
tree arg0 = TREE_VALUE (arglist);
rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
enum machine_mode tmode = insn_data[icode].operand[0].mode;
enum machine_mode mode0 = insn_data[icode].operand[1].mode;
if (! target
|| GET_MODE (target) != tmode
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
target = gen_reg_rtx (tmode);
if (VECTOR_MODE_P (mode0))
op0 = safe_vector_operand (op0, mode0);
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
pat = GEN_FCN (icode) (target, op0, op0);
if (! pat)
return 0;
emit_insn (pat);
return target;
}
/* Subroutine of ix86_expand_builtin to take care of comparison insns. */
static rtx
ix86_expand_sse_compare (d, arglist, target)
const struct builtin_description *d;
tree arglist;
rtx target;
{
rtx pat;
tree arg0 = TREE_VALUE (arglist);
tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
rtx op2;
enum machine_mode tmode = insn_data[d->icode].operand[0].mode;
enum machine_mode mode0 = insn_data[d->icode].operand[1].mode;
enum machine_mode mode1 = insn_data[d->icode].operand[2].mode;
enum rtx_code comparison = d->comparison;
if (VECTOR_MODE_P (mode0))
op0 = safe_vector_operand (op0, mode0);
if (VECTOR_MODE_P (mode1))
op1 = safe_vector_operand (op1, mode1);
/* Swap operands if we have a comparison that isn't available in
hardware. */
if (d->flag)
{
rtx tmp = gen_reg_rtx (mode1);
emit_move_insn (tmp, op1);
op1 = op0;
op0 = tmp;
}
if (! target
|| GET_MODE (target) != tmode
|| ! (*insn_data[d->icode].operand[0].predicate) (target, tmode))
target = gen_reg_rtx (tmode);
if (! (*insn_data[d->icode].operand[1].predicate) (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
if (! (*insn_data[d->icode].operand[2].predicate) (op1, mode1))
op1 = copy_to_mode_reg (mode1, op1);
op2 = gen_rtx_fmt_ee (comparison, mode0, op0, op1);
pat = GEN_FCN (d->icode) (target, op0, op1, op2);
if (! pat)
return 0;
emit_insn (pat);
return target;
}
/* Subroutine of ix86_expand_builtin to take care of comi insns. */
static rtx
ix86_expand_sse_comi (d, arglist, target)
const struct builtin_description *d;
tree arglist;
rtx target;
{
rtx pat;
tree arg0 = TREE_VALUE (arglist);
tree arg1 = TREE_VALUE (TREE_CHAIN (arglist));
rtx op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
rtx op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
rtx op2;
enum machine_mode mode0 = insn_data[d->icode].operand[0].mode;
enum machine_mode mode1 = insn_data[d->icode].operand[1].mode;
enum rtx_code comparison = d->comparison;
if (VECTOR_MODE_P (mode0))
op0 = safe_vector_operand (op0, mode0);
if (VECTOR_MODE_P (mode1))
op1 = safe_vector_operand (op1, mode1);
/* Swap operands if we have a comparison that isn't available in
hardware. */
if (d->flag)
{
rtx tmp = op1;
op1 = op0;
op0 = tmp;
}
target = gen_reg_rtx (SImode);
emit_move_insn (target, const0_rtx);
target = gen_rtx_SUBREG (QImode, target, 0);
if (! (*insn_data[d->icode].operand[0].predicate) (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
if (! (*insn_data[d->icode].operand[1].predicate) (op1, mode1))
op1 = copy_to_mode_reg (mode1, op1);
op2 = gen_rtx_fmt_ee (comparison, mode0, op0, op1);
pat = GEN_FCN (d->icode) (op0, op1, op2);
if (! pat)
return 0;
emit_insn (pat);
emit_insn (gen_rtx_SET (VOIDmode,
gen_rtx_STRICT_LOW_PART (VOIDmode, target),
gen_rtx_fmt_ee (comparison, QImode,
gen_rtx_REG (CCmode, FLAGS_REG),
const0_rtx)));
return target;
}
/* Expand an expression EXP that calls a built-in function,
with result going to TARGET if that's convenient
(and in mode MODE if that's convenient).
SUBTARGET may be used as the target for computing one of EXP's operands.
