;- Machine description for SPARC chip for GNU C compiler ;; Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, ;; 1999, 2000, 2001 Free Software Foundation, Inc. ;; Contributed by Michael Tiemann (tiemann@cygnus.com) ;; 64 bit SPARC V9 support by Michael Tiemann, Jim Wilson, and Doug Evans, ;; at Cygnus Support.

;; This file is part of GNU CC.

;; GNU CC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 2, or (at your option) ;; any later version.

;; GNU CC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License ;; along with GNU CC; see the file COPYING. If not, write to ;; the Free Software Foundation, 59 Temple Place - Suite 330, ;; Boston, MA 02111-1307, USA.

;;- See file “rtl.def” for documentation on define_insn, match_*, et. al.

;; Uses of UNSPEC and UNSPEC_VOLATILE in this file: ;; ;; UNSPEC: 0 movsi_{lo_sum,high}pic ;; pic_lo_sum_di ;; pic_sethi_di ;; 1 update_return ;; 2 get_pc ;; 5 movsi{,lo_sum_,high_}pic_label_ref ;; 6 seth44 ;; 7 setm44 ;; 8 setl44 ;; 9 sethh ;; 10 setlm ;; 11 embmedany_sethi, embmedany_brsum ;; 13 embmedany_textuhi ;; 14 embmedany_texthi ;; 15 embmedany_textulo ;; 16 embmedany_textlo ;; 18 sethm ;; 19 setlo ;; ;; UNSPEC_VOLATILE: 0 blockage ;; 1 flush_register_windows ;; 2 goto_handler_and_restore ;; 3 goto_handler_and_restore_v9* ;; 4 flush ;; 5 do_builtin_setjmp_setup ;;

;; The upper 32 fp regs on the v9 can't hold SFmode values. To deal with this ;; a second register class, EXTRA_FP_REGS, exists for the v9 chip. The name ;; is a bit of a misnomer as it covers all 64 fp regs. The corresponding ;; constraint letter is ‘e’. To avoid any confusion, ‘e’ is used instead of ;; ‘f’ for all DF/TFmode values, including those that are specific to the v8.

;; Attribute for cpu type. ;; These must match the values for enum processor_type in sparc.h. (define_attr “cpu” “v7,cypress,v8,supersparc,sparclite,f930,f934,hypersparc,sparclite86x,sparclet,tsc701,v9,ultrasparc” (const (symbol_ref “sparc_cpu_attr”)))

;; Attribute for the instruction set. ;; At present we only need to distinguish v9/!v9, but for clarity we ;; test TARGET_V8 too. (define_attr “isa” “v6,v8,v9,sparclet” (const (cond [(symbol_ref “TARGET_V9”) (const_string “v9”) (symbol_ref “TARGET_V8”) (const_string “v8”) (symbol_ref “TARGET_SPARCLET”) (const_string “sparclet”)] (const_string “v6”))))

;; Architecture size. (define_attr “arch” “arch32bit,arch64bit” (const (cond [(symbol_ref “TARGET_ARCH64”) (const_string “arch64bit”)] (const_string “arch32bit”))))

;; Insn type.

(define_attr “type” “ialu,compare,shift,load,sload,store,uncond_branch,branch,call,sibcall,call_no_delay_slot,return,imul,idiv,fpload,fpstore,fp,fpmove,fpcmove,fpcmp,fpmul,fpdivs,fpdivd,fpsqrts,fpsqrtd,cmove,multi,misc” (const_string “ialu”))

;; Length (in # of insns). (define_attr “length” "" (const_int 1))

;; FP precision. (define_attr “fptype” “single,double” (const_string “single”))

(define_asm_attributes [(set_attr “length” “2”) (set_attr “type” “multi”)])

;; Attributes for instruction and branch scheduling

(define_attr “in_call_delay” “false,true” (cond [(eq_attr “type” “uncond_branch,branch,call,sibcall,call_no_delay_slot,return,multi”) (const_string “false”) (eq_attr “type” “load,fpload,store,fpstore”) (if_then_else (eq_attr “length” “1”) (const_string “true”) (const_string “false”))] (if_then_else (eq_attr “length” “1”) (const_string “true”) (const_string “false”))))

(define_delay (eq_attr “type” “call”) [(eq_attr “in_call_delay” “true”) (nil) (nil)])

(define_attr “eligible_for_sibcall_delay” “false,true” (symbol_ref “eligible_for_sibcall_delay (insn)”))

(define_delay (eq_attr “type” “sibcall”) [(eq_attr “eligible_for_sibcall_delay” “true”) (nil) (nil)])

(define_attr “leaf_function” “false,true” (const (symbol_ref “current_function_uses_only_leaf_regs”)))

(define_attr “eligible_for_return_delay” “false,true” (symbol_ref “eligible_for_return_delay (insn)”))

(define_attr “in_return_delay” “false,true” (if_then_else (and (and (and (eq_attr “type” “ialu,load,sload,store”) (eq_attr “length” “1”)) (eq_attr “leaf_function” “false”)) (eq_attr “eligible_for_return_delay” “false”)) (const_string “true”) (const_string “false”)))

(define_delay (and (eq_attr “type” “return”) (eq_attr “isa” “v9”)) [(eq_attr “in_return_delay” “true”) (nil) (nil)])

;; ??? Should implement the notion of predelay slots for floating point ;; branches. This would allow us to remove the nop always inserted before ;; a floating point branch.

;; ??? It is OK for fill_simple_delay_slots to put load/store instructions ;; in a delay slot, but it is not OK for fill_eager_delay_slots to do so. ;; This is because doing so will add several pipeline stalls to the path ;; that the load/store did not come from. Unfortunately, there is no way ;; to prevent fill_eager_delay_slots from using load/store without completely ;; disabling them. For the SPEC benchmark set, this is a serious lose, ;; because it prevents us from moving back the final store of inner loops.

(define_attr “in_branch_delay” “false,true” (if_then_else (and (eq_attr “type” “!uncond_branch,branch,call,sibcall,call_no_delay_slot,multi”) (eq_attr “length” “1”)) (const_string “true”) (const_string “false”)))

(define_attr “in_uncond_branch_delay” “false,true” (if_then_else (and (eq_attr “type” “!uncond_branch,branch,call,sibcall,call_no_delay_slot,multi”) (eq_attr “length” “1”)) (const_string “true”) (const_string “false”)))

(define_attr “in_annul_branch_delay” “false,true” (if_then_else (and (eq_attr “type” “!uncond_branch,branch,call,sibcall,call_no_delay_slot,multi”) (eq_attr “length” “1”)) (const_string “true”) (const_string “false”)))

(define_delay (eq_attr “type” “branch”) [(eq_attr “in_branch_delay” “true”) (nil) (eq_attr “in_annul_branch_delay” “true”)])

(define_delay (eq_attr “type” “uncond_branch”) [(eq_attr “in_uncond_branch_delay” “true”) (nil) (nil)])

;; Function units of the SPARC

;; (define_function_unit {name} {num-units} {n-users} {test} ;; {ready-delay} {issue-delay} [{conflict-list}])

;; The integer ALU. ;; (Noted only for documentation; units that take one cycle do not need to ;; be specified.)

;; On the sparclite, integer multiply takes 1, 3, or 5 cycles depending on ;; the inputs.

;; ---- cypress CY7C602 scheduling: ;; Memory with load-delay of 1 (i.e., 2 cycle load).

(define_function_unit “memory” 1 0 (and (eq_attr “cpu” “cypress”) (eq_attr “type” “load,sload,fpload”)) 2 2)

;; SPARC has two floating-point units: the FP ALU, ;; and the FP MUL/DIV/SQRT unit. ;; Instruction timings on the CY7C602 are as follows ;; FABSs 4 ;; FADDs/d 5/5 ;; FCMPs/d 4/4 ;; FDIVs/d 23/37 ;; FMOVs 4 ;; FMULs/d 5/7 ;; FNEGs 4 ;; FSQRTs/d 34/63 ;; FSUBs/d 5/5 ;; FdTOi/s 5/5 ;; FsTOi/d 5/5 ;; FiTOs/d 9/5

;; The CY7C602 can only support 2 fp isnsn simultaneously. ;; More insns cause the chip to stall.

(define_function_unit “fp_alu” 1 0 (and (eq_attr “cpu” “cypress”) (eq_attr “type” “fp,fpmove”)) 5 5)

(define_function_unit “fp_mds” 1 0 (and (eq_attr “cpu” “cypress”) (eq_attr “type” “fpmul”)) 7 7)

(define_function_unit “fp_mds” 1 0 (and (eq_attr “cpu” “cypress”) (eq_attr “type” “fpdivs,fpdivd”)) 37 37)

(define_function_unit “fp_mds” 1 0 (and (eq_attr “cpu” “cypress”) (eq_attr “type” “fpsqrts,fpsqrtd”)) 63 63)

;; ----- The TMS390Z55 scheduling ;; The Supersparc can issue 1 - 3 insns per cycle: up to two integer, ;; one ld/st, one fp. ;; Memory delivers its result in one cycle to IU, zero cycles to FP

(define_function_unit “memory” 1 0 (and (eq_attr “cpu” “supersparc”) (eq_attr “type” “load,sload”)) 1 1)

(define_function_unit “memory” 1 0 (and (eq_attr “cpu” “supersparc”) (eq_attr “type” “fpload”)) 0 1)

(define_function_unit “memory” 1 0 (and (eq_attr “cpu” “supersparc”) (eq_attr “type” “store,fpstore”)) 1 1)

(define_function_unit “shift” 1 0 (and (eq_attr “cpu” “supersparc”) (eq_attr “type” “shift”)) 1 1)

;; There are only two write ports to the integer register file ;; A store also uses a write port

(define_function_unit “iwport” 2 0 (and (eq_attr “cpu” “supersparc”) (eq_attr “type” “load,sload,store,shift,ialu”)) 1 1)

;; Timings; throughput/latency ;; FADD 1/3 add/sub, format conv, compar, abs, neg ;; FMUL 1/3 ;; FDIVs 4/6 ;; FDIVd 7/9 ;; FSQRTs 6/8 ;; FSQRTd 10/12 ;; IMUL 4/4

(define_function_unit “fp_alu” 1 0 (and (eq_attr “cpu” “supersparc”) (eq_attr “type” “fp,fpmove,fpcmp”)) 3 1)

(define_function_unit “fp_mds” 1 0 (and (eq_attr “cpu” “supersparc”) (eq_attr “type” “fpmul”)) 3 1)

(define_function_unit “fp_mds” 1 0 (and (eq_attr “cpu” “supersparc”) (eq_attr “type” “fpdivs”)) 6 4)

(define_function_unit “fp_mds” 1 0 (and (eq_attr “cpu” “supersparc”) (eq_attr “type” “fpdivd”)) 9 7)

(define_function_unit “fp_mds” 1 0 (and (eq_attr “cpu” “supersparc”) (eq_attr “type” “fpsqrts,fpsqrtd”)) 12 10)

(define_function_unit “fp_mds” 1 0 (and (eq_attr “cpu” “supersparc”) (eq_attr “type” “imul”)) 4 4)

;; ----- hypersparc/sparclite86x scheduling ;; The Hypersparc can issue 1 - 2 insns per cycle. The dual issue cases are: ;; L-Ld/St I-Int F-Float B-Branch LI/LF/LB/II/IF/IB/FF/FB ;; II/FF case is only when loading a 32 bit hi/lo constant ;; Single issue insns include call, jmpl, u/smul, u/sdiv, lda, sta, fcmp ;; Memory delivers its result in one cycle to IU

(define_function_unit “memory” 1 0 (and (ior (eq_attr “cpu” “hypersparc”) (eq_attr “cpu” “sparclite86x”)) (eq_attr “type” “load,sload,fpload”)) 1 1)

(define_function_unit “memory” 1 0 (and (ior (eq_attr “cpu” “hypersparc”) (eq_attr “cpu” “sparclite86x”)) (eq_attr “type” “store,fpstore”)) 2 1)

(define_function_unit “sparclite86x_branch” 1 0 (and (eq_attr “cpu” “sparclite86x”) (eq_attr “type” “branch”)) 1 1)

;; integer multiply insns (define_function_unit “sparclite86x_shift” 1 0 (and (eq_attr “cpu” “sparclite86x”) (eq_attr “type” “shift”)) 1 1)

(define_function_unit “fp_alu” 1 0 (and (ior (eq_attr “cpu” “hypersparc”) (eq_attr “cpu” “sparclite86x”)) (eq_attr “type” “fp,fpmove,fpcmp”)) 1 1)

(define_function_unit “fp_mds” 1 0 (and (ior (eq_attr “cpu” “hypersparc”) (eq_attr “cpu” “sparclite86x”)) (eq_attr “type” “fpmul”)) 1 1)

(define_function_unit “fp_mds” 1 0 (and (ior (eq_attr “cpu” “hypersparc”) (eq_attr “cpu” “sparclite86x”)) (eq_attr “type” “fpdivs”)) 8 6)

(define_function_unit “fp_mds” 1 0 (and (ior (eq_attr “cpu” “hypersparc”) (eq_attr “cpu” “sparclite86x”)) (eq_attr “type” “fpdivd”)) 12 10)

(define_function_unit “fp_mds” 1 0 (and (ior (eq_attr “cpu” “hypersparc”) (eq_attr “cpu” “sparclite86x”)) (eq_attr “type” “fpsqrts,fpsqrtd”)) 17 15)

(define_function_unit “fp_mds” 1 0 (and (ior (eq_attr “cpu” “hypersparc”) (eq_attr “cpu” “sparclite86x”)) (eq_attr “type” “imul”)) 17 15)

;; ----- sparclet tsc701 scheduling ;; The tsc701 issues 1 insn per cycle. ;; Results may be written back out of order.

;; Loads take 2 extra cycles to complete and 4 can be buffered at a time.

(define_function_unit “tsc701_load” 4 1 (and (eq_attr “cpu” “tsc701”) (eq_attr “type” “load,sload”)) 3 1)

;; Stores take 2(?) extra cycles to complete. ;; It is desirable to not have any memory operation in the following 2 cycles. ;; (??? or 2 memory ops in the case of std).

(define_function_unit “tsc701_store” 1 0 (and (eq_attr “cpu” “tsc701”) (eq_attr “type” “store”)) 3 3 [(eq_attr “type” “load,sload,store”)])

;; The multiply unit has a latency of 5. (define_function_unit “tsc701_mul” 1 0 (and (eq_attr “cpu” “tsc701”) (eq_attr “type” “imul”)) 5 5)

;; ----- The UltraSPARC-1 scheduling ;; UltraSPARC has two integer units. Shift instructions can only execute ;; on IE0. Condition code setting instructions, call, and jmpl (including ;; the ret and retl pseudo-instructions) can only execute on IE1. ;; Branch on register uses IE1, but branch on condition code does not. ;; Conditional moves take 2 cycles. No other instruction can issue in the ;; same cycle as a conditional move. ;; Multiply and divide take many cycles during which no other instructions ;; can issue. ;; Memory delivers its result in two cycles (except for signed loads, ;; which take one cycle more). One memory instruction can be issued per ;; cycle.

(define_function_unit “memory” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “load,fpload”)) 2 1)

(define_function_unit “memory” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “sload”)) 3 1)

(define_function_unit “memory” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “store,fpstore”)) 1 1)

(define_function_unit “ieuN” 2 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “ialu,shift,compare,call,sibcall,call_no_delay_slot,uncond_branch”)) 1 1)

(define_function_unit “ieu0” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “shift”)) 1 1)

(define_function_unit “ieu0” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “cmove”)) 2 1)

(define_function_unit “ieu1” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “compare,call,sibcall,call_no_delay_slot,uncond_branch”)) 1 1)

(define_function_unit “cti” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “branch”)) 1 1)

;; Timings; throughput/latency ;; FMOV 1/1 fmov, fabs, fneg ;; FMOVcc 1/2 ;; FADD 1/3 add/sub, format conv, compar ;; FMUL 1/3 ;; FDIVs 12/12 ;; FDIVd 22/22 ;; FSQRTs 12/12 ;; FSQRTd 22/22 ;; FCMP takes 1 cycle to branch, 2 cycles to conditional move. ;; ;; FDIV{s,d}/FSQRT{s,d} are given their own unit since they only ;; use the FPM multiplier for final rounding 3 cycles before the ;; end of their latency and we have no real way to model that. ;; ;; ??? This is really bogus because the timings really depend upon ;; who uses the result. We should record who the user is with ;; more descriptive ‘type’ attribute names and account for these ;; issues in ultrasparc_adjust_cost.

(define_function_unit “fadd” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “fpmove”)) 1 1)

(define_function_unit “fadd” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “fpcmove”)) 2 1)

(define_function_unit “fadd” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “fp”)) 3 1)

(define_function_unit “fadd” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “fpcmp”)) 2 1)

(define_function_unit “fmul” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “fpmul”)) 3 1)

(define_function_unit “fadd” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “fpcmove”)) 2 1)

(define_function_unit “fdiv” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “fpdivs”)) 12 12)

(define_function_unit “fdiv” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “fpdivd”)) 22 22)

(define_function_unit “fdiv” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “fpsqrts”)) 12 12)

(define_function_unit “fdiv” 1 0 (and (eq_attr “cpu” “ultrasparc”) (eq_attr “type” “fpsqrtd”)) 22 22) ;; Compare instructions. ;; This controls RTL generation and register allocation.

;; We generate RTL for comparisons and branches by having the cmpxx ;; patterns store away the operands. Then, the scc and bcc patterns ;; emit RTL for both the compare and the branch. ;; ;; We do this because we want to generate different code for an sne and ;; seq insn. In those cases, if the second operand of the compare is not ;; const0_rtx, we want to compute the xor of the two operands and test ;; it against zero. ;; ;; We start with the DEFINE_EXPANDs, then the DEFINE_INSNs to match ;; the patterns. Finally, we have the DEFINE_SPLITs for some of the scc ;; insns that actually require more than one machine instruction.

;; Put cmpsi first among compare insns so it matches two CONST_INT operands.

(define_expand “cmpsi” [(set (reg:CC 100) (compare:CC (match_operand:SI 0 “register_operand” "") (match_operand:SI 1 “arith_operand” "“)))] "" " { sparc_compare_op0 = operands[0]; sparc_compare_op1 = operands[1]; DONE; }”)

(define_expand “cmpdi” [(set (reg:CCX 100) (compare:CCX (match_operand:DI 0 “register_operand” "") (match_operand:DI 1 “arith_double_operand” "“)))] “TARGET_ARCH64” " { sparc_compare_op0 = operands[0]; sparc_compare_op1 = operands[1]; DONE; }”)

(define_expand “cmpsf” ;; The 96 here isn't ever used by anyone. [(set (reg:CCFP 96) (compare:CCFP (match_operand:SF 0 “register_operand” "") (match_operand:SF 1 “register_operand” "“)))] “TARGET_FPU” " { sparc_compare_op0 = operands[0]; sparc_compare_op1 = operands[1]; DONE; }”)

(define_expand “cmpdf” ;; The 96 here isn't ever used by anyone. [(set (reg:CCFP 96) (compare:CCFP (match_operand:DF 0 “register_operand” "") (match_operand:DF 1 “register_operand” "“)))] “TARGET_FPU” " { sparc_compare_op0 = operands[0]; sparc_compare_op1 = operands[1]; DONE; }”)

(define_expand “cmptf” ;; The 96 here isn't ever used by anyone. [(set (reg:CCFP 96) (compare:CCFP (match_operand:TF 0 “register_operand” "") (match_operand:TF 1 “register_operand” "“)))] “TARGET_FPU” " { sparc_compare_op0 = operands[0]; sparc_compare_op1 = operands[1]; DONE; }”)

;; Now the compare DEFINE_INSNs.

(define_insn “*cmpsi_insn” [(set (reg:CC 100) (compare:CC (match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “arith_operand” “rI”)))] "" “cmp\t%0, %1” [(set_attr “type” “compare”)])

(define_insn “*cmpdi_sp64” [(set (reg:CCX 100) (compare:CCX (match_operand:DI 0 “register_operand” “r”) (match_operand:DI 1 “arith_double_operand” “rHI”)))] “TARGET_ARCH64” “cmp\t%0, %1” [(set_attr “type” “compare”)])

(define_insn “*cmpsf_fpe” [(set (match_operand:CCFPE 0 “fcc_reg_operand” “=c”) (compare:CCFPE (match_operand:SF 1 “register_operand” “f”) (match_operand:SF 2 “register_operand” “f”)))] “TARGET_FPU” “* { if (TARGET_V9) return "fcmpes\t%0, %1, %2"; return "fcmpes\t%1, %2"; }” [(set_attr “type” “fpcmp”)])

(define_insn “*cmpdf_fpe” [(set (match_operand:CCFPE 0 “fcc_reg_operand” “=c”) (compare:CCFPE (match_operand:DF 1 “register_operand” “e”) (match_operand:DF 2 “register_operand” “e”)))] “TARGET_FPU” “* { if (TARGET_V9) return "fcmped\t%0, %1, %2"; return "fcmped\t%1, %2"; }” [(set_attr “type” “fpcmp”) (set_attr “fptype” “double”)])

(define_insn “*cmptf_fpe” [(set (match_operand:CCFPE 0 “fcc_reg_operand” “=c”) (compare:CCFPE (match_operand:TF 1 “register_operand” “e”) (match_operand:TF 2 “register_operand” “e”)))] “TARGET_FPU && TARGET_HARD_QUAD” “* { if (TARGET_V9) return "fcmpeq\t%0, %1, %2"; return "fcmpeq\t%1, %2"; }” [(set_attr “type” “fpcmp”)])

(define_insn “*cmpsf_fp” [(set (match_operand:CCFP 0 “fcc_reg_operand” “=c”) (compare:CCFP (match_operand:SF 1 “register_operand” “f”) (match_operand:SF 2 “register_operand” “f”)))] “TARGET_FPU” “* { if (TARGET_V9) return "fcmps\t%0, %1, %2"; return "fcmps\t%1, %2"; }” [(set_attr “type” “fpcmp”)])

(define_insn “*cmpdf_fp” [(set (match_operand:CCFP 0 “fcc_reg_operand” “=c”) (compare:CCFP (match_operand:DF 1 “register_operand” “e”) (match_operand:DF 2 “register_operand” “e”)))] “TARGET_FPU” “* { if (TARGET_V9) return "fcmpd\t%0, %1, %2"; return "fcmpd\t%1, %2"; }” [(set_attr “type” “fpcmp”) (set_attr “fptype” “double”)])

(define_insn “*cmptf_fp” [(set (match_operand:CCFP 0 “fcc_reg_operand” “=c”) (compare:CCFP (match_operand:TF 1 “register_operand” “e”) (match_operand:TF 2 “register_operand” “e”)))] “TARGET_FPU && TARGET_HARD_QUAD” “* { if (TARGET_V9) return "fcmpq\t%0, %1, %2"; return "fcmpq\t%1, %2"; }” [(set_attr “type” “fpcmp”)]) ;; Next come the scc insns. For seq, sne, sgeu, and sltu, we can do this ;; without jumps using the addx/subx instructions. For seq/sne on v9 we use ;; the same code as v8 (the addx/subx method has more applications). The ;; exception to this is “reg != 0” which can be done in one instruction on v9 ;; (so we do it). For the rest, on v9 we use conditional moves; on v8, we do ;; branches.

;; Seq_special[_xxx] and sne_special[_xxx] clobber the CC reg, because they ;; generate addcc/subcc instructions.

(define_expand “seqsi_special” [(set (match_dup 3) (xor:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “register_operand” ""))) (parallel [(set (match_operand:SI 0 “register_operand” "") (eq:SI (match_dup 3) (const_int 0))) (clobber (reg:CC 100))])] "" “{ operands[3] = gen_reg_rtx (SImode); }”)

(define_expand “seqdi_special” [(set (match_dup 3) (xor:DI (match_operand:DI 1 “register_operand” "") (match_operand:DI 2 “register_operand” ""))) (set (match_operand:DI 0 “register_operand” "") (eq:DI (match_dup 3) (const_int 0)))] “TARGET_ARCH64” “{ operands[3] = gen_reg_rtx (DImode); }”)

(define_expand “snesi_special” [(set (match_dup 3) (xor:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “register_operand” ""))) (parallel [(set (match_operand:SI 0 “register_operand” "") (ne:SI (match_dup 3) (const_int 0))) (clobber (reg:CC 100))])] "" “{ operands[3] = gen_reg_rtx (SImode); }”)

(define_expand “snedi_special” [(set (match_dup 3) (xor:DI (match_operand:DI 1 “register_operand” "") (match_operand:DI 2 “register_operand” ""))) (set (match_operand:DI 0 “register_operand” "") (ne:DI (match_dup 3) (const_int 0)))] “TARGET_ARCH64” “{ operands[3] = gen_reg_rtx (DImode); }”)

(define_expand “seqdi_special_trunc” [(set (match_dup 3) (xor:DI (match_operand:DI 1 “register_operand” "") (match_operand:DI 2 “register_operand” ""))) (set (match_operand:SI 0 “register_operand” "") (eq:SI (match_dup 3) (const_int 0)))] “TARGET_ARCH64” “{ operands[3] = gen_reg_rtx (DImode); }”)

(define_expand “snedi_special_trunc” [(set (match_dup 3) (xor:DI (match_operand:DI 1 “register_operand” "") (match_operand:DI 2 “register_operand” ""))) (set (match_operand:SI 0 “register_operand” "") (ne:SI (match_dup 3) (const_int 0)))] “TARGET_ARCH64” “{ operands[3] = gen_reg_rtx (DImode); }”)

(define_expand “seqsi_special_extend” [(set (match_dup 3) (xor:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “register_operand” ""))) (parallel [(set (match_operand:DI 0 “register_operand” "") (eq:DI (match_dup 3) (const_int 0))) (clobber (reg:CC 100))])] “TARGET_ARCH64” “{ operands[3] = gen_reg_rtx (SImode); }”)

(define_expand “snesi_special_extend” [(set (match_dup 3) (xor:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 “register_operand” ""))) (parallel [(set (match_operand:DI 0 “register_operand” "") (ne:DI (match_dup 3) (const_int 0))) (clobber (reg:CC 100))])] “TARGET_ARCH64” “{ operands[3] = gen_reg_rtx (SImode); }”)

;; ??? v9: Operand 0 needs a mode, so SImode was chosen. ;; However, the code handles both SImode and DImode. (define_expand “seq” [(set (match_operand:SI 0 “intreg_operand” "") (eq:SI (match_dup 1) (const_int 0)))] "" " { if (GET_MODE (sparc_compare_op0) == SImode) { rtx pat;

  if (GET_MODE (operands[0]) == SImode)
pat = gen_seqsi_special (operands[0], sparc_compare_op0,
			 sparc_compare_op1);
  else if (! TARGET_ARCH64)
FAIL;
  else
pat = gen_seqsi_special_extend (operands[0], sparc_compare_op0,
				sparc_compare_op1);
  emit_insn (pat);
  DONE;
}

else if (GET_MODE (sparc_compare_op0) == DImode) { rtx pat;

  if (! TARGET_ARCH64)
FAIL;
  else if (GET_MODE (operands[0]) == SImode)
pat = gen_seqdi_special_trunc (operands[0], sparc_compare_op0,
			       sparc_compare_op1);
  else
pat = gen_seqdi_special (operands[0], sparc_compare_op0,
			 sparc_compare_op1);
  emit_insn (pat);
  DONE;
}

else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, EQ); emit_jump_insn (gen_sne (operands[0])); DONE; } else if (TARGET_V9) { if (gen_v9_scc (EQ, operands)) DONE; /* fall through */ } FAIL; }")

;; ??? v9: Operand 0 needs a mode, so SImode was chosen. ;; However, the code handles both SImode and DImode. (define_expand “sne” [(set (match_operand:SI 0 “intreg_operand” "") (ne:SI (match_dup 1) (const_int 0)))] "" " { if (GET_MODE (sparc_compare_op0) == SImode) { rtx pat;

  if (GET_MODE (operands[0]) == SImode)
pat = gen_snesi_special (operands[0], sparc_compare_op0,
			 sparc_compare_op1);
  else if (! TARGET_ARCH64)
FAIL;
  else
pat = gen_snesi_special_extend (operands[0], sparc_compare_op0,
				sparc_compare_op1);
  emit_insn (pat);
  DONE;
}

else if (GET_MODE (sparc_compare_op0) == DImode) { rtx pat;

  if (! TARGET_ARCH64)
FAIL;
  else if (GET_MODE (operands[0]) == SImode)
pat = gen_snedi_special_trunc (operands[0], sparc_compare_op0,
			       sparc_compare_op1);
  else
pat = gen_snedi_special (operands[0], sparc_compare_op0,
			 sparc_compare_op1);
  emit_insn (pat);
  DONE;
}

else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, NE); emit_jump_insn (gen_sne (operands[0])); DONE; } else if (TARGET_V9) { if (gen_v9_scc (NE, operands)) DONE; /* fall through */ } FAIL; }")

(define_expand “sgt” [(set (match_operand:SI 0 “intreg_operand” "“) (gt:SI (match_dup 1) (const_int 0)))] "" " { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, GT); emit_jump_insn (gen_sne (operands[0])); DONE; } else if (TARGET_V9) { if (gen_v9_scc (GT, operands)) DONE; /* fall through */ } FAIL; }”)

(define_expand “slt” [(set (match_operand:SI 0 “intreg_operand” "“) (lt:SI (match_dup 1) (const_int 0)))] "" " { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LT); emit_jump_insn (gen_sne (operands[0])); DONE; } else if (TARGET_V9) { if (gen_v9_scc (LT, operands)) DONE; /* fall through */ } FAIL; }”)

(define_expand “sge” [(set (match_operand:SI 0 “intreg_operand” "“) (ge:SI (match_dup 1) (const_int 0)))] "" " { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, GE); emit_jump_insn (gen_sne (operands[0])); DONE; } else if (TARGET_V9) { if (gen_v9_scc (GE, operands)) DONE; /* fall through */ } FAIL; }”)

(define_expand “sle” [(set (match_operand:SI 0 “intreg_operand” "“) (le:SI (match_dup 1) (const_int 0)))] "" " { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LE); emit_jump_insn (gen_sne (operands[0])); DONE; } else if (TARGET_V9) { if (gen_v9_scc (LE, operands)) DONE; /* fall through */ } FAIL; }”)

(define_expand “sgtu” [(set (match_operand:SI 0 “intreg_operand” "") (gtu:SI (match_dup 1) (const_int 0)))] "" " { if (! TARGET_V9) { rtx tem, pat;

  /* We can do ltu easily, so if both operands are registers, swap them and
 do a LTU.  */
  if ((GET_CODE (sparc_compare_op0) == REG
   || GET_CODE (sparc_compare_op0) == SUBREG)
  && (GET_CODE (sparc_compare_op1) == REG
      || GET_CODE (sparc_compare_op1) == SUBREG))
{
  tem = sparc_compare_op0;
  sparc_compare_op0 = sparc_compare_op1;
  sparc_compare_op1 = tem;
  pat = gen_sltu (operands[0]);
      if (pat == NULL_RTX)
        FAIL;
      emit_insn (pat);
  DONE;
}
}

else { if (gen_v9_scc (GTU, operands)) DONE; } FAIL; }")

(define_expand “sltu” [(set (match_operand:SI 0 “intreg_operand” "“) (ltu:SI (match_dup 1) (const_int 0)))] "" " { if (TARGET_V9) { if (gen_v9_scc (LTU, operands)) DONE; } operands[1] = gen_compare_reg (LTU, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “sgeu” [(set (match_operand:SI 0 “intreg_operand” "“) (geu:SI (match_dup 1) (const_int 0)))] "" " { if (TARGET_V9) { if (gen_v9_scc (GEU, operands)) DONE; } operands[1] = gen_compare_reg (GEU, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “sleu” [(set (match_operand:SI 0 “intreg_operand” "") (leu:SI (match_dup 1) (const_int 0)))] "" " { if (! TARGET_V9) { rtx tem, pat;

  /* We can do geu easily, so if both operands are registers, swap them and
 do a GEU.  */
  if ((GET_CODE (sparc_compare_op0) == REG
   || GET_CODE (sparc_compare_op0) == SUBREG)
  && (GET_CODE (sparc_compare_op1) == REG
      || GET_CODE (sparc_compare_op1) == SUBREG))
{
  tem = sparc_compare_op0;
  sparc_compare_op0 = sparc_compare_op1;
  sparc_compare_op1 = tem;
  pat = gen_sgeu (operands[0]);
      if (pat == NULL_RTX)
        FAIL;
      emit_insn (pat);
  DONE;
}
}

else { if (gen_v9_scc (LEU, operands)) DONE; } FAIL; }")

;; Now the DEFINE_INSNs for the scc cases.

;; The SEQ and SNE patterns are special because they can be done ;; without any branching and do not involve a COMPARE. We want ;; them to always use the splitz below so the results can be ;; scheduled.

(define_insn “*snesi_zero” [(set (match_operand:SI 0 “register_operand” “=r”) (ne:SI (match_operand:SI 1 “register_operand” “r”) (const_int 0))) (clobber (reg:CC 100))] "" “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (ne:SI (match_operand:SI 1 “register_operand” "") (const_int 0))) (clobber (reg:CC 100))] "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (ltu:SI (reg:CC 100) (const_int 0)))] "")

(define_insn “*neg_snesi_zero” [(set (match_operand:SI 0 “register_operand” “=r”) (neg:SI (ne:SI (match_operand:SI 1 “register_operand” “r”) (const_int 0)))) (clobber (reg:CC 100))] "" “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (neg:SI (ne:SI (match_operand:SI 1 “register_operand” "") (const_int 0)))) (clobber (reg:CC 100))] "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (neg:SI (ltu:SI (reg:CC 100) (const_int 0))))] "")

(define_insn “*snesi_zero_extend” [(set (match_operand:DI 0 “register_operand” “=r”) (ne:DI (match_operand:SI 1 “register_operand” “r”) (const_int 0))) (clobber (reg:CC 100))] “TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (ne:DI (match_operand:SI 1 “register_operand” "") (const_int 0))) (clobber (reg:CC 100))] “TARGET_ARCH64” [(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (const_int 0) (match_dup 1)) (const_int 0))) (set (match_dup 0) (zero_extend:DI (plus:SI (plus:SI (const_int 0) (const_int 0)) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))))] "")

(define_insn “*snedi_zero” [(set (match_operand:DI 0 “register_operand” “=&r”) (ne:DI (match_operand:DI 1 “register_operand” “r”) (const_int 0)))] “TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (ne:DI (match_operand:DI 1 “register_operand” "") (const_int 0)))] “TARGET_ARCH64 && ! reg_overlap_mentioned_p (operands[1], operands[0])” [(set (match_dup 0) (const_int 0)) (set (match_dup 0) (if_then_else:DI (ne:DI (match_dup 1) (const_int 0)) (const_int 1) (match_dup 0)))] "")

(define_insn “*neg_snedi_zero” [(set (match_operand:DI 0 “register_operand” “=&r”) (neg:DI (ne:DI (match_operand:DI 1 “register_operand” “r”) (const_int 0))))] “TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (neg:DI (ne:DI (match_operand:DI 1 “register_operand” "") (const_int 0))))] “TARGET_ARCH64 && ! reg_overlap_mentioned_p (operands[1], operands[0])” [(set (match_dup 0) (const_int 0)) (set (match_dup 0) (if_then_else:DI (ne:DI (match_dup 1) (const_int 0)) (const_int -1) (match_dup 0)))] "")

(define_insn “*snedi_zero_trunc” [(set (match_operand:SI 0 “register_operand” “=&r”) (ne:SI (match_operand:DI 1 “register_operand” “r”) (const_int 0)))] “TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (ne:SI (match_operand:DI 1 “register_operand” "") (const_int 0)))] “TARGET_ARCH64 && ! reg_overlap_mentioned_p (operands[1], operands[0])” [(set (match_dup 0) (const_int 0)) (set (match_dup 0) (if_then_else:SI (ne:DI (match_dup 1) (const_int 0)) (const_int 1) (match_dup 0)))] "")

(define_insn “*seqsi_zero” [(set (match_operand:SI 0 “register_operand” “=r”) (eq:SI (match_operand:SI 1 “register_operand” “r”) (const_int 0))) (clobber (reg:CC 100))] "" “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (eq:SI (match_operand:SI 1 “register_operand” "") (const_int 0))) (clobber (reg:CC 100))] "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (geu:SI (reg:CC 100) (const_int 0)))] "")

(define_insn “*neg_seqsi_zero” [(set (match_operand:SI 0 “register_operand” “=r”) (neg:SI (eq:SI (match_operand:SI 1 “register_operand” “r”) (const_int 0)))) (clobber (reg:CC 100))] "" “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (neg:SI (eq:SI (match_operand:SI 1 “register_operand” "") (const_int 0)))) (clobber (reg:CC 100))] "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (neg:SI (geu:SI (reg:CC 100) (const_int 0))))] "")

(define_insn “*seqsi_zero_extend” [(set (match_operand:DI 0 “register_operand” “=r”) (eq:DI (match_operand:SI 1 “register_operand” “r”) (const_int 0))) (clobber (reg:CC 100))] “TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (eq:DI (match_operand:SI 1 “register_operand” "") (const_int 0))) (clobber (reg:CC 100))] “TARGET_ARCH64” [(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (const_int 0) (match_dup 1)) (const_int 0))) (set (match_dup 0) (zero_extend:DI (minus:SI (minus:SI (const_int 0) (const_int -1)) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))))] "")

(define_insn “*seqdi_zero” [(set (match_operand:DI 0 “register_operand” “=&r”) (eq:DI (match_operand:DI 1 “register_operand” “r”) (const_int 0)))] “TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (eq:DI (match_operand:DI 1 “register_operand” "") (const_int 0)))] “TARGET_ARCH64 && ! reg_overlap_mentioned_p (operands[1], operands[0])” [(set (match_dup 0) (const_int 0)) (set (match_dup 0) (if_then_else:DI (eq:DI (match_dup 1) (const_int 0)) (const_int 1) (match_dup 0)))] "")

(define_insn “*neg_seqdi_zero” [(set (match_operand:DI 0 “register_operand” “=&r”) (neg:DI (eq:DI (match_operand:DI 1 “register_operand” “r”) (const_int 0))))] “TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (neg:DI (eq:DI (match_operand:DI 1 “register_operand” "") (const_int 0))))] “TARGET_ARCH64 && ! reg_overlap_mentioned_p (operands[1], operands[0])” [(set (match_dup 0) (const_int 0)) (set (match_dup 0) (if_then_else:DI (eq:DI (match_dup 1) (const_int 0)) (const_int -1) (match_dup 0)))] "")

(define_insn “*seqdi_zero_trunc” [(set (match_operand:SI 0 “register_operand” “=&r”) (eq:SI (match_operand:DI 1 “register_operand” “r”) (const_int 0)))] “TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (eq:SI (match_operand:DI 1 “register_operand” "") (const_int 0)))] “TARGET_ARCH64 && ! reg_overlap_mentioned_p (operands[1], operands[0])” [(set (match_dup 0) (const_int 0)) (set (match_dup 0) (if_then_else:SI (eq:DI (match_dup 1) (const_int 0)) (const_int 1) (match_dup 0)))] "")

;; We can also do (x + (i == 0)) and related, so put them in. ;; ??? The addx/subx insns use the 32 bit carry flag so there are no DImode ;; versions for v9.

(define_insn “*x_plus_i_ne_0” [(set (match_operand:SI 0 “register_operand” “=r”) (plus:SI (ne:SI (match_operand:SI 1 “register_operand” “r”) (const_int 0)) (match_operand:SI 2 “register_operand” “r”))) (clobber (reg:CC 100))] "" “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (plus:SI (ne:SI (match_operand:SI 1 “register_operand” "") (const_int 0)) (match_operand:SI 2 “register_operand” ""))) (clobber (reg:CC 100))] "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (plus:SI (ltu:SI (reg:CC 100) (const_int 0)) (match_dup 2)))] "")

(define_insn “*x_minus_i_ne_0” [(set (match_operand:SI 0 “register_operand” “=r”) (minus:SI (match_operand:SI 2 “register_operand” “r”) (ne:SI (match_operand:SI 1 “register_operand” “r”) (const_int 0)))) (clobber (reg:CC 100))] "" “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (minus:SI (match_operand:SI 2 “register_operand” "") (ne:SI (match_operand:SI 1 “register_operand” "") (const_int 0)))) (clobber (reg:CC 100))] "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (minus:SI (match_dup 2) (ltu:SI (reg:CC 100) (const_int 0))))] "")

(define_insn “*x_plus_i_eq_0” [(set (match_operand:SI 0 “register_operand” “=r”) (plus:SI (eq:SI (match_operand:SI 1 “register_operand” “r”) (const_int 0)) (match_operand:SI 2 “register_operand” “r”))) (clobber (reg:CC 100))] "" “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (plus:SI (eq:SI (match_operand:SI 1 “register_operand” "") (const_int 0)) (match_operand:SI 2 “register_operand” ""))) (clobber (reg:CC 100))] "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (plus:SI (geu:SI (reg:CC 100) (const_int 0)) (match_dup 2)))] "")

(define_insn “*x_minus_i_eq_0” [(set (match_operand:SI 0 “register_operand” “=r”) (minus:SI (match_operand:SI 2 “register_operand” “r”) (eq:SI (match_operand:SI 1 “register_operand” “r”) (const_int 0)))) (clobber (reg:CC 100))] "" “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (minus:SI (match_operand:SI 2 “register_operand” "") (eq:SI (match_operand:SI 1 “register_operand” "") (const_int 0)))) (clobber (reg:CC 100))] "" [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_dup 1)) (const_int 0))) (set (match_dup 0) (minus:SI (match_dup 2) (geu:SI (reg:CC 100) (const_int 0))))] "")

;; We can also do GEU and LTU directly, but these operate after a compare. ;; ??? The addx/subx insns use the 32 bit carry flag so there are no DImode ;; versions for v9.

(define_insn “*sltu_insn” [(set (match_operand:SI 0 “register_operand” “=r”) (ltu:SI (reg:CC 100) (const_int 0)))] "" “addx\t%%g0, 0, %0” [(set_attr “type” “misc”)])

(define_insn “*neg_sltu_insn” [(set (match_operand:SI 0 “register_operand” “=r”) (neg:SI (ltu:SI (reg:CC 100) (const_int 0))))] "" “subx\t%%g0, 0, %0” [(set_attr “type” “misc”)])

;; ??? Combine should canonicalize these next two to the same pattern. (define_insn “*neg_sltu_minus_x” [(set (match_operand:SI 0 “register_operand” “=r”) (minus:SI (neg:SI (ltu:SI (reg:CC 100) (const_int 0))) (match_operand:SI 1 “arith_operand” “rI”)))] "" “subx\t%%g0, %1, %0” [(set_attr “type” “misc”)])

(define_insn “*neg_sltu_plus_x” [(set (match_operand:SI 0 “register_operand” “=r”) (neg:SI (plus:SI (ltu:SI (reg:CC 100) (const_int 0)) (match_operand:SI 1 “arith_operand” “rI”))))] "" “subx\t%%g0, %1, %0” [(set_attr “type” “misc”)])

(define_insn “*sgeu_insn” [(set (match_operand:SI 0 “register_operand” “=r”) (geu:SI (reg:CC 100) (const_int 0)))] "" “subx\t%%g0, -1, %0” [(set_attr “type” “misc”)])

(define_insn “*neg_sgeu_insn” [(set (match_operand:SI 0 “register_operand” “=r”) (neg:SI (geu:SI (reg:CC 100) (const_int 0))))] "" “addx\t%%g0, -1, %0” [(set_attr “type” “misc”)])

;; We can also do (x + ((unsigned) i >= 0)) and related, so put them in. ;; ??? The addx/subx insns use the 32 bit carry flag so there are no DImode ;; versions for v9.

(define_insn “*sltu_plus_x” [(set (match_operand:SI 0 “register_operand” “=r”) (plus:SI (ltu:SI (reg:CC 100) (const_int 0)) (match_operand:SI 1 “arith_operand” “rI”)))] "" “addx\t%%g0, %1, %0” [(set_attr “type” “misc”)])

(define_insn “*sltu_plus_x_plus_y” [(set (match_operand:SI 0 “register_operand” “=r”) (plus:SI (ltu:SI (reg:CC 100) (const_int 0)) (plus:SI (match_operand:SI 1 “arith_operand” “%r”) (match_operand:SI 2 “arith_operand” “rI”))))] "" “addx\t%1, %2, %0” [(set_attr “type” “misc”)])

(define_insn “*x_minus_sltu” [(set (match_operand:SI 0 “register_operand” “=r”) (minus:SI (match_operand:SI 1 “register_operand” “r”) (ltu:SI (reg:CC 100) (const_int 0))))] "" “subx\t%1, 0, %0” [(set_attr “type” “misc”)])

;; ??? Combine should canonicalize these next two to the same pattern. (define_insn “*x_minus_y_minus_sltu” [(set (match_operand:SI 0 “register_operand” “=r”) (minus:SI (minus:SI (match_operand:SI 1 “reg_or_0_operand” “rJ”) (match_operand:SI 2 “arith_operand” “rI”)) (ltu:SI (reg:CC 100) (const_int 0))))] "" “subx\t%r1, %2, %0” [(set_attr “type” “misc”)])

(define_insn “*x_minus_sltu_plus_y” [(set (match_operand:SI 0 “register_operand” “=r”) (minus:SI (match_operand:SI 1 “reg_or_0_operand” “rJ”) (plus:SI (ltu:SI (reg:CC 100) (const_int 0)) (match_operand:SI 2 “arith_operand” “rI”))))] "" “subx\t%r1, %2, %0” [(set_attr “type” “misc”)])

(define_insn “*sgeu_plus_x” [(set (match_operand:SI 0 “register_operand” “=r”) (plus:SI (geu:SI (reg:CC 100) (const_int 0)) (match_operand:SI 1 “register_operand” “r”)))] "" “subx\t%1, -1, %0” [(set_attr “type” “misc”)])

(define_insn “*x_minus_sgeu” [(set (match_operand:SI 0 “register_operand” “=r”) (minus:SI (match_operand:SI 1 “register_operand” “r”) (geu:SI (reg:CC 100) (const_int 0))))] "" “addx\t%1, -1, %0” [(set_attr “type” “misc”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (match_operator:SI 2 “noov_compare_op” [(match_operand 1 “icc_or_fcc_reg_operand” "") (const_int 0)]))] ;; 32 bit LTU/GEU are better implemented using addx/subx “TARGET_V9 && REGNO (operands[1]) == SPARC_ICC_REG && (GET_MODE (operands[1]) == CCXmode || (GET_CODE (operands[2]) != LTU && GET_CODE (operands[2]) != GEU))” [(set (match_dup 0) (const_int 0)) (set (match_dup 0) (if_then_else:SI (match_op_dup:SI 2 [(match_dup 1) (const_int 0)]) (const_int 1) (match_dup 0)))] "")

;; These control RTL generation for conditional jump insns

;; The quad-word fp compare library routines all return nonzero to indicate ;; true, which is different from the equivalent libgcc routines, so we must ;; handle them specially here.

(define_expand “beq” [(set (pc) (if_then_else (eq (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode) { emit_v9_brxx_insn (EQ, sparc_compare_op0, operands[0]); DONE; } else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, EQ); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (EQ, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “bne” [(set (pc) (if_then_else (ne (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode) { emit_v9_brxx_insn (NE, sparc_compare_op0, operands[0]); DONE; } else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, NE); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (NE, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “bgt” [(set (pc) (if_then_else (gt (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode) { emit_v9_brxx_insn (GT, sparc_compare_op0, operands[0]); DONE; } else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, GT); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (GT, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “bgtu” [(set (pc) (if_then_else (gtu (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { operands[1] = gen_compare_reg (GTU, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “blt” [(set (pc) (if_then_else (lt (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode) { emit_v9_brxx_insn (LT, sparc_compare_op0, operands[0]); DONE; } else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LT); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (LT, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “bltu” [(set (pc) (if_then_else (ltu (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { operands[1] = gen_compare_reg (LTU, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “bge” [(set (pc) (if_then_else (ge (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode) { emit_v9_brxx_insn (GE, sparc_compare_op0, operands[0]); DONE; } else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, GE); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (GE, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “bgeu” [(set (pc) (if_then_else (geu (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { operands[1] = gen_compare_reg (GEU, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “ble” [(set (pc) (if_then_else (le (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { if (TARGET_ARCH64 && sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode) { emit_v9_brxx_insn (LE, sparc_compare_op0, operands[0]); DONE; } else if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LE); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (LE, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “bleu” [(set (pc) (if_then_else (leu (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { operands[1] = gen_compare_reg (LEU, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “bunordered” [(set (pc) (if_then_else (unordered (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNORDERED); emit_jump_insn (gen_beq (operands[0])); DONE; } operands[1] = gen_compare_reg (UNORDERED, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “bordered” [(set (pc) (if_then_else (ordered (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, ORDERED); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (ORDERED, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “bungt” [(set (pc) (if_then_else (ungt (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNGT); emit_jump_insn (gen_bgt (operands[0])); DONE; } operands[1] = gen_compare_reg (UNGT, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “bunlt” [(set (pc) (if_then_else (unlt (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNLT); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (UNLT, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “buneq” [(set (pc) (if_then_else (uneq (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNEQ); emit_jump_insn (gen_beq (operands[0])); DONE; } operands[1] = gen_compare_reg (UNEQ, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “bunge” [(set (pc) (if_then_else (unge (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNGE); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (UNGE, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “bunle” [(set (pc) (if_then_else (unle (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, UNLE); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (UNLE, sparc_compare_op0, sparc_compare_op1); }”)

(define_expand “bltgt” [(set (pc) (if_then_else (ltgt (match_dup 1) (const_int 0)) (label_ref (match_operand 0 "" "“)) (pc)))] "" " { if (GET_MODE (sparc_compare_op0) == TFmode && ! TARGET_HARD_QUAD) { sparc_emit_float_lib_cmp (sparc_compare_op0, sparc_compare_op1, LTGT); emit_jump_insn (gen_bne (operands[0])); DONE; } operands[1] = gen_compare_reg (LTGT, sparc_compare_op0, sparc_compare_op1); }”) ;; Now match both normal and inverted jump.

;; XXX fpcmp nop braindamage (define_insn “*normal_branch” [(set (pc) (if_then_else (match_operator 0 “noov_compare_op” [(reg 100) (const_int 0)]) (label_ref (match_operand 1 "" "")) (pc)))] "" “* { return output_cbranch (operands[0], 1, 0, final_sequence && INSN_ANNULLED_BRANCH_P (insn), ! final_sequence, insn); }” [(set_attr “type” “branch”)])

;; XXX fpcmp nop braindamage (define_insn “*inverted_branch” [(set (pc) (if_then_else (match_operator 0 “noov_compare_op” [(reg 100) (const_int 0)]) (pc) (label_ref (match_operand 1 "" ""))))] "" “* { return output_cbranch (operands[0], 1, 1, final_sequence && INSN_ANNULLED_BRANCH_P (insn), ! final_sequence, insn); }” [(set_attr “type” “branch”)])

;; XXX fpcmp nop braindamage (define_insn “*normal_fp_branch” [(set (pc) (if_then_else (match_operator 1 “comparison_operator” [(match_operand:CCFP 0 “fcc_reg_operand” “c”) (const_int 0)]) (label_ref (match_operand 2 "" "")) (pc)))] "" “* { return output_cbranch (operands[1], 2, 0, final_sequence && INSN_ANNULLED_BRANCH_P (insn), ! final_sequence, insn); }” [(set_attr “type” “branch”)])

;; XXX fpcmp nop braindamage (define_insn “*inverted_fp_branch” [(set (pc) (if_then_else (match_operator 1 “comparison_operator” [(match_operand:CCFP 0 “fcc_reg_operand” “c”) (const_int 0)]) (pc) (label_ref (match_operand 2 "" ""))))] "" “* { return output_cbranch (operands[1], 2, 1, final_sequence && INSN_ANNULLED_BRANCH_P (insn), ! final_sequence, insn); }” [(set_attr “type” “branch”)])

;; XXX fpcmp nop braindamage (define_insn “*normal_fpe_branch” [(set (pc) (if_then_else (match_operator 1 “comparison_operator” [(match_operand:CCFPE 0 “fcc_reg_operand” “c”) (const_int 0)]) (label_ref (match_operand 2 "" "")) (pc)))] "" “* { return output_cbranch (operands[1], 2, 0, final_sequence && INSN_ANNULLED_BRANCH_P (insn), ! final_sequence, insn); }” [(set_attr “type” “branch”)])

;; XXX fpcmp nop braindamage (define_insn “*inverted_fpe_branch” [(set (pc) (if_then_else (match_operator 1 “comparison_operator” [(match_operand:CCFPE 0 “fcc_reg_operand” “c”) (const_int 0)]) (pc) (label_ref (match_operand 2 "" ""))))] "" “* { return output_cbranch (operands[1], 2, 1, final_sequence && INSN_ANNULLED_BRANCH_P (insn), ! final_sequence, insn); }” [(set_attr “type” “branch”)])

;; Sparc V9-specific jump insns. None of these are guaranteed to be ;; in the architecture.

;; There are no 32 bit brreg insns.

;; XXX (define_insn “*normal_int_branch_sp64” [(set (pc) (if_then_else (match_operator 0 “v9_regcmp_op” [(match_operand:DI 1 “register_operand” “r”) (const_int 0)]) (label_ref (match_operand 2 "" "")) (pc)))] “TARGET_ARCH64” “* { return output_v9branch (operands[0], 1, 2, 0, final_sequence && INSN_ANNULLED_BRANCH_P (insn), ! final_sequence, insn); }” [(set_attr “type” “branch”)])

;; XXX (define_insn “*inverted_int_branch_sp64” [(set (pc) (if_then_else (match_operator 0 “v9_regcmp_op” [(match_operand:DI 1 “register_operand” “r”) (const_int 0)]) (pc) (label_ref (match_operand 2 "" ""))))] “TARGET_ARCH64” “* { return output_v9branch (operands[0], 1, 2, 1, final_sequence && INSN_ANNULLED_BRANCH_P (insn), ! final_sequence, insn); }” [(set_attr “type” “branch”)]) ;; Load program counter insns.

(define_insn “get_pc” [(clobber (reg:SI 15)) (set (match_operand 0 “register_operand” “=r”) (unspec [(match_operand 1 "" "") (match_operand 2 "" "")] 2))] “flag_pic && REGNO (operands[0]) == 23” “sethi\t%%hi(%a1-4), %0\n\tcall\t%a2\n\tadd\t%0, %%lo(%a1+4), %0” [(set_attr “type” “multi”) (set_attr “length” “3”)])

;; Currently unused... ;; (define_insn “get_pc_via_rdpc” ;; [(set (match_operand 0 “register_operand” “=r”) (pc))] ;; “TARGET_V9” ;; “rd\t%%pc, %0” ;; [(set_attr “type” “misc”)])

;; Move instructions

(define_expand “movqi” [(set (match_operand:QI 0 “general_operand” "") (match_operand:QI 1 “general_operand” ""))] "" " { /* Working with CONST_INTs is easier, so convert a double if needed. / if (GET_CODE (operands[1]) == CONST_DOUBLE) { operands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1]) & 0xff); } else if (GET_CODE (operands[1]) == CONST_INT) { / And further, we know for all QI cases that only the low byte is significant, which we can always process in a single insn. So mask it now. */ operands[1] = GEN_INT (INTVAL (operands[1]) & 0xff); }

/* Handle sets of MEM first. */ if (GET_CODE (operands[0]) == MEM) { if (reg_or_0_operand (operands[1], QImode)) goto movqi_is_ok;

  if (! reload_in_progress)
{
  operands[0] = validize_mem (operands[0]);
  operands[1] = force_reg (QImode, operands[1]);
}
}

/* Fixup PIC cases. */ if (flag_pic) { if (CONSTANT_P (operands[1]) && pic_address_needs_scratch (operands[1])) operands[1] = legitimize_pic_address (operands[1], QImode, 0);

  if (symbolic_operand (operands[1], QImode))
{
  operands[1] = legitimize_pic_address (operands[1],
					QImode,
					(reload_in_progress ?
					 operands[0] :
					 NULL_RTX));
  goto movqi_is_ok;
}
}

/* All QI constants require only one insn, so proceed. */

movqi_is_ok: ; }")

(define_insn “*movqi_insn” [(set (match_operand:QI 0 “nonimmediate_operand” “=r,r,m”) (match_operand:QI 1 “input_operand” “rI,m,rJ”))] “(register_operand (operands[0], QImode) || reg_or_0_operand (operands[1], QImode))” “@ mov\t%1, %0 ldub\t%1, %0 stb\t%r1, %0” [(set_attr “type” “*,load,store”)])

(define_expand “movhi” [(set (match_operand:HI 0 “general_operand” "") (match_operand:HI 1 “general_operand” ""))] "" " { /* Working with CONST_INTs is easier, so convert a double if needed. */ if (GET_CODE (operands[1]) == CONST_DOUBLE) operands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1]));

/* Handle sets of MEM first. */ if (GET_CODE (operands[0]) == MEM) { if (reg_or_0_operand (operands[1], HImode)) goto movhi_is_ok;

  if (! reload_in_progress)
{
  operands[0] = validize_mem (operands[0]);
  operands[1] = force_reg (HImode, operands[1]);
}
}

/* Fixup PIC cases. */ if (flag_pic) { if (CONSTANT_P (operands[1]) && pic_address_needs_scratch (operands[1])) operands[1] = legitimize_pic_address (operands[1], HImode, 0);

  if (symbolic_operand (operands[1], HImode))
{
  operands[1] = legitimize_pic_address (operands[1],
					HImode,
					(reload_in_progress ?
					 operands[0] :
					 NULL_RTX));
  goto movhi_is_ok;
}
}

/* This makes sure we will not get rematched due to splittage. */ if (! CONSTANT_P (operands[1]) || input_operand (operands[1], HImode)) ; else if (CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != HIGH && GET_CODE (operands[1]) != LO_SUM) { sparc_emit_set_const32 (operands[0], operands[1]); DONE; } movhi_is_ok: ; }")

(define_insn “*movhi_const64_special” [(set (match_operand:HI 0 “register_operand” “=r”) (match_operand:HI 1 “const64_high_operand” ""))] “TARGET_ARCH64” “sethi\t%%hi(%a1), %0”)

(define_insn “*movhi_insn” [(set (match_operand:HI 0 “nonimmediate_operand” “=r,r,r,m”) (match_operand:HI 1 “input_operand” “rI,K,m,rJ”))] “(register_operand (operands[0], HImode) || reg_or_0_operand (operands[1], HImode))” “@ mov\t%1, %0 sethi\t%%hi(%a1), %0 lduh\t%1, %0 sth\t%r1, %0” [(set_attr “type” “,,load,store”)])

;; We always work with constants here. (define_insn “*movhi_lo_sum” [(set (match_operand:HI 0 “register_operand” “=r”) (ior:HI (match_operand:HI 1 “arith_operand” “%r”) (match_operand:HI 2 “arith_operand” “I”)))] "" “or\t%1, %2, %0”)

(define_expand “movsi” [(set (match_operand:SI 0 “general_operand” "") (match_operand:SI 1 “general_operand” ""))] "" " { /* Working with CONST_INTs is easier, so convert a double if needed. */ if (GET_CODE (operands[1]) == CONST_DOUBLE) operands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1]));

/* Handle sets of MEM first. */ if (GET_CODE (operands[0]) == MEM) { if (reg_or_0_operand (operands[1], SImode)) goto movsi_is_ok;

  if (! reload_in_progress)
{
  operands[0] = validize_mem (operands[0]);
  operands[1] = force_reg (SImode, operands[1]);
}
}

/* Fixup PIC cases. */ if (flag_pic) { if (CONSTANT_P (operands[1]) && pic_address_needs_scratch (operands[1])) operands[1] = legitimize_pic_address (operands[1], SImode, 0);

  if (GET_CODE (operands[1]) == LABEL_REF)
{
  /* shit */
  emit_insn (gen_movsi_pic_label_ref (operands[0], operands[1]));
  DONE;
}

  if (symbolic_operand (operands[1], SImode))
{
  operands[1] = legitimize_pic_address (operands[1],
					SImode,
					(reload_in_progress ?
					 operands[0] :
					 NULL_RTX));
  goto movsi_is_ok;
}
}

/* If we are trying to toss an integer constant into the FPU registers, force it into memory. */ if (GET_CODE (operands[0]) == REG && REGNO (operands[0]) >= SPARC_FIRST_FP_REG && REGNO (operands[0]) <= SPARC_LAST_V9_FP_REG && CONSTANT_P (operands[1])) operands[1] = validize_mem (force_const_mem (GET_MODE (operands[0]), operands[1]));

/* This makes sure we will not get rematched due to splittage. */ if (! CONSTANT_P (operands[1]) || input_operand (operands[1], SImode)) ; else if (CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != HIGH && GET_CODE (operands[1]) != LO_SUM) { sparc_emit_set_const32 (operands[0], operands[1]); DONE; } movsi_is_ok: ; }")

;; This is needed to show CSE exactly which bits are set ;; in a 64-bit register by sethi instructions. (define_insn “*movsi_const64_special” [(set (match_operand:SI 0 “register_operand” “=r”) (match_operand:SI 1 “const64_high_operand” ""))] “TARGET_ARCH64” “sethi\t%%hi(%a1), %0”)

(define_insn “*movsi_insn” [(set (match_operand:SI 0 “nonimmediate_operand” “=r,f,r,r,r,f,m,m,d”) (match_operand:SI 1 “input_operand” “rI,!f,K,J,m,!m,rJ,!f,J”))] “(register_operand (operands[0], SImode) || reg_or_0_operand (operands[1], SImode))” “@ mov\t%1, %0 fmovs\t%1, %0 sethi\t%%hi(%a1), %0 clr\t%0 ld\t%1, %0 ld\t%1, %0 st\t%r1, %0 st\t%1, %0 fzeros\t%0” [(set_attr “type” “,fpmove,,*,load,fpload,store,fpstore,fpmove”)])

(define_insn “*movsi_lo_sum” [(set (match_operand:SI 0 “register_operand” “=r”) (lo_sum:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “immediate_operand” “in”)))] "" “or\t%1, %%lo(%a2), %0”)

(define_insn “*movsi_high” [(set (match_operand:SI 0 “register_operand” “=r”) (high:SI (match_operand:SI 1 “immediate_operand” “in”)))] "" “sethi\t%%hi(%a1), %0”)

;; The next two patterns must wrap the SYMBOL_REF in an UNSPEC ;; so that CSE won't optimize the address computation away. (define_insn “movsi_lo_sum_pic” [(set (match_operand:SI 0 “register_operand” “=r”) (lo_sum:SI (match_operand:SI 1 “register_operand” “r”) (unspec:SI [(match_operand:SI 2 “immediate_operand” “in”)] 0)))] “flag_pic” “or\t%1, %%lo(%a2), %0”)

(define_insn “movsi_high_pic” [(set (match_operand:SI 0 “register_operand” “=r”) (high:SI (unspec:SI [(match_operand 1 "" "")] 0)))] “flag_pic && check_pic (1)” “sethi\t%%hi(%a1), %0”)

(define_expand “movsi_pic_label_ref” [(set (match_dup 3) (high:SI (unspec:SI [(match_operand:SI 1 “label_ref_operand” "“) (match_dup 2)] 5))) (set (match_dup 4) (lo_sum:SI (match_dup 3) (unspec:SI [(match_dup 1) (match_dup 2)] 5))) (set (match_operand:SI 0 “register_operand” “=r”) (minus:SI (match_dup 5) (match_dup 4)))] “flag_pic” " { current_function_uses_pic_offset_table = 1; operands[2] = gen_rtx_SYMBOL_REF (Pmode, "GLOBAL_OFFSET_TABLE"); if (no_new_pseudos) { operands[3] = operands[0]; operands[4] = operands[0]; } else { operands[3] = gen_reg_rtx (SImode); operands[4] = gen_reg_rtx (SImode); } operands[5] = pic_offset_table_rtx; }”)

(define_insn “*movsi_high_pic_label_ref” [(set (match_operand:SI 0 “register_operand” “=r”) (high:SI (unspec:SI [(match_operand:SI 1 “label_ref_operand” "") (match_operand:SI 2 "" "")] 5)))] “flag_pic” “sethi\t%%hi(%a2-(%a1-.)), %0”)

(define_insn “*movsi_lo_sum_pic_label_ref” [(set (match_operand:SI 0 “register_operand” “=r”) (lo_sum:SI (match_operand:SI 1 “register_operand” “r”) (unspec:SI [(match_operand:SI 2 “label_ref_operand” "") (match_operand:SI 3 "" "")] 5)))] “flag_pic” “or\t%1, %%lo(%a3-(%a2-.)), %0”)

(define_expand “movdi” [(set (match_operand:DI 0 “reg_or_nonsymb_mem_operand” "") (match_operand:DI 1 “general_operand” ""))] "" " { /* Where possible, convert CONST_DOUBLE into a CONST_INT. */ if (GET_CODE (operands[1]) == CONST_DOUBLE #if HOST_BITS_PER_WIDE_INT == 32 && ((CONST_DOUBLE_HIGH (operands[1]) == 0 && (CONST_DOUBLE_LOW (operands[1]) & 0x80000000) == 0) || (CONST_DOUBLE_HIGH (operands[1]) == (HOST_WIDE_INT) 0xffffffff && (CONST_DOUBLE_LOW (operands[1]) & 0x80000000) != 0)) #endif ) operands[1] = GEN_INT (CONST_DOUBLE_LOW (operands[1]));

/* Handle MEM cases first. / if (GET_CODE (operands[0]) == MEM) { / If it's a REG, we can always do it. The const zero case is more complex, on v9 we can always perform it. */ if (register_operand (operands[1], DImode) || (TARGET_V9 && (operands[1] == const0_rtx))) goto movdi_is_ok;

  if (! reload_in_progress)
{
  operands[0] = validize_mem (operands[0]);
  operands[1] = force_reg (DImode, operands[1]);
}
}

if (flag_pic) { if (CONSTANT_P (operands[1]) && pic_address_needs_scratch (operands[1])) operands[1] = legitimize_pic_address (operands[1], DImode, 0);

  if (GET_CODE (operands[1]) == LABEL_REF)
    {
      if (! TARGET_ARCH64)
        abort ();
      emit_insn (gen_movdi_pic_label_ref (operands[0], operands[1]));
      DONE;
    }

  if (symbolic_operand (operands[1], DImode))
{
  operands[1] = legitimize_pic_address (operands[1],
					DImode,
					(reload_in_progress ?
					 operands[0] :
					 NULL_RTX));
  goto movdi_is_ok;
}
}

/* If we are trying to toss an integer constant into the FPU registers, force it into memory. */ if (GET_CODE (operands[0]) == REG && REGNO (operands[0]) >= SPARC_FIRST_FP_REG && REGNO (operands[0]) <= SPARC_LAST_V9_FP_REG && CONSTANT_P (operands[1])) operands[1] = validize_mem (force_const_mem (GET_MODE (operands[0]), operands[1]));

/* This makes sure we will not get rematched due to splittage. */ if (! CONSTANT_P (operands[1]) || input_operand (operands[1], DImode)) ; else if (TARGET_ARCH64 && CONSTANT_P (operands[1]) && GET_CODE (operands[1]) != HIGH && GET_CODE (operands[1]) != LO_SUM) { sparc_emit_set_const64 (operands[0], operands[1]); DONE; }

movdi_is_ok: ; }")

;; Be careful, fmovd does not exist when !arch64. ;; We match MEM moves directly when we have correct even ;; numbered registers, but fall into splits otherwise. ;; The constraint ordering here is really important to ;; avoid insane problems in reload, especially for patterns ;; of the form: ;; ;; (set (mem:DI (plus:SI (reg:SI 30 %fp) ;; (const_int -5016))) ;; (reg:DI 2 %g2)) ;;

(define_insn “*movdi_insn_sp32_v9” [(set (match_operand:DI 0 “nonimmediate_operand” “=m,T,U,o,r,r,r,?T,?f,?f,?o,?f”) (match_operand:DI 1 “input_operand” " J,U,T,r,o,i,r, f, T, o, f, f"))] “! TARGET_ARCH64 && TARGET_V9 && (GET_CODE (operands[0]) != MEM || GET_CODE (operands[1]) != MEM)” "@ stx\t%%g0, %0 std\t%1, %0 ldd\t%1, %0

std\t%1, %0 ldd\t%1, %0

#" [(set_attr “type” “store,store,load,,,,,fpstore,fpload,,,*”) (set_attr “length” “,,,2,2,2,2,,*,2,2,2”)])

(define_insn “*movdi_insn_sp32” [(set (match_operand:DI 0 “nonimmediate_operand” “=T,U,o,r,r,r,?T,?f,?f,?o,?f”) (match_operand:DI 1 “input_operand” " U,T,r,o,i,r, f, T, o, f, f"))] “! TARGET_ARCH64 && (register_operand (operands[0], DImode) || register_operand (operands[1], DImode))” "@ std\t%1, %0 ldd\t%1, %0

std\t%1, %0 ldd\t%1, %0

#" [(set_attr “type” “store,load,,,,,fpstore,fpload,,,*”) (set_attr “length” “,,2,2,2,2,,,2,2,2”)])

;; The following are generated by sparc_emit_set_const64 (define_insn “*movdi_sp64_dbl” [(set (match_operand:DI 0 “register_operand” “=r”) (match_operand:DI 1 “const64_operand” ""))] “(TARGET_ARCH64 && HOST_BITS_PER_WIDE_INT != 64)” “mov\t%1, %0”)

;; This is needed to show CSE exactly which bits are set ;; in a 64-bit register by sethi instructions. (define_insn “*movdi_const64_special” [(set (match_operand:DI 0 “register_operand” “=r”) (match_operand:DI 1 “const64_high_operand” ""))] “TARGET_ARCH64” “sethi\t%%hi(%a1), %0”)

(define_insn “*movdi_insn_sp64_novis” [(set (match_operand:DI 0 “nonimmediate_operand” “=r,r,r,r,m,?e,?e,?m”) (match_operand:DI 1 “input_operand” “rI,K,J,m,rJ,e,m,e”))] “TARGET_ARCH64 && ! TARGET_VIS && (register_operand (operands[0], DImode) || reg_or_0_operand (operands[1], DImode))” “@ mov\t%1, %0 sethi\t%%hi(%a1), %0 clr\t%0 ldx\t%1, %0 stx\t%r1, %0 fmovd\t%1, %0 ldd\t%1, %0 std\t%1, %0” [(set_attr “type” “,,*,load,store,fpmove,fpload,fpstore”) (set_attr “fptype” “,,,,,double,,*”)])

(define_insn “*movdi_insn_sp64_vis” [(set (match_operand:DI 0 “nonimmediate_operand” “=r,r,r,r,m,?e,?e,?m,b”) (match_operand:DI 1 “input_operand” “rI,K,J,m,rJ,e,m,e,J”))] “TARGET_ARCH64 && TARGET_VIS && (register_operand (operands[0], DImode) || reg_or_0_operand (operands[1], DImode))” “@ mov\t%1, %0 sethi\t%%hi(%a1), %0 clr\t%0 ldx\t%1, %0 stx\t%r1, %0 fmovd\t%1, %0 ldd\t%1, %0 std\t%1, %0 fzero\t%0” [(set_attr “type” “,,*,load,store,fpmove,fpload,fpstore,fpmove”) (set_attr “fptype” “,,,,,double,,*,double”)])

(define_expand “movdi_pic_label_ref” [(set (match_dup 3) (high:DI (unspec:DI [(match_operand:DI 1 “label_ref_operand” "“) (match_dup 2)] 5))) (set (match_dup 4) (lo_sum:DI (match_dup 3) (unspec:DI [(match_dup 1) (match_dup 2)] 5))) (set (match_operand:DI 0 “register_operand” “=r”) (minus:DI (match_dup 5) (match_dup 4)))] “TARGET_ARCH64 && flag_pic” " { current_function_uses_pic_offset_table = 1; operands[2] = gen_rtx_SYMBOL_REF (Pmode, "GLOBAL_OFFSET_TABLE"); if (no_new_pseudos) { operands[3] = operands[0]; operands[4] = operands[0]; } else { operands[3] = gen_reg_rtx (DImode); operands[4] = gen_reg_rtx (DImode); } operands[5] = pic_offset_table_rtx; }”)

(define_insn “*movdi_high_pic_label_ref” [(set (match_operand:DI 0 “register_operand” “=r”) (high:DI (unspec:DI [(match_operand:DI 1 “label_ref_operand” "") (match_operand:DI 2 "" "")] 5)))] “TARGET_ARCH64 && flag_pic” “sethi\t%%hi(%a2-(%a1-.)), %0”)

(define_insn “*movdi_lo_sum_pic_label_ref” [(set (match_operand:DI 0 “register_operand” “=r”) (lo_sum:DI (match_operand:DI 1 “register_operand” “r”) (unspec:DI [(match_operand:DI 2 “label_ref_operand” "") (match_operand:DI 3 "" "")] 5)))] “TARGET_ARCH64 && flag_pic” “or\t%1, %%lo(%a3-(%a2-.)), %0”)

;; Sparc-v9 code model support insns. See sparc_emit_set_symbolic_const64 ;; in sparc.c to see what is going on here... PIC stuff comes first.