IGNORE is nonzero if the value is to be ignored. */
rtx
ix86_expand_builtin (exp, target, subtarget, mode, ignore)
tree exp;
rtx target;
rtx subtarget ATTRIBUTE_UNUSED;
enum machine_mode mode ATTRIBUTE_UNUSED;
int ignore ATTRIBUTE_UNUSED;
{
const struct builtin_description *d;
size_t i;
enum insn_code icode;
tree fndecl = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
tree arglist = TREE_OPERAND (exp, 1);
tree arg0, arg1, arg2, arg3;
rtx op0, op1, op2, pat;
enum machine_mode tmode, mode0, mode1, mode2;
unsigned int fcode = DECL_FUNCTION_CODE (fndecl);
switch (fcode)
{
case IX86_BUILTIN_EMMS:
emit_insn (gen_emms ());
return 0;
case IX86_BUILTIN_SFENCE:
emit_insn (gen_sfence ());
return 0;
case IX86_BUILTIN_M_FROM_INT:
target = gen_reg_rtx (DImode);
op0 = expand_expr (TREE_VALUE (arglist), NULL_RTX, VOIDmode, 0);
emit_move_insn (gen_rtx_SUBREG (SImode, target, 0), op0);
return target;
case IX86_BUILTIN_M_TO_INT:
op0 = expand_expr (TREE_VALUE (arglist), NULL_RTX, VOIDmode, 0);
op0 = copy_to_mode_reg (DImode, op0);
target = gen_reg_rtx (SImode);
emit_move_insn (target, gen_rtx_SUBREG (SImode, op0, 0));
return target;
case IX86_BUILTIN_PEXTRW:
icode = CODE_FOR_mmx_pextrw;
arg0 = TREE_VALUE (arglist);
arg1 = TREE_VALUE (TREE_CHAIN (arglist));
op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
tmode = insn_data[icode].operand[0].mode;
mode0 = insn_data[icode].operand[1].mode;
mode1 = insn_data[icode].operand[2].mode;
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
{
/* @@@ better error message */
error ("selector must be an immediate");
return const0_rtx;
}
if (target == 0
|| GET_MODE (target) != tmode
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
target = gen_reg_rtx (tmode);
pat = GEN_FCN (icode) (target, op0, op1);
if (! pat)
return 0;
emit_insn (pat);
return target;
case IX86_BUILTIN_PINSRW:
icode = CODE_FOR_mmx_pinsrw;
arg0 = TREE_VALUE (arglist);
arg1 = TREE_VALUE (TREE_CHAIN (arglist));
arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
tmode = insn_data[icode].operand[0].mode;
mode0 = insn_data[icode].operand[1].mode;
mode1 = insn_data[icode].operand[2].mode;
mode2 = insn_data[icode].operand[3].mode;
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
op1 = copy_to_mode_reg (mode1, op1);
if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
{
/* @@@ better error message */
error ("selector must be an immediate");
return const0_rtx;
}
if (target == 0
|| GET_MODE (target) != tmode
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
target = gen_reg_rtx (tmode);
pat = GEN_FCN (icode) (target, op0, op1, op2);
if (! pat)
return 0;
emit_insn (pat);
return target;
case IX86_BUILTIN_MASKMOVQ:
icode = CODE_FOR_mmx_maskmovq;
/* Note the arg order is different from the operand order. */
arg1 = TREE_VALUE (arglist);
arg2 = TREE_VALUE (TREE_CHAIN (arglist));
arg0 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
mode0 = insn_data[icode].operand[0].mode;
mode1 = insn_data[icode].operand[1].mode;
mode2 = insn_data[icode].operand[2].mode;
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
if (! (*insn_data[icode].operand[1].predicate) (op1, mode1))
op1 = copy_to_mode_reg (mode1, op1);
if (! (*insn_data[icode].operand[2].predicate) (op2, mode2))
op2 = copy_to_mode_reg (mode2, op2);