(define_insn “movdi_lo_sum_pic” [(set (match_operand:DI 0 “register_operand” “=r”) (lo_sum:DI (match_operand:DI 1 “register_operand” “r”) (unspec:DI [(match_operand:DI 2 “immediate_operand” “in”)] 0)))] “TARGET_ARCH64 && flag_pic” “or\t%1, %%lo(%a2), %0”)

(define_insn “movdi_high_pic” [(set (match_operand:DI 0 “register_operand” “=r”) (high:DI (unspec:DI [(match_operand 1 "" "")] 0)))] “TARGET_ARCH64 && flag_pic && check_pic (1)” “sethi\t%%hi(%a1), %0”)

(define_insn “*sethi_di_medlow_embmedany_pic” [(set (match_operand:DI 0 “register_operand” “=r”) (high:DI (match_operand:DI 1 “sp64_medium_pic_operand” "")))] “(TARGET_CM_MEDLOW || TARGET_CM_EMBMEDANY) && check_pic (1)” “sethi\t%%hi(%a1), %0”)

(define_insn “*sethi_di_medlow” [(set (match_operand:DI 0 “register_operand” “=r”) (high:DI (match_operand:DI 1 “symbolic_operand” "")))] “TARGET_CM_MEDLOW && check_pic (1)” “sethi\t%%hi(%a1), %0”)

(define_insn “*losum_di_medlow” [(set (match_operand:DI 0 “register_operand” “=r”) (lo_sum:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:DI 2 “symbolic_operand” "")))] “TARGET_CM_MEDLOW” “or\t%1, %%lo(%a2), %0”)

(define_insn “seth44” [(set (match_operand:DI 0 “register_operand” “=r”) (high:DI (unspec:DI [(match_operand:DI 1 “symbolic_operand” "")] 6)))] “TARGET_CM_MEDMID” “sethi\t%%h44(%a1), %0”)

(define_insn “setm44” [(set (match_operand:DI 0 “register_operand” “=r”) (lo_sum:DI (match_operand:DI 1 “register_operand” “r”) (unspec:DI [(match_operand:DI 2 “symbolic_operand” "")] 7)))] “TARGET_CM_MEDMID” “or\t%1, %%m44(%a2), %0”)

(define_insn “setl44” [(set (match_operand:DI 0 “register_operand” “=r”) (lo_sum:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:DI 2 “symbolic_operand” "")))] “TARGET_CM_MEDMID” “or\t%1, %%l44(%a2), %0”)

(define_insn “sethh” [(set (match_operand:DI 0 “register_operand” “=r”) (high:DI (unspec:DI [(match_operand:DI 1 “symbolic_operand” "")] 9)))] “TARGET_CM_MEDANY” “sethi\t%%hh(%a1), %0”)

(define_insn “setlm” [(set (match_operand:DI 0 “register_operand” “=r”) (high:DI (unspec:DI [(match_operand:DI 1 “symbolic_operand” "")] 10)))] “TARGET_CM_MEDANY” “sethi\t%%lm(%a1), %0”)

(define_insn “sethm” [(set (match_operand:DI 0 “register_operand” “=r”) (lo_sum:DI (match_operand:DI 1 “register_operand” “r”) (unspec:DI [(match_operand:DI 2 “symbolic_operand” "")] 18)))] “TARGET_CM_MEDANY” “or\t%1, %%hm(%a2), %0”)

(define_insn “setlo” [(set (match_operand:DI 0 “register_operand” “=r”) (lo_sum:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:DI 2 “symbolic_operand” "")))] “TARGET_CM_MEDANY” “or\t%1, %%lo(%a2), %0”)

(define_insn “embmedany_sethi” [(set (match_operand:DI 0 “register_operand” “=r”) (high:DI (unspec:DI [(match_operand:DI 1 “data_segment_operand” "")] 11)))] “TARGET_CM_EMBMEDANY && check_pic (1)” “sethi\t%%hi(%a1), %0”)

(define_insn “embmedany_losum” [(set (match_operand:DI 0 “register_operand” “=r”) (lo_sum:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:DI 2 “data_segment_operand” "")))] “TARGET_CM_EMBMEDANY” “add\t%1, %%lo(%a2), %0”)

(define_insn “embmedany_brsum” [(set (match_operand:DI 0 “register_operand” “=r”) (unspec:DI [(match_operand:DI 1 “register_operand” “r”)] 11))] “TARGET_CM_EMBMEDANY” “add\t%1, %_, %0”)

(define_insn “embmedany_textuhi” [(set (match_operand:DI 0 “register_operand” “=r”) (high:DI (unspec:DI [(match_operand:DI 1 “text_segment_operand” "")] 13)))] “TARGET_CM_EMBMEDANY && check_pic (1)” “sethi\t%%uhi(%a1), %0”)

(define_insn “embmedany_texthi” [(set (match_operand:DI 0 “register_operand” “=r”) (high:DI (unspec:DI [(match_operand:DI 1 “text_segment_operand” "")] 14)))] “TARGET_CM_EMBMEDANY && check_pic (1)” “sethi\t%%hi(%a1), %0”)

(define_insn “embmedany_textulo” [(set (match_operand:DI 0 “register_operand” “=r”) (lo_sum:DI (match_operand:DI 1 “register_operand” “r”) (unspec:DI [(match_operand:DI 2 “text_segment_operand” "")] 15)))] “TARGET_CM_EMBMEDANY” “or\t%1, %%ulo(%a2), %0”)

(define_insn “embmedany_textlo” [(set (match_operand:DI 0 “register_operand” “=r”) (lo_sum:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:DI 2 “text_segment_operand” "")))] “TARGET_CM_EMBMEDANY” “or\t%1, %%lo(%a2), %0”)

;; Now some patterns to help reload out a bit. (define_expand “reload_indi” [(parallel [(match_operand:DI 0 “register_operand” “=r”) (match_operand:DI 1 “immediate_operand” "“) (match_operand:TI 2 “register_operand” “=&r”)])] “(TARGET_CM_MEDANY || TARGET_CM_EMBMEDANY) && ! flag_pic” " { sparc_emit_set_symbolic_const64 (operands[0], operands[1], gen_rtx_REG (DImode, REGNO (operands[2]))); DONE; }”)

(define_expand “reload_outdi” [(parallel [(match_operand:DI 0 “register_operand” “=r”) (match_operand:DI 1 “immediate_operand” "“) (match_operand:TI 2 “register_operand” “=&r”)])] “(TARGET_CM_MEDANY || TARGET_CM_EMBMEDANY) && ! flag_pic” " { sparc_emit_set_symbolic_const64 (operands[0], operands[1], gen_rtx_REG (DImode, REGNO (operands[2]))); DONE; }”)

;; Split up putting CONSTs and REGs into DI regs when !arch64 (define_split [(set (match_operand:DI 0 “register_operand” "") (match_operand:DI 1 “const_int_operand” ""))] “! TARGET_ARCH64 && reload_completed” [(clobber (const_int 0))] " { #if HOST_BITS_PER_WIDE_INT == 32 emit_insn (gen_movsi (gen_highpart (SImode, operands[0]), (INTVAL (operands[1]) < 0) ? constm1_rtx : const0_rtx)); emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]), operands[1])); #else unsigned int low, high;

low = INTVAL (operands[1]) & 0xffffffff; high = (INTVAL (operands[1]) >> 32) & 0xffffffff; emit_insn (gen_movsi (gen_highpart (SImode, operands[0]), GEN_INT (high)));

/* Slick... but this trick loses if this subreg constant part can be done in one insn. */ if (low == high && (low & 0x3ff) != 0 && low + 0x1000 >= 0x2000) emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]), gen_highpart (SImode, operands[0]))); else emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]), GEN_INT (low))); #endif DONE; }")

(define_split [(set (match_operand:DI 0 “register_operand” "") (match_operand:DI 1 “const_double_operand” ""))] “! TARGET_ARCH64 && reload_completed” [(clobber (const_int 0))] " { emit_insn (gen_movsi (gen_highpart (SImode, operands[0]), GEN_INT (CONST_DOUBLE_HIGH (operands[1]))));

/* Slick... but this trick loses if this subreg constant part can be done in one insn. */ if (CONST_DOUBLE_LOW (operands[1]) == CONST_DOUBLE_HIGH (operands[1]) && !(SPARC_SETHI_P (CONST_DOUBLE_HIGH (operands[1])) || SPARC_SIMM13_P (CONST_DOUBLE_HIGH (operands[1])))) { emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]), gen_highpart (SImode, operands[0]))); } else { emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]), GEN_INT (CONST_DOUBLE_LOW (operands[1])))); } DONE; }")

(define_split [(set (match_operand:DI 0 “register_operand” "") (match_operand:DI 1 “register_operand” ""))] “! TARGET_ARCH64 && reload_completed” [(clobber (const_int 0))] " { rtx set_dest = operands[0]; rtx set_src = operands[1]; rtx dest1, dest2; rtx src1, src2;

dest1 = gen_highpart (SImode, set_dest); dest2 = gen_lowpart (SImode, set_dest); src1 = gen_highpart (SImode, set_src); src2 = gen_lowpart (SImode, set_src);

/* Now emit using the real source and destination we found, swapping the order if we detect overlap. */ if (reg_overlap_mentioned_p (dest1, src2)) { emit_insn (gen_movsi (dest2, src2)); emit_insn (gen_movsi (dest1, src1)); } else { emit_insn (gen_movsi (dest1, src1)); emit_insn (gen_movsi (dest2, src2)); } DONE; }")

;; Now handle the cases of memory moves from/to non-even ;; DI mode register pairs. (define_split [(set (match_operand:DI 0 “register_operand” "") (match_operand:DI 1 “memory_operand” ""))] “(! TARGET_ARCH64 && reload_completed && sparc_splitdi_legitimate (operands[0], operands[1]))” [(clobber (const_int 0))] " { rtx word0 = adjust_address (operands[1], SImode, 0); rtx word1 = adjust_address (operands[1], SImode, 4); rtx high_part = gen_highpart (SImode, operands[0]); rtx low_part = gen_lowpart (SImode, operands[0]);

if (reg_overlap_mentioned_p (high_part, word1)) { emit_insn (gen_movsi (low_part, word1)); emit_insn (gen_movsi (high_part, word0)); } else { emit_insn (gen_movsi (high_part, word0)); emit_insn (gen_movsi (low_part, word1)); } DONE; }")

(define_split [(set (match_operand:DI 0 “memory_operand” "") (match_operand:DI 1 “register_operand” "“))] “(! TARGET_ARCH64 && reload_completed && sparc_splitdi_legitimate (operands[1], operands[0]))” [(clobber (const_int 0))] " { emit_insn (gen_movsi (adjust_address (operands[0], SImode, 0), gen_highpart (SImode, operands[1]))); emit_insn (gen_movsi (adjust_address (operands[0], SImode, 4), gen_lowpart (SImode, operands[1]))); DONE; }”)

;; Floating point move insns

(define_insn “*movsf_insn_novis” [(set (match_operand:SF 0 “nonimmediate_operand” “=f,*r,*r,*r,*r,*r,f,m,m”) (match_operand:SF 1 “input_operand” “f,G,Q,*rR,S,m,m,f,*rG”))] “(TARGET_FPU && ! TARGET_VIS) && (register_operand (operands[0], SFmode) || register_operand (operands[1], SFmode) || fp_zero_operand (operands[1], SFmode))” "* { if (GET_CODE (operands[1]) == CONST_DOUBLE && (which_alternative == 2 || which_alternative == 3 || which_alternative == 4)) { REAL_VALUE_TYPE r; long i;

  REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
  REAL_VALUE_TO_TARGET_SINGLE (r, i);
  operands[1] = GEN_INT (i);
}

switch (which_alternative) { case 0: return "fmovs\t%1, %0"; case 1: return "clr\t%0"; case 2: return "sethi\t%%hi(%a1), %0"; case 3: return "mov\t%1, %0"; case 4: return "#"; case 5: case 6: return "ld\t%1, %0"; case 7: case 8: return "st\t%r1, %0"; default: abort(); } }" [(set_attr “type” “fpmove,,,,,load,fpload,fpstore,store”)])

(define_insn “*movsf_insn_vis” [(set (match_operand:SF 0 “nonimmediate_operand” “=f,f,*r,*r,*r,*r,*r,f,m,m”) (match_operand:SF 1 “input_operand” “f,G,G,Q,*rR,S,m,m,f,*rG”))] “(TARGET_FPU && TARGET_VIS) && (register_operand (operands[0], SFmode) || register_operand (operands[1], SFmode) || fp_zero_operand (operands[1], SFmode))” "* { if (GET_CODE (operands[1]) == CONST_DOUBLE && (which_alternative == 3 || which_alternative == 4 || which_alternative == 5)) { REAL_VALUE_TYPE r; long i;

  REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
  REAL_VALUE_TO_TARGET_SINGLE (r, i);
  operands[1] = GEN_INT (i);
}

switch (which_alternative) { case 0: return "fmovs\t%1, %0"; case 1: return "fzeros\t%0"; case 2: return "clr\t%0"; case 3: return "sethi\t%%hi(%a1), %0"; case 4: return "mov\t%1, %0"; case 5: return "#"; case 6: case 7: return "ld\t%1, %0"; case 8: case 9: return "st\t%r1, %0"; default: abort(); } }" [(set_attr “type” “fpmove,fpmove,,,,,load,fpload,fpstore,store”)])

;; Exactly the same as above, except that all f' cases are deleted. ;; This is necessary to prevent reload from ever trying to use a f' reg ;; when -mno-fpu.

(define_insn “*movsf_no_f_insn” [(set (match_operand:SF 0 “nonimmediate_operand” “=r,r,r,r,r,m”) (match_operand:SF 1 “input_operand” “G,Q,rR,S,m,rG”))] “! TARGET_FPU && (register_operand (operands[0], SFmode) || register_operand (operands[1], SFmode) || fp_zero_operand (operands[1], SFmode))” "* { if (GET_CODE (operands[1]) == CONST_DOUBLE && (which_alternative == 1 || which_alternative == 2 || which_alternative == 3)) { REAL_VALUE_TYPE r; long i;

  REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
  REAL_VALUE_TO_TARGET_SINGLE (r, i);
  operands[1] = GEN_INT (i);
}

switch (which_alternative) { case 0: return "clr\t%0"; case 1: return "sethi\t%%hi(%a1), %0"; case 2: return "mov\t%1, %0"; case 3: return "#"; case 4: return "ld\t%1, %0"; case 5: return "st\t%r1, %0"; default: abort(); } }" [(set_attr “type” “,,,,load,store”)])

(define_insn “*movsf_lo_sum” [(set (match_operand:SF 0 “register_operand” “=r”) (lo_sum:SF (match_operand:SF 1 “register_operand” “r”) (match_operand:SF 2 “const_double_operand” “S”)))] “fp_high_losum_p (operands[2])” "* { REAL_VALUE_TYPE r; long i;

REAL_VALUE_FROM_CONST_DOUBLE (r, operands[2]); REAL_VALUE_TO_TARGET_SINGLE (r, i); operands[2] = GEN_INT (i); return "or\t%1, %%lo(%a2), %0"; }")

(define_insn “*movsf_high” [(set (match_operand:SF 0 “register_operand” “=r”) (high:SF (match_operand:SF 1 “const_double_operand” “S”)))] “fp_high_losum_p (operands[1])” "* { REAL_VALUE_TYPE r; long i;

REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]); REAL_VALUE_TO_TARGET_SINGLE (r, i); operands[1] = GEN_INT (i); return "sethi\t%%hi(%1), %0"; }")

(define_split [(set (match_operand:SF 0 “register_operand” "") (match_operand:SF 1 “const_double_operand” ""))] “fp_high_losum_p (operands[1]) && (GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32)” [(set (match_dup 0) (high:SF (match_dup 1))) (set (match_dup 0) (lo_sum:SF (match_dup 0) (match_dup 1)))])

(define_expand “movsf” [(set (match_operand:SF 0 “general_operand” "") (match_operand:SF 1 “general_operand” ""))] "" " { /* Force SFmode constants into memory. / if (GET_CODE (operands[0]) == REG && CONSTANT_P (operands[1])) { / emit_group_store will send such bogosity to us when it is not storing directly into memory. So fix this up to avoid crashes in output_constant_pool. */ if (operands [1] == const0_rtx) operands[1] = CONST0_RTX (SFmode);

  if (TARGET_VIS && fp_zero_operand (operands[1], SFmode))
goto movsf_is_ok;

  /* We are able to build any SF constant in integer registers
 with at most 2 instructions.  */
  if (REGNO (operands[0]) < 32)
goto movsf_is_ok;

  operands[1] = validize_mem (force_const_mem (GET_MODE (operands[0]),
                                               operands[1]));
}

/* Handle sets of MEM first. */ if (GET_CODE (operands[0]) == MEM) { if (register_operand (operands[1], SFmode) || fp_zero_operand (operands[1], SFmode)) goto movsf_is_ok;

  if (! reload_in_progress)
{
  operands[0] = validize_mem (operands[0]);
  operands[1] = force_reg (SFmode, operands[1]);
}
}

/* Fixup PIC cases. */ if (flag_pic) { if (CONSTANT_P (operands[1]) && pic_address_needs_scratch (operands[1])) operands[1] = legitimize_pic_address (operands[1], SFmode, 0);

  if (symbolic_operand (operands[1], SFmode))
{
  operands[1] = legitimize_pic_address (operands[1],
					SFmode,
					(reload_in_progress ?
					 operands[0] :
					 NULL_RTX));
}
}

movsf_is_ok: ; }")

(define_expand “movdf” [(set (match_operand:DF 0 “general_operand” "") (match_operand:DF 1 “general_operand” ""))] "" " { /* Force DFmode constants into memory. / if (GET_CODE (operands[0]) == REG && CONSTANT_P (operands[1])) { / emit_group_store will send such bogosity to us when it is not storing directly into memory. So fix this up to avoid crashes in output_constant_pool. */ if (operands [1] == const0_rtx) operands[1] = CONST0_RTX (DFmode);

  if ((TARGET_VIS || REGNO (operands[0]) < 32)
  && fp_zero_operand (operands[1], DFmode))
goto movdf_is_ok;

  /* We are able to build any DF constant in integer registers.  */
  if (REGNO (operands[0]) < 32
  && (reload_completed || reload_in_progress))
goto movdf_is_ok;

  operands[1] = validize_mem (force_const_mem (GET_MODE (operands[0]),
                                               operands[1]));
}

/* Handle MEM cases first. */ if (GET_CODE (operands[0]) == MEM) { if (register_operand (operands[1], DFmode) || fp_zero_operand (operands[1], DFmode)) goto movdf_is_ok;

  if (! reload_in_progress)
{
  operands[0] = validize_mem (operands[0]);
  operands[1] = force_reg (DFmode, operands[1]);
}
}

/* Fixup PIC cases. */ if (flag_pic) { if (CONSTANT_P (operands[1]) && pic_address_needs_scratch (operands[1])) operands[1] = legitimize_pic_address (operands[1], DFmode, 0);

  if (symbolic_operand (operands[1], DFmode))
{
  operands[1] = legitimize_pic_address (operands[1],
					DFmode,
					(reload_in_progress ?
					 operands[0] :
					 NULL_RTX));
}
}

movdf_is_ok: ; }")

;; Be careful, fmovd does not exist when !v9. (define_insn “*movdf_insn_sp32” [(set (match_operand:DF 0 “nonimmediate_operand” “=e,T,U,T,o,e,*r,o,e,o”) (match_operand:DF 1 “input_operand” “T#F,e,T,U,G,e,*rFo,*r,o#F,e”))] “TARGET_FPU && ! TARGET_V9 && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode) || fp_zero_operand (operands[1], DFmode))” "@ ldd\t%1, %0 std\t%1, %0 ldd\t%1, %0 std\t%1, %0

#" [(set_attr “type” “fpload,fpstore,load,store,,,,,,”) (set_attr “length” “,,,,2,2,2,2,2,2”)])

(define_insn “*movdf_no_e_insn_sp32” [(set (match_operand:DF 0 “nonimmediate_operand” “=U,T,o,r,o”) (match_operand:DF 1 “input_operand” “T,U,G,ro,r”))] “! TARGET_FPU && ! TARGET_V9 && ! TARGET_ARCH64 && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode) || fp_zero_operand (operands[1], DFmode))” "@ ldd\t%1, %0 std\t%1, %0

#" [(set_attr “type” “load,store,,,*”) (set_attr “length” “,,2,2,2”)])

(define_insn “*movdf_no_e_insn_v9_sp32” [(set (match_operand:DF 0 “nonimmediate_operand” “=U,T,T,r,o”) (match_operand:DF 1 “input_operand” “T,U,G,ro,rG”))] “! TARGET_FPU && TARGET_V9 && ! TARGET_ARCH64 && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode) || fp_zero_operand (operands[1], DFmode))” "@ ldd\t%1, %0 std\t%1, %0 stx\t%r1, %0

#" [(set_attr “type” “load,store,store,,”) (set_attr “length” “,,*,2,2”)])

;; We have available v9 double floats but not 64-bit ;; integer registers and no VIS. (define_insn “*movdf_insn_v9only_novis” [(set (match_operand:DF 0 “nonimmediate_operand” “=e,e,T,T,U,T,e,*r,o”) (match_operand:DF 1 “input_operand” “e,T#F,G,e,T,U,o#F,*roF,*rGe”))] “TARGET_FPU && TARGET_V9 && ! TARGET_VIS && ! TARGET_ARCH64 && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode) || fp_zero_operand (operands[1], DFmode))” "@ fmovd\t%1, %0 ldd\t%1, %0 stx\t%r1, %0 std\t%1, %0 ldd\t%1, %0 std\t%1, %0

#" [(set_attr “type” “fpmove,load,store,store,load,store,,,*”) (set_attr “length” “,,,,,,2,2,2”) (set_attr “fptype” “double,,,,,,,,”)])

;; We have available v9 double floats but not 64-bit ;; integer registers but we have VIS. (define_insn “*movdf_insn_v9only_vis” [(set (match_operand:DF 0 “nonimmediate_operand” “=e,e,e,T,T,U,T,e,*r,o”) (match_operand:DF 1 “input_operand” “G,e,T#F,G,e,T,U,o#F,*roGF,*rGe”))] “TARGET_FPU && TARGET_VIS && ! TARGET_ARCH64 && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode) || fp_zero_operand (operands[1], DFmode))” "@ fzero\t%0 fmovd\t%1, %0 ldd\t%1, %0 stx\t%r1, %0 std\t%1, %0 ldd\t%1, %0 std\t%1, %0

#" [(set_attr “type” “fpmove,fpmove,load,store,store,load,store,,,*”) (set_attr “length” “,,,,,,*,2,2,2”) (set_attr “fptype” “double,double,,,,,,,,”)])

;; We have available both v9 double floats and 64-bit ;; integer registers. No VIS though. (define_insn “*movdf_insn_sp64_novis” [(set (match_operand:DF 0 “nonimmediate_operand” “=e,e,m,*r,*r,m,*r”) (match_operand:DF 1 “input_operand” “e,m#F,e,*rG,m,*rG,F”))] “TARGET_FPU && ! TARGET_VIS && TARGET_ARCH64 && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode) || fp_zero_operand (operands[1], DFmode))” “@ fmovd\t%1, %0 ldd\t%1, %0 std\t%1, %0 mov\t%r1, %0 ldx\t%1, %0 stx\t%r1, %0 #” [(set_attr “type” “fpmove,load,store,,load,store,”) (set_attr “length” “,,,,,,2”) (set_attr “fptype” “double,,,,,,”)])

;; We have available both v9 double floats and 64-bit ;; integer registers. And we have VIS. (define_insn “*movdf_insn_sp64_vis” [(set (match_operand:DF 0 “nonimmediate_operand” “=e,e,e,m,*r,*r,m,*r”) (match_operand:DF 1 “input_operand” “G,e,m#F,e,*rG,m,*rG,F”))] “TARGET_FPU && TARGET_VIS && TARGET_ARCH64 && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode) || fp_zero_operand (operands[1], DFmode))” “@ fzero\t%0 fmovd\t%1, %0 ldd\t%1, %0 std\t%1, %0 mov\t%r1, %0 ldx\t%1, %0 stx\t%r1, %0 #” [(set_attr “type” “fpmove,fpmove,load,store,,load,store,”) (set_attr “length” “,,,,,,*,2”) (set_attr “fptype” “double,double,,,,,,”)])

(define_insn “*movdf_no_e_insn_sp64” [(set (match_operand:DF 0 “nonimmediate_operand” “=r,r,m”) (match_operand:DF 1 “input_operand” “r,m,rG”))] “! TARGET_FPU && TARGET_ARCH64 && (register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode) || fp_zero_operand (operands[1], DFmode))” “@ mov\t%1, %0 ldx\t%1, %0 stx\t%r1, %0” [(set_attr “type” “*,load,store”)])

(define_split [(set (match_operand:DF 0 “register_operand” "") (match_operand:DF 1 “const_double_operand” ""))] “TARGET_FPU && (GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) && ! fp_zero_operand(operands[1], DFmode) && reload_completed” [(clobber (const_int 0))] " { REAL_VALUE_TYPE r; long l[2];

REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]); REAL_VALUE_TO_TARGET_DOUBLE (r, l); operands[0] = gen_rtx_raw_REG (DImode, REGNO (operands[0]));

if (TARGET_ARCH64) { #if HOST_BITS_PER_WIDE_INT == 64 HOST_WIDE_INT val;

  val = ((HOST_WIDE_INT)(unsigned long)l[1] |
         ((HOST_WIDE_INT)(unsigned long)l[0] << 32));
  emit_insn (gen_movdi (operands[0], GEN_INT (val)));

#else emit_insn (gen_movdi (operands[0], gen_rtx_CONST_DOUBLE (VOIDmode, l[1], l[0]))); #endif } else { emit_insn (gen_movsi (gen_highpart (SImode, operands[0]), GEN_INT (l[0])));

  /* Slick... but this trick loses if this subreg constant part
     can be done in one insn.  */
  if (l[1] == l[0]
      && !(SPARC_SETHI_P (l[0])
       || SPARC_SIMM13_P (l[0])))
    {
      emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]),
		        gen_highpart (SImode, operands[0])));
    }
  else
    {
      emit_insn (gen_movsi (gen_lowpart (SImode, operands[0]),
		        GEN_INT (l[1])));
    }
}

DONE; }")

;; Ok, now the splits to handle all the multi insn and ;; mis-aligned memory address cases. ;; In these splits please take note that we must be ;; careful when V9 but not ARCH64 because the integer ;; register DFmode cases must be handled. (define_split [(set (match_operand:DF 0 “register_operand” "") (match_operand:DF 1 “register_operand” ""))] “(! TARGET_V9 || (! TARGET_ARCH64 && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32)))) && reload_completed” [(clobber (const_int 0))] " { rtx set_dest = operands[0]; rtx set_src = operands[1]; rtx dest1, dest2; rtx src1, src2;

dest1 = gen_highpart (SFmode, set_dest); dest2 = gen_lowpart (SFmode, set_dest); src1 = gen_highpart (SFmode, set_src); src2 = gen_lowpart (SFmode, set_src);

/* Now emit using the real source and destination we found, swapping the order if we detect overlap. */ if (reg_overlap_mentioned_p (dest1, src2)) { emit_insn (gen_movsf (dest2, src2)); emit_insn (gen_movsf (dest1, src1)); } else { emit_insn (gen_movsf (dest1, src1)); emit_insn (gen_movsf (dest2, src2)); } DONE; }")

(define_split [(set (match_operand:DF 0 “register_operand” "") (match_operand:DF 1 “memory_operand” ""))] “reload_completed && ! TARGET_ARCH64 && (((REGNO (operands[0]) % 2) != 0) || ! mem_min_alignment (operands[1], 8)) && offsettable_memref_p (operands[1])” [(clobber (const_int 0))] " { rtx word0 = adjust_address (operands[1], SFmode, 0); rtx word1 = adjust_address (operands[1], SFmode, 4);

if (reg_overlap_mentioned_p (gen_highpart (SFmode, operands[0]), word1)) { emit_insn (gen_movsf (gen_lowpart (SFmode, operands[0]), word1)); emit_insn (gen_movsf (gen_highpart (SFmode, operands[0]), word0)); } else { emit_insn (gen_movsf (gen_highpart (SFmode, operands[0]), word0)); emit_insn (gen_movsf (gen_lowpart (SFmode, operands[0]), word1)); } DONE; }")

(define_split [(set (match_operand:DF 0 “memory_operand” "") (match_operand:DF 1 “register_operand” ""))] “reload_completed && ! TARGET_ARCH64 && (((REGNO (operands[1]) % 2) != 0) || ! mem_min_alignment (operands[0], 8)) && offsettable_memref_p (operands[0])” [(clobber (const_int 0))] " { rtx word0 = adjust_address (operands[0], SFmode, 0); rtx word1 = adjust_address (operands[0], SFmode, 4);

emit_insn (gen_movsf (word0, gen_highpart (SFmode, operands[1]))); emit_insn (gen_movsf (word1, gen_lowpart (SFmode, operands[1]))); DONE; }")

(define_split [(set (match_operand:DF 0 “memory_operand” "") (match_operand:DF 1 “fp_zero_operand” ""))] “reload_completed && (! TARGET_V9 || (! TARGET_ARCH64 && ! mem_min_alignment (operands[0], 8))) && offsettable_memref_p (operands[0])” [(clobber (const_int 0))] " { rtx dest1, dest2;

dest1 = adjust_address (operands[0], SFmode, 0); dest2 = adjust_address (operands[0], SFmode, 4);

emit_insn (gen_movsf (dest1, CONST0_RTX (SFmode))); emit_insn (gen_movsf (dest2, CONST0_RTX (SFmode))); DONE; }")

(define_split [(set (match_operand:DF 0 “register_operand” "") (match_operand:DF 1 “fp_zero_operand” ""))] “reload_completed && ! TARGET_ARCH64 && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32))” [(clobber (const_int 0))] " { rtx set_dest = operands[0]; rtx dest1, dest2;

dest1 = gen_highpart (SFmode, set_dest); dest2 = gen_lowpart (SFmode, set_dest); emit_insn (gen_movsf (dest1, CONST0_RTX (SFmode))); emit_insn (gen_movsf (dest2, CONST0_RTX (SFmode))); DONE; }")

(define_expand “movtf” [(set (match_operand:TF 0 “general_operand” "") (match_operand:TF 1 “general_operand” ""))] "" " { /* Force TFmode constants into memory. / if (GET_CODE (operands[0]) == REG && CONSTANT_P (operands[1])) { / emit_group_store will send such bogosity to us when it is not storing directly into memory. So fix this up to avoid crashes in output_constant_pool. */ if (operands [1] == const0_rtx) operands[1] = CONST0_RTX (TFmode);

  if (TARGET_VIS && fp_zero_operand (operands[1], TFmode))
goto movtf_is_ok;

  operands[1] = validize_mem (force_const_mem (GET_MODE (operands[0]),
                                               operands[1]));
}

/* Handle MEM cases first, note that only v9 guarentees full 16-byte alignment for quads. */ if (GET_CODE (operands[0]) == MEM) { if (register_operand (operands[1], TFmode) || fp_zero_operand (operands[1], TFmode)) goto movtf_is_ok;

  if (! reload_in_progress)
{
  operands[0] = validize_mem (operands[0]);
  operands[1] = force_reg (TFmode, operands[1]);
}
}

/* Fixup PIC cases. */ if (flag_pic) { if (CONSTANT_P (operands[1]) && pic_address_needs_scratch (operands[1])) operands[1] = legitimize_pic_address (operands[1], TFmode, 0);

  if (symbolic_operand (operands[1], TFmode))
{
  operands[1] = legitimize_pic_address (operands[1],
					TFmode,
					(reload_in_progress ?
					 operands[0] :
					 NULL_RTX));
}
}

movtf_is_ok: ; }")

;; Be careful, fmovq and {st,ld}{x,q} do not exist when !arch64 so ;; we must split them all. :-( (define_insn “*movtf_insn_sp32” [(set (match_operand:TF 0 “nonimmediate_operand” “=e,o,U,r”) (match_operand:TF 1 “input_operand” “oe,GeUr,o,roG”))] “TARGET_FPU && ! TARGET_VIS && ! TARGET_ARCH64 && (register_operand (operands[0], TFmode) || register_operand (operands[1], TFmode) || fp_zero_operand (operands[1], TFmode))” “#” [(set_attr “length” “4”)])

(define_insn “*movtf_insn_vis_sp32” [(set (match_operand:TF 0 “nonimmediate_operand” “=e,o,U,r”) (match_operand:TF 1 “input_operand” “Goe,GeUr,o,roG”))] “TARGET_FPU && TARGET_VIS && ! TARGET_ARCH64 && (register_operand (operands[0], TFmode) || register_operand (operands[1], TFmode) || fp_zero_operand (operands[1], TFmode))” “#” [(set_attr “length” “4”)])

;; Exactly the same as above, except that all e' cases are deleted. ;; This is necessary to prevent reload from ever trying to use a e' reg ;; when -mno-fpu.

(define_insn “*movtf_no_e_insn_sp32” [(set (match_operand:TF 0 “nonimmediate_operand” “=o,U,o,r,o”) (match_operand:TF 1 “input_operand” “G,o,U,roG,r”))] “! TARGET_FPU && ! TARGET_ARCH64 && (register_operand (operands[0], TFmode) || register_operand (operands[1], TFmode) || fp_zero_operand (operands[1], TFmode))” “#” [(set_attr “length” “4”)])

;; Now handle the float reg cases directly when arch64, ;; hard_quad, and proper reg number alignment are all true. (define_insn “*movtf_insn_hq_sp64” [(set (match_operand:TF 0 “nonimmediate_operand” “=e,e,m,o,r”) (match_operand:TF 1 “input_operand” “e,m,e,Gr,roG”))] “TARGET_FPU && ! TARGET_VIS && TARGET_ARCH64 && TARGET_HARD_QUAD && (register_operand (operands[0], TFmode) || register_operand (operands[1], TFmode) || fp_zero_operand (operands[1], TFmode))” "@ fmovq\t%1, %0 ldq\t%1, %0 stq\t%1, %0

#" [(set_attr “type” “fpmove,fpload,fpstore,,”) (set_attr “length” “,,*,2,2”)])

(define_insn “*movtf_insn_hq_vis_sp64” [(set (match_operand:TF 0 “nonimmediate_operand” “=e,e,m,eo,r,o”) (match_operand:TF 1 “input_operand” “e,m,e,G,roG,r”))] “TARGET_FPU && TARGET_VIS && TARGET_ARCH64 && TARGET_HARD_QUAD && (register_operand (operands[0], TFmode) || register_operand (operands[1], TFmode) || fp_zero_operand (operands[1], TFmode))” "@ fmovq\t%1, %0 ldq\t%1, %0 stq\t%1, %0

#" [(set_attr “type” “fpmove,fpload,fpstore,,,*”) (set_attr “length” “,,*,2,2,2”)])

;; Now we allow the integer register cases even when ;; only arch64 is true. (define_insn “*movtf_insn_sp64” [(set (match_operand:TF 0 “nonimmediate_operand” “=e,o,r”) (match_operand:TF 1 “input_operand” “oe,Ger,orG”))] “TARGET_FPU && ! TARGET_VIS && TARGET_ARCH64 && ! TARGET_HARD_QUAD && (register_operand (operands[0], TFmode) || register_operand (operands[1], TFmode) || fp_zero_operand (operands[1], TFmode))” “#” [(set_attr “length” “2”)])

(define_insn “*movtf_insn_vis_sp64” [(set (match_operand:TF 0 “nonimmediate_operand” “=e,o,r”) (match_operand:TF 1 “input_operand” “Goe,Ger,orG”))] “TARGET_FPU && TARGET_VIS && TARGET_ARCH64 && ! TARGET_HARD_QUAD && (register_operand (operands[0], TFmode) || register_operand (operands[1], TFmode) || fp_zero_operand (operands[1], TFmode))” “#” [(set_attr “length” “2”)])

(define_insn “*movtf_no_e_insn_sp64” [(set (match_operand:TF 0 “nonimmediate_operand” “=r,o”) (match_operand:TF 1 “input_operand” “orG,rG”))] “! TARGET_FPU && TARGET_ARCH64 && (register_operand (operands[0], TFmode) || register_operand (operands[1], TFmode) || fp_zero_operand (operands[1], TFmode))” “#” [(set_attr “length” “2”)])

;; Now all the splits to handle multi-insn TF mode moves. (define_split [(set (match_operand:TF 0 “register_operand” "") (match_operand:TF 1 “register_operand” ""))] “reload_completed && (! TARGET_ARCH64 || (TARGET_FPU && ! TARGET_HARD_QUAD))” [(clobber (const_int 0))] " { rtx set_dest = operands[0]; rtx set_src = operands[1]; rtx dest1, dest2; rtx src1, src2;

dest1 = gen_df_reg (set_dest, 0); dest2 = gen_df_reg (set_dest, 1); src1 = gen_df_reg (set_src, 0); src2 = gen_df_reg (set_src, 1);

/* Now emit using the real source and destination we found, swapping the order if we detect overlap. */ if (reg_overlap_mentioned_p (dest1, src2)) { emit_insn (gen_movdf (dest2, src2)); emit_insn (gen_movdf (dest1, src1)); } else { emit_insn (gen_movdf (dest1, src1)); emit_insn (gen_movdf (dest2, src2)); } DONE; }")

(define_split [(set (match_operand:TF 0 “nonimmediate_operand” "") (match_operand:TF 1 “fp_zero_operand” ""))] “reload_completed” [(clobber (const_int 0))] " { rtx set_dest = operands[0]; rtx dest1, dest2;

switch (GET_CODE (set_dest)) { case REG: dest1 = gen_df_reg (set_dest, 0); dest2 = gen_df_reg (set_dest, 1); break; case MEM: dest1 = adjust_address (set_dest, DFmode, 0); dest2 = adjust_address (set_dest, DFmode, 8); break; default: abort ();
}

emit_insn (gen_movdf (dest1, CONST0_RTX (DFmode))); emit_insn (gen_movdf (dest2, CONST0_RTX (DFmode))); DONE; }")

(define_split [(set (match_operand:TF 0 “register_operand” "") (match_operand:TF 1 “memory_operand” ""))] “(reload_completed && offsettable_memref_p (operands[1]))” [(clobber (const_int 0))] " { rtx word0 = adjust_address (operands[1], DFmode, 0); rtx word1 = adjust_address (operands[1], DFmode, 8); rtx set_dest, dest1, dest2;

set_dest = operands[0];

dest1 = gen_df_reg (set_dest, 0); dest2 = gen_df_reg (set_dest, 1);

/* Now output, ordering such that we don't clobber any registers mentioned in the address. */ if (reg_overlap_mentioned_p (dest1, word1))

{
  emit_insn (gen_movdf (dest2, word1));
  emit_insn (gen_movdf (dest1, word0));
}

else { emit_insn (gen_movdf (dest1, word0)); emit_insn (gen_movdf (dest2, word1)); } DONE; }")

(define_split [(set (match_operand:TF 0 “memory_operand” "") (match_operand:TF 1 “register_operand” ""))] “(reload_completed && offsettable_memref_p (operands[0]))” [(clobber (const_int 0))] " { rtx set_src = operands[1];

emit_insn (gen_movdf (adjust_address (operands[0], DFmode, 0), gen_df_reg (set_src, 0))); emit_insn (gen_movdf (adjust_address (operands[0], DFmode, 8), gen_df_reg (set_src, 1))); DONE; }") ;; Sparc V9 conditional move instructions.

;; We can handle larger constants here for some flavors, but for now we keep ;; it simple and only allow those constants supported by all flavours. ;; Note that emit_conditional_move canonicalizes operands 2,3 so that operand ;; 3 contains the constant if one is present, but we handle either for ;; generality (sparc.c puts a constant in operand 2).

(define_expand “movqicc” [(set (match_operand:QI 0 “register_operand” "") (if_then_else:QI (match_operand 1 “comparison_operator” "") (match_operand:QI 2 “arith10_operand” "") (match_operand:QI 3 “arith10_operand” "")))] “TARGET_V9” " { enum rtx_code code = GET_CODE (operands[1]);

if (GET_MODE (sparc_compare_op0) == DImode && ! TARGET_ARCH64) FAIL;

if (sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode && v9_regcmp_p (code)) { operands[1] = gen_rtx_fmt_ee (code, DImode, sparc_compare_op0, sparc_compare_op1); } else { rtx cc_reg = gen_compare_reg (code, sparc_compare_op0, sparc_compare_op1); operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx); } }")

(define_expand “movhicc” [(set (match_operand:HI 0 “register_operand” "") (if_then_else:HI (match_operand 1 “comparison_operator” "") (match_operand:HI 2 “arith10_operand” "") (match_operand:HI 3 “arith10_operand” "")))] “TARGET_V9” " { enum rtx_code code = GET_CODE (operands[1]);

if (GET_MODE (sparc_compare_op0) == DImode && ! TARGET_ARCH64) FAIL;

if (sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode && v9_regcmp_p (code)) { operands[1] = gen_rtx_fmt_ee (code, DImode, sparc_compare_op0, sparc_compare_op1); } else { rtx cc_reg = gen_compare_reg (code, sparc_compare_op0, sparc_compare_op1); operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx); } }")

(define_expand “movsicc” [(set (match_operand:SI 0 “register_operand” "") (if_then_else:SI (match_operand 1 “comparison_operator” "") (match_operand:SI 2 “arith10_operand” "") (match_operand:SI 3 “arith10_operand” "")))] “TARGET_V9” " { enum rtx_code code = GET_CODE (operands[1]); enum machine_mode op0_mode = GET_MODE (sparc_compare_op0);

if (sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && (TARGET_ARCH64 && op0_mode == DImode && v9_regcmp_p (code))) { operands[1] = gen_rtx_fmt_ee (code, op0_mode, sparc_compare_op0, sparc_compare_op1); } else { rtx cc_reg = gen_compare_reg (code, sparc_compare_op0, sparc_compare_op1); operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx); } }")

(define_expand “movdicc” [(set (match_operand:DI 0 “register_operand” "") (if_then_else:DI (match_operand 1 “comparison_operator” "") (match_operand:DI 2 “arith10_double_operand” "") (match_operand:DI 3 “arith10_double_operand” "")))] “TARGET_ARCH64” " { enum rtx_code code = GET_CODE (operands[1]);

if (sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode && v9_regcmp_p (code)) { operands[1] = gen_rtx_fmt_ee (code, DImode, sparc_compare_op0, sparc_compare_op1); } else { rtx cc_reg = gen_compare_reg (code, sparc_compare_op0, sparc_compare_op1); operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx); } }")

(define_expand “movsfcc” [(set (match_operand:SF 0 “register_operand” "") (if_then_else:SF (match_operand 1 “comparison_operator” "") (match_operand:SF 2 “register_operand” "") (match_operand:SF 3 “register_operand” "")))] “TARGET_V9 && TARGET_FPU” " { enum rtx_code code = GET_CODE (operands[1]);

if (GET_MODE (sparc_compare_op0) == DImode && ! TARGET_ARCH64) FAIL;

if (sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode && v9_regcmp_p (code)) { operands[1] = gen_rtx_fmt_ee (code, DImode, sparc_compare_op0, sparc_compare_op1); } else { rtx cc_reg = gen_compare_reg (code, sparc_compare_op0, sparc_compare_op1); operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx); } }")

(define_expand “movdfcc” [(set (match_operand:DF 0 “register_operand” "") (if_then_else:DF (match_operand 1 “comparison_operator” "") (match_operand:DF 2 “register_operand” "") (match_operand:DF 3 “register_operand” "")))] “TARGET_V9 && TARGET_FPU” " { enum rtx_code code = GET_CODE (operands[1]);

if (GET_MODE (sparc_compare_op0) == DImode && ! TARGET_ARCH64) FAIL;

if (sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode && v9_regcmp_p (code)) { operands[1] = gen_rtx_fmt_ee (code, DImode, sparc_compare_op0, sparc_compare_op1); } else { rtx cc_reg = gen_compare_reg (code, sparc_compare_op0, sparc_compare_op1); operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx); } }")

(define_expand “movtfcc” [(set (match_operand:TF 0 “register_operand” "") (if_then_else:TF (match_operand 1 “comparison_operator” "") (match_operand:TF 2 “register_operand” "") (match_operand:TF 3 “register_operand” "")))] “TARGET_V9 && TARGET_FPU” " { enum rtx_code code = GET_CODE (operands[1]);

if (GET_MODE (sparc_compare_op0) == DImode && ! TARGET_ARCH64) FAIL;

if (sparc_compare_op1 == const0_rtx && GET_CODE (sparc_compare_op0) == REG && GET_MODE (sparc_compare_op0) == DImode && v9_regcmp_p (code)) { operands[1] = gen_rtx_fmt_ee (code, DImode, sparc_compare_op0, sparc_compare_op1); } else { rtx cc_reg = gen_compare_reg (code, sparc_compare_op0, sparc_compare_op1); operands[1] = gen_rtx_fmt_ee (code, GET_MODE (cc_reg), cc_reg, const0_rtx); } }")

;; Conditional move define_insns.

(define_insn “*movqi_cc_sp64” [(set (match_operand:QI 0 “register_operand” “=r,r”) (if_then_else:QI (match_operator 1 “comparison_operator” [(match_operand 2 “icc_or_fcc_reg_operand” “X,X”) (const_int 0)]) (match_operand:QI 3 “arith11_operand” “rL,0”) (match_operand:QI 4 “arith11_operand” “0,rL”)))] “TARGET_V9” “@ mov%C1\t%x2, %3, %0 mov%c1\t%x2, %4, %0” [(set_attr “type” “cmove”)])

(define_insn “*movhi_cc_sp64” [(set (match_operand:HI 0 “register_operand” “=r,r”) (if_then_else:HI (match_operator 1 “comparison_operator” [(match_operand 2 “icc_or_fcc_reg_operand” “X,X”) (const_int 0)]) (match_operand:HI 3 “arith11_operand” “rL,0”) (match_operand:HI 4 “arith11_operand” “0,rL”)))] “TARGET_V9” “@ mov%C1\t%x2, %3, %0 mov%c1\t%x2, %4, %0” [(set_attr “type” “cmove”)])

(define_insn “*movsi_cc_sp64” [(set (match_operand:SI 0 “register_operand” “=r,r”) (if_then_else:SI (match_operator 1 “comparison_operator” [(match_operand 2 “icc_or_fcc_reg_operand” “X,X”) (const_int 0)]) (match_operand:SI 3 “arith11_operand” “rL,0”) (match_operand:SI 4 “arith11_operand” “0,rL”)))] “TARGET_V9” “@ mov%C1\t%x2, %3, %0 mov%c1\t%x2, %4, %0” [(set_attr “type” “cmove”)])

;; ??? The constraints of operands 3,4 need work. (define_insn “*movdi_cc_sp64” [(set (match_operand:DI 0 “register_operand” “=r,r”) (if_then_else:DI (match_operator 1 “comparison_operator” [(match_operand 2 “icc_or_fcc_reg_operand” “X,X”) (const_int 0)]) (match_operand:DI 3 “arith11_double_operand” “rLH,0”) (match_operand:DI 4 “arith11_double_operand” “0,rLH”)))] “TARGET_ARCH64” “@ mov%C1\t%x2, %3, %0 mov%c1\t%x2, %4, %0” [(set_attr “type” “cmove”)])

(define_insn “*movdi_cc_sp64_trunc” [(set (match_operand:SI 0 “register_operand” “=r,r”) (if_then_else:SI (match_operator 1 “comparison_operator” [(match_operand 2 “icc_or_fcc_reg_operand” “X,X”) (const_int 0)]) (match_operand:SI 3 “arith11_double_operand” “rLH,0”) (match_operand:SI 4 “arith11_double_operand” “0,rLH”)))] “TARGET_ARCH64” “@ mov%C1\t%x2, %3, %0 mov%c1\t%x2, %4, %0” [(set_attr “type” “cmove”)])

(define_insn “*movsf_cc_sp64” [(set (match_operand:SF 0 “register_operand” “=f,f”) (if_then_else:SF (match_operator 1 “comparison_operator” [(match_operand 2 “icc_or_fcc_reg_operand” “X,X”) (const_int 0)]) (match_operand:SF 3 “register_operand” “f,0”) (match_operand:SF 4 “register_operand” “0,f”)))] “TARGET_V9 && TARGET_FPU” “@ fmovs%C1\t%x2, %3, %0 fmovs%c1\t%x2, %4, %0” [(set_attr “type” “fpcmove”)])

(define_insn “movdf_cc_sp64” [(set (match_operand:DF 0 “register_operand” “=e,e”) (if_then_else:DF (match_operator 1 “comparison_operator” [(match_operand 2 “icc_or_fcc_reg_operand” “X,X”) (const_int 0)]) (match_operand:DF 3 “register_operand” “e,0”) (match_operand:DF 4 “register_operand” “0,e”)))] “TARGET_V9 && TARGET_FPU” “@ fmovd%C1\t%x2, %3, %0 fmovd%c1\t%x2, %4, %0” [(set_attr “type” “fpcmove”) (set_attr “fptype” “double”)])

(define_insn “*movtf_cc_hq_sp64” [(set (match_operand:TF 0 “register_operand” “=e,e”) (if_then_else:TF (match_operator 1 “comparison_operator” [(match_operand 2 “icc_or_fcc_reg_operand” “X,X”) (const_int 0)]) (match_operand:TF 3 “register_operand” “e,0”) (match_operand:TF 4 “register_operand” “0,e”)))] “TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD” “@ fmovq%C1\t%x2, %3, %0 fmovq%c1\t%x2, %4, %0” [(set_attr “type” “fpcmove”)])

(define_insn “*movtf_cc_sp64” [(set (match_operand:TF 0 “register_operand” “=e,e”) (if_then_else:TF (match_operator 1 “comparison_operator” [(match_operand 2 “icc_or_fcc_reg_operand” “X,X”) (const_int 0)]) (match_operand:TF 3 “register_operand” “e,0”) (match_operand:TF 4 “register_operand” “0,e”)))] “TARGET_V9 && TARGET_FPU && !TARGET_HARD_QUAD” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:TF 0 “register_operand” "") (if_then_else:TF (match_operator 1 “comparison_operator” [(match_operand 2 “icc_or_fcc_reg_operand” "") (const_int 0)]) (match_operand:TF 3 “register_operand” "") (match_operand:TF 4 “register_operand” "")))] “reload_completed && TARGET_V9 && TARGET_FPU && !TARGET_HARD_QUAD” [(clobber (const_int 0))] " { rtx set_dest = operands[0]; rtx set_srca = operands[3]; rtx set_srcb = operands[4]; int third = rtx_equal_p (set_dest, set_srca); rtx dest1, dest2; rtx srca1, srca2, srcb1, srcb2;

dest1 = gen_df_reg (set_dest, 0); dest2 = gen_df_reg (set_dest, 1); srca1 = gen_df_reg (set_srca, 0); srca2 = gen_df_reg (set_srca, 1); srcb1 = gen_df_reg (set_srcb, 0); srcb2 = gen_df_reg (set_srcb, 1);

/* Now emit using the real source and destination we found, swapping the order if we detect overlap. */ if ((third && reg_overlap_mentioned_p (dest1, srcb2)) || (!third && reg_overlap_mentioned_p (dest1, srca2))) { emit_insn (gen_movdf_cc_sp64 (dest2, operands[1], operands[2], srca2, srcb2)); emit_insn (gen_movdf_cc_sp64 (dest1, operands[1], operands[2], srca1, srcb1)); } else { emit_insn (gen_movdf_cc_sp64 (dest1, operands[1], operands[2], srca1, srcb1)); emit_insn (gen_movdf_cc_sp64 (dest2, operands[1], operands[2], srca2, srcb2)); } DONE; }")

(define_insn “*movqi_cc_reg_sp64” [(set (match_operand:QI 0 “register_operand” “=r,r”) (if_then_else:QI (match_operator 1 “v9_regcmp_op” [(match_operand:DI 2 “register_operand” “r,r”) (const_int 0)]) (match_operand:QI 3 “arith10_operand” “rM,0”) (match_operand:QI 4 “arith10_operand” “0,rM”)))] “TARGET_ARCH64” “@ movr%D1\t%2, %r3, %0 movr%d1\t%2, %r4, %0” [(set_attr “type” “cmove”)])

(define_insn “*movhi_cc_reg_sp64” [(set (match_operand:HI 0 “register_operand” “=r,r”) (if_then_else:HI (match_operator 1 “v9_regcmp_op” [(match_operand:DI 2 “register_operand” “r,r”) (const_int 0)]) (match_operand:HI 3 “arith10_operand” “rM,0”) (match_operand:HI 4 “arith10_operand” “0,rM”)))] “TARGET_ARCH64” “@ movr%D1\t%2, %r3, %0 movr%d1\t%2, %r4, %0” [(set_attr “type” “cmove”)])

(define_insn “*movsi_cc_reg_sp64” [(set (match_operand:SI 0 “register_operand” “=r,r”) (if_then_else:SI (match_operator 1 “v9_regcmp_op” [(match_operand:DI 2 “register_operand” “r,r”) (const_int 0)]) (match_operand:SI 3 “arith10_operand” “rM,0”) (match_operand:SI 4 “arith10_operand” “0,rM”)))] “TARGET_ARCH64” “@ movr%D1\t%2, %r3, %0 movr%d1\t%2, %r4, %0” [(set_attr “type” “cmove”)])

;; ??? The constraints of operands 3,4 need work. (define_insn “*movdi_cc_reg_sp64” [(set (match_operand:DI 0 “register_operand” “=r,r”) (if_then_else:DI (match_operator 1 “v9_regcmp_op” [(match_operand:DI 2 “register_operand” “r,r”) (const_int 0)]) (match_operand:DI 3 “arith10_double_operand” “rMH,0”) (match_operand:DI 4 “arith10_double_operand” “0,rMH”)))] “TARGET_ARCH64” “@ movr%D1\t%2, %r3, %0 movr%d1\t%2, %r4, %0” [(set_attr “type” “cmove”)])

(define_insn “*movdi_cc_reg_sp64_trunc” [(set (match_operand:SI 0 “register_operand” “=r,r”) (if_then_else:SI (match_operator 1 “v9_regcmp_op” [(match_operand:DI 2 “register_operand” “r,r”) (const_int 0)]) (match_operand:SI 3 “arith10_double_operand” “rMH,0”) (match_operand:SI 4 “arith10_double_operand” “0,rMH”)))] “TARGET_ARCH64” “@ movr%D1\t%2, %r3, %0 movr%d1\t%2, %r4, %0” [(set_attr “type” “cmove”)])

(define_insn “*movsf_cc_reg_sp64” [(set (match_operand:SF 0 “register_operand” “=f,f”) (if_then_else:SF (match_operator 1 “v9_regcmp_op” [(match_operand:DI 2 “register_operand” “r,r”) (const_int 0)]) (match_operand:SF 3 “register_operand” “f,0”) (match_operand:SF 4 “register_operand” “0,f”)))] “TARGET_ARCH64 && TARGET_FPU” “@ fmovrs%D1\t%2, %3, %0 fmovrs%d1\t%2, %4, %0” [(set_attr “type” “fpcmove”)])

(define_insn “movdf_cc_reg_sp64” [(set (match_operand:DF 0 “register_operand” “=e,e”) (if_then_else:DF (match_operator 1 “v9_regcmp_op” [(match_operand:DI 2 “register_operand” “r,r”) (const_int 0)]) (match_operand:DF 3 “register_operand” “e,0”) (match_operand:DF 4 “register_operand” “0,e”)))] “TARGET_ARCH64 && TARGET_FPU” “@ fmovrd%D1\t%2, %3, %0 fmovrd%d1\t%2, %4, %0” [(set_attr “type” “fpcmove”) (set_attr “fptype” “double”)])

(define_insn “*movtf_cc_reg_hq_sp64” [(set (match_operand:TF 0 “register_operand” “=e,e”) (if_then_else:TF (match_operator 1 “v9_regcmp_op” [(match_operand:DI 2 “register_operand” “r,r”) (const_int 0)]) (match_operand:TF 3 “register_operand” “e,0”) (match_operand:TF 4 “register_operand” “0,e”)))] “TARGET_ARCH64 && TARGET_FPU && TARGET_HARD_QUAD” “@ fmovrq%D1\t%2, %3, %0 fmovrq%d1\t%2, %4, %0” [(set_attr “type” “fpcmove”)])

(define_insn “*movtf_cc_reg_sp64” [(set (match_operand:TF 0 “register_operand” “=e,e”) (if_then_else:TF (match_operator 1 “v9_regcmp_op” [(match_operand:DI 2 “register_operand” “r,r”) (const_int 0)]) (match_operand:TF 3 “register_operand” “e,0”) (match_operand:TF 4 “register_operand” “0,e”)))] “TARGET_ARCH64 && TARGET_FPU && ! TARGET_HARD_QUAD” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:TF 0 “register_operand” "") (if_then_else:TF (match_operator 1 “v9_regcmp_op” [(match_operand:DI 2 “register_operand” "") (const_int 0)]) (match_operand:TF 3 “register_operand” "") (match_operand:TF 4 “register_operand” "")))] “reload_completed && TARGET_ARCH64 && TARGET_FPU && ! TARGET_HARD_QUAD” [(clobber (const_int 0))] " { rtx set_dest = operands[0]; rtx set_srca = operands[3]; rtx set_srcb = operands[4]; int third = rtx_equal_p (set_dest, set_srca); rtx dest1, dest2; rtx srca1, srca2, srcb1, srcb2;

dest1 = gen_df_reg (set_dest, 0); dest2 = gen_df_reg (set_dest, 1); srca1 = gen_df_reg (set_srca, 0); srca2 = gen_df_reg (set_srca, 1); srcb1 = gen_df_reg (set_srcb, 0); srcb2 = gen_df_reg (set_srcb, 1);

/* Now emit using the real source and destination we found, swapping the order if we detect overlap. */ if ((third && reg_overlap_mentioned_p (dest1, srcb2)) || (!third && reg_overlap_mentioned_p (dest1, srca2))) { emit_insn (gen_movdf_cc_reg_sp64 (dest2, operands[1], operands[2], srca2, srcb2)); emit_insn (gen_movdf_cc_reg_sp64 (dest1, operands[1], operands[2], srca1, srcb1)); } else { emit_insn (gen_movdf_cc_reg_sp64 (dest1, operands[1], operands[2], srca1, srcb1)); emit_insn (gen_movdf_cc_reg_sp64 (dest2, operands[1], operands[2], srca2, srcb2)); } DONE; }")

;;- zero extension instructions

;; These patterns originally accepted general_operands, however, slightly ;; better code is generated by only accepting register_operands, and then ;; letting combine generate the ldu[hb] insns.

(define_expand “zero_extendhisi2” [(set (match_operand:SI 0 “register_operand” "") (zero_extend:SI (match_operand:HI 1 “register_operand” "")))] "" " { rtx temp = gen_reg_rtx (SImode); rtx shift_16 = GEN_INT (16); int op1_subbyte = 0;

if (GET_CODE (operand1) == SUBREG) { op1_subbyte = SUBREG_BYTE (operand1); op1_subbyte /= GET_MODE_SIZE (SImode); op1_subbyte *= GET_MODE_SIZE (SImode); operand1 = XEXP (operand1, 0); }

emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), shift_16)); emit_insn (gen_lshrsi3 (operand0, temp, shift_16)); DONE; }")

(define_insn “*zero_extendhisi2_insn” [(set (match_operand:SI 0 “register_operand” “=r”) (zero_extend:SI (match_operand:HI 1 “memory_operand” “m”)))] "" “lduh\t%1, %0” [(set_attr “type” “load”)])

(define_expand “zero_extendqihi2” [(set (match_operand:HI 0 “register_operand” "") (zero_extend:HI (match_operand:QI 1 “register_operand” "")))] "" "")

(define_insn “*zero_extendqihi2_insn” [(set (match_operand:HI 0 “register_operand” “=r,r”) (zero_extend:HI (match_operand:QI 1 “input_operand” “r,m”)))] “GET_CODE (operands[1]) != CONST_INT” “@ and\t%1, 0xff, %0 ldub\t%1, %0” [(set_attr “type” “*,load”)])

(define_expand “zero_extendqisi2” [(set (match_operand:SI 0 “register_operand” "") (zero_extend:SI (match_operand:QI 1 “register_operand” "")))] "" "")

(define_insn “*zero_extendqisi2_insn” [(set (match_operand:SI 0 “register_operand” “=r,r”) (zero_extend:SI (match_operand:QI 1 “input_operand” “r,m”)))] “GET_CODE (operands[1]) != CONST_INT” “@ and\t%1, 0xff, %0 ldub\t%1, %0” [(set_attr “type” “*,load”)])

(define_expand “zero_extendqidi2” [(set (match_operand:DI 0 “register_operand” "") (zero_extend:DI (match_operand:QI 1 “register_operand” "")))] “TARGET_ARCH64” "")

(define_insn “*zero_extendqidi2_insn” [(set (match_operand:DI 0 “register_operand” “=r,r”) (zero_extend:DI (match_operand:QI 1 “input_operand” “r,m”)))] “TARGET_ARCH64 && GET_CODE (operands[1]) != CONST_INT” “@ and\t%1, 0xff, %0 ldub\t%1, %0” [(set_attr “type” “*,load”)])

(define_expand “zero_extendhidi2” [(set (match_operand:DI 0 “register_operand” "") (zero_extend:DI (match_operand:HI 1 “register_operand” "")))] “TARGET_ARCH64” " { rtx temp = gen_reg_rtx (DImode); rtx shift_48 = GEN_INT (48); int op1_subbyte = 0;

if (GET_CODE (operand1) == SUBREG) { op1_subbyte = SUBREG_BYTE (operand1); op1_subbyte /= GET_MODE_SIZE (DImode); op1_subbyte *= GET_MODE_SIZE (DImode); operand1 = XEXP (operand1, 0); }

emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte), shift_48)); emit_insn (gen_lshrdi3 (operand0, temp, shift_48)); DONE; }")

(define_insn “*zero_extendhidi2_insn” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (match_operand:HI 1 “memory_operand” “m”)))] “TARGET_ARCH64” “lduh\t%1, %0” [(set_attr “type” “load”)])

;; ??? Write truncdisi pattern using sra?

(define_expand “zero_extendsidi2” [(set (match_operand:DI 0 “register_operand” "") (zero_extend:DI (match_operand:SI 1 “register_operand” "")))] "" "")

(define_insn “*zero_extendsidi2_insn_sp64” [(set (match_operand:DI 0 “register_operand” “=r,r”) (zero_extend:DI (match_operand:SI 1 “input_operand” “r,m”)))] “TARGET_ARCH64 && GET_CODE (operands[1]) != CONST_INT” “@ srl\t%1, 0, %0 lduw\t%1, %0” [(set_attr “type” “shift,load”)])

(define_insn “*zero_extendsidi2_insn_sp32” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (match_operand:SI 1 “register_operand” “r”)))] “! TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (zero_extend:DI (match_operand:SI 1 “register_operand” "")))] “! TARGET_ARCH64 && reload_completed” [(set (match_dup 2) (match_dup 3)) (set (match_dup 4) (match_dup 5))] " { rtx dest1, dest2;

dest1 = gen_highpart (SImode, operands[0]); dest2 = gen_lowpart (SImode, operands[0]);

/* Swap the order in case of overlap. */ if (REGNO (dest1) == REGNO (operands[1])) { operands[2] = dest2; operands[3] = operands[1]; operands[4] = dest1; operands[5] = const0_rtx; } else { operands[2] = dest1; operands[3] = const0_rtx; operands[4] = dest2; operands[5] = operands[1]; } }")

;; Simplify comparisons of extended values.

(define_insn “*cmp_zero_extendqisi2” [(set (reg:CC 100) (compare:CC (zero_extend:SI (match_operand:QI 0 “register_operand” “r”)) (const_int 0)))] "" “andcc\t%0, 0xff, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_zero_qi” [(set (reg:CC 100) (compare:CC (match_operand:QI 0 “register_operand” “r”) (const_int 0)))] "" “andcc\t%0, 0xff, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_zero_extendqisi2_set” [(set (reg:CC 100) (compare:CC (zero_extend:SI (match_operand:QI 1 “register_operand” “r”)) (const_int 0))) (set (match_operand:SI 0 “register_operand” “=r”) (zero_extend:SI (match_dup 1)))] "" “andcc\t%1, 0xff, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_zero_extendqisi2_andcc_set” [(set (reg:CC 100) (compare:CC (and:SI (match_operand:SI 1 “register_operand” “r”) (const_int 255)) (const_int 0))) (set (match_operand:SI 0 “register_operand” “=r”) (zero_extend:SI (subreg:QI (match_dup 1) 0)))] "" “andcc\t%1, 0xff, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_zero_extendqidi2” [(set (reg:CCX 100) (compare:CCX (zero_extend:DI (match_operand:QI 0 “register_operand” “r”)) (const_int 0)))] “TARGET_ARCH64” “andcc\t%0, 0xff, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_zero_qi_sp64” [(set (reg:CCX 100) (compare:CCX (match_operand:QI 0 “register_operand” “r”) (const_int 0)))] “TARGET_ARCH64” “andcc\t%0, 0xff, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_zero_extendqidi2_set” [(set (reg:CCX 100) (compare:CCX (zero_extend:DI (match_operand:QI 1 “register_operand” “r”)) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (match_dup 1)))] “TARGET_ARCH64” “andcc\t%1, 0xff, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_zero_extendqidi2_andcc_set” [(set (reg:CCX 100) (compare:CCX (and:DI (match_operand:DI 1 “register_operand” “r”) (const_int 255)) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (subreg:QI (match_dup 1) 0)))] “TARGET_ARCH64” “andcc\t%1, 0xff, %0” [(set_attr “type” “compare”)])

;; Similarly, handle {SI,DI}->QI mode truncation followed by a compare.

(define_insn “*cmp_siqi_trunc” [(set (reg:CC 100) (compare:CC (subreg:QI (match_operand:SI 0 “register_operand” “r”) 3) (const_int 0)))] "" “andcc\t%0, 0xff, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_siqi_trunc_set” [(set (reg:CC 100) (compare:CC (subreg:QI (match_operand:SI 1 “register_operand” “r”) 3) (const_int 0))) (set (match_operand:QI 0 “register_operand” “=r”) (subreg:QI (match_dup 1) 3))] "" “andcc\t%1, 0xff, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_diqi_trunc” [(set (reg:CC 100) (compare:CC (subreg:QI (match_operand:DI 0 “register_operand” “r”) 7) (const_int 0)))] “TARGET_ARCH64” “andcc\t%0, 0xff, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_diqi_trunc_set” [(set (reg:CC 100) (compare:CC (subreg:QI (match_operand:DI 1 “register_operand” “r”) 7) (const_int 0))) (set (match_operand:QI 0 “register_operand” “=r”) (subreg:QI (match_dup 1) 7))] “TARGET_ARCH64” “andcc\t%1, 0xff, %0” [(set_attr “type” “compare”)]) ;;- sign extension instructions

;; These patterns originally accepted general_operands, however, slightly ;; better code is generated by only accepting register_operands, and then ;; letting combine generate the lds[hb] insns.