pat = GEN_FCN (icode) (op0, op1, op2);
if (! pat)
return 0;
emit_insn (pat);
return 0;
case IX86_BUILTIN_SQRTSS:
return ix86_expand_unop1_builtin (CODE_FOR_vmsqrtv4sf2, arglist, target);
case IX86_BUILTIN_RSQRTSS:
return ix86_expand_unop1_builtin (CODE_FOR_vmrsqrtv4sf2, arglist, target);
case IX86_BUILTIN_RCPSS:
return ix86_expand_unop1_builtin (CODE_FOR_vmrcpv4sf2, arglist, target);
case IX86_BUILTIN_LOADAPS:
return ix86_expand_unop_builtin (CODE_FOR_sse_movaps, arglist, target, 1);
case IX86_BUILTIN_LOADUPS:
return ix86_expand_unop_builtin (CODE_FOR_sse_movups, arglist, target, 1);
case IX86_BUILTIN_STOREAPS:
return ix86_expand_store_builtin (CODE_FOR_sse_movaps, arglist, -1);
case IX86_BUILTIN_STOREUPS:
return ix86_expand_store_builtin (CODE_FOR_sse_movups, arglist, -1);
case IX86_BUILTIN_LOADSS:
return ix86_expand_unop_builtin (CODE_FOR_sse_loadss, arglist, target, 1);
case IX86_BUILTIN_STORESS:
return ix86_expand_store_builtin (CODE_FOR_sse_storess, arglist, -1);
case IX86_BUILTIN_LOADHPS:
case IX86_BUILTIN_LOADLPS:
icode = (fcode == IX86_BUILTIN_LOADHPS
? CODE_FOR_sse_movhps : CODE_FOR_sse_movlps);
arg0 = TREE_VALUE (arglist);
arg1 = TREE_VALUE (TREE_CHAIN (arglist));
op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
tmode = insn_data[icode].operand[0].mode;
mode0 = insn_data[icode].operand[1].mode;
mode1 = insn_data[icode].operand[2].mode;
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
op1 = gen_rtx_MEM (mode1, copy_to_mode_reg (Pmode, op1));
if (target == 0
|| GET_MODE (target) != tmode
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
target = gen_reg_rtx (tmode);
pat = GEN_FCN (icode) (target, op0, op1);
if (! pat)
return 0;
emit_insn (pat);
return target;
case IX86_BUILTIN_STOREHPS:
case IX86_BUILTIN_STORELPS:
icode = (fcode == IX86_BUILTIN_STOREHPS
? CODE_FOR_sse_movhps : CODE_FOR_sse_movlps);
arg0 = TREE_VALUE (arglist);
arg1 = TREE_VALUE (TREE_CHAIN (arglist));
op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
mode0 = insn_data[icode].operand[1].mode;
mode1 = insn_data[icode].operand[2].mode;
op0 = gen_rtx_MEM (mode0, copy_to_mode_reg (Pmode, op0));
if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
op1 = copy_to_mode_reg (mode1, op1);
pat = GEN_FCN (icode) (op0, op0, op1);
if (! pat)
return 0;
emit_insn (pat);
return 0;
case IX86_BUILTIN_MOVNTPS:
return ix86_expand_store_builtin (CODE_FOR_sse_movntv4sf, arglist, -1);
case IX86_BUILTIN_MOVNTQ:
return ix86_expand_store_builtin (CODE_FOR_sse_movntdi, arglist, -1);
case IX86_BUILTIN_LDMXCSR:
op0 = expand_expr (TREE_VALUE (arglist), NULL_RTX, VOIDmode, 0);
target = assign_386_stack_local (SImode, 0);
emit_move_insn (target, op0);
emit_insn (gen_ldmxcsr (target));
return 0;
case IX86_BUILTIN_STMXCSR:
target = assign_386_stack_local (SImode, 0);
emit_insn (gen_stmxcsr (target));
return copy_to_mode_reg (SImode, target);
case IX86_BUILTIN_PREFETCH:
icode = CODE_FOR_prefetch_sse;
arg0 = TREE_VALUE (arglist);
arg1 = TREE_VALUE (TREE_CHAIN (arglist));
op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
mode0 = insn_data[icode].operand[0].mode;
mode1 = insn_data[icode].operand[1].mode;
if (! (*insn_data[icode].operand[1].predicate) (op1, mode1))
{
/* @@@ better error message */