(define_expand “extendhisi2” [(set (match_operand:SI 0 “register_operand” "") (sign_extend:SI (match_operand:HI 1 “register_operand” "")))] "" " { rtx temp = gen_reg_rtx (SImode); rtx shift_16 = GEN_INT (16); int op1_subbyte = 0;

if (GET_CODE (operand1) == SUBREG) { op1_subbyte = SUBREG_BYTE (operand1); op1_subbyte /= GET_MODE_SIZE (SImode); op1_subbyte *= GET_MODE_SIZE (SImode); operand1 = XEXP (operand1, 0); }

emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), shift_16)); emit_insn (gen_ashrsi3 (operand0, temp, shift_16)); DONE; }")

(define_insn “*sign_extendhisi2_insn” [(set (match_operand:SI 0 “register_operand” “=r”) (sign_extend:SI (match_operand:HI 1 “memory_operand” “m”)))] "" “ldsh\t%1, %0” [(set_attr “type” “sload”)])

(define_expand “extendqihi2” [(set (match_operand:HI 0 “register_operand” "") (sign_extend:HI (match_operand:QI 1 “register_operand” "")))] "" " { rtx temp = gen_reg_rtx (SImode); rtx shift_24 = GEN_INT (24); int op1_subbyte = 0; int op0_subbyte = 0;

if (GET_CODE (operand1) == SUBREG) { op1_subbyte = SUBREG_BYTE (operand1); op1_subbyte /= GET_MODE_SIZE (SImode); op1_subbyte *= GET_MODE_SIZE (SImode); operand1 = XEXP (operand1, 0); } if (GET_CODE (operand0) == SUBREG) { op0_subbyte = SUBREG_BYTE (operand0); op0_subbyte /= GET_MODE_SIZE (SImode); op0_subbyte *= GET_MODE_SIZE (SImode); operand0 = XEXP (operand0, 0); } emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), shift_24)); if (GET_MODE (operand0) != SImode) operand0 = gen_rtx_SUBREG (SImode, operand0, op0_subbyte); emit_insn (gen_ashrsi3 (operand0, temp, shift_24)); DONE; }")

(define_insn “*sign_extendqihi2_insn” [(set (match_operand:HI 0 “register_operand” “=r”) (sign_extend:HI (match_operand:QI 1 “memory_operand” “m”)))] "" “ldsb\t%1, %0” [(set_attr “type” “sload”)])

(define_expand “extendqisi2” [(set (match_operand:SI 0 “register_operand” "") (sign_extend:SI (match_operand:QI 1 “register_operand” "")))] "" " { rtx temp = gen_reg_rtx (SImode); rtx shift_24 = GEN_INT (24); int op1_subbyte = 0;

if (GET_CODE (operand1) == SUBREG) { op1_subbyte = SUBREG_BYTE (operand1); op1_subbyte /= GET_MODE_SIZE (SImode); op1_subbyte *= GET_MODE_SIZE (SImode); operand1 = XEXP (operand1, 0); }

emit_insn (gen_ashlsi3 (temp, gen_rtx_SUBREG (SImode, operand1, op1_subbyte), shift_24)); emit_insn (gen_ashrsi3 (operand0, temp, shift_24)); DONE; }")

(define_insn “*sign_extendqisi2_insn” [(set (match_operand:SI 0 “register_operand” “=r”) (sign_extend:SI (match_operand:QI 1 “memory_operand” “m”)))] "" “ldsb\t%1, %0” [(set_attr “type” “sload”)])

(define_expand “extendqidi2” [(set (match_operand:DI 0 “register_operand” "") (sign_extend:DI (match_operand:QI 1 “register_operand” "")))] “TARGET_ARCH64” " { rtx temp = gen_reg_rtx (DImode); rtx shift_56 = GEN_INT (56); int op1_subbyte = 0;

if (GET_CODE (operand1) == SUBREG) { op1_subbyte = SUBREG_BYTE (operand1); op1_subbyte /= GET_MODE_SIZE (DImode); op1_subbyte *= GET_MODE_SIZE (DImode); operand1 = XEXP (operand1, 0); }

emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte), shift_56)); emit_insn (gen_ashrdi3 (operand0, temp, shift_56)); DONE; }")

(define_insn “*sign_extendqidi2_insn” [(set (match_operand:DI 0 “register_operand” “=r”) (sign_extend:DI (match_operand:QI 1 “memory_operand” “m”)))] “TARGET_ARCH64” “ldsb\t%1, %0” [(set_attr “type” “sload”)])

(define_expand “extendhidi2” [(set (match_operand:DI 0 “register_operand” "") (sign_extend:DI (match_operand:HI 1 “register_operand” "")))] “TARGET_ARCH64” " { rtx temp = gen_reg_rtx (DImode); rtx shift_48 = GEN_INT (48); int op1_subbyte = 0;

if (GET_CODE (operand1) == SUBREG) { op1_subbyte = SUBREG_BYTE (operand1); op1_subbyte /= GET_MODE_SIZE (DImode); op1_subbyte *= GET_MODE_SIZE (DImode); operand1 = XEXP (operand1, 0); }

emit_insn (gen_ashldi3 (temp, gen_rtx_SUBREG (DImode, operand1, op1_subbyte), shift_48)); emit_insn (gen_ashrdi3 (operand0, temp, shift_48)); DONE; }")

(define_insn “*sign_extendhidi2_insn” [(set (match_operand:DI 0 “register_operand” “=r”) (sign_extend:DI (match_operand:HI 1 “memory_operand” “m”)))] “TARGET_ARCH64” “ldsh\t%1, %0” [(set_attr “type” “sload”)])

(define_expand “extendsidi2” [(set (match_operand:DI 0 “register_operand” "") (sign_extend:DI (match_operand:SI 1 “register_operand” "")))] “TARGET_ARCH64” "")

(define_insn “*sign_extendsidi2_insn” [(set (match_operand:DI 0 “register_operand” “=r,r”) (sign_extend:DI (match_operand:SI 1 “input_operand” “r,m”)))] “TARGET_ARCH64” “@ sra\t%1, 0, %0 ldsw\t%1, %0” [(set_attr “type” “shift,sload”)]) ;; Special pattern for optimizing bit-field compares. This is needed ;; because combine uses this as a canonical form.

(define_insn “*cmp_zero_extract” [(set (reg:CC 100) (compare:CC (zero_extract:SI (match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “small_int_or_double” “n”) (match_operand:SI 2 “small_int_or_double” “n”)) (const_int 0)))] “(GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) > 19) || (GET_CODE (operands[2]) == CONST_DOUBLE && CONST_DOUBLE_LOW (operands[2]) > 19)” "* { int len = (GET_CODE (operands[1]) == CONST_INT ? INTVAL (operands[1]) : CONST_DOUBLE_LOW (operands[1])); int pos = 32 - (GET_CODE (operands[2]) == CONST_INT ? INTVAL (operands[2]) : CONST_DOUBLE_LOW (operands[2])) - len; HOST_WIDE_INT mask = ((1 << len) - 1) << pos;

operands[1] = GEN_INT (mask); return "andcc\t%0, %1, %%g0"; }" [(set_attr “type” “compare”)])

(define_insn “*cmp_zero_extract_sp64” [(set (reg:CCX 100) (compare:CCX (zero_extract:DI (match_operand:DI 0 “register_operand” “r”) (match_operand:SI 1 “small_int_or_double” “n”) (match_operand:SI 2 “small_int_or_double” “n”)) (const_int 0)))] “TARGET_ARCH64 && ((GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) > 51) || (GET_CODE (operands[2]) == CONST_DOUBLE && CONST_DOUBLE_LOW (operands[2]) > 51))” "* { int len = (GET_CODE (operands[1]) == CONST_INT ? INTVAL (operands[1]) : CONST_DOUBLE_LOW (operands[1])); int pos = 64 - (GET_CODE (operands[2]) == CONST_INT ? INTVAL (operands[2]) : CONST_DOUBLE_LOW (operands[2])) - len; HOST_WIDE_INT mask = (((unsigned HOST_WIDE_INT) 1 << len) - 1) << pos;

operands[1] = GEN_INT (mask); return "andcc\t%0, %1, %%g0"; }" [(set_attr “type” “compare”)]) ;; Conversions between float, double and long double.

(define_insn “extendsfdf2” [(set (match_operand:DF 0 “register_operand” “=e”) (float_extend:DF (match_operand:SF 1 “register_operand” “f”)))] “TARGET_FPU” “fstod\t%1, %0” [(set_attr “type” “fp”) (set_attr “fptype” “double”)])

(define_expand “extendsftf2” [(set (match_operand:TF 0 “register_operand” “=e”) (float_extend:TF (match_operand:SF 1 “register_operand” “f”)))] “TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)” " { if (! TARGET_HARD_QUAD) { rtx slot0;

  if (GET_CODE (operands[0]) != MEM)
slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  else
slot0 = operands[0];

  emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \"_Qp_stoq\"), 0,
		 VOIDmode, 2,
		 XEXP (slot0, 0), Pmode,
		 operands[1], SFmode);

  if (GET_CODE (operands[0]) != MEM)
emit_insn (gen_rtx_SET (VOIDmode, operands[0], slot0));
  DONE;
}

}")

(define_insn “*extendsftf2_hq” [(set (match_operand:TF 0 “register_operand” “=e”) (float_extend:TF (match_operand:SF 1 “register_operand” “f”)))] “TARGET_FPU && TARGET_HARD_QUAD” “fstoq\t%1, %0” [(set_attr “type” “fp”)])

(define_expand “extenddftf2” [(set (match_operand:TF 0 “register_operand” “=e”) (float_extend:TF (match_operand:DF 1 “register_operand” “e”)))] “TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)” " { if (! TARGET_HARD_QUAD) { rtx slot0;

  if (GET_CODE (operands[0]) != MEM)
slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  else
slot0 = operands[0];

  emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \"_Qp_dtoq\"), 0,
		 VOIDmode, 2,
		 XEXP (slot0, 0), Pmode,
		 operands[1], DFmode);

  if (GET_CODE (operands[0]) != MEM)
emit_insn (gen_rtx_SET (VOIDmode, operands[0], slot0));
  DONE;
}

}")

(define_insn “*extenddftf2_hq” [(set (match_operand:TF 0 “register_operand” “=e”) (float_extend:TF (match_operand:DF 1 “register_operand” “e”)))] “TARGET_FPU && TARGET_HARD_QUAD” “fdtoq\t%1, %0” [(set_attr “type” “fp”)])

(define_insn “truncdfsf2” [(set (match_operand:SF 0 “register_operand” “=f”) (float_truncate:SF (match_operand:DF 1 “register_operand” “e”)))] “TARGET_FPU” “fdtos\t%1, %0” [(set_attr “type” “fp”) (set_attr “fptype” “double”)])

(define_expand “trunctfsf2” [(set (match_operand:SF 0 “register_operand” “=f”) (float_truncate:SF (match_operand:TF 1 “register_operand” “e”)))] “TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)” " { if (! TARGET_HARD_QUAD) { rtx slot0;

  if (GET_CODE (operands[1]) != MEM)
{
  slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  emit_insn (gen_rtx_SET (VOIDmode, slot0, operands[1]));
}
  else
slot0 = operands[1];

  emit_library_call_value (gen_rtx (SYMBOL_REF, Pmode, \"_Qp_qtos\"),
		       operands[0], 0, SFmode, 1,
		       XEXP (slot0, 0), Pmode);
  DONE;
}

}")

(define_insn “*trunctfsf2_hq” [(set (match_operand:SF 0 “register_operand” “=f”) (float_truncate:SF (match_operand:TF 1 “register_operand” “e”)))] “TARGET_FPU && TARGET_HARD_QUAD” “fqtos\t%1, %0” [(set_attr “type” “fp”)])

(define_expand “trunctfdf2” [(set (match_operand:DF 0 “register_operand” “=f”) (float_truncate:DF (match_operand:TF 1 “register_operand” “e”)))] “TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)” " { if (! TARGET_HARD_QUAD) { rtx slot0;

  if (GET_CODE (operands[1]) != MEM)
{
  slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  emit_insn (gen_rtx_SET (VOIDmode, slot0, operands[1]));
}
  else
slot0 = operands[1];

  emit_library_call_value (gen_rtx (SYMBOL_REF, Pmode, \"_Qp_qtod\"),
		       operands[0], 0, DFmode, 1,
		       XEXP (slot0, 0), Pmode);
  DONE;
}

}")

(define_insn “*trunctfdf2_hq” [(set (match_operand:DF 0 “register_operand” “=e”) (float_truncate:DF (match_operand:TF 1 “register_operand” “e”)))] “TARGET_FPU && TARGET_HARD_QUAD” “fqtod\t%1, %0” [(set_attr “type” “fp”)]) ;; Conversion between fixed point and floating point.

(define_insn “floatsisf2” [(set (match_operand:SF 0 “register_operand” “=f”) (float:SF (match_operand:SI 1 “register_operand” “f”)))] “TARGET_FPU” “fitos\t%1, %0” [(set_attr “type” “fp”) (set_attr “fptype” “double”)])

(define_insn “floatsidf2” [(set (match_operand:DF 0 “register_operand” “=e”) (float:DF (match_operand:SI 1 “register_operand” “f”)))] “TARGET_FPU” “fitod\t%1, %0” [(set_attr “type” “fp”) (set_attr “fptype” “double”)])

(define_expand “floatsitf2” [(set (match_operand:TF 0 “register_operand” “=e”) (float:TF (match_operand:SI 1 “register_operand” “f”)))] “TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)” " { if (! TARGET_HARD_QUAD) { rtx slot0;

  if (GET_CODE (operands[1]) != MEM)
slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  else
slot0 = operands[1];

  emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \"_Qp_itoq\"), 0,
		 VOIDmode, 2,
		 XEXP (slot0, 0), Pmode,
		 operands[1], SImode);

  if (GET_CODE (operands[0]) != MEM)
emit_insn (gen_rtx_SET (VOIDmode, operands[0], slot0));
  DONE;
}

}")

(define_insn “*floatsitf2_hq” [(set (match_operand:TF 0 “register_operand” “=e”) (float:TF (match_operand:SI 1 “register_operand” “f”)))] “TARGET_FPU && TARGET_HARD_QUAD” “fitoq\t%1, %0” [(set_attr “type” “fp”)])

(define_expand “floatunssitf2” [(set (match_operand:TF 0 “register_operand” “=e”) (unsigned_float:TF (match_operand:SI 1 “register_operand” “e”)))] “TARGET_FPU && TARGET_ARCH64 && ! TARGET_HARD_QUAD” " { rtx slot0;

if (GET_CODE (operands[1]) != MEM) slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0); else slot0 = operands[1];

emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "_Qp_uitoq"), 0, VOIDmode, 2, XEXP (slot0, 0), Pmode, operands[1], SImode);

if (GET_CODE (operands[0]) != MEM) emit_insn (gen_rtx_SET (VOIDmode, operands[0], slot0)); DONE; }")

;; Now the same for 64 bit sources.

(define_insn “floatdisf2” [(set (match_operand:SF 0 “register_operand” “=f”) (float:SF (match_operand:DI 1 “register_operand” “e”)))] “TARGET_V9 && TARGET_FPU” “fxtos\t%1, %0” [(set_attr “type” “fp”) (set_attr “fptype” “double”)])

(define_insn “floatdidf2” [(set (match_operand:DF 0 “register_operand” “=e”) (float:DF (match_operand:DI 1 “register_operand” “e”)))] “TARGET_V9 && TARGET_FPU” “fxtod\t%1, %0” [(set_attr “type” “fp”) (set_attr “fptype” “double”)])

(define_expand “floatditf2” [(set (match_operand:TF 0 “register_operand” “=e”) (float:TF (match_operand:DI 1 “register_operand” “e”)))] “TARGET_FPU && TARGET_V9 && (TARGET_HARD_QUAD || TARGET_ARCH64)” " { if (! TARGET_HARD_QUAD) { rtx slot0;

  if (GET_CODE (operands[1]) != MEM)
slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  else
slot0 = operands[1];

  emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \"_Qp_xtoq\"), 0,
		 VOIDmode, 2,
		 XEXP (slot0, 0), Pmode,
		 operands[1], DImode);

  if (GET_CODE (operands[0]) != MEM)
emit_insn (gen_rtx_SET (VOIDmode, operands[0], slot0));
  DONE;
}

}")

(define_insn “*floatditf2_hq” [(set (match_operand:TF 0 “register_operand” “=e”) (float:TF (match_operand:DI 1 “register_operand” “e”)))] “TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD” “fxtoq\t%1, %0” [(set_attr “type” “fp”)])

(define_expand “floatunsditf2” [(set (match_operand:TF 0 “register_operand” “=e”) (unsigned_float:TF (match_operand:DI 1 “register_operand” “e”)))] “TARGET_FPU && TARGET_ARCH64 && ! TARGET_HARD_QUAD” " { rtx slot0;

if (GET_CODE (operands[1]) != MEM) slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0); else slot0 = operands[1];

emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "_Qp_uxtoq"), 0, VOIDmode, 2, XEXP (slot0, 0), Pmode, operands[1], DImode);

if (GET_CODE (operands[0]) != MEM) emit_insn (gen_rtx_SET (VOIDmode, operands[0], slot0)); DONE; }")

;; Convert a float to an actual integer. ;; Truncation is performed as part of the conversion.

(define_insn “fix_truncsfsi2” [(set (match_operand:SI 0 “register_operand” “=f”) (fix:SI (fix:SF (match_operand:SF 1 “register_operand” “f”))))] “TARGET_FPU” “fstoi\t%1, %0” [(set_attr “type” “fp”) (set_attr “fptype” “double”)])

(define_insn “fix_truncdfsi2” [(set (match_operand:SI 0 “register_operand” “=f”) (fix:SI (fix:DF (match_operand:DF 1 “register_operand” “e”))))] “TARGET_FPU” “fdtoi\t%1, %0” [(set_attr “type” “fp”) (set_attr “fptype” “double”)])

(define_expand “fix_trunctfsi2” [(set (match_operand:SI 0 “register_operand” “=f”) (fix:SI (fix:TF (match_operand:TF 1 “register_operand” “e”))))] “TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)” " { if (! TARGET_HARD_QUAD) { rtx slot0;

  if (GET_CODE (operands[1]) != MEM)
{
  slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  emit_insn (gen_rtx_SET (VOIDmode, slot0, operands[1]));
}
  else
slot0 = operands[1];

  emit_library_call_value (gen_rtx (SYMBOL_REF, Pmode, \"_Qp_qtoi\"),
		       operands[0], 0, SImode, 1,
		       XEXP (slot0, 0), Pmode);
  DONE;
}

}")

(define_insn “*fix_trunctfsi2_hq” [(set (match_operand:SI 0 “register_operand” “=f”) (fix:SI (fix:TF (match_operand:TF 1 “register_operand” “e”))))] “TARGET_FPU && TARGET_HARD_QUAD” “fqtoi\t%1, %0” [(set_attr “type” “fp”)])

(define_expand “fixuns_trunctfsi2” [(set (match_operand:SI 0 “register_operand” “=f”) (unsigned_fix:SI (fix:TF (match_operand:TF 1 “register_operand” “e”))))] “TARGET_FPU && TARGET_ARCH64 && ! TARGET_HARD_QUAD” " { rtx slot0;

if (GET_CODE (operands[1]) != MEM) { slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0); emit_insn (gen_rtx_SET (VOIDmode, slot0, operands[1])); } else slot0 = operands[1];

emit_library_call_value (gen_rtx (SYMBOL_REF, Pmode, "_Qp_qtoui"), operands[0], 0, SImode, 1, XEXP (slot0, 0), Pmode); DONE; }")

;; Now the same, for V9 targets

(define_insn “fix_truncsfdi2” [(set (match_operand:DI 0 “register_operand” “=e”) (fix:DI (fix:SF (match_operand:SF 1 “register_operand” “f”))))] “TARGET_V9 && TARGET_FPU” “fstox\t%1, %0” [(set_attr “type” “fp”) (set_attr “fptype” “double”)])

(define_insn “fix_truncdfdi2” [(set (match_operand:DI 0 “register_operand” “=e”) (fix:DI (fix:DF (match_operand:DF 1 “register_operand” “e”))))] “TARGET_V9 && TARGET_FPU” “fdtox\t%1, %0” [(set_attr “type” “fp”) (set_attr “fptype” “double”)])

(define_expand “fix_trunctfdi2” [(set (match_operand:DI 0 “register_operand” “=e”) (fix:SI (fix:TF (match_operand:TF 1 “register_operand” “e”))))] “TARGET_V9 && TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)” " { if (! TARGET_HARD_QUAD) { rtx slot0;

  if (GET_CODE (operands[1]) != MEM)
{
  slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  emit_insn (gen_rtx_SET (VOIDmode, slot0, operands[1]));
}
  else
slot0 = operands[1];

  emit_library_call_value (gen_rtx (SYMBOL_REF, Pmode, \"_Qp_qtox\"),
		       operands[0], 0, DImode, 1,
		       XEXP (slot0, 0), Pmode);
  DONE;
}

}")

(define_insn “*fix_trunctfdi2_hq” [(set (match_operand:DI 0 “register_operand” “=e”) (fix:DI (fix:TF (match_operand:TF 1 “register_operand” “e”))))] “TARGET_V9 && TARGET_FPU && TARGET_HARD_QUAD” “fqtox\t%1, %0” [(set_attr “type” “fp”)])

(define_expand “fixuns_trunctfdi2” [(set (match_operand:DI 0 “register_operand” “=f”) (unsigned_fix:DI (fix:TF (match_operand:TF 1 “register_operand” “e”))))] “TARGET_FPU && TARGET_ARCH64 && ! TARGET_HARD_QUAD” " { rtx slot0;

if (GET_CODE (operands[1]) != MEM) { slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0); emit_insn (gen_rtx_SET (VOIDmode, slot0, operands[1])); } else slot0 = operands[1];

emit_library_call_value (gen_rtx (SYMBOL_REF, Pmode, "_Qp_qtoux"), operands[0], 0, DImode, 1, XEXP (slot0, 0), Pmode); DONE; }")

;;- arithmetic instructions

(define_expand “adddi3” [(set (match_operand:DI 0 “register_operand” “=r”) (plus:DI (match_operand:DI 1 “arith_double_operand” “%r”) (match_operand:DI 2 “arith_double_add_operand” “rHI”)))] "" " { HOST_WIDE_INT i;

if (! TARGET_ARCH64) { emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, gen_rtx_SET (VOIDmode, operands[0], gen_rtx_PLUS (DImode, operands[1], operands[2])), gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, SPARC_ICC_REG))))); DONE; } if (arith_double_4096_operand(operands[2], DImode)) { switch (GET_CODE (operands[1])) { case CONST_INT: i = INTVAL (operands[1]); break; case CONST_DOUBLE: i = CONST_DOUBLE_LOW (operands[1]); break; default: emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_MINUS (DImode, operands[1], GEN_INT(-4096)))); DONE; } emit_insn (gen_movdi (operands[0], GEN_INT (i + 4096))); DONE; } }")

(define_insn “adddi3_insn_sp32” [(set (match_operand:DI 0 “register_operand” “=r”) (plus:DI (match_operand:DI 1 “arith_double_operand” “%r”) (match_operand:DI 2 “arith_double_operand” “rHI”))) (clobber (reg:CC 100))] “! TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (plus:DI (match_operand:DI 1 “arith_double_operand” "") (match_operand:DI 2 “arith_double_operand” "“))) (clobber (reg:CC 100))] “! TARGET_ARCH64 && reload_completed” [(parallel [(set (reg:CC_NOOV 100) (compare:CC_NOOV (plus:SI (match_dup 4) (match_dup 5)) (const_int 0))) (set (match_dup 3) (plus:SI (match_dup 4) (match_dup 5)))]) (set (match_dup 6) (plus:SI (plus:SI (match_dup 7) (match_dup 8)) (ltu:SI (reg:CC_NOOV 100) (const_int 0))))] " { operands[3] = gen_lowpart (SImode, operands[0]); operands[4] = gen_lowpart (SImode, operands[1]); operands[5] = gen_lowpart (SImode, operands[2]); operands[6] = gen_highpart (SImode, operands[0]); operands[7] = gen_highpart_mode (SImode, DImode, operands[1]); #if HOST_BITS_PER_WIDE_INT == 32 if (GET_CODE (operands[2]) == CONST_INT) { if (INTVAL (operands[2]) < 0) operands[8] = constm1_rtx; else operands[8] = const0_rtx; } else #endif operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); }”)

(define_split [(set (match_operand:DI 0 “register_operand” "") (minus:DI (match_operand:DI 1 “arith_double_operand” "") (match_operand:DI 2 “arith_double_operand” "“))) (clobber (reg:CC 100))] “! TARGET_ARCH64 && reload_completed” [(parallel [(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (match_dup 4) (match_dup 5)) (const_int 0))) (set (match_dup 3) (minus:SI (match_dup 4) (match_dup 5)))]) (set (match_dup 6) (minus:SI (minus:SI (match_dup 7) (match_dup 8)) (ltu:SI (reg:CC_NOOV 100) (const_int 0))))] " { operands[3] = gen_lowpart (SImode, operands[0]); operands[4] = gen_lowpart (SImode, operands[1]); operands[5] = gen_lowpart (SImode, operands[2]); operands[6] = gen_highpart (SImode, operands[0]); operands[7] = gen_highpart (SImode, operands[1]); #if HOST_BITS_PER_WIDE_INT == 32 if (GET_CODE (operands[2]) == CONST_INT) { if (INTVAL (operands[2]) < 0) operands[8] = constm1_rtx; else operands[8] = const0_rtx; } else #endif operands[8] = gen_highpart_mode (SImode, DImode, operands[2]); }”)

;; LTU here means “carry set” (define_insn “addx” [(set (match_operand:SI 0 “register_operand” “=r”) (plus:SI (plus:SI (match_operand:SI 1 “arith_operand” “%r”) (match_operand:SI 2 “arith_operand” “rI”)) (ltu:SI (reg:CC_NOOV 100) (const_int 0))))] "" “addx\t%1, %2, %0” [(set_attr “type” “misc”)])

(define_insn “*addx_extend_sp32” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (plus:SI (plus:SI (match_operand:SI 1 “reg_or_0_operand” “%rJ”) (match_operand:SI 2 “arith_operand” “rI”)) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))))] “! TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (zero_extend:DI (plus:SI (plus:SI (match_operand:SI 1 “reg_or_0_operand” "") (match_operand:SI 2 “arith_operand” "")) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))))] “! TARGET_ARCH64 && reload_completed” [(set (match_dup 3) (plus:SI (plus:SI (match_dup 1) (match_dup 2)) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))) (set (match_dup 4) (const_int 0))] “operands[3] = gen_lowpart (SImode, operands[0]); operands[4] = gen_highpart_mode (SImode, DImode, operands[1]);”)

(define_insn “*addx_extend_sp64” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (plus:SI (plus:SI (match_operand:SI 1 “reg_or_0_operand” “%rJ”) (match_operand:SI 2 “arith_operand” “rI”)) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))))] “TARGET_ARCH64” “addx\t%r1, %2, %0” [(set_attr “type” “misc”)])

(define_insn “subx” [(set (match_operand:SI 0 “register_operand” “=r”) (minus:SI (minus:SI (match_operand:SI 1 “reg_or_0_operand” “rJ”) (match_operand:SI 2 “arith_operand” “rI”)) (ltu:SI (reg:CC_NOOV 100) (const_int 0))))] "" “subx\t%r1, %2, %0” [(set_attr “type” “misc”)])

(define_insn “*subx_extend_sp64” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (minus:SI (minus:SI (match_operand:SI 1 “reg_or_0_operand” “rJ”) (match_operand:SI 2 “arith_operand” “rI”)) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))))] “TARGET_ARCH64” “subx\t%r1, %2, %0” [(set_attr “type” “misc”)])

(define_insn “*subx_extend” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extend:DI (minus:SI (minus:SI (match_operand:SI 1 “reg_or_0_operand” “rJ”) (match_operand:SI 2 “arith_operand” “rI”)) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))))] “! TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (zero_extend:DI (minus:SI (minus:SI (match_operand:SI 1 “reg_or_0_operand” "") (match_operand:SI 2 “arith_operand” "")) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))))] “! TARGET_ARCH64 && reload_completed” [(set (match_dup 3) (minus:SI (minus:SI (match_dup 1) (match_dup 2)) (ltu:SI (reg:CC_NOOV 100) (const_int 0)))) (set (match_dup 4) (const_int 0))] “operands[3] = gen_lowpart (SImode, operands[0]); operands[4] = gen_highpart (SImode, operands[0]);”)

(define_insn "" [(set (match_operand:DI 0 “register_operand” “=r”) (plus:DI (zero_extend:DI (match_operand:SI 1 “register_operand” “r”)) (match_operand:DI 2 “register_operand” “r”))) (clobber (reg:CC 100))] “! TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (plus:DI (zero_extend:DI (match_operand:SI 1 “register_operand” "")) (match_operand:DI 2 “register_operand” ""))) (clobber (reg:CC 100))] “! TARGET_ARCH64 && reload_completed” [(parallel [(set (reg:CC_NOOV 100) (compare:CC_NOOV (plus:SI (match_dup 3) (match_dup 1)) (const_int 0))) (set (match_dup 5) (plus:SI (match_dup 3) (match_dup 1)))]) (set (match_dup 6) (plus:SI (plus:SI (match_dup 4) (const_int 0)) (ltu:SI (reg:CC_NOOV 100) (const_int 0))))] “operands[3] = gen_lowpart (SImode, operands[2]); operands[4] = gen_highpart (SImode, operands[2]); operands[5] = gen_lowpart (SImode, operands[0]); operands[6] = gen_highpart (SImode, operands[0]);”)

(define_insn “*adddi3_sp64” [(set (match_operand:DI 0 “register_operand” “=r”) (plus:DI (match_operand:DI 1 “arith_double_operand” “%r”) (match_operand:DI 2 “arith_double_operand” “rHI”)))] “TARGET_ARCH64” “add\t%1, %2, %0”)

(define_expand “addsi3” [(set (match_operand:SI 0 “register_operand” “=r,d”) (plus:SI (match_operand:SI 1 “arith_operand” “%r,d”) (match_operand:SI 2 “arith_add_operand” “rI,d”)))] "" " { if (arith_4096_operand(operands[2], SImode)) { if (GET_CODE (operands[1]) == CONST_INT) emit_insn (gen_movsi (operands[0], GEN_INT (INTVAL (operands[1]) + 4096))); else emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_MINUS (SImode, operands[1], GEN_INT(-4096)))); DONE; } }")

(define_insn “*addsi3” [(set (match_operand:SI 0 “register_operand” “=r,d”) (plus:SI (match_operand:SI 1 “arith_operand” “%r,d”) (match_operand:SI 2 “arith_operand” “rI,d”)))] "" “@ add\t%1, %2, %0 fpadd32s\t%1, %2, %0” [(set_attr “type” “*,fp”)])

(define_insn “*cmp_cc_plus” [(set (reg:CC_NOOV 100) (compare:CC_NOOV (plus:SI (match_operand:SI 0 “arith_operand” “%r”) (match_operand:SI 1 “arith_operand” “rI”)) (const_int 0)))] "" “addcc\t%0, %1, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_ccx_plus” [(set (reg:CCX_NOOV 100) (compare:CCX_NOOV (plus:DI (match_operand:DI 0 “arith_double_operand” “%r”) (match_operand:DI 1 “arith_double_operand” “rHI”)) (const_int 0)))] “TARGET_ARCH64” “addcc\t%0, %1, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_cc_plus_set” [(set (reg:CC_NOOV 100) (compare:CC_NOOV (plus:SI (match_operand:SI 1 “arith_operand” “%r”) (match_operand:SI 2 “arith_operand” “rI”)) (const_int 0))) (set (match_operand:SI 0 “register_operand” “=r”) (plus:SI (match_dup 1) (match_dup 2)))] "" “addcc\t%1, %2, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_ccx_plus_set” [(set (reg:CCX_NOOV 100) (compare:CCX_NOOV (plus:DI (match_operand:DI 1 “arith_double_operand” “%r”) (match_operand:DI 2 “arith_double_operand” “rHI”)) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r”) (plus:DI (match_dup 1) (match_dup 2)))] “TARGET_ARCH64” “addcc\t%1, %2, %0” [(set_attr “type” “compare”)])

(define_expand “subdi3” [(set (match_operand:DI 0 “register_operand” “=r”) (minus:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:DI 2 “arith_double_add_operand” “rHI”)))] "" " { if (! TARGET_ARCH64) { emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, gen_rtx_SET (VOIDmode, operands[0], gen_rtx_MINUS (DImode, operands[1], operands[2])), gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, SPARC_ICC_REG))))); DONE; } if (arith_double_4096_operand(operands[2], DImode)) { emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_PLUS (DImode, operands[1], GEN_INT(-4096)))); DONE; } }")

(define_insn “*subdi3_sp32” [(set (match_operand:DI 0 “register_operand” “=r”) (minus:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:DI 2 “arith_double_operand” “rHI”))) (clobber (reg:CC 100))] “! TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (minus:DI (match_operand:DI 1 “register_operand” "") (match_operand:DI 2 “arith_double_operand” ""))) (clobber (reg:CC 100))] “! TARGET_ARCH64 && reload_completed && (GET_CODE (operands[2]) == CONST_INT || GET_CODE (operands[2]) == CONST_DOUBLE)” [(clobber (const_int 0))] " { rtx highp, lowp;

highp = gen_highpart_mode (SImode, DImode, operands[2]); lowp = gen_lowpart (SImode, operands[2]); if ((lowp == const0_rtx) && (operands[0] == operands[1])) { emit_insn (gen_rtx_SET (VOIDmode, gen_highpart (SImode, operands[0]), gen_rtx_MINUS (SImode, gen_highpart_mode (SImode, DImode, operands[1]), highp))); } else { emit_insn (gen_cmp_minus_cc_set (gen_lowpart (SImode, operands[0]), gen_lowpart (SImode, operands[1]), lowp)); emit_insn (gen_subx (gen_highpart (SImode, operands[0]), gen_highpart_mode (SImode, DImode, operands[1]), highp)); } DONE; }")

(define_split [(set (match_operand:DI 0 “register_operand” "") (minus:DI (match_operand:DI 1 “register_operand” "") (match_operand:DI 2 “register_operand” "“))) (clobber (reg:CC 100))] “! TARGET_ARCH64 && reload_completed” [(clobber (const_int 0))] " { emit_insn (gen_cmp_minus_cc_set (gen_lowpart (SImode, operands[0]), gen_lowpart (SImode, operands[1]), gen_lowpart (SImode, operands[2]))); emit_insn (gen_subx (gen_highpart (SImode, operands[0]), gen_highpart (SImode, operands[1]), gen_highpart (SImode, operands[2]))); DONE; }”)

(define_insn "" [(set (match_operand:DI 0 “register_operand” “=r”) (minus:DI (match_operand:DI 1 “register_operand” “r”) (zero_extend:DI (match_operand:SI 2 “register_operand” “r”)))) (clobber (reg:CC 100))] “! TARGET_ARCH64” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (minus:DI (match_operand:DI 1 “register_operand” "") (zero_extend:DI (match_operand:SI 2 “register_operand” "")))) (clobber (reg:CC 100))] “! TARGET_ARCH64 && reload_completed” [(parallel [(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (match_dup 3) (match_dup 2)) (const_int 0))) (set (match_dup 5) (minus:SI (match_dup 3) (match_dup 2)))]) (set (match_dup 6) (minus:SI (minus:SI (match_dup 4) (const_int 0)) (ltu:SI (reg:CC_NOOV 100) (const_int 0))))] “operands[3] = gen_lowpart (SImode, operands[1]); operands[4] = gen_highpart (SImode, operands[1]); operands[5] = gen_lowpart (SImode, operands[0]); operands[6] = gen_highpart (SImode, operands[0]);”)

(define_insn “*subdi3_sp64” [(set (match_operand:DI 0 “register_operand” “=r”) (minus:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:DI 2 “arith_double_operand” “rHI”)))] “TARGET_ARCH64” “sub\t%1, %2, %0”)

(define_expand “subsi3” [(set (match_operand:SI 0 “register_operand” “=r,d”) (minus:SI (match_operand:SI 1 “register_operand” “r,d”) (match_operand:SI 2 “arith_add_operand” “rI,d”)))] "" " { if (arith_4096_operand(operands[2], SImode)) { emit_insn (gen_rtx_SET (VOIDmode, operands[0], gen_rtx_PLUS (SImode, operands[1], GEN_INT(-4096)))); DONE; } }")

(define_insn “*subsi3” [(set (match_operand:SI 0 “register_operand” “=r,d”) (minus:SI (match_operand:SI 1 “register_operand” “r,d”) (match_operand:SI 2 “arith_operand” “rI,d”)))] "" “@ sub\t%1, %2, %0 fpsub32s\t%1, %2, %0” [(set_attr “type” “*,fp”)])

(define_insn “*cmp_minus_cc” [(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (match_operand:SI 0 “reg_or_0_operand” “rJ”) (match_operand:SI 1 “arith_operand” “rI”)) (const_int 0)))] "" “subcc\t%r0, %1, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_minus_ccx” [(set (reg:CCX_NOOV 100) (compare:CCX_NOOV (minus:DI (match_operand:DI 0 “register_operand” “r”) (match_operand:DI 1 “arith_double_operand” “rHI”)) (const_int 0)))] “TARGET_ARCH64” “subcc\t%0, %1, %%g0” [(set_attr “type” “compare”)])

(define_insn “cmp_minus_cc_set” [(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (match_operand:SI 1 “reg_or_0_operand” “rJ”) (match_operand:SI 2 “arith_operand” “rI”)) (const_int 0))) (set (match_operand:SI 0 “register_operand” “=r”) (minus:SI (match_dup 1) (match_dup 2)))] "" “subcc\t%r1, %2, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_minus_ccx_set” [(set (reg:CCX_NOOV 100) (compare:CCX_NOOV (minus:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:DI 2 “arith_double_operand” “rHI”)) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r”) (minus:DI (match_dup 1) (match_dup 2)))] “TARGET_ARCH64” “subcc\t%1, %2, %0” [(set_attr “type” “compare”)]) ;; Integer Multiply/Divide.