error ("selector must be an immediate");
return const0_rtx;
}
op0 = copy_to_mode_reg (Pmode, op0);
pat = GEN_FCN (icode) (op0, op1);
if (! pat)
return 0;
emit_insn (pat);
return target;
case IX86_BUILTIN_SHUFPS:
icode = CODE_FOR_sse_shufps;
arg0 = TREE_VALUE (arglist);
arg1 = TREE_VALUE (TREE_CHAIN (arglist));
arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
op2 = expand_expr (arg2, NULL_RTX, VOIDmode, 0);
tmode = insn_data[icode].operand[0].mode;
mode0 = insn_data[icode].operand[1].mode;
mode1 = insn_data[icode].operand[2].mode;
mode2 = insn_data[icode].operand[3].mode;
if (! (*insn_data[icode].operand[1].predicate) (op0, mode0))
op0 = copy_to_mode_reg (mode0, op0);
if (! (*insn_data[icode].operand[2].predicate) (op1, mode1))
op1 = copy_to_mode_reg (mode1, op1);
if (! (*insn_data[icode].operand[3].predicate) (op2, mode2))
{
/* @@@ better error message */
error ("mask must be an immediate");
return const0_rtx;
}
if (target == 0
|| GET_MODE (target) != tmode
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
target = gen_reg_rtx (tmode);
pat = GEN_FCN (icode) (target, op0, op1, op2);
if (! pat)
return 0;
emit_insn (pat);
return target;
case IX86_BUILTIN_PSHUFW:
icode = CODE_FOR_mmx_pshufw;
arg0 = TREE_VALUE (arglist);
arg1 = TREE_VALUE (TREE_CHAIN (arglist));
op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
op1 = expand_expr (arg1, NULL_RTX, VOIDmode, 0);
tmode = insn_data[icode].operand[0].mode;
mode1 = insn_data[icode].operand[1].mode;
mode2 = insn_data[icode].operand[2].mode;
if (! (*insn_data[icode].operand[1].predicate) (op0, mode1))
op0 = copy_to_mode_reg (mode1, op0);
if (! (*insn_data[icode].operand[2].predicate) (op1, mode2))
{
/* @@@ better error message */
error ("mask must be an immediate");
return const0_rtx;
}
if (target == 0
|| GET_MODE (target) != tmode
|| ! (*insn_data[icode].operand[0].predicate) (target, tmode))
target = gen_reg_rtx (tmode);
pat = GEN_FCN (icode) (target, op0, op1);
if (! pat)
return 0;
emit_insn (pat);
return target;
case IX86_BUILTIN_FEMMS:
emit_insn (gen_femms ());
return NULL_RTX;
case IX86_BUILTIN_PAVGUSB:
return ix86_expand_binop_builtin (CODE_FOR_pavgusb, arglist, target);
case IX86_BUILTIN_PF2ID:
return ix86_expand_unop_builtin (CODE_FOR_pf2id, arglist, target, 0);
case IX86_BUILTIN_PFACC:
return ix86_expand_binop_builtin (CODE_FOR_pfacc, arglist, target);
case IX86_BUILTIN_PFADD:
return ix86_expand_binop_builtin (CODE_FOR_addv2sf3, arglist, target);
case IX86_BUILTIN_PFCMPEQ:
return ix86_expand_binop_builtin (CODE_FOR_eqv2sf3, arglist, target);
case IX86_BUILTIN_PFCMPGE:
return ix86_expand_binop_builtin (CODE_FOR_gev2sf3, arglist, target);
case IX86_BUILTIN_PFCMPGT:
return ix86_expand_binop_builtin (CODE_FOR_gtv2sf3, arglist, target);
case IX86_BUILTIN_PFMAX:
return ix86_expand_binop_builtin (CODE_FOR_pfmaxv2sf3, arglist, target);
case IX86_BUILTIN_PFMIN:
return ix86_expand_binop_builtin (CODE_FOR_pfminv2sf3, arglist, target);
case IX86_BUILTIN_PFMUL:
return ix86_expand_binop_builtin (CODE_FOR_mulv2sf3, arglist, target);
case IX86_BUILTIN_PFRCP:
return ix86_expand_unop_builtin (CODE_FOR_pfrcpv2sf2, arglist, target, 0);
case IX86_BUILTIN_PFRCPIT1:
return ix86_expand_binop_builtin (CODE_FOR_pfrcpit1v2sf3, arglist, target);
case IX86_BUILTIN_PFRCPIT2:
return ix86_expand_binop_builtin (CODE_FOR_pfrcpit2v2sf3, arglist, target);
case IX86_BUILTIN_PFRSQIT1:
return ix86_expand_binop_builtin (CODE_FOR_pfrsqit1v2sf3, arglist, target);
case IX86_BUILTIN_PFRSQRT:
return ix86_expand_unop_builtin (CODE_FOR_pfrsqrtv2sf2, arglist, target, 0);
case IX86_BUILTIN_PFSUB:
return ix86_expand_binop_builtin (CODE_FOR_subv2sf3, arglist, target);
case IX86_BUILTIN_PFSUBR:
return ix86_expand_binop_builtin (CODE_FOR_subrv2sf3, arglist, target);
case IX86_BUILTIN_PI2FD:
return ix86_expand_unop_builtin (CODE_FOR_floatv2si2, arglist, target, 0);
case IX86_BUILTIN_PMULHRW:
return ix86_expand_binop_builtin (CODE_FOR_pmulhrwv4hi3, arglist, target);
case IX86_BUILTIN_PREFETCH_3DNOW:
case IX86_BUILTIN_PREFETCHW:
icode = CODE_FOR_prefetch_3dnow;
arg0 = TREE_VALUE (arglist);
op0 = expand_expr (arg0, NULL_RTX, VOIDmode, 0);
op1 = (fcode == IX86_BUILTIN_PREFETCH_3DNOW ? const0_rtx : const1_rtx);
mode0 = insn_data[icode].operand[0].mode;
pat = GEN_FCN (icode) (copy_to_mode_reg (Pmode, op0), op1);
if (! pat)
return NULL_RTX;
emit_insn (pat);
return NULL_RTX;
case IX86_BUILTIN_PF2IW:
return ix86_expand_unop_builtin (CODE_FOR_pf2iw, arglist, target, 0);
case IX86_BUILTIN_PFNACC:
return ix86_expand_binop_builtin (CODE_FOR_pfnacc, arglist, target);
case IX86_BUILTIN_PFPNACC:
return ix86_expand_binop_builtin (CODE_FOR_pfpnacc, arglist, target);
case IX86_BUILTIN_PI2FW:
return ix86_expand_unop_builtin (CODE_FOR_pi2fw, arglist, target, 0);
case IX86_BUILTIN_PSWAPDSI:
return ix86_expand_unop_builtin (CODE_FOR_pswapdv2si2, arglist, target, 0);
case IX86_BUILTIN_PSWAPDSF:
return ix86_expand_unop_builtin (CODE_FOR_pswapdv2sf2, arglist, target, 0);
/* Composite intrinsics. */
case IX86_BUILTIN_SETPS1:
target = assign_386_stack_local (SFmode, 0);
arg0 = TREE_VALUE (arglist);
emit_move_insn (adjust_address (target, SFmode, 0),
expand_expr (arg0, NULL_RTX, VOIDmode, 0));
op0 = gen_reg_rtx (V4SFmode);
emit_insn (gen_sse_loadss (op0, adjust_address (target, V4SFmode, 0)));
emit_insn (gen_sse_shufps (op0, op0, op0, GEN_INT (0)));
return op0;
case IX86_BUILTIN_SETPS:
target = assign_386_stack_local (V4SFmode, 0);
arg0 = TREE_VALUE (arglist);
arg1 = TREE_VALUE (TREE_CHAIN (arglist));
arg2 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (arglist)));
arg3 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
emit_move_insn (adjust_address (target, SFmode, 0),
expand_expr (arg0, NULL_RTX, VOIDmode, 0));
emit_move_insn (adjust_address (target, SFmode, 4),
expand_expr (arg1, NULL_RTX, VOIDmode, 0));
emit_move_insn (adjust_address (target, SFmode, 8),
expand_expr (arg2, NULL_RTX, VOIDmode, 0));
emit_move_insn (adjust_address (target, SFmode, 12),
expand_expr (arg3, NULL_RTX, VOIDmode, 0));
op0 = gen_reg_rtx (V4SFmode);
emit_insn (gen_sse_movaps (op0, target));
return op0;
case IX86_BUILTIN_CLRPS:
target = gen_reg_rtx (TImode);
emit_insn (gen_sse_clrti (target));
return target;
case IX86_BUILTIN_LOADRPS:
target = ix86_expand_unop_builtin (CODE_FOR_sse_movaps, arglist,
gen_reg_rtx (V4SFmode), 1);
emit_insn (gen_sse_shufps (target, target, target, GEN_INT (0x1b)));
return target;
case IX86_BUILTIN_LOADPS1:
target = ix86_expand_unop_builtin (CODE_FOR_sse_loadss, arglist,
gen_reg_rtx (V4SFmode), 1);
emit_insn (gen_sse_shufps (target, target, target, const0_rtx));
return target;
case IX86_BUILTIN_STOREPS1:
return ix86_expand_store_builtin (CODE_FOR_sse_movaps, arglist, 0);
case IX86_BUILTIN_STORERPS:
return ix86_expand_store_builtin (CODE_FOR_sse_movaps, arglist, 0x1B);
case IX86_BUILTIN_MMX_ZERO:
target = gen_reg_rtx (DImode);
emit_insn (gen_mmx_clrdi (target));
return target;
default:
break;
}
for (i = 0, d = bdesc_2arg; i < sizeof (bdesc_2arg) / sizeof *d; i++, d++)
if (d->code == fcode)
{
/* Compares are treated specially. */
if (d->icode == CODE_FOR_maskcmpv4sf3
|| d->icode == CODE_FOR_vmmaskcmpv4sf3
|| d->icode == CODE_FOR_maskncmpv4sf3
|| d->icode == CODE_FOR_vmmaskncmpv4sf3)
return ix86_expand_sse_compare (d, arglist, target);
return ix86_expand_binop_builtin (d->icode, arglist, target);
}
for (i = 0, d = bdesc_1arg; i < sizeof (bdesc_1arg) / sizeof *d; i++, d++)
if (d->code == fcode)
return ix86_expand_unop_builtin (d->icode, arglist, target, 0);
for (i = 0, d = bdesc_comi; i < sizeof (bdesc_comi) / sizeof *d; i++, d++)
if (d->code == fcode)
return ix86_expand_sse_comi (d, arglist, target);
/* @@@ Should really do something sensible here. */
return 0;
}
/* Store OPERAND to the memory after reload is completed. This means
that we can't easily use assign_stack_local. */
rtx
ix86_force_to_memory (mode, operand)
enum machine_mode mode;
rtx operand;
{
rtx result;
if (!reload_completed)
abort ();
if (TARGET_64BIT && TARGET_RED_ZONE)
{
result = gen_rtx_MEM (mode,
gen_rtx_PLUS (Pmode,
stack_pointer_rtx,
GEN_INT (-RED_ZONE_SIZE)));
emit_move_insn (result, operand);
}
else if (TARGET_64BIT && !TARGET_RED_ZONE)
{
switch (mode)
{
case HImode:
case SImode:
operand = gen_lowpart (DImode, operand);
/* FALLTHRU */
case DImode:
emit_insn (
gen_rtx_SET (VOIDmode,
gen_rtx_MEM (DImode,
gen_rtx_PRE_DEC (DImode,
stack_pointer_rtx)),
operand));
break;
default:
abort ();
}
result = gen_rtx_MEM (mode, stack_pointer_rtx);
}
else
{
switch (mode)
{
case DImode:
{
rtx operands[2];
split_di (&operand, 1, operands, operands + 1);
emit_insn (
gen_rtx_SET (VOIDmode,
gen_rtx_MEM (SImode,
gen_rtx_PRE_DEC (Pmode,
stack_pointer_rtx)),
operands[1]));
emit_insn (
gen_rtx_SET (VOIDmode,
gen_rtx_MEM (SImode,
gen_rtx_PRE_DEC (Pmode,
stack_pointer_rtx)),
operands[0]));
}
break;
case HImode:
/* It is better to store HImodes as SImodes. */
if (!TARGET_PARTIAL_REG_STALL)
operand = gen_lowpart (SImode, operand);
/* FALLTHRU */
case SImode:
emit_insn (
gen_rtx_SET (VOIDmode,
gen_rtx_MEM (GET_MODE (operand),
gen_rtx_PRE_DEC (SImode,
stack_pointer_rtx)),
operand));
break;
default:
abort ();
}
result = gen_rtx_MEM (mode, stack_pointer_rtx);
}
return result;
}
/* Free operand from the memory. */
void
ix86_free_from_memory (mode)
enum machine_mode mode;
{
if (!TARGET_64BIT || !TARGET_RED_ZONE)
{
int size;
if (mode == DImode || TARGET_64BIT)
size = 8;
else if (mode == HImode && TARGET_PARTIAL_REG_STALL)
size = 2;
else
size = 4;
/* Use LEA to deallocate stack space. In peephole2 it will be converted
to pop or add instruction if registers are available. */
emit_insn (gen_rtx_SET (VOIDmode, stack_pointer_rtx,
gen_rtx_PLUS (Pmode, stack_pointer_rtx,
GEN_INT (size))));
}
}
/* Put float CONST_DOUBLE in the constant pool instead of fp regs.