;; The 32 bit multiply/divide instructions are deprecated on v9, but at ;; least in UltraSPARC I, II and IIi it is a win tick-wise.

(define_insn “mulsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (mult:SI (match_operand:SI 1 “arith_operand” “%r”) (match_operand:SI 2 “arith_operand” “rI”)))] “TARGET_HARD_MUL” “smul\t%1, %2, %0” [(set_attr “type” “imul”)])

(define_expand “muldi3” [(set (match_operand:DI 0 “register_operand” “=r”) (mult:DI (match_operand:DI 1 “arith_double_operand” “%r”) (match_operand:DI 2 “arith_double_operand” “rHI”)))] “TARGET_ARCH64 || TARGET_V8PLUS” " { if (TARGET_V8PLUS) { emit_insn (gen_muldi3_v8plus (operands[0], operands[1], operands[2])); DONE; } }")

(define_insn “*muldi3_sp64” [(set (match_operand:DI 0 “register_operand” “=r”) (mult:DI (match_operand:DI 1 “arith_double_operand” “%r”) (match_operand:DI 2 “arith_double_operand” “rHI”)))] “TARGET_ARCH64” “mulx\t%1, %2, %0” [(set_attr “type” “imul”)])

;; V8plus wide multiply. ;; XXX (define_insn “muldi3_v8plus” [(set (match_operand:DI 0 “register_operand” “=r,h”) (mult:DI (match_operand:DI 1 “arith_double_operand” “%r,0”) (match_operand:DI 2 “arith_double_operand” “rI,rI”))) (clobber (match_scratch:SI 3 “=&h,X”)) (clobber (match_scratch:SI 4 “=&h,X”))] “TARGET_V8PLUS” “* { if (sparc_check_64 (operands[1], insn) <= 0) output_asm_insn ("srl\t%L1, 0, %L1", operands); if (which_alternative == 1) output_asm_insn ("sllx\t%H1, 32, %H1", operands); if (GET_CODE (operands[2]) == CONST_INT) { if (which_alternative == 1) return "or\t%L1, %H1, %H1\n\tmulx\t%H1, %2, %L0;srlx\t%L0, 32, %H0"; else return "sllx\t%H1, 32, %3\n\tor\t%L1, %3, %3\n\tmulx\t%3, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0"; } if (sparc_check_64 (operands[2], insn) <= 0) output_asm_insn ("srl\t%L2, 0, %L2", operands); if (which_alternative == 1) return "or\t%L1, %H1, %H1\n\tsllx\t%H2, 32, %L1\n\tor\t%L2, %L1, %L1\n\tmulx\t%H1, %L1, %L0;srlx\t%L0, 32, %H0"; else return "sllx\t%H1, 32, %3\n\tsllx\t%H2, 32, %4\n\tor\t%L1, %3, %3\n\tor\t%L2, %4, %4\n\tmulx\t%3, %4, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0"; }” [(set_attr “type” “multi”) (set_attr “length” “9,8”)])

(define_insn “*cmp_mul_set” [(set (reg:CC 100) (compare:CC (mult:SI (match_operand:SI 1 “arith_operand” “%r”) (match_operand:SI 2 “arith_operand” “rI”)) (const_int 0))) (set (match_operand:SI 0 “register_operand” “=r”) (mult:SI (match_dup 1) (match_dup 2)))] “TARGET_V8 || TARGET_SPARCLITE || TARGET_DEPRECATED_V8_INSNS” “smulcc\t%1, %2, %0” [(set_attr “type” “imul”)])

(define_expand “mulsidi3” [(set (match_operand:DI 0 “register_operand” "") (mult:DI (sign_extend:DI (match_operand:SI 1 “register_operand” "")) (sign_extend:DI (match_operand:SI 2 “arith_operand” "“))))] “TARGET_HARD_MUL” " { if (CONSTANT_P (operands[2])) { if (TARGET_V8PLUS) emit_insn (gen_const_mulsidi3_v8plus (operands[0], operands[1], operands[2])); else emit_insn (gen_const_mulsidi3_sp32 (operands[0], operands[1], operands[2])); DONE; } if (TARGET_V8PLUS) { emit_insn (gen_mulsidi3_v8plus (operands[0], operands[1], operands[2])); DONE; } }”)

;; V9 puts the 64 bit product in a 64 bit register. Only out or global ;; registers can hold 64 bit values in the V8plus environment. ;; XXX (define_insn “mulsidi3_v8plus” [(set (match_operand:DI 0 “register_operand” “=h,r”) (mult:DI (sign_extend:DI (match_operand:SI 1 “register_operand” “r,r”)) (sign_extend:DI (match_operand:SI 2 “register_operand” “r,r”)))) (clobber (match_scratch:SI 3 “=X,&h”))] “TARGET_V8PLUS” “@ smul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0 smul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0” [(set_attr “type” “multi”) (set_attr “length” “2,3”)])

;; XXX (define_insn “const_mulsidi3_v8plus” [(set (match_operand:DI 0 “register_operand” “=h,r”) (mult:DI (sign_extend:DI (match_operand:SI 1 “register_operand” “r,r”)) (match_operand:SI 2 “small_int” “I,I”))) (clobber (match_scratch:SI 3 “=X,&h”))] “TARGET_V8PLUS” “@ smul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0 smul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0” [(set_attr “type” “multi”) (set_attr “length” “2,3”)])

;; XXX (define_insn “*mulsidi3_sp32” [(set (match_operand:DI 0 “register_operand” “=r”) (mult:DI (sign_extend:DI (match_operand:SI 1 “register_operand” “r”)) (sign_extend:DI (match_operand:SI 2 “register_operand” “r”))))] “TARGET_HARD_MUL32” “* { return TARGET_SPARCLET ? "smuld\t%1, %2, %L0" : "smul\t%1, %2, %L0\n\trd\t%%y, %H0"; }” [(set (attr “type”) (if_then_else (eq_attr “isa” “sparclet”) (const_string “imul”) (const_string “multi”))) (set (attr “length”) (if_then_else (eq_attr “isa” “sparclet”) (const_int 1) (const_int 2)))])

(define_insn “*mulsidi3_sp64” [(set (match_operand:DI 0 “register_operand” “=r”) (mult:DI (sign_extend:DI (match_operand:SI 1 “register_operand” “r”)) (sign_extend:DI (match_operand:SI 2 “register_operand” “r”))))] “TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64” “smul\t%1, %2, %0” [(set_attr “type” “imul”)])

;; Extra pattern, because sign_extend of a constant isn't valid.

;; XXX (define_insn “const_mulsidi3_sp32” [(set (match_operand:DI 0 “register_operand” “=r”) (mult:DI (sign_extend:DI (match_operand:SI 1 “register_operand” “r”)) (match_operand:SI 2 “small_int” “I”)))] “TARGET_HARD_MUL32” “* { return TARGET_SPARCLET ? "smuld\t%1, %2, %L0" : "smul\t%1, %2, %L0\n\trd\t%%y, %H0"; }” [(set (attr “type”) (if_then_else (eq_attr “isa” “sparclet”) (const_string “imul”) (const_string “multi”))) (set (attr “length”) (if_then_else (eq_attr “isa” “sparclet”) (const_int 1) (const_int 2)))])

(define_insn “const_mulsidi3_sp64” [(set (match_operand:DI 0 “register_operand” “=r”) (mult:DI (sign_extend:DI (match_operand:SI 1 “register_operand” “r”)) (match_operand:SI 2 “small_int” “I”)))] “TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64” “smul\t%1, %2, %0” [(set_attr “type” “imul”)])

(define_expand “smulsi3_highpart” [(set (match_operand:SI 0 “register_operand” "") (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 “register_operand” "")) (sign_extend:DI (match_operand:SI 2 “arith_operand” "“))) (const_int 32))))] “TARGET_HARD_MUL && TARGET_ARCH32” " { if (CONSTANT_P (operands[2])) { if (TARGET_V8PLUS) { emit_insn (gen_const_smulsi3_highpart_v8plus (operands[0], operands[1], operands[2], GEN_INT (32))); DONE; } emit_insn (gen_const_smulsi3_highpart (operands[0], operands[1], operands[2])); DONE; } if (TARGET_V8PLUS) { emit_insn (gen_smulsi3_highpart_v8plus (operands[0], operands[1], operands[2], GEN_INT (32))); DONE; } }”)

;; XXX (define_insn “smulsi3_highpart_v8plus” [(set (match_operand:SI 0 “register_operand” “=h,r”) (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 “register_operand” “r,r”)) (sign_extend:DI (match_operand:SI 2 “register_operand” “r,r”))) (match_operand:SI 3 “const_int_operand” “i,i”)))) (clobber (match_scratch:SI 4 “=X,&h”))] “TARGET_V8PLUS” “@ smul\t%1, %2, %0;srlx\t%0, %3, %0 smul\t%1, %2, %4;srlx\t%4, %3, %0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

;; The combiner changes TRUNCATE in the previous pattern to SUBREG. ;; XXX (define_insn "" [(set (match_operand:SI 0 “register_operand” “=h,r”) (subreg:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 “register_operand” “r,r”)) (sign_extend:DI (match_operand:SI 2 “register_operand” “r,r”))) (match_operand:SI 3 “const_int_operand” “i,i”)) 4)) (clobber (match_scratch:SI 4 “=X,&h”))] “TARGET_V8PLUS” “@ smul\t%1, %2, %0\n\tsrlx\t%0, %3, %0 smul\t%1, %2, %4\n\tsrlx\t%4, %3, %0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

;; XXX (define_insn “const_smulsi3_highpart_v8plus” [(set (match_operand:SI 0 “register_operand” “=h,r”) (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 “register_operand” “r,r”)) (match_operand 2 “small_int” “i,i”)) (match_operand:SI 3 “const_int_operand” “i,i”)))) (clobber (match_scratch:SI 4 “=X,&h”))] “TARGET_V8PLUS” “@ smul\t%1, %2, %0\n\tsrlx\t%0, %3, %0 smul\t%1, %2, %4\n\tsrlx\t%4, %3, %0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

;; XXX (define_insn “*smulsi3_highpart_sp32” [(set (match_operand:SI 0 “register_operand” “=r”) (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 “register_operand” “r”)) (sign_extend:DI (match_operand:SI 2 “register_operand” “r”))) (const_int 32))))] “TARGET_HARD_MUL32” “smul\t%1, %2, %%g0\n\trd\t%%y, %0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

;; XXX (define_insn “const_smulsi3_highpart” [(set (match_operand:SI 0 “register_operand” “=r”) (truncate:SI (lshiftrt:DI (mult:DI (sign_extend:DI (match_operand:SI 1 “register_operand” “r”)) (match_operand:SI 2 “register_operand” “r”)) (const_int 32))))] “TARGET_HARD_MUL32” “smul\t%1, %2, %%g0\n\trd\t%%y, %0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

(define_expand “umulsidi3” [(set (match_operand:DI 0 “register_operand” "") (mult:DI (zero_extend:DI (match_operand:SI 1 “register_operand” "")) (zero_extend:DI (match_operand:SI 2 “uns_arith_operand” "“))))] “TARGET_HARD_MUL” " { if (CONSTANT_P (operands[2])) { if (TARGET_V8PLUS) emit_insn (gen_const_umulsidi3_v8plus (operands[0], operands[1], operands[2])); else emit_insn (gen_const_umulsidi3_sp32 (operands[0], operands[1], operands[2])); DONE; } if (TARGET_V8PLUS) { emit_insn (gen_umulsidi3_v8plus (operands[0], operands[1], operands[2])); DONE; } }”)

;; XXX (define_insn “umulsidi3_v8plus” [(set (match_operand:DI 0 “register_operand” “=h,r”) (mult:DI (zero_extend:DI (match_operand:SI 1 “register_operand” “r,r”)) (zero_extend:DI (match_operand:SI 2 “register_operand” “r,r”)))) (clobber (match_scratch:SI 3 “=X,&h”))] “TARGET_V8PLUS” “@ umul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0 umul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0” [(set_attr “type” “multi”) (set_attr “length” “2,3”)])

;; XXX (define_insn “*umulsidi3_sp32” [(set (match_operand:DI 0 “register_operand” “=r”) (mult:DI (zero_extend:DI (match_operand:SI 1 “register_operand” “r”)) (zero_extend:DI (match_operand:SI 2 “register_operand” “r”))))] “TARGET_HARD_MUL32” “* { return TARGET_SPARCLET ? "umuld\t%1, %2, %L0" : "umul\t%1, %2, %L0\n\trd\t%%y, %H0"; }” [(set (attr “type”) (if_then_else (eq_attr “isa” “sparclet”) (const_string “imul”) (const_string “multi”))) (set (attr “length”) (if_then_else (eq_attr “isa” “sparclet”) (const_int 1) (const_int 2)))])

(define_insn “*umulsidi3_sp64” [(set (match_operand:DI 0 “register_operand” “=r”) (mult:DI (zero_extend:DI (match_operand:SI 1 “register_operand” “r”)) (zero_extend:DI (match_operand:SI 2 “register_operand” “r”))))] “TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64” “umul\t%1, %2, %0” [(set_attr “type” “imul”)])

;; Extra pattern, because sign_extend of a constant isn't valid.

;; XXX (define_insn “const_umulsidi3_sp32” [(set (match_operand:DI 0 “register_operand” “=r”) (mult:DI (zero_extend:DI (match_operand:SI 1 “register_operand” “r”)) (match_operand:SI 2 “uns_small_int” "")))] “TARGET_HARD_MUL32” “* { return TARGET_SPARCLET ? "umuld\t%1, %2, %L0" : "umul\t%1, %2, %L0\n\trd\t%%y, %H0"; }” [(set (attr “type”) (if_then_else (eq_attr “isa” “sparclet”) (const_string “imul”) (const_string “multi”))) (set (attr “length”) (if_then_else (eq_attr “isa” “sparclet”) (const_int 1) (const_int 2)))])

(define_insn “const_umulsidi3_sp64” [(set (match_operand:DI 0 “register_operand” “=r”) (mult:DI (zero_extend:DI (match_operand:SI 1 “register_operand” “r”)) (match_operand:SI 2 “uns_small_int” "")))] “TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64” “umul\t%1, %2, %0” [(set_attr “type” “imul”)])

;; XXX (define_insn “const_umulsidi3_v8plus” [(set (match_operand:DI 0 “register_operand” “=h,r”) (mult:DI (zero_extend:DI (match_operand:SI 1 “register_operand” “r,r”)) (match_operand:SI 2 “uns_small_int” ""))) (clobber (match_scratch:SI 3 “=X,h”))] “TARGET_V8PLUS” “@ umul\t%1, %2, %L0\n\tsrlx\t%L0, 32, %H0 umul\t%1, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0” [(set_attr “type” “multi”) (set_attr “length” “2,3”)])

(define_expand “umulsi3_highpart” [(set (match_operand:SI 0 “register_operand” "") (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 “register_operand” "")) (zero_extend:DI (match_operand:SI 2 “uns_arith_operand” "“))) (const_int 32))))] “TARGET_HARD_MUL && TARGET_ARCH32” " { if (CONSTANT_P (operands[2])) { if (TARGET_V8PLUS) { emit_insn (gen_const_umulsi3_highpart_v8plus (operands[0], operands[1], operands[2], GEN_INT (32))); DONE; } emit_insn (gen_const_umulsi3_highpart (operands[0], operands[1], operands[2])); DONE; } if (TARGET_V8PLUS) { emit_insn (gen_umulsi3_highpart_v8plus (operands[0], operands[1], operands[2], GEN_INT (32))); DONE; } }”)

;; XXX (define_insn “umulsi3_highpart_v8plus” [(set (match_operand:SI 0 “register_operand” “=h,r”) (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 “register_operand” “r,r”)) (zero_extend:DI (match_operand:SI 2 “register_operand” “r,r”))) (match_operand:SI 3 “const_int_operand” “i,i”)))) (clobber (match_scratch:SI 4 “=X,h”))] “TARGET_V8PLUS” “@ umul\t%1, %2, %0\n\tsrlx\t%0, %3, %0 umul\t%1, %2, %4\n\tsrlx\t%4, %3, %0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

;; XXX (define_insn “const_umulsi3_highpart_v8plus” [(set (match_operand:SI 0 “register_operand” “=h,r”) (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 “register_operand” “r,r”)) (match_operand:SI 2 “uns_small_int” "")) (match_operand:SI 3 “const_int_operand” “i,i”)))) (clobber (match_scratch:SI 4 “=X,h”))] “TARGET_V8PLUS” “@ umul\t%1, %2, %0\n\tsrlx\t%0, %3, %0 umul\t%1, %2, %4\n\tsrlx\t%4, %3, %0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

;; XXX (define_insn “*umulsi3_highpart_sp32” [(set (match_operand:SI 0 “register_operand” “=r”) (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 “register_operand” “r”)) (zero_extend:DI (match_operand:SI 2 “register_operand” “r”))) (const_int 32))))] “TARGET_HARD_MUL32” “umul\t%1, %2, %%g0\n\trd\t%%y, %0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

;; XXX (define_insn “const_umulsi3_highpart” [(set (match_operand:SI 0 “register_operand” “=r”) (truncate:SI (lshiftrt:DI (mult:DI (zero_extend:DI (match_operand:SI 1 “register_operand” “r”)) (match_operand:SI 2 “uns_small_int” "")) (const_int 32))))] “TARGET_HARD_MUL32” “umul\t%1, %2, %%g0\n\trd\t%%y, %0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

;; The v8 architecture specifies that there must be 3 instructions between ;; a y register write and a use of it for correct results.

(define_expand “divsi3” [(parallel [(set (match_operand:SI 0 “register_operand” “=r,r”) (div:SI (match_operand:SI 1 “register_operand” “r,r”) (match_operand:SI 2 “input_operand” “rI,m”))) (clobber (match_scratch:SI 3 “=&r,&r”))])] “TARGET_V8 || TARGET_DEPRECATED_V8_INSNS” " { if (TARGET_ARCH64) { operands[3] = gen_reg_rtx(SImode); emit_insn (gen_ashrsi3 (operands[3], operands[1], GEN_INT (31))); emit_insn (gen_divsi3_sp64 (operands[0], operands[1], operands[2], operands[3])); DONE; } }")

(define_insn “divsi3_sp32” [(set (match_operand:SI 0 “register_operand” “=r,r”) (div:SI (match_operand:SI 1 “register_operand” “r,r”) (match_operand:SI 2 “input_operand” “rI,m”))) (clobber (match_scratch:SI 3 “=&r,&r”))] “(TARGET_V8 || TARGET_DEPRECATED_V8_INSNS) && TARGET_ARCH32” “* { if (which_alternative == 0) if (TARGET_V9) return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tsdiv\t%1, %2, %0"; else return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tnop\n\tnop\n\tnop\n\tsdiv\t%1, %2, %0"; else if (TARGET_V9) return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tld\t%2, %3\n\tsdiv\t%1, %3, %0"; else return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tld\t%2, %3\n\tnop\n\tnop\n\tsdiv\t%1, %3, %0"; }” [(set_attr “type” “multi”) (set (attr “length”) (if_then_else (eq_attr “isa” “v9”) (const_int 4) (const_int 7)))])

(define_insn “divsi3_sp64” [(set (match_operand:SI 0 “register_operand” “=r”) (div:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “input_operand” “rI”))) (use (match_operand:SI 3 “register_operand” “r”))] “TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64” “wr\t%%g0, %3, %%y\n\tsdiv\t%1, %2, %0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

(define_insn “divdi3” [(set (match_operand:DI 0 “register_operand” “=r”) (div:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:DI 2 “arith_double_operand” “rHI”)))] “TARGET_ARCH64” “sdivx\t%1, %2, %0” [(set_attr “type” “idiv”)])

(define_insn “*cmp_sdiv_cc_set” [(set (reg:CC 100) (compare:CC (div:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “arith_operand” “rI”)) (const_int 0))) (set (match_operand:SI 0 “register_operand” “=r”) (div:SI (match_dup 1) (match_dup 2))) (clobber (match_scratch:SI 3 “=&r”))] “TARGET_V8 || TARGET_DEPRECATED_V8_INSNS” “* { if (TARGET_V9) return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tsdivcc\t%1, %2, %0"; else return "sra\t%1, 31, %3\n\twr\t%3, 0, %%y\n\tnop\n\tnop\n\tnop\n\tsdivcc\t%1, %2, %0"; }” [(set_attr “type” “multi”) (set (attr “length”) (if_then_else (eq_attr “isa” “v9”) (const_int 3) (const_int 6)))])

;; XXX (define_expand “udivsi3” [(set (match_operand:SI 0 “register_operand” "") (udiv:SI (match_operand:SI 1 “reg_or_nonsymb_mem_operand” "") (match_operand:SI 2 “input_operand” "")))] “TARGET_V8 || TARGET_DEPRECATED_V8_INSNS” "")

(define_insn “udivsi3_sp32” [(set (match_operand:SI 0 “register_operand” “=r,&r,&r”) (udiv:SI (match_operand:SI 1 “reg_or_nonsymb_mem_operand” “r,r,m”) (match_operand:SI 2 “input_operand” “rI,m,r”)))] “(TARGET_V8 || TARGET_DEPRECATED_V8_INSNS) && TARGET_ARCH32” “* { output_asm_insn ("wr\t%%g0, %%g0, %%y", operands); switch (which_alternative) { default: return "nop\n\tnop\n\tnop\n\tudiv\t%1, %2, %0"; case 1: return "ld\t%2, %0\n\tnop\n\tnop\n\tudiv\t%1, %0, %0"; case 2: return "ld\t%1, %0\n\tnop\n\tnop\n\tudiv\t%0, %2, %0"; } }” [(set_attr “type” “multi”) (set_attr “length” “5”)])

(define_insn “udivsi3_sp64” [(set (match_operand:SI 0 “register_operand” “=r”) (udiv:SI (match_operand:SI 1 “reg_or_nonsymb_mem_operand” “r”) (match_operand:SI 2 “input_operand” “rI”)))] “TARGET_DEPRECATED_V8_INSNS && TARGET_ARCH64” “wr\t%%g0, 0, %%y\n\tudiv\t%1, %2, %0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

(define_insn “udivdi3” [(set (match_operand:DI 0 “register_operand” “=r”) (udiv:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:DI 2 “arith_double_operand” “rHI”)))] “TARGET_ARCH64” “udivx\t%1, %2, %0” [(set_attr “type” “idiv”)])

(define_insn “*cmp_udiv_cc_set” [(set (reg:CC 100) (compare:CC (udiv:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “arith_operand” “rI”)) (const_int 0))) (set (match_operand:SI 0 “register_operand” “=r”) (udiv:SI (match_dup 1) (match_dup 2)))] “TARGET_V8 || TARGET_DEPRECATED_V8_INSNS” “* { if (TARGET_V9) return "wr\t%%g0, %%g0, %%y\n\tudivcc\t%1, %2, %0"; else return "wr\t%%g0, %%g0, %%y\n\tnop\n\tnop\n\tnop\n\tudivcc\t%1, %2, %0"; }” [(set_attr “type” “multi”) (set (attr “length”) (if_then_else (eq_attr “isa” “v9”) (const_int 2) (const_int 5)))])

; sparclet multiply/accumulate insns

(define_insn “*smacsi” [(set (match_operand:SI 0 “register_operand” “=r”) (plus:SI (mult:SI (match_operand:SI 1 “register_operand” “%r”) (match_operand:SI 2 “arith_operand” “rI”)) (match_operand:SI 3 “register_operand” “0”)))] “TARGET_SPARCLET” “smac\t%1, %2, %0” [(set_attr “type” “imul”)])

(define_insn “*smacdi” [(set (match_operand:DI 0 “register_operand” “=r”) (plus:DI (mult:DI (sign_extend:DI (match_operand:SI 1 “register_operand” “%r”)) (sign_extend:DI (match_operand:SI 2 “register_operand” “r”))) (match_operand:DI 3 “register_operand” “0”)))] “TARGET_SPARCLET” “smacd\t%1, %2, %L0” [(set_attr “type” “imul”)])

(define_insn “*umacdi” [(set (match_operand:DI 0 “register_operand” “=r”) (plus:DI (mult:DI (zero_extend:DI (match_operand:SI 1 “register_operand” “%r”)) (zero_extend:DI (match_operand:SI 2 “register_operand” “r”))) (match_operand:DI 3 “register_operand” “0”)))] “TARGET_SPARCLET” “umacd\t%1, %2, %L0” [(set_attr “type” “imul”)]) ;;- Boolean instructions ;; We define DImode and' so with DImode not' we can get ;; DImode `andn'. Other combinations are possible.

(define_expand “anddi3” [(set (match_operand:DI 0 “register_operand” "") (and:DI (match_operand:DI 1 “arith_double_operand” "") (match_operand:DI 2 “arith_double_operand” "")))] "" "")

(define_insn “*anddi3_sp32” [(set (match_operand:DI 0 “register_operand” “=r,b”) (and:DI (match_operand:DI 1 “arith_double_operand” “%r,b”) (match_operand:DI 2 “arith_double_operand” “rHI,b”)))] “! TARGET_ARCH64” "@

fand\t%1, %2, %0" [(set_attr “type” “*,fp”) (set_attr “length” “2,*”) (set_attr “fptype” “double”)])

(define_insn “*anddi3_sp64” [(set (match_operand:DI 0 “register_operand” “=r,b”) (and:DI (match_operand:DI 1 “arith_double_operand” “%r,b”) (match_operand:DI 2 “arith_double_operand” “rHI,b”)))] “TARGET_ARCH64” “@ and\t%1, %2, %0 fand\t%1, %2, %0” [(set_attr “type” “*,fp”) (set_attr “fptype” “double”)])

(define_insn “andsi3” [(set (match_operand:SI 0 “register_operand” “=r,d”) (and:SI (match_operand:SI 1 “arith_operand” “%r,d”) (match_operand:SI 2 “arith_operand” “rI,d”)))] "" “@ and\t%1, %2, %0 fands\t%1, %2, %0” [(set_attr “type” “*,fp”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (and:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 "" ""))) (clobber (match_operand:SI 3 “register_operand” "“))] “GET_CODE (operands[2]) == CONST_INT && !SMALL_INT32 (operands[2]) && (INTVAL (operands[2]) & 0x3ff) == 0x3ff” [(set (match_dup 3) (match_dup 4)) (set (match_dup 0) (and:SI (not:SI (match_dup 3)) (match_dup 1)))] " { operands[4] = GEN_INT (~INTVAL (operands[2]) & 0xffffffff); }”)

;; Split DImode logical operations requiring two instructions. (define_split [(set (match_operand:DI 0 “register_operand” "") (match_operator:DI 1 “cc_arithop” ; AND, IOR, XOR [(match_operand:DI 2 “register_operand” "") (match_operand:DI 3 “arith_double_operand” "“)]))] “! TARGET_ARCH64 && reload_completed && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32))” [(set (match_dup 4) (match_op_dup:SI 1 [(match_dup 6) (match_dup 8)])) (set (match_dup 5) (match_op_dup:SI 1 [(match_dup 7) (match_dup 9)]))] " { operands[4] = gen_highpart (SImode, operands[0]); operands[5] = gen_lowpart (SImode, operands[0]); operands[6] = gen_highpart (SImode, operands[2]); operands[7] = gen_lowpart (SImode, operands[2]); #if HOST_BITS_PER_WIDE_INT == 32 if (GET_CODE (operands[3]) == CONST_INT) { if (INTVAL (operands[3]) < 0) operands[8] = constm1_rtx; else operands[8] = const0_rtx; } else #endif operands[8] = gen_highpart_mode (SImode, DImode, operands[3]); operands[9] = gen_lowpart (SImode, operands[3]); }”)

(define_insn “*and_not_di_sp32” [(set (match_operand:DI 0 “register_operand” “=r,b”) (and:DI (not:DI (match_operand:DI 1 “register_operand” “r,b”)) (match_operand:DI 2 “register_operand” “r,b”)))] “! TARGET_ARCH64” "@

fandnot1\t%1, %2, %0" [(set_attr “type” “*,fp”) (set_attr “length” “2,*”) (set_attr “fptype” “double”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (and:DI (not:DI (match_operand:DI 1 “register_operand” "")) (match_operand:DI 2 “register_operand” "")))] “! TARGET_ARCH64 && reload_completed && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32))” [(set (match_dup 3) (and:SI (not:SI (match_dup 4)) (match_dup 5))) (set (match_dup 6) (and:SI (not:SI (match_dup 7)) (match_dup 8)))] “operands[3] = gen_highpart (SImode, operands[0]); operands[4] = gen_highpart (SImode, operands[1]); operands[5] = gen_highpart (SImode, operands[2]); operands[6] = gen_lowpart (SImode, operands[0]); operands[7] = gen_lowpart (SImode, operands[1]); operands[8] = gen_lowpart (SImode, operands[2]);”)

(define_insn “*and_not_di_sp64” [(set (match_operand:DI 0 “register_operand” “=r,b”) (and:DI (not:DI (match_operand:DI 1 “register_operand” “r,b”)) (match_operand:DI 2 “register_operand” “r,b”)))] “TARGET_ARCH64” “@ andn\t%2, %1, %0 fandnot1\t%1, %2, %0” [(set_attr “type” “*,fp”) (set_attr “fptype” “double”)])

(define_insn “*and_not_si” [(set (match_operand:SI 0 “register_operand” “=r,d”) (and:SI (not:SI (match_operand:SI 1 “register_operand” “r,d”)) (match_operand:SI 2 “register_operand” “r,d”)))] "" “@ andn\t%2, %1, %0 fandnot1s\t%1, %2, %0” [(set_attr “type” “*,fp”)])

(define_expand “iordi3” [(set (match_operand:DI 0 “register_operand” "") (ior:DI (match_operand:DI 1 “arith_double_operand” "") (match_operand:DI 2 “arith_double_operand” "")))] "" "")

(define_insn “*iordi3_sp32” [(set (match_operand:DI 0 “register_operand” “=r,b”) (ior:DI (match_operand:DI 1 “arith_double_operand” “%r,b”) (match_operand:DI 2 “arith_double_operand” “rHI,b”)))] “! TARGET_ARCH64” "@

for\t%1, %2, %0" [(set_attr “type” “*,fp”) (set_attr “length” “2,*”) (set_attr “fptype” “double”)])

(define_insn “*iordi3_sp64” [(set (match_operand:DI 0 “register_operand” “=r,b”) (ior:DI (match_operand:DI 1 “arith_double_operand” “%r,b”) (match_operand:DI 2 “arith_double_operand” “rHI,b”)))] “TARGET_ARCH64” “@ or\t%1, %2, %0 for\t%1, %2, %0” [(set_attr “type” “*,fp”) (set_attr “fptype” “double”)])

(define_insn “iorsi3” [(set (match_operand:SI 0 “register_operand” “=r,d”) (ior:SI (match_operand:SI 1 “arith_operand” “%r,d”) (match_operand:SI 2 “arith_operand” “rI,d”)))] "" “@ or\t%1, %2, %0 fors\t%1, %2, %0” [(set_attr “type” “*,fp”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (ior:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 "" ""))) (clobber (match_operand:SI 3 “register_operand” "“))] “GET_CODE (operands[2]) == CONST_INT && !SMALL_INT32 (operands[2]) && (INTVAL (operands[2]) & 0x3ff) == 0x3ff” [(set (match_dup 3) (match_dup 4)) (set (match_dup 0) (ior:SI (not:SI (match_dup 3)) (match_dup 1)))] " { operands[4] = GEN_INT (~INTVAL (operands[2]) & 0xffffffff); }”)

(define_insn “*or_not_di_sp32” [(set (match_operand:DI 0 “register_operand” “=r,b”) (ior:DI (not:DI (match_operand:DI 1 “register_operand” “r,b”)) (match_operand:DI 2 “register_operand” “r,b”)))] “! TARGET_ARCH64” "@

fornot1\t%1, %2, %0" [(set_attr “type” “*,fp”) (set_attr “length” “2,*”) (set_attr “fptype” “double”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (ior:DI (not:DI (match_operand:DI 1 “register_operand” "")) (match_operand:DI 2 “register_operand” "")))] “! TARGET_ARCH64 && reload_completed && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32))” [(set (match_dup 3) (ior:SI (not:SI (match_dup 4)) (match_dup 5))) (set (match_dup 6) (ior:SI (not:SI (match_dup 7)) (match_dup 8)))] “operands[3] = gen_highpart (SImode, operands[0]); operands[4] = gen_highpart (SImode, operands[1]); operands[5] = gen_highpart (SImode, operands[2]); operands[6] = gen_lowpart (SImode, operands[0]); operands[7] = gen_lowpart (SImode, operands[1]); operands[8] = gen_lowpart (SImode, operands[2]);”)

(define_insn “*or_not_di_sp64” [(set (match_operand:DI 0 “register_operand” “=r,b”) (ior:DI (not:DI (match_operand:DI 1 “register_operand” “r,b”)) (match_operand:DI 2 “register_operand” “r,b”)))] “TARGET_ARCH64” “@ orn\t%2, %1, %0 fornot1\t%1, %2, %0” [(set_attr “type” “*,fp”) (set_attr “fptype” “double”)])

(define_insn “*or_not_si” [(set (match_operand:SI 0 “register_operand” “=r,d”) (ior:SI (not:SI (match_operand:SI 1 “register_operand” “r,d”)) (match_operand:SI 2 “register_operand” “r,d”)))] "" “@ orn\t%2, %1, %0 fornot1s\t%1, %2, %0” [(set_attr “type” “*,fp”)])

(define_expand “xordi3” [(set (match_operand:DI 0 “register_operand” "") (xor:DI (match_operand:DI 1 “arith_double_operand” "") (match_operand:DI 2 “arith_double_operand” "")))] "" "")

(define_insn “*xordi3_sp32” [(set (match_operand:DI 0 “register_operand” “=r,b”) (xor:DI (match_operand:DI 1 “arith_double_operand” “%r,b”) (match_operand:DI 2 “arith_double_operand” “rHI,b”)))] “! TARGET_ARCH64” "@

fxor\t%1, %2, %0" [(set_attr “type” “*,fp”) (set_attr “length” “2,*”) (set_attr “fptype” “double”)])

(define_insn “*xordi3_sp64” [(set (match_operand:DI 0 “register_operand” “=r,b”) (xor:DI (match_operand:DI 1 “arith_double_operand” “%rJ,b”) (match_operand:DI 2 “arith_double_operand” “rHI,b”)))] “TARGET_ARCH64” “@ xor\t%r1, %2, %0 fxor\t%1, %2, %0” [(set_attr “type” “*,fp”) (set_attr “fptype” “double”)])

(define_insn “*xordi3_sp64_dbl” [(set (match_operand:DI 0 “register_operand” “=r”) (xor:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:DI 2 “const64_operand” "")))] “(TARGET_ARCH64 && HOST_BITS_PER_WIDE_INT != 64)” “xor\t%1, %2, %0”)

(define_insn “xorsi3” [(set (match_operand:SI 0 “register_operand” “=r,d”) (xor:SI (match_operand:SI 1 “arith_operand” “%rJ,d”) (match_operand:SI 2 “arith_operand” “rI,d”)))] "" “@ xor\t%r1, %2, %0 fxors\t%1, %2, %0” [(set_attr “type” “*,fp”)])

(define_split [(set (match_operand:SI 0 “register_operand” "") (xor:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 "" ""))) (clobber (match_operand:SI 3 “register_operand” "“))] “GET_CODE (operands[2]) == CONST_INT && !SMALL_INT32 (operands[2]) && (INTVAL (operands[2]) & 0x3ff) == 0x3ff” [(set (match_dup 3) (match_dup 4)) (set (match_dup 0) (not:SI (xor:SI (match_dup 3) (match_dup 1))))] " { operands[4] = GEN_INT (~INTVAL (operands[2]) & 0xffffffff); }”)

(define_split [(set (match_operand:SI 0 “register_operand” "") (not:SI (xor:SI (match_operand:SI 1 “register_operand” "") (match_operand:SI 2 "" "")))) (clobber (match_operand:SI 3 “register_operand” "“))] “GET_CODE (operands[2]) == CONST_INT && !SMALL_INT32 (operands[2]) && (INTVAL (operands[2]) & 0x3ff) == 0x3ff” [(set (match_dup 3) (match_dup 4)) (set (match_dup 0) (xor:SI (match_dup 3) (match_dup 1)))] " { operands[4] = GEN_INT (~INTVAL (operands[2]) & 0xffffffff); }”)

;; xnor patterns. Note that (a ^ ~b) == (~a ^ b) == ~(a ^ b). ;; Combine now canonicalizes to the rightmost expression. (define_insn “*xor_not_di_sp32” [(set (match_operand:DI 0 “register_operand” “=r,b”) (not:DI (xor:DI (match_operand:DI 1 “register_operand” “r,b”) (match_operand:DI 2 “register_operand” “r,b”))))] “! TARGET_ARCH64” "@

fxnor\t%1, %2, %0" [(set_attr “type” “*,fp”) (set_attr “length” “2,*”) (set_attr “fptype” “double”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (not:DI (xor:DI (match_operand:DI 1 “register_operand” "") (match_operand:DI 2 “register_operand” ""))))] “! TARGET_ARCH64 && reload_completed && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32))” [(set (match_dup 3) (not:SI (xor:SI (match_dup 4) (match_dup 5)))) (set (match_dup 6) (not:SI (xor:SI (match_dup 7) (match_dup 8))))] “operands[3] = gen_highpart (SImode, operands[0]); operands[4] = gen_highpart (SImode, operands[1]); operands[5] = gen_highpart (SImode, operands[2]); operands[6] = gen_lowpart (SImode, operands[0]); operands[7] = gen_lowpart (SImode, operands[1]); operands[8] = gen_lowpart (SImode, operands[2]);”)

(define_insn “*xor_not_di_sp64” [(set (match_operand:DI 0 “register_operand” “=r,b”) (not:DI (xor:DI (match_operand:DI 1 “reg_or_0_operand” “rJ,b”) (match_operand:DI 2 “arith_double_operand” “rHI,b”))))] “TARGET_ARCH64” “@ xnor\t%r1, %2, %0 fxnor\t%1, %2, %0” [(set_attr “type” “*,fp”) (set_attr “fptype” “double”)])

(define_insn “*xor_not_si” [(set (match_operand:SI 0 “register_operand” “=r,d”) (not:SI (xor:SI (match_operand:SI 1 “reg_or_0_operand” “rJ,d”) (match_operand:SI 2 “arith_operand” “rI,d”))))] "" “@ xnor\t%r1, %2, %0 fxnors\t%1, %2, %0” [(set_attr “type” “*,fp”)])

;; These correspond to the above in the case where we also (or only) ;; want to set the condition code.

(define_insn “*cmp_cc_arith_op” [(set (reg:CC 100) (compare:CC (match_operator:SI 2 “cc_arithop” [(match_operand:SI 0 “arith_operand” “%r”) (match_operand:SI 1 “arith_operand” “rI”)]) (const_int 0)))] "" “%A2cc\t%0, %1, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_ccx_arith_op” [(set (reg:CCX 100) (compare:CCX (match_operator:DI 2 “cc_arithop” [(match_operand:DI 0 “arith_double_operand” “%r”) (match_operand:DI 1 “arith_double_operand” “rHI”)]) (const_int 0)))] “TARGET_ARCH64” “%A2cc\t%0, %1, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_cc_arith_op_set” [(set (reg:CC 100) (compare:CC (match_operator:SI 3 “cc_arithop” [(match_operand:SI 1 “arith_operand” “%r”) (match_operand:SI 2 “arith_operand” “rI”)]) (const_int 0))) (set (match_operand:SI 0 “register_operand” “=r”) (match_operator:SI 4 “cc_arithop” [(match_dup 1) (match_dup 2)]))] “GET_CODE (operands[3]) == GET_CODE (operands[4])” “%A3cc\t%1, %2, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_ccx_arith_op_set” [(set (reg:CCX 100) (compare:CCX (match_operator:DI 3 “cc_arithop” [(match_operand:DI 1 “arith_double_operand” “%r”) (match_operand:DI 2 “arith_double_operand” “rHI”)]) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r”) (match_operator:DI 4 “cc_arithop” [(match_dup 1) (match_dup 2)]))] “TARGET_ARCH64 && GET_CODE (operands[3]) == GET_CODE (operands[4])” “%A3cc\t%1, %2, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_cc_xor_not” [(set (reg:CC 100) (compare:CC (not:SI (xor:SI (match_operand:SI 0 “reg_or_0_operand” “%rJ”) (match_operand:SI 1 “arith_operand” “rI”))) (const_int 0)))] "" “xnorcc\t%r0, %1, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_ccx_xor_not” [(set (reg:CCX 100) (compare:CCX (not:DI (xor:DI (match_operand:DI 0 “reg_or_0_operand” “%rJ”) (match_operand:DI 1 “arith_double_operand” “rHI”))) (const_int 0)))] “TARGET_ARCH64” “xnorcc\t%r0, %1, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_cc_xor_not_set” [(set (reg:CC 100) (compare:CC (not:SI (xor:SI (match_operand:SI 1 “reg_or_0_operand” “%rJ”) (match_operand:SI 2 “arith_operand” “rI”))) (const_int 0))) (set (match_operand:SI 0 “register_operand” “=r”) (not:SI (xor:SI (match_dup 1) (match_dup 2))))] "" “xnorcc\t%r1, %2, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_ccx_xor_not_set” [(set (reg:CCX 100) (compare:CCX (not:DI (xor:DI (match_operand:DI 1 “reg_or_0_operand” “%rJ”) (match_operand:DI 2 “arith_double_operand” “rHI”))) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r”) (not:DI (xor:DI (match_dup 1) (match_dup 2))))] “TARGET_ARCH64” “xnorcc\t%r1, %2, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_cc_arith_op_not” [(set (reg:CC 100) (compare:CC (match_operator:SI 2 “cc_arithopn” [(not:SI (match_operand:SI 0 “arith_operand” “rI”)) (match_operand:SI 1 “reg_or_0_operand” “rJ”)]) (const_int 0)))] "" “%B2cc\t%r1, %0, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_ccx_arith_op_not” [(set (reg:CCX 100) (compare:CCX (match_operator:DI 2 “cc_arithopn” [(not:DI (match_operand:DI 0 “arith_double_operand” “rHI”)) (match_operand:DI 1 “reg_or_0_operand” “rJ”)]) (const_int 0)))] “TARGET_ARCH64” “%B2cc\t%r1, %0, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_cc_arith_op_not_set” [(set (reg:CC 100) (compare:CC (match_operator:SI 3 “cc_arithopn” [(not:SI (match_operand:SI 1 “arith_operand” “rI”)) (match_operand:SI 2 “reg_or_0_operand” “rJ”)]) (const_int 0))) (set (match_operand:SI 0 “register_operand” “=r”) (match_operator:SI 4 “cc_arithopn” [(not:SI (match_dup 1)) (match_dup 2)]))] “GET_CODE (operands[3]) == GET_CODE (operands[4])” “%B3cc\t%r2, %1, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_ccx_arith_op_not_set” [(set (reg:CCX 100) (compare:CCX (match_operator:DI 3 “cc_arithopn” [(not:DI (match_operand:DI 1 “arith_double_operand” “rHI”)) (match_operand:DI 2 “reg_or_0_operand” “rJ”)]) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r”) (match_operator:DI 4 “cc_arithopn” [(not:DI (match_dup 1)) (match_dup 2)]))] “TARGET_ARCH64 && GET_CODE (operands[3]) == GET_CODE (operands[4])” “%B3cc\t%r2, %1, %0” [(set_attr “type” “compare”)])

;; We cannot use the “neg” pseudo insn because the Sun assembler ;; does not know how to make it work for constants.

(define_expand “negdi2” [(set (match_operand:DI 0 “register_operand” “=r”) (neg:DI (match_operand:DI 1 “register_operand” “r”)))] "" " { if (! TARGET_ARCH64) { emit_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, gen_rtx_SET (VOIDmode, operand0, gen_rtx_NEG (DImode, operand1)), gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (CCmode, SPARC_ICC_REG))))); DONE; } }")

(define_insn “*negdi2_sp32” [(set (match_operand:DI 0 “register_operand” “=r”) (neg:DI (match_operand:DI 1 “register_operand” “r”))) (clobber (reg:CC 100))] “TARGET_ARCH32” “#” [(set_attr “length” “2”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (neg:DI (match_operand:DI 1 “register_operand” ""))) (clobber (reg:CC 100))] “TARGET_ARCH32 && reload_completed” [(parallel [(set (reg:CC_NOOV 100) (compare:CC_NOOV (minus:SI (const_int 0) (match_dup 5)) (const_int 0))) (set (match_dup 4) (minus:SI (const_int 0) (match_dup 5)))]) (set (match_dup 2) (minus:SI (minus:SI (const_int 0) (match_dup 3)) (ltu:SI (reg:CC 100) (const_int 0))))] “operands[2] = gen_highpart (SImode, operands[0]); operands[3] = gen_highpart (SImode, operands[1]); operands[4] = gen_lowpart (SImode, operands[0]); operands[5] = gen_lowpart (SImode, operands[1]);”)

(define_insn “*negdi2_sp64” [(set (match_operand:DI 0 “register_operand” “=r”) (neg:DI (match_operand:DI 1 “register_operand” “r”)))] “TARGET_ARCH64” “sub\t%%g0, %1, %0”)

(define_insn “negsi2” [(set (match_operand:SI 0 “register_operand” “=r”) (neg:SI (match_operand:SI 1 “arith_operand” “rI”)))] "" “sub\t%%g0, %1, %0”)

(define_insn “*cmp_cc_neg” [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_operand:SI 0 “arith_operand” “rI”)) (const_int 0)))] "" “subcc\t%%g0, %0, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_ccx_neg” [(set (reg:CCX_NOOV 100) (compare:CCX_NOOV (neg:DI (match_operand:DI 0 “arith_double_operand” “rHI”)) (const_int 0)))] “TARGET_ARCH64” “subcc\t%%g0, %0, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_cc_set_neg” [(set (reg:CC_NOOV 100) (compare:CC_NOOV (neg:SI (match_operand:SI 1 “arith_operand” “rI”)) (const_int 0))) (set (match_operand:SI 0 “register_operand” “=r”) (neg:SI (match_dup 1)))] "" “subcc\t%%g0, %1, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_ccx_set_neg” [(set (reg:CCX_NOOV 100) (compare:CCX_NOOV (neg:DI (match_operand:DI 1 “arith_double_operand” “rHI”)) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r”) (neg:DI (match_dup 1)))] “TARGET_ARCH64” “subcc\t%%g0, %1, %0” [(set_attr “type” “compare”)])

;; We cannot use the “not” pseudo insn because the Sun assembler ;; does not know how to make it work for constants. (define_expand “one_cmpldi2” [(set (match_operand:DI 0 “register_operand” "") (not:DI (match_operand:DI 1 “register_operand” "")))] "" "")

(define_insn “*one_cmpldi2_sp32” [(set (match_operand:DI 0 “register_operand” “=r,b”) (not:DI (match_operand:DI 1 “register_operand” “r,b”)))] “! TARGET_ARCH64” "@

fnot1\t%1, %0" [(set_attr “type” “*,fp”) (set_attr “length” “2,*”) (set_attr “fptype” “double”)])

(define_split [(set (match_operand:DI 0 “register_operand” "") (not:DI (match_operand:DI 1 “register_operand” "")))] “! TARGET_ARCH64 && reload_completed && ((GET_CODE (operands[0]) == REG && REGNO (operands[0]) < 32) || (GET_CODE (operands[0]) == SUBREG && GET_CODE (SUBREG_REG (operands[0])) == REG && REGNO (SUBREG_REG (operands[0])) < 32))” [(set (match_dup 2) (not:SI (xor:SI (match_dup 3) (const_int 0)))) (set (match_dup 4) (not:SI (xor:SI (match_dup 5) (const_int 0))))] “operands[2] = gen_highpart (SImode, operands[0]); operands[3] = gen_highpart (SImode, operands[1]); operands[4] = gen_lowpart (SImode, operands[0]); operands[5] = gen_lowpart (SImode, operands[1]);”)

(define_insn “*one_cmpldi2_sp64” [(set (match_operand:DI 0 “register_operand” “=r,b”) (not:DI (match_operand:DI 1 “arith_double_operand” “rHI,b”)))] “TARGET_ARCH64” “@ xnor\t%%g0, %1, %0 fnot1\t%1, %0” [(set_attr “type” “*,fp”) (set_attr “fptype” “double”)])

(define_insn “one_cmplsi2” [(set (match_operand:SI 0 “register_operand” “=r,d”) (not:SI (match_operand:SI 1 “arith_operand” “rI,d”)))] "" “@ xnor\t%%g0, %1, %0 fnot1s\t%1, %0” [(set_attr “type” “*,fp”)])

(define_insn “*cmp_cc_not” [(set (reg:CC 100) (compare:CC (not:SI (match_operand:SI 0 “arith_operand” “rI”)) (const_int 0)))] "" “xnorcc\t%%g0, %0, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_ccx_not” [(set (reg:CCX 100) (compare:CCX (not:DI (match_operand:DI 0 “arith_double_operand” “rHI”)) (const_int 0)))] “TARGET_ARCH64” “xnorcc\t%%g0, %0, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_cc_set_not” [(set (reg:CC 100) (compare:CC (not:SI (match_operand:SI 1 “arith_operand” “rI”)) (const_int 0))) (set (match_operand:SI 0 “register_operand” “=r”) (not:SI (match_dup 1)))] "" “xnorcc\t%%g0, %1, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_ccx_set_not” [(set (reg:CCX 100) (compare:CCX (not:DI (match_operand:DI 1 “arith_double_operand” “rHI”)) (const_int 0))) (set (match_operand:DI 0 “register_operand” “=r”) (not:DI (match_dup 1)))] “TARGET_ARCH64” “xnorcc\t%%g0, %1, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_cc_set” [(set (match_operand:SI 0 “register_operand” “=r”) (match_operand:SI 1 “register_operand” “r”)) (set (reg:CC 100) (compare:CC (match_dup 1) (const_int 0)))] "" “orcc\t%1, 0, %0” [(set_attr “type” “compare”)])

(define_insn “*cmp_ccx_set64” [(set (match_operand:DI 0 “register_operand” “=r”) (match_operand:DI 1 “register_operand” “r”)) (set (reg:CCX 100) (compare:CCX (match_dup 1) (const_int 0)))] “TARGET_ARCH64” “orcc\t%1, 0, %0” [(set_attr “type” “compare”)]) ;; Floating point arithmetic instructions.

(define_expand “addtf3” [(set (match_operand:TF 0 “nonimmediate_operand” "") (plus:TF (match_operand:TF 1 “general_operand” "") (match_operand:TF 2 “general_operand” "")))] “TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)” " { if (! TARGET_HARD_QUAD) { rtx slot0, slot1, slot2;

  if (GET_CODE (operands[0]) != MEM)
slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  else
slot0 = operands[0];
  if (GET_CODE (operands[1]) != MEM)
{
  slot1 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  emit_insn (gen_rtx_SET (VOIDmode, slot1, operands[1]));
}
  else
slot1 = operands[1];
  if (GET_CODE (operands[2]) != MEM)
{
  slot2 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  emit_insn (gen_rtx_SET (VOIDmode, slot2, operands[2]));
}
  else
slot2 = operands[2];

  emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \"_Qp_add\"), 0,
		 VOIDmode, 3,
		 XEXP (slot0, 0), Pmode,
		 XEXP (slot1, 0), Pmode,
		 XEXP (slot2, 0), Pmode);

  if (GET_CODE (operands[0]) != MEM)
emit_insn (gen_rtx_SET (VOIDmode, operands[0], slot0));
  DONE;
}

}")

(define_insn “*addtf3_hq” [(set (match_operand:TF 0 “register_operand” “=e”) (plus:TF (match_operand:TF 1 “register_operand” “e”) (match_operand:TF 2 “register_operand” “e”)))] “TARGET_FPU && TARGET_HARD_QUAD” “faddq\t%1, %2, %0” [(set_attr “type” “fp”)])

(define_insn “adddf3” [(set (match_operand:DF 0 “register_operand” “=e”) (plus:DF (match_operand:DF 1 “register_operand” “e”) (match_operand:DF 2 “register_operand” “e”)))] “TARGET_FPU” “faddd\t%1, %2, %0” [(set_attr “type” “fp”) (set_attr “fptype” “double”)])

(define_insn “addsf3” [(set (match_operand:SF 0 “register_operand” “=f”) (plus:SF (match_operand:SF 1 “register_operand” “f”) (match_operand:SF 2 “register_operand” “f”)))] “TARGET_FPU” “fadds\t%1, %2, %0” [(set_attr “type” “fp”)])

(define_expand “subtf3” [(set (match_operand:TF 0 “nonimmediate_operand” "") (minus:TF (match_operand:TF 1 “general_operand” "") (match_operand:TF 2 “general_operand” "")))] “TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)” " { if (! TARGET_HARD_QUAD) { rtx slot0, slot1, slot2;

  if (GET_CODE (operands[0]) != MEM)
slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  else
slot0 = operands[0];
  if (GET_CODE (operands[1]) != MEM)
{
  slot1 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  emit_insn (gen_rtx_SET (VOIDmode, slot1, operands[1]));
}
  else
slot1 = operands[1];
  if (GET_CODE (operands[2]) != MEM)
{
  slot2 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  emit_insn (gen_rtx_SET (VOIDmode, slot2, operands[2]));
}
  else
slot2 = operands[2];

  emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \"_Qp_sub\"), 0,
		 VOIDmode, 3,
		 XEXP (slot0, 0), Pmode,
		 XEXP (slot1, 0), Pmode,
		 XEXP (slot2, 0), Pmode);

  if (GET_CODE (operands[0]) != MEM)
emit_insn (gen_rtx_SET (VOIDmode, operands[0], slot0));
  DONE;
}

}")

(define_insn “*subtf3_hq” [(set (match_operand:TF 0 “register_operand” “=e”) (minus:TF (match_operand:TF 1 “register_operand” “e”) (match_operand:TF 2 “register_operand” “e”)))] “TARGET_FPU && TARGET_HARD_QUAD” “fsubq\t%1, %2, %0” [(set_attr “type” “fp”)])

(define_insn “subdf3” [(set (match_operand:DF 0 “register_operand” “=e”) (minus:DF (match_operand:DF 1 “register_operand” “e”) (match_operand:DF 2 “register_operand” “e”)))] “TARGET_FPU” “fsubd\t%1, %2, %0” [(set_attr “type” “fp”) (set_attr “fptype” “double”)])

(define_insn “subsf3” [(set (match_operand:SF 0 “register_operand” “=f”) (minus:SF (match_operand:SF 1 “register_operand” “f”) (match_operand:SF 2 “register_operand” “f”)))] “TARGET_FPU” “fsubs\t%1, %2, %0” [(set_attr “type” “fp”)])

(define_expand “multf3” [(set (match_operand:TF 0 “nonimmediate_operand” "") (mult:TF (match_operand:TF 1 “general_operand” "") (match_operand:TF 2 “general_operand” "")))] “TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)” " { if (! TARGET_HARD_QUAD) { rtx slot0, slot1, slot2;

  if (GET_CODE (operands[0]) != MEM)
slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  else
slot0 = operands[0];
  if (GET_CODE (operands[1]) != MEM)
{
  slot1 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  emit_insn (gen_rtx_SET (VOIDmode, slot1, operands[1]));
}
  else
slot1 = operands[1];
  if (GET_CODE (operands[2]) != MEM)
{
  slot2 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  emit_insn (gen_rtx_SET (VOIDmode, slot2, operands[2]));
}
  else
slot2 = operands[2];

  emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \"_Qp_mul\"), 0,
		 VOIDmode, 3,
		 XEXP (slot0, 0), Pmode,
		 XEXP (slot1, 0), Pmode,
		 XEXP (slot2, 0), Pmode);

  if (GET_CODE (operands[0]) != MEM)
emit_insn (gen_rtx_SET (VOIDmode, operands[0], slot0));
  DONE;
}

}")

(define_insn “*multf3_hq” [(set (match_operand:TF 0 “register_operand” “=e”) (mult:TF (match_operand:TF 1 “register_operand” “e”) (match_operand:TF 2 “register_operand” “e”)))] “TARGET_FPU && TARGET_HARD_QUAD” “fmulq\t%1, %2, %0” [(set_attr “type” “fpmul”)])

(define_insn “muldf3” [(set (match_operand:DF 0 “register_operand” “=e”) (mult:DF (match_operand:DF 1 “register_operand” “e”) (match_operand:DF 2 “register_operand” “e”)))] “TARGET_FPU” “fmuld\t%1, %2, %0” [(set_attr “type” “fpmul”) (set_attr “fptype” “double”)])

(define_insn “mulsf3” [(set (match_operand:SF 0 “register_operand” “=f”) (mult:SF (match_operand:SF 1 “register_operand” “f”) (match_operand:SF 2 “register_operand” “f”)))] “TARGET_FPU” “fmuls\t%1, %2, %0” [(set_attr “type” “fpmul”)])

(define_insn “*muldf3_extend” [(set (match_operand:DF 0 “register_operand” “=e”) (mult:DF (float_extend:DF (match_operand:SF 1 “register_operand” “f”)) (float_extend:DF (match_operand:SF 2 “register_operand” “f”))))] “(TARGET_V8 || TARGET_V9) && TARGET_FPU” “fsmuld\t%1, %2, %0” [(set_attr “type” “fpmul”) (set_attr “fptype” “double”)])

(define_insn “*multf3_extend” [(set (match_operand:TF 0 “register_operand” “=e”) (mult:TF (float_extend:TF (match_operand:DF 1 “register_operand” “e”)) (float_extend:TF (match_operand:DF 2 “register_operand” “e”))))] “(TARGET_V8 || TARGET_V9) && TARGET_FPU && TARGET_HARD_QUAD” “fdmulq\t%1, %2, %0” [(set_attr “type” “fpmul”)])

(define_expand “divtf3” [(set (match_operand:TF 0 “nonimmediate_operand” "") (div:TF (match_operand:TF 1 “general_operand” "") (match_operand:TF 2 “general_operand” "")))] “TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)” " { if (! TARGET_HARD_QUAD) { rtx slot0, slot1, slot2;

  if (GET_CODE (operands[0]) != MEM)
slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  else
slot0 = operands[0];
  if (GET_CODE (operands[1]) != MEM)
{
  slot1 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  emit_insn (gen_rtx_SET (VOIDmode, slot1, operands[1]));
}
  else
slot1 = operands[1];
  if (GET_CODE (operands[2]) != MEM)
{
  slot2 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  emit_insn (gen_rtx_SET (VOIDmode, slot2, operands[2]));
}
  else
slot2 = operands[2];

  emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \"_Qp_div\"), 0,
		 VOIDmode, 3,
		 XEXP (slot0, 0), Pmode,
		 XEXP (slot1, 0), Pmode,
		 XEXP (slot2, 0), Pmode);

  if (GET_CODE (operands[0]) != MEM)
emit_insn (gen_rtx_SET (VOIDmode, operands[0], slot0));
  DONE;
}

}")

;; don't have timing for quad-prec. divide. (define_insn “*divtf3_hq” [(set (match_operand:TF 0 “register_operand” “=e”) (div:TF (match_operand:TF 1 “register_operand” “e”) (match_operand:TF 2 “register_operand” “e”)))] “TARGET_FPU && TARGET_HARD_QUAD” “fdivq\t%1, %2, %0” [(set_attr “type” “fpdivd”)])

(define_insn “divdf3” [(set (match_operand:DF 0 “register_operand” “=e”) (div:DF (match_operand:DF 1 “register_operand” “e”) (match_operand:DF 2 “register_operand” “e”)))] “TARGET_FPU” “fdivd\t%1, %2, %0” [(set_attr “type” “fpdivd”) (set_attr “fptype” “double”)])

(define_insn “divsf3” [(set (match_operand:SF 0 “register_operand” “=f”) (div:SF (match_operand:SF 1 “register_operand” “f”) (match_operand:SF 2 “register_operand” “f”)))] “TARGET_FPU” “fdivs\t%1, %2, %0” [(set_attr “type” “fpdivs”)])

(define_expand “negtf2” [(set (match_operand:TF 0 “register_operand” “=e,e”) (neg:TF (match_operand:TF 1 “register_operand” “0,e”)))] “TARGET_FPU” "")

(define_insn “*negtf2_notv9” [(set (match_operand:TF 0 “register_operand” “=e,e”) (neg:TF (match_operand:TF 1 “register_operand” “0,e”)))] ; We don‘t use quad float insns here so we don’t need TARGET_HARD_QUAD. “TARGET_FPU && ! TARGET_V9” “@ fnegs\t%0, %0 #” [(set_attr “type” “fpmove,*”) (set_attr “length” “*,2”)])

(define_split [(set (match_operand:TF 0 “register_operand” "") (neg:TF (match_operand:TF 1 “register_operand” "")))] “TARGET_FPU && ! TARGET_V9 && reload_completed && sparc_absnegfloat_split_legitimate (operands[0], operands[1])” [(set (match_dup 2) (neg:SF (match_dup 3))) (set (match_dup 4) (match_dup 5)) (set (match_dup 6) (match_dup 7))] “operands[2] = gen_rtx_raw_REG (SFmode, REGNO (operands[0])); operands[3] = gen_rtx_raw_REG (SFmode, REGNO (operands[1])); operands[4] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]) + 1); operands[5] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]) + 1); operands[6] = gen_rtx_raw_REG (DFmode, REGNO (operands[0]) + 2); operands[7] = gen_rtx_raw_REG (DFmode, REGNO (operands[1]) + 2);”)

(define_insn “*negtf2_v9” [(set (match_operand:TF 0 “register_operand” “=e,e”) (neg:TF (match_operand:TF 1 “register_operand” “0,e”)))] ; We don‘t use quad float insns here so we don’t need TARGET_HARD_QUAD. “TARGET_FPU && TARGET_V9” “@ fnegd\t%0, %0 #” [(set_attr “type” “fpmove,*”) (set_attr “length” “*,2”) (set_attr “fptype” “double”)])

(define_split [(set (match_operand:TF 0 “register_operand” "") (neg:TF (match_operand:TF 1 “register_operand” "")))] “TARGET_FPU && TARGET_V9 && reload_completed && sparc_absnegfloat_split_legitimate (operands[0], operands[1])” [(set (match_dup 2) (neg:DF (match_dup 3))) (set (match_dup 4) (match_dup 5))] “operands[2] = gen_rtx_raw_REG (DFmode, REGNO (operands[0])); operands[3] = gen_rtx_raw_REG (DFmode, REGNO (operands[1])); operands[4] = gen_rtx_raw_REG (DFmode, REGNO (operands[0]) + 2); operands[5] = gen_rtx_raw_REG (DFmode, REGNO (operands[1]) + 2);”)

(define_expand “negdf2” [(set (match_operand:DF 0 “register_operand” "") (neg:DF (match_operand:DF 1 “register_operand” "")))] “TARGET_FPU” "")

(define_insn “*negdf2_notv9” [(set (match_operand:DF 0 “register_operand” “=e,e”) (neg:DF (match_operand:DF 1 “register_operand” “0,e”)))] “TARGET_FPU && ! TARGET_V9” “@ fnegs\t%0, %0 #” [(set_attr “type” “fpmove,*”) (set_attr “length” “*,2”)])

(define_split [(set (match_operand:DF 0 “register_operand” "") (neg:DF (match_operand:DF 1 “register_operand” "")))] “TARGET_FPU && ! TARGET_V9 && reload_completed && sparc_absnegfloat_split_legitimate (operands[0], operands[1])” [(set (match_dup 2) (neg:SF (match_dup 3))) (set (match_dup 4) (match_dup 5))] “operands[2] = gen_rtx_raw_REG (SFmode, REGNO (operands[0])); operands[3] = gen_rtx_raw_REG (SFmode, REGNO (operands[1])); operands[4] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]) + 1); operands[5] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]) + 1);”)

(define_insn “*negdf2_v9” [(set (match_operand:DF 0 “register_operand” “=e”) (neg:DF (match_operand:DF 1 “register_operand” “e”)))] “TARGET_FPU && TARGET_V9” “fnegd\t%1, %0” [(set_attr “type” “fpmove”) (set_attr “fptype” “double”)])

(define_insn “negsf2” [(set (match_operand:SF 0 “register_operand” “=f”) (neg:SF (match_operand:SF 1 “register_operand” “f”)))] “TARGET_FPU” “fnegs\t%1, %0” [(set_attr “type” “fpmove”)])

(define_expand “abstf2” [(set (match_operand:TF 0 “register_operand” "") (abs:TF (match_operand:TF 1 “register_operand” "")))] “TARGET_FPU” "")

(define_insn “*abstf2_notv9” [(set (match_operand:TF 0 “register_operand” “=e,e”) (abs:TF (match_operand:TF 1 “register_operand” “0,e”)))] ; We don‘t use quad float insns here so we don’t need TARGET_HARD_QUAD. “TARGET_FPU && ! TARGET_V9” “@ fabss\t%0, %0 #” [(set_attr “type” “fpmove,*”) (set_attr “length” “*,2”)])

(define_split [(set (match_operand:TF 0 “register_operand” "") (abs:TF (match_operand:TF 1 “register_operand” "")))] “TARGET_FPU && ! TARGET_V9 && reload_completed && sparc_absnegfloat_split_legitimate (operands[0], operands[1])” [(set (match_dup 2) (abs:SF (match_dup 3))) (set (match_dup 4) (match_dup 5)) (set (match_dup 6) (match_dup 7))] “operands[2] = gen_rtx_raw_REG (SFmode, REGNO (operands[0])); operands[3] = gen_rtx_raw_REG (SFmode, REGNO (operands[1])); operands[4] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]) + 1); operands[5] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]) + 1); operands[6] = gen_rtx_raw_REG (DFmode, REGNO (operands[0]) + 2); operands[7] = gen_rtx_raw_REG (DFmode, REGNO (operands[1]) + 2);”)

(define_insn “*abstf2_hq_v9” [(set (match_operand:TF 0 “register_operand” “=e,e”) (abs:TF (match_operand:TF 1 “register_operand” “0,e”)))] “TARGET_FPU && TARGET_V9 && TARGET_HARD_QUAD” “@ fabsd\t%0, %0 fabsq\t%1, %0” [(set_attr “type” “fpmove”) (set_attr “fptype” “double,*”)])

(define_insn “*abstf2_v9” [(set (match_operand:TF 0 “register_operand” “=e,e”) (abs:TF (match_operand:TF 1 “register_operand” “0,e”)))] “TARGET_FPU && TARGET_V9 && !TARGET_HARD_QUAD” “@ fabsd\t%0, %0 #” [(set_attr “type” “fpmove,*”) (set_attr “length” “*,2”) (set_attr “fptype” “double,*”)])

(define_split [(set (match_operand:TF 0 “register_operand” "") (abs:TF (match_operand:TF 1 “register_operand” "")))] “TARGET_FPU && TARGET_V9 && reload_completed && sparc_absnegfloat_split_legitimate (operands[0], operands[1])” [(set (match_dup 2) (abs:DF (match_dup 3))) (set (match_dup 4) (match_dup 5))] “operands[2] = gen_rtx_raw_REG (DFmode, REGNO (operands[0])); operands[3] = gen_rtx_raw_REG (DFmode, REGNO (operands[1])); operands[4] = gen_rtx_raw_REG (DFmode, REGNO (operands[0]) + 2); operands[5] = gen_rtx_raw_REG (DFmode, REGNO (operands[1]) + 2);”)

(define_expand “absdf2” [(set (match_operand:DF 0 “register_operand” "") (abs:DF (match_operand:DF 1 “register_operand” "")))] “TARGET_FPU” "")

(define_insn “*absdf2_notv9” [(set (match_operand:DF 0 “register_operand” “=e,e”) (abs:DF (match_operand:DF 1 “register_operand” “0,e”)))] “TARGET_FPU && ! TARGET_V9” “@ fabss\t%0, %0 #” [(set_attr “type” “fpmove,*”) (set_attr “length” “*,2”)])

(define_split [(set (match_operand:DF 0 “register_operand” "") (abs:DF (match_operand:DF 1 “register_operand” "")))] “TARGET_FPU && ! TARGET_V9 && reload_completed && sparc_absnegfloat_split_legitimate (operands[0], operands[1])” [(set (match_dup 2) (abs:SF (match_dup 3))) (set (match_dup 4) (match_dup 5))] “operands[2] = gen_rtx_raw_REG (SFmode, REGNO (operands[0])); operands[3] = gen_rtx_raw_REG (SFmode, REGNO (operands[1])); operands[4] = gen_rtx_raw_REG (SFmode, REGNO (operands[0]) + 1); operands[5] = gen_rtx_raw_REG (SFmode, REGNO (operands[1]) + 1);”)

(define_insn “*absdf2_v9” [(set (match_operand:DF 0 “register_operand” “=e”) (abs:DF (match_operand:DF 1 “register_operand” “e”)))] “TARGET_FPU && TARGET_V9” “fabsd\t%1, %0” [(set_attr “type” “fpmove”) (set_attr “fptype” “double”)])

(define_insn “abssf2” [(set (match_operand:SF 0 “register_operand” “=f”) (abs:SF (match_operand:SF 1 “register_operand” “f”)))] “TARGET_FPU” “fabss\t%1, %0” [(set_attr “type” “fpmove”)])