QImode must go into class Q_REGS.
Narrow ALL_REGS to GENERAL_REGS. This supports allowing movsf and
movdf to do mem-to-mem moves through integer regs. */
enum reg_class
ix86_preferred_reload_class (x, class)
rtx x;
enum reg_class class;
{
if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) != VOIDmode)
{
/* SSE can't load any constant directly yet. */
if (SSE_CLASS_P (class))
return NO_REGS;
/* Floats can load 0 and 1. */
if (MAYBE_FLOAT_CLASS_P (class) && standard_80387_constant_p (x))
{
/* Limit class to non-SSE. Use GENERAL_REGS if possible. */
if (MAYBE_SSE_CLASS_P (class))
return (reg_class_subset_p (class, GENERAL_REGS)
? GENERAL_REGS : FLOAT_REGS);
else
return class;
}
/* General regs can load everything. */
if (reg_class_subset_p (class, GENERAL_REGS))
return GENERAL_REGS;
/* In case we haven't resolved FLOAT or SSE yet, give up. */
if (MAYBE_FLOAT_CLASS_P (class) || MAYBE_SSE_CLASS_P (class))
return NO_REGS;
}
if (MAYBE_MMX_CLASS_P (class) && CONSTANT_P (x))
return NO_REGS;
if (GET_MODE (x) == QImode && ! reg_class_subset_p (class, Q_REGS))
return Q_REGS;
return class;
}
/* If we are copying between general and FP registers, we need a memory
location. The same is true for SSE and MMX registers.
The macro can't work reliably when one of the CLASSES is class containing
registers from multiple units (SSE, MMX, integer). We avoid this by never
combining those units in single alternative in the machine description.
Ensure that this constraint holds to avoid unexpected surprises.
When STRICT is false, we are being called from REGISTER_MOVE_COST, so do not
enforce these sanity checks. */
int
ix86_secondary_memory_needed (class1, class2, mode, strict)
enum reg_class class1, class2;
enum machine_mode mode;
int strict;
{
if (MAYBE_FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class1)
|| MAYBE_FLOAT_CLASS_P (class2) != FLOAT_CLASS_P (class2)
|| MAYBE_SSE_CLASS_P (class1) != SSE_CLASS_P (class1)
|| MAYBE_SSE_CLASS_P (class2) != SSE_CLASS_P (class2)
|| MAYBE_MMX_CLASS_P (class1) != MMX_CLASS_P (class1)
|| MAYBE_MMX_CLASS_P (class2) != MMX_CLASS_P (class2))
{
if (strict)
abort ();
else
return 1;
}
return (FLOAT_CLASS_P (class1) != FLOAT_CLASS_P (class2)
|| (SSE_CLASS_P (class1) != SSE_CLASS_P (class2)
&& (mode) != SImode)
|| (MMX_CLASS_P (class1) != MMX_CLASS_P (class2)
&& (mode) != SImode));
}
/* Return the cost of moving data from a register in class CLASS1 to
one in class CLASS2.
It is not required that the cost always equal 2 when FROM is the same as TO;
on some machines it is expensive to move between registers if they are not
general registers. */
int
ix86_register_move_cost (mode, class1, class2)
enum machine_mode mode;
enum reg_class class1, class2;
{
/* In case we require secondary memory, compute cost of the store followed
by load. In case of copying from general_purpose_register we may emit
multiple stores followed by single load causing memory size mismatch
stall. Count this as arbitarily high cost of 20. */
if (ix86_secondary_memory_needed (class1, class2, mode, 0))
{
int add_cost = 0;
if (CLASS_MAX_NREGS (class1, mode) > CLASS_MAX_NREGS (class2, mode))
add_cost = 20;
return (MEMORY_MOVE_COST (mode, class1, 0)
+ MEMORY_MOVE_COST (mode, class2, 1) + add_cost);
}
/* Moves between SSE/MMX and integer unit are expensive. */
if (MMX_CLASS_P (class1) != MMX_CLASS_P (class2)
|| SSE_CLASS_P (class1) != SSE_CLASS_P (class2))
return ix86_cost->mmxsse_to_integer;
if (MAYBE_FLOAT_CLASS_P (class1))
return ix86_cost->fp_move;
if (MAYBE_SSE_CLASS_P (class1))
return ix86_cost->sse_move;
if (MAYBE_MMX_CLASS_P (class1))
return ix86_cost->mmx_move;
return 2;
}
/* Return 1 if hard register REGNO can hold a value of machine-mode MODE. */
int
ix86_hard_regno_mode_ok (regno, mode)
int regno;
enum machine_mode mode;
{
/* Flags and only flags can only hold CCmode values. */
if (CC_REGNO_P (regno))
return GET_MODE_CLASS (mode) == MODE_CC;
if (GET_MODE_CLASS (mode) == MODE_CC
|| GET_MODE_CLASS (mode) == MODE_RANDOM
|| GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
return 0;
if (FP_REGNO_P (regno))
return VALID_FP_MODE_P (mode);
if (SSE_REGNO_P (regno))
return VALID_SSE_REG_MODE (mode);
if (MMX_REGNO_P (regno))
return VALID_MMX_REG_MODE (mode) || VALID_MMX_REG_MODE_3DNOW (mode);
/* We handle both integer and floats in the general purpose registers.
In future we should be able to handle vector modes as well. */
if (!VALID_INT_MODE_P (mode) && !VALID_FP_MODE_P (mode))
return 0;
/* Take care for QImode values - they can be in non-QI regs, but then
they do cause partial register stalls. */
if (regno < 4 || mode != QImode || TARGET_64BIT)
return 1;
return reload_in_progress || reload_completed || !TARGET_PARTIAL_REG_STALL;
}
/* Return the cost of moving data of mode M between a
register and memory. A value of 2 is the default; this cost is
relative to those in `REGISTER_MOVE_COST'.
If moving between registers and memory is more expensive than
between two registers, you should define this macro to express the
relative cost.
Model also increased moving costs of QImode registers in non
Q_REGS classes.
*/
int
ix86_memory_move_cost (mode, class, in)
enum machine_mode mode;
enum reg_class class;
int in;
{
if (FLOAT_CLASS_P (class))
{
int index;
switch (mode)
{
case SFmode:
index = 0;
break;
case DFmode:
index = 1;
break;
case XFmode:
case TFmode:
index = 2;
break;
default:
return 100;
}
return in ? ix86_cost->fp_load [index] : ix86_cost->fp_store [index];
}
if (SSE_CLASS_P (class))
{
int index;
switch (GET_MODE_SIZE (mode))
{
case 4:
index = 0;
break;
case 8:
index = 1;
break;
case 16:
index = 2;
break;
default:
return 100;
}
return in ? ix86_cost->sse_load [index] : ix86_cost->sse_store [index];
}
if (MMX_CLASS_P (class))
{
int index;
switch (GET_MODE_SIZE (mode))
{
case 4:
index = 0;
break;
case 8:
index = 1;
break;
default:
return 100;
}
return in ? ix86_cost->mmx_load [index] : ix86_cost->mmx_store [index];
}
switch (GET_MODE_SIZE (mode))
{
case 1:
if (in)
return (Q_CLASS_P (class) ? ix86_cost->int_load[0]
: ix86_cost->movzbl_load);
else
return (Q_CLASS_P (class) ? ix86_cost->int_store[0]
: ix86_cost->int_store[0] + 4);
break;
case 2:
return in ? ix86_cost->int_load[1] : ix86_cost->int_store[1];
default:
/* Compute number of 32bit moves needed. TFmode is moved as XFmode. */
if (mode == TFmode)
mode = XFmode;
return ((in ? ix86_cost->int_load[2] : ix86_cost->int_store[2])
* (int) GET_MODE_SIZE (mode) / 4);
}
}
#ifdef DO_GLOBAL_CTORS_BODY
static void
ix86_svr3_asm_out_constructor (symbol, priority)
rtx symbol;
int priority ATTRIBUTE_UNUSED;
{
init_section ();
fputs ("\tpushl $", asm_out_file);
assemble_name (asm_out_file, XSTR (symbol, 0));
fputc ('\n', asm_out_file);
}
#endif