(define_expand “sqrttf2” [(set (match_operand:TF 0 “register_operand” “=e”) (sqrt:TF (match_operand:TF 1 “register_operand” “e”)))] “TARGET_FPU && (TARGET_HARD_QUAD || TARGET_ARCH64)” " { if (! TARGET_HARD_QUAD) { rtx slot0, slot1;

  if (GET_CODE (operands[0]) != MEM)
slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  else
slot0 = operands[0];
  if (GET_CODE (operands[1]) != MEM)
{
  slot1 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
  emit_insn (gen_rtx_SET (VOIDmode, slot1, operands[1]));
}
  else
slot1 = operands[1];

  emit_library_call (gen_rtx (SYMBOL_REF, Pmode, \"_Qp_sqrt\"), 0,
		 VOIDmode, 2,
		 XEXP (slot0, 0), Pmode,
		 XEXP (slot1, 0), Pmode);

  if (GET_CODE (operands[0]) != MEM)
emit_insn (gen_rtx_SET (VOIDmode, operands[0], slot0));
  DONE;
}

}")

(define_insn “*sqrttf2_hq” [(set (match_operand:TF 0 “register_operand” “=e”) (sqrt:TF (match_operand:TF 1 “register_operand” “e”)))] “TARGET_FPU && TARGET_HARD_QUAD” “fsqrtq\t%1, %0” [(set_attr “type” “fpsqrtd”)])

(define_insn “sqrtdf2” [(set (match_operand:DF 0 “register_operand” “=e”) (sqrt:DF (match_operand:DF 1 “register_operand” “e”)))] “TARGET_FPU” “fsqrtd\t%1, %0” [(set_attr “type” “fpsqrtd”) (set_attr “fptype” “double”)])

(define_insn “sqrtsf2” [(set (match_operand:SF 0 “register_operand” “=f”) (sqrt:SF (match_operand:SF 1 “register_operand” “f”)))] “TARGET_FPU” “fsqrts\t%1, %0” [(set_attr “type” “fpsqrts”)]) ;;- arithmetic shift instructions

(define_insn “ashlsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (ashift:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “arith_operand” “rI”)))] "" "* { if (GET_CODE (operands[2]) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) > 31) operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);

return "sll\t%1, %2, %0"; }" [(set_attr “type” “shift”)])

;; We special case multiplication by two, as add can be done ;; in both ALUs, while shift only in IEU0 on UltraSPARC. (define_insn “*ashlsi3_const1” [(set (match_operand:SI 0 “register_operand” “=r”) (ashift:SI (match_operand:SI 1 “register_operand” “r”) (const_int 1)))] "" “add\t%1, %1, %0”)

(define_expand “ashldi3” [(set (match_operand:DI 0 “register_operand” “=r”) (ashift:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:SI 2 “arith_operand” “rI”)))] “TARGET_ARCH64 || TARGET_V8PLUS” " { if (! TARGET_ARCH64) { if (GET_CODE (operands[2]) == CONST_INT) FAIL; emit_insn (gen_ashldi3_v8plus (operands[0], operands[1], operands[2])); DONE; } }")

;; We special case multiplication by two, as add can be done ;; in both ALUs, while shift only in IEU0 on UltraSPARC. (define_insn “*ashldi3_const1” [(set (match_operand:DI 0 “register_operand” “=r”) (ashift:DI (match_operand:DI 1 “register_operand” “r”) (const_int 1)))] “TARGET_ARCH64” “add\t%1, %1, %0”)

(define_insn “*ashldi3_sp64” [(set (match_operand:DI 0 “register_operand” “=r”) (ashift:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:SI 2 “arith_operand” “rI”)))] “TARGET_ARCH64” "* { if (GET_CODE (operands[2]) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) > 63) operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);

return "sllx\t%1, %2, %0"; }" [(set_attr “type” “shift”)])

;; XXX UGH! (define_insn “ashldi3_v8plus” [(set (match_operand:DI 0 “register_operand” “=&h,&h,r”) (ashift:DI (match_operand:DI 1 “arith_operand” “rI,0,rI”) (match_operand:SI 2 “arith_operand” “rI,rI,rI”))) (clobber (match_scratch:SI 3 “=X,X,&h”))] “TARGET_V8PLUS” “*return sparc_v8plus_shift (operands, insn, "sllx");” [(set_attr “type” “multi”) (set_attr “length” “5,5,6”)])

;; Optimize (1LL<<x)-1 ;; XXX this also needs to be fixed to handle equal subregs ;; XXX first before we could re-enable it. ;(define_insn "" ; [(set (match_operand:DI 0 “register_operand” “=h”) ; (plus:DI (ashift:DI (const_int 1) ; (match_operand:SI 1 “arith_operand” “rI”)) ; (const_int -1)))] ; “0 && TARGET_V8PLUS” ; “* ;{ ; if (GET_CODE (operands[1]) == REG && REGNO (operands[1]) == REGNO (operands[0])) ; return "mov\t1, %L0;sllx\t%L0, %1, %L0;sub\t%L0, 1, %L0;srlx\t%L0, 32, %H0"; ; return "mov\t1, %H0;sllx\t%H0, %1, %L0;sub\t%L0, 1, %L0;srlx\t%L0, 32, %H0"; ;}” ; [(set_attr “type” “multi”) ; (set_attr “length” “4”)])

(define_insn “*cmp_cc_ashift_1” [(set (reg:CC_NOOV 100) (compare:CC_NOOV (ashift:SI (match_operand:SI 0 “register_operand” “r”) (const_int 1)) (const_int 0)))] "" “addcc\t%0, %0, %%g0” [(set_attr “type” “compare”)])

(define_insn “*cmp_cc_set_ashift_1” [(set (reg:CC_NOOV 100) (compare:CC_NOOV (ashift:SI (match_operand:SI 1 “register_operand” “r”) (const_int 1)) (const_int 0))) (set (match_operand:SI 0 “register_operand” “=r”) (ashift:SI (match_dup 1) (const_int 1)))] "" “addcc\t%1, %1, %0” [(set_attr “type” “compare”)])

(define_insn “ashrsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (ashiftrt:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “arith_operand” “rI”)))] "" "* { if (GET_CODE (operands[2]) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) > 31) operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);

return "sra\t%1, %2, %0"; }" [(set_attr “type” “shift”)])

(define_insn “*ashrsi3_extend” [(set (match_operand:DI 0 “register_operand” “=r”) (sign_extend:DI (ashiftrt:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “arith_operand” “r”))))] “TARGET_ARCH64” “sra\t%1, %2, %0” [(set_attr “type” “shift”)])

;; This handles the case as above, but with constant shift instead of ;; register. Combiner “simplifies” it for us a little bit though. (define_insn “*ashrsi3_extend2” [(set (match_operand:DI 0 “register_operand” “=r”) (ashiftrt:DI (ashift:DI (subreg:DI (match_operand:SI 1 “register_operand” “r”) 0) (const_int 32)) (match_operand:SI 2 “small_int_or_double” “n”)))] “TARGET_ARCH64 && ((GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) >= 32 && INTVAL (operands[2]) < 64) || (GET_CODE (operands[2]) == CONST_DOUBLE && !CONST_DOUBLE_HIGH (operands[2]) && CONST_DOUBLE_LOW (operands[2]) >= 32 && CONST_DOUBLE_LOW (operands[2]) < 64))” "* { operands[2] = GEN_INT (INTVAL (operands[2]) - 32);

return "sra\t%1, %2, %0"; }" [(set_attr “type” “shift”)])

(define_expand “ashrdi3” [(set (match_operand:DI 0 “register_operand” “=r”) (ashiftrt:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:SI 2 “arith_operand” “rI”)))] “TARGET_ARCH64 || TARGET_V8PLUS” " { if (! TARGET_ARCH64) { if (GET_CODE (operands[2]) == CONST_INT) FAIL; /* prefer generic code in this case */ emit_insn (gen_ashrdi3_v8plus (operands[0], operands[1], operands[2])); DONE; } }")

(define_insn "" [(set (match_operand:DI 0 “register_operand” “=r”) (ashiftrt:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:SI 2 “arith_operand” “rI”)))] “TARGET_ARCH64” "* { if (GET_CODE (operands[2]) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) > 63) operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);

return "srax\t%1, %2, %0"; }" [(set_attr “type” “shift”)])

;; XXX (define_insn “ashrdi3_v8plus” [(set (match_operand:DI 0 “register_operand” “=&h,&h,r”) (ashiftrt:DI (match_operand:DI 1 “arith_operand” “rI,0,rI”) (match_operand:SI 2 “arith_operand” “rI,rI,rI”))) (clobber (match_scratch:SI 3 “=X,X,&h”))] “TARGET_V8PLUS” “*return sparc_v8plus_shift (operands, insn, "srax");” [(set_attr “type” “multi”) (set_attr “length” “5,5,6”)])

(define_insn “lshrsi3” [(set (match_operand:SI 0 “register_operand” “=r”) (lshiftrt:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “arith_operand” “rI”)))] "" "* { if (GET_CODE (operands[2]) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) > 31) operands[2] = GEN_INT (INTVAL (operands[2]) & 0x1f);

return "srl\t%1, %2, %0"; }" [(set_attr “type” “shift”)])

;; This handles the case where ;; (zero_extend:DI (lshiftrt:SI (match_operand:SI) (match_operand:SI))), ;; but combiner “simplifies” it for us. (define_insn “*lshrsi3_extend” [(set (match_operand:DI 0 “register_operand” “=r”) (and:DI (subreg:DI (lshiftrt:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “arith_operand” “r”)) 0) (match_operand 3 "" "")))] “TARGET_ARCH64 && ((GET_CODE (operands[3]) == CONST_DOUBLE && CONST_DOUBLE_HIGH (operands[3]) == 0 && CONST_DOUBLE_LOW (operands[3]) == 0xffffffff) || (HOST_BITS_PER_WIDE_INT >= 64 && GET_CODE (operands[3]) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (operands[3]) == 0xffffffff))” “srl\t%1, %2, %0” [(set_attr “type” “shift”)])

;; This handles the case where ;; (lshiftrt:DI (zero_extend:DI (match_operand:SI)) (const_int >=0 < 32)) ;; but combiner “simplifies” it for us. (define_insn “*lshrsi3_extend2” [(set (match_operand:DI 0 “register_operand” “=r”) (zero_extract:DI (subreg:DI (match_operand:SI 1 “register_operand” “r”) 0) (match_operand 2 “small_int_or_double” “n”) (const_int 32)))] “TARGET_ARCH64 && ((GET_CODE (operands[2]) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 32) || (GET_CODE (operands[2]) == CONST_DOUBLE && CONST_DOUBLE_HIGH (operands[2]) == 0 && (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (operands[2]) < 32))” "* { operands[2] = GEN_INT (32 - INTVAL (operands[2]));

return "srl\t%1, %2, %0"; }" [(set_attr “type” “shift”)])

(define_expand “lshrdi3” [(set (match_operand:DI 0 “register_operand” “=r”) (lshiftrt:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:SI 2 “arith_operand” “rI”)))] “TARGET_ARCH64 || TARGET_V8PLUS” " { if (! TARGET_ARCH64) { if (GET_CODE (operands[2]) == CONST_INT) FAIL; emit_insn (gen_lshrdi3_v8plus (operands[0], operands[1], operands[2])); DONE; } }")

(define_insn "" [(set (match_operand:DI 0 “register_operand” “=r”) (lshiftrt:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:SI 2 “arith_operand” “rI”)))] “TARGET_ARCH64” "* { if (GET_CODE (operands[2]) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) > 63) operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);

return "srlx\t%1, %2, %0"; }" [(set_attr “type” “shift”)])

;; XXX (define_insn “lshrdi3_v8plus” [(set (match_operand:DI 0 “register_operand” “=&h,&h,r”) (lshiftrt:DI (match_operand:DI 1 “arith_operand” “rI,0,rI”) (match_operand:SI 2 “arith_operand” “rI,rI,rI”))) (clobber (match_scratch:SI 3 “=X,X,&h”))] “TARGET_V8PLUS” “*return sparc_v8plus_shift (operands, insn, "srlx");” [(set_attr “type” “multi”) (set_attr “length” “5,5,6”)])

(define_insn "" [(set (match_operand:SI 0 “register_operand” “=r”) (ashiftrt:SI (subreg:SI (lshiftrt:DI (match_operand:DI 1 “register_operand” “r”) (const_int 32)) 4) (match_operand:SI 2 “small_int_or_double” “n”)))] “TARGET_ARCH64 && ((GET_CODE (operands[2]) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 32) || (GET_CODE (operands[2]) == CONST_DOUBLE && !CONST_DOUBLE_HIGH (operands[2]) && (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (operands[2]) < 32))” "* { operands[2] = GEN_INT (INTVAL (operands[2]) + 32);

return "srax\t%1, %2, %0"; }" [(set_attr “type” “shift”)])

(define_insn "" [(set (match_operand:SI 0 “register_operand” “=r”) (lshiftrt:SI (subreg:SI (ashiftrt:DI (match_operand:DI 1 “register_operand” “r”) (const_int 32)) 4) (match_operand:SI 2 “small_int_or_double” “n”)))] “TARGET_ARCH64 && ((GET_CODE (operands[2]) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) < 32) || (GET_CODE (operands[2]) == CONST_DOUBLE && !CONST_DOUBLE_HIGH (operands[2]) && (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (operands[2]) < 32))” "* { operands[2] = GEN_INT (INTVAL (operands[2]) + 32);

return "srlx\t%1, %2, %0"; }" [(set_attr “type” “shift”)])

(define_insn "" [(set (match_operand:SI 0 “register_operand” “=r”) (ashiftrt:SI (subreg:SI (ashiftrt:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:SI 2 “small_int_or_double” “n”)) 4) (match_operand:SI 3 “small_int_or_double” “n”)))] “TARGET_ARCH64 && GET_CODE (operands[2]) == CONST_INT && GET_CODE (operands[3]) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) >= 32 && (unsigned HOST_WIDE_INT) INTVAL (operands[3]) < 32 && (unsigned HOST_WIDE_INT) (INTVAL (operands[2]) + INTVAL (operands[3])) < 64” "* { operands[2] = GEN_INT (INTVAL (operands[2]) + INTVAL (operands[3]));

return "srax\t%1, %2, %0"; }" [(set_attr “type” “shift”)])

(define_insn "" [(set (match_operand:SI 0 “register_operand” “=r”) (lshiftrt:SI (subreg:SI (lshiftrt:DI (match_operand:DI 1 “register_operand” “r”) (match_operand:SI 2 “small_int_or_double” “n”)) 4) (match_operand:SI 3 “small_int_or_double” “n”)))] “TARGET_ARCH64 && GET_CODE (operands[2]) == CONST_INT && GET_CODE (operands[3]) == CONST_INT && (unsigned HOST_WIDE_INT) INTVAL (operands[2]) >= 32 && (unsigned HOST_WIDE_INT) INTVAL (operands[3]) < 32 && (unsigned HOST_WIDE_INT) (INTVAL (operands[2]) + INTVAL (operands[3])) < 64” "* { operands[2] = GEN_INT (INTVAL (operands[2]) + INTVAL (operands[3]));

return "srlx\t%1, %2, %0"; }" [(set_attr “type” “shift”)]) ;; Unconditional and other jump instructions ;; On the Sparc, by setting the annul bit on an unconditional branch, the ;; following insn is never executed. This saves us a nop. Dbx does not ;; handle such branches though, so we only use them when optimizing. (define_insn “jump” [(set (pc) (label_ref (match_operand 0 "" "")))] "" "* { /* TurboSparc is reported to have problems with with foo: b,a foo i.e. an empty loop with the annul bit set. The workaround is to use foo: b foo; nop instead. */

if (! TARGET_V9 && flag_delayed_branch && (INSN_ADDRESSES (INSN_UID (operands[0])) == INSN_ADDRESSES (INSN_UID (insn)))) return "b\t%l0%#"; else return TARGET_V9 ? "ba,pt%\t%%xcc, %l0%(" : "b%\t%l0%("; }" [(set_attr “type” “uncond_branch”)])

(define_expand “tablejump” [(parallel [(set (pc) (match_operand 0 “register_operand” “r”)) (use (label_ref (match_operand 1 "" "")))])] "" " { if (GET_MODE (operands[0]) != CASE_VECTOR_MODE) abort ();

/* In pic mode, our address differences are against the base of the table. Add that base value back in; CSE ought to be able to combine the two address loads. */ if (flag_pic) { rtx tmp, tmp2; tmp = gen_rtx_LABEL_REF (Pmode, operands[1]); tmp2 = operands[0]; if (CASE_VECTOR_MODE != Pmode) tmp2 = gen_rtx_SIGN_EXTEND (Pmode, tmp2); tmp = gen_rtx_PLUS (Pmode, tmp2, tmp); operands[0] = memory_address (Pmode, tmp); } }")

(define_insn “*tablejump_sp32” [(set (pc) (match_operand:SI 0 “address_operand” “p”)) (use (label_ref (match_operand 1 "" "")))] “! TARGET_ARCH64” “jmp\t%a0%#” [(set_attr “type” “uncond_branch”)])

(define_insn “*tablejump_sp64” [(set (pc) (match_operand:DI 0 “address_operand” “p”)) (use (label_ref (match_operand 1 "" "")))] “TARGET_ARCH64” “jmp\t%a0%#” [(set_attr “type” “uncond_branch”)])

;; This pattern recognizes the “instruction” that appears in ;; a function call that wants a structure value, ;; to inform the called function if compiled with Sun CC. ;(define_insn “*unimp_insn” ; [(match_operand:SI 0 “immediate_operand” "")] ; “GET_CODE (operands[0]) == CONST_INT && INTVAL (operands[0]) > 0” ; “unimp\t%0” ; [(set_attr “type” “marker”)])

;;- jump to subroutine (define_expand “call” ;; Note that this expression is not used for generating RTL. ;; All the RTL is generated explicitly below. [(call (match_operand 0 “call_operand” "") (match_operand 3 "" “i”))] ;; operands[2] is next_arg_register ;; operands[3] is struct_value_size_rtx. "" " { rtx fn_rtx, nregs_rtx;

if (GET_MODE (operands[0]) != FUNCTION_MODE) abort ();

if (GET_CODE (XEXP (operands[0], 0)) == LABEL_REF) { /* This is really a PIC sequence. We want to represent it as a funny jump so its delay slots can be filled.

 ??? But if this really *is* a CALL, will not it clobber the
 call-clobbered registers?  We lose this if it is a JUMP_INSN.
 Why cannot we have delay slots filled if it were a CALL?  */

  if (! TARGET_ARCH64 && INTVAL (operands[3]) != 0)
emit_jump_insn
  (gen_rtx_PARALLEL
   (VOIDmode,
    gen_rtvec (3,
	       gen_rtx_SET (VOIDmode, pc_rtx, XEXP (operands[0], 0)),
	       operands[3],
	       gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15)))));
  else
emit_jump_insn
  (gen_rtx_PARALLEL
   (VOIDmode,
    gen_rtvec (2,
	       gen_rtx_SET (VOIDmode, pc_rtx, XEXP (operands[0], 0)),
	       gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15)))));
  goto finish_call;
}

fn_rtx = operands[0];

/* Count the number of parameter registers being used by this call. if that argument is NULL, it means we are using them all, which means 6 on the sparc. */ #if 0 if (operands[2]) nregs_rtx = GEN_INT (REGNO (operands[2]) - 8); else nregs_rtx = GEN_INT (6); #else nregs_rtx = const0_rtx; #endif

if (! TARGET_ARCH64 && INTVAL (operands[3]) != 0) emit_call_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (3, gen_rtx_CALL (VOIDmode, fn_rtx, nregs_rtx), operands[3], gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15))))); else emit_call_insn (gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, gen_rtx_CALL (VOIDmode, fn_rtx, nregs_rtx), gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15)))));

finish_call: #if 0 /* If this call wants a structure value, emit an unimp insn to let the called function know about this. */ if (! TARGET_ARCH64 && INTVAL (operands[3]) > 0) { rtx insn = emit_insn (operands[3]); SCHED_GROUP_P (insn) = 1; } #endif

DONE; }")

;; We can't use the same pattern for these two insns, because then registers ;; in the address may not be properly reloaded.

(define_insn “*call_address_sp32” [(call (mem:SI (match_operand:SI 0 “address_operand” “p”)) (match_operand 1 "" "")) (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. “! TARGET_ARCH64” “call\t%a0, %1%#” [(set_attr “type” “call”)])

(define_insn “*call_symbolic_sp32” [(call (mem:SI (match_operand:SI 0 “symbolic_operand” “s”)) (match_operand 1 "" "")) (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. “! TARGET_ARCH64” “call\t%a0, %1%#” [(set_attr “type” “call”)])

(define_insn “*call_address_sp64” [(call (mem:DI (match_operand:DI 0 “address_operand” “p”)) (match_operand 1 "" "")) (clobber (reg:DI 15))] ;;- Do not use operand 1 for most machines. “TARGET_ARCH64” “call\t%a0, %1%#” [(set_attr “type” “call”)])

(define_insn “*call_symbolic_sp64” [(call (mem:DI (match_operand:DI 0 “symbolic_operand” “s”)) (match_operand 1 "" "")) (clobber (reg:DI 15))] ;;- Do not use operand 1 for most machines. “TARGET_ARCH64” “call\t%a0, %1%#” [(set_attr “type” “call”)])

;; This is a call that wants a structure value. ;; There is no such critter for v9 (??? we may need one anyway). (define_insn “*call_address_struct_value_sp32” [(call (mem:SI (match_operand:SI 0 “address_operand” “p”)) (match_operand 1 "" "")) (match_operand 2 “immediate_operand” "") (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. “! TARGET_ARCH64 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) >= 0” “call\t%a0, %1\n\tnop\n\tunimp\t%2” [(set_attr “type” “call_no_delay_slot”)])

;; This is a call that wants a structure value. ;; There is no such critter for v9 (??? we may need one anyway). (define_insn “*call_symbolic_struct_value_sp32” [(call (mem:SI (match_operand:SI 0 “symbolic_operand” “s”)) (match_operand 1 "" "")) (match_operand 2 “immediate_operand” "") (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. “! TARGET_ARCH64 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) >= 0” “call\t%a0, %1\n\tnop\n\tunimp\t%2” [(set_attr “type” “call_no_delay_slot”)])

;; This is a call that may want a structure value. This is used for ;; untyped_calls. (define_insn “*call_address_untyped_struct_value_sp32” [(call (mem:SI (match_operand:SI 0 “address_operand” “p”)) (match_operand 1 "" "")) (match_operand 2 “immediate_operand” "") (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. “! TARGET_ARCH64 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0” “call\t%a0, %1\n\tnop\n\tnop” [(set_attr “type” “call_no_delay_slot”)])

;; This is a call that wants a structure value. (define_insn “*call_symbolic_untyped_struct_value_sp32” [(call (mem:SI (match_operand:SI 0 “symbolic_operand” “s”)) (match_operand 1 "" "")) (match_operand 2 “immediate_operand” "") (clobber (reg:SI 15))] ;;- Do not use operand 1 for most machines. “! TARGET_ARCH64 && GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) < 0” “call\t%a0, %1\n\tnop\n\tnop” [(set_attr “type” “call_no_delay_slot”)])

(define_expand “call_value” ;; Note that this expression is not used for generating RTL. ;; All the RTL is generated explicitly below. [(set (match_operand 0 “register_operand” “=rf”) (call (match_operand 1 "" "") (match_operand 4 "" "")))] ;; operand 2 is stack_size_rtx ;; operand 3 is next_arg_register "" " { rtx fn_rtx, nregs_rtx; rtvec vec;

if (GET_MODE (operands[1]) != FUNCTION_MODE) abort ();

fn_rtx = operands[1];

#if 0 if (operands[3]) nregs_rtx = GEN_INT (REGNO (operands[3]) - 8); else nregs_rtx = GEN_INT (6); #else nregs_rtx = const0_rtx; #endif

vec = gen_rtvec (2, gen_rtx_SET (VOIDmode, operands[0], gen_rtx_CALL (VOIDmode, fn_rtx, nregs_rtx)), gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (Pmode, 15)));

emit_call_insn (gen_rtx_PARALLEL (VOIDmode, vec));

DONE; }")

(define_insn “*call_value_address_sp32” [(set (match_operand 0 "" “=rf”) (call (mem:SI (match_operand:SI 1 “address_operand” “p”)) (match_operand 2 "" ""))) (clobber (reg:SI 15))] ;;- Do not use operand 2 for most machines. “! TARGET_ARCH64” “call\t%a1, %2%#” [(set_attr “type” “call”)])

(define_insn “*call_value_symbolic_sp32” [(set (match_operand 0 "" “=rf”) (call (mem:SI (match_operand:SI 1 “symbolic_operand” “s”)) (match_operand 2 "" ""))) (clobber (reg:SI 15))] ;;- Do not use operand 2 for most machines. “! TARGET_ARCH64” “call\t%a1, %2%#” [(set_attr “type” “call”)])

(define_insn “*call_value_address_sp64” [(set (match_operand 0 "" "") (call (mem:DI (match_operand:DI 1 “address_operand” “p”)) (match_operand 2 "" ""))) (clobber (reg:DI 15))] ;;- Do not use operand 2 for most machines. “TARGET_ARCH64” “call\t%a1, %2%#” [(set_attr “type” “call”)])

(define_insn “*call_value_symbolic_sp64” [(set (match_operand 0 "" "") (call (mem:DI (match_operand:DI 1 “symbolic_operand” “s”)) (match_operand 2 "" ""))) (clobber (reg:DI 15))] ;;- Do not use operand 2 for most machines. “TARGET_ARCH64” “call\t%a1, %2%#” [(set_attr “type” “call”)])

(define_expand “untyped_call” [(parallel [(call (match_operand 0 "" "") (const_int 0)) (match_operand 1 "" "") (match_operand 2 "" "")])] "" " { int i;

/* Pass constm1 to indicate that it may expect a structure value, but we don't know what size it is. */ emit_call_insn (GEN_CALL (operands[0], const0_rtx, NULL, constm1_rtx));

for (i = 0; i < XVECLEN (operands[2], 0); i++) { rtx set = XVECEXP (operands[2], 0, i); emit_move_insn (SET_DEST (set), SET_SRC (set)); }

/* The optimizer does not know that the call sets the function value registers we stored in the result block. We avoid problems by claiming that all hard registers are used and clobbered at this point. */ emit_insn (gen_blockage ());

DONE; }")

;;- tail calls (define_expand “sibcall” [(parallel [(call (match_operand 0 “call_operand” "") (const_int 0)) (return)])] "" "")

(define_insn “*sibcall_symbolic_sp32” [(call (mem:SI (match_operand:SI 0 “symbolic_operand” “s”)) (match_operand 1 "" "")) (return)] “! TARGET_ARCH64” “* return output_sibcall(insn, operands[0]);” [(set_attr “type” “sibcall”)])

(define_insn “*sibcall_symbolic_sp64” [(call (mem:DI (match_operand:DI 0 “symbolic_operand” “s”)) (match_operand 1 "" "")) (return)] “TARGET_ARCH64” “* return output_sibcall(insn, operands[0]);” [(set_attr “type” “sibcall”)])

(define_expand “sibcall_value” [(parallel [(set (match_operand 0 “register_operand” “=rf”) (call (match_operand 1 "" "") (const_int 0))) (return)])] "" "")

(define_insn “*sibcall_value_symbolic_sp32” [(set (match_operand 0 "" “=rf”) (call (mem:SI (match_operand:SI 1 “symbolic_operand” “s”)) (match_operand 2 "" ""))) (return)] “! TARGET_ARCH64” “* return output_sibcall(insn, operands[1]);” [(set_attr “type” “sibcall”)])

(define_insn “*sibcall_value_symbolic_sp64” [(set (match_operand 0 "" "") (call (mem:DI (match_operand:DI 1 “symbolic_operand” “s”)) (match_operand 2 "" ""))) (return)] “TARGET_ARCH64” “* return output_sibcall(insn, operands[1]);” [(set_attr “type” “sibcall”)])

(define_expand “sibcall_epilogue” [(const_int 0)] "" “DONE;”)

;; UNSPEC_VOLATILE is considered to use and clobber all hard registers and ;; all of memory. This blocks insns from being moved across this point.

(define_insn “blockage” [(unspec_volatile [(const_int 0)] 0)] "" "" [(set_attr “length” “0”)])

;; Prepare to return any type including a structure value.

(define_expand “untyped_return” [(match_operand:BLK 0 “memory_operand” "") (match_operand 1 "" "")] "" " { rtx valreg1 = gen_rtx_REG (DImode, 24); rtx valreg2 = gen_rtx_REG (TARGET_ARCH64 ? TFmode : DFmode, 32); rtx result = operands[0];

if (! TARGET_ARCH64) { rtx rtnreg = gen_rtx_REG (SImode, (current_function_uses_only_leaf_regs ? 15 : 31)); rtx value = gen_reg_rtx (SImode);

  /* Fetch the instruction where we will return to and see if it's an unimp
 instruction (the most significant 10 bits will be zero).  If so,
 update the return address to skip the unimp instruction.  */
  emit_move_insn (value,
	      gen_rtx_MEM (SImode, plus_constant (rtnreg, 8)));
  emit_insn (gen_lshrsi3 (value, value, GEN_INT (22)));
  emit_insn (gen_update_return (rtnreg, value));
}

/* Reload the function value registers. */ emit_move_insn (valreg1, adjust_address (result, DImode, 0)); emit_move_insn (valreg2, adjust_address (result, TARGET_ARCH64 ? TFmode : DFmode, 8));

/* Put USE insns before the return. */ emit_insn (gen_rtx_USE (VOIDmode, valreg1)); emit_insn (gen_rtx_USE (VOIDmode, valreg2));

/* Construct the return. */ expand_null_return ();

DONE; }")

;; This is a bit of a hack. We‘re incrementing a fixed register (%i7), ;; and parts of the compiler don’t want to believe that the add is needed.

(define_insn “update_return” [(unspec:SI [(match_operand:SI 0 “register_operand” “r”) (match_operand:SI 1 “register_operand” “r”)] 1)] “! TARGET_ARCH64” “cmp\t%1, 0;be,a\t.+8;add\t%0, 4, %0” [(set_attr “type” “multi”) (set_attr “length” “3”)]) (define_insn “return” [(return) (use (reg:SI 31))] “! TARGET_EPILOGUE” “* return output_return (operands);” [(set_attr “type” “return”)])

(define_peephole [(set (match_operand:SI 0 “register_operand” “=r”) (match_operand:SI 1 “arith_operand” “rI”)) (parallel [(return) (use (reg:SI 31))])] “sparc_return_peephole_ok (operands[0], operands[1])” “return\t%%i7+8\n\tmov\t%Y1, %Y0”)

(define_insn “nop” [(const_int 0)] "" “nop”)

(define_expand “indirect_jump” [(set (pc) (match_operand 0 “address_operand” “p”))] "" "")

(define_insn “*branch_sp32” [(set (pc) (match_operand:SI 0 “address_operand” “p”))] “! TARGET_ARCH64” “jmp\t%a0%#” [(set_attr “type” “uncond_branch”)])

(define_insn “*branch_sp64” [(set (pc) (match_operand:DI 0 “address_operand” “p”))] “TARGET_ARCH64” “jmp\t%a0%#” [(set_attr “type” “uncond_branch”)])

;; ??? Doesn't work with -mflat. (define_expand “nonlocal_goto” [(match_operand:SI 0 “general_operand” "") (match_operand:SI 1 “general_operand” "") (match_operand:SI 2 “general_operand” "") (match_operand:SI 3 "" "")] "" " { #if 0 rtx chain = operands[0]; #endif rtx lab = operands[1]; rtx stack = operands[2]; rtx fp = operands[3]; rtx labreg;

/* Trap instruction to flush all the register windows. */ emit_insn (gen_flush_register_windows ());

/* Load the fp value for the containing fn into %fp. This is needed because STACK refers to %fp. Note that virtual register instantiation fails if the virtual %fp isn't set from a register. */ if (GET_CODE (fp) != REG) fp = force_reg (Pmode, fp); emit_move_insn (virtual_stack_vars_rtx, fp);

/* Find the containing function's current nonlocal goto handler, which will do any cleanups and then jump to the label. */ labreg = gen_rtx_REG (Pmode, 8); emit_move_insn (labreg, lab);

/* Restore %fp from stack pointer value for containing function. The restore insn that follows will move this to %sp, and reload the appropriate value into %fp. */ emit_move_insn (frame_pointer_rtx, stack);

/* USE of frame_pointer_rtx added for consistency; not clear if really needed. */ /emit_insn (gen_rtx_USE (VOIDmode, frame_pointer_rtx));/ emit_insn (gen_rtx_USE (VOIDmode, stack_pointer_rtx));

#if 0 /* Return, restoring reg window and jumping to goto handler. / if (TARGET_V9 && GET_CODE (chain) == CONST_INT && ! (INTVAL (chain) & ~(HOST_WIDE_INT)0xffffffff)) { emit_jump_insn (gen_goto_handler_and_restore_v9 (labreg, static_chain_rtx, chain)); emit_barrier (); DONE; } / Put in the static chain register the nonlocal label address. */ emit_move_insn (static_chain_rtx, chain); #endif

emit_insn (gen_rtx_USE (VOIDmode, static_chain_rtx)); emit_jump_insn (gen_goto_handler_and_restore (labreg)); emit_barrier (); DONE; }")

;; Special trap insn to flush register windows. (define_insn “flush_register_windows” [(unspec_volatile [(const_int 0)] 1)] "" “* return TARGET_V9 ? "flushw" : "ta\t3";” [(set_attr “type” “misc”)])

(define_insn “goto_handler_and_restore” [(unspec_volatile [(match_operand 0 “register_operand” “=r”)] 2)] “GET_MODE (operands[0]) == Pmode” “jmp\t%0+0\n\trestore” [(set_attr “type” “multi”) (set_attr “length” “2”)])

;;(define_insn “goto_handler_and_restore_v9” ;; [(unspec_volatile [(match_operand:SI 0 “register_operand” “=r,r”) ;; (match_operand:SI 1 “register_operand” “=r,r”) ;; (match_operand:SI 2 “const_int_operand” “I,n”)] 3)] ;; “TARGET_V9 && ! TARGET_ARCH64” ;; “@ ;; return\t%0+0\n\tmov\t%2, %Y1 ;; sethi\t%%hi(%2), %1\n\treturn\t%0+0\n\tor\t%Y1, %%lo(%2), %Y1” ;; [(set_attr “type” “multi”) ;; (set_attr “length” “2,3”)]) ;; ;;(define_insn “*goto_handler_and_restore_v9_sp64” ;; [(unspec_volatile [(match_operand:DI 0 “register_operand” “=r,r”) ;; (match_operand:DI 1 “register_operand” “=r,r”) ;; (match_operand:SI 2 “const_int_operand” “I,n”)] 3)] ;; “TARGET_V9 && TARGET_ARCH64” ;; “@ ;; return\t%0+0\n\tmov\t%2, %Y1 ;; sethi\t%%hi(%2), %1\n\treturn\t%0+0\n\tor\t%Y1, %%lo(%2), %Y1” ;; [(set_attr “type” “multi”) ;; (set_attr “length” “2,3”)])

;; For __builtin_setjmp we need to flush register windows iff the function ;; calls alloca as well, because otherwise the register window might be ;; saved after %sp adjustement and thus setjmp would crash (define_expand “builtin_setjmp_setup” [(match_operand 0 “register_operand” “r”)] "" " { emit_insn (gen_do_builtin_setjmp_setup ()); DONE; }")

;; ??? Should set length to zero when !current_function_calls_alloca, ;; ??? but there is no easy way to get at that definition. It would ;; ??? require including function.h into sparc-protos.h and that is ;; ??? likely not a good idea. -DaveM (define_insn “do_builtin_setjmp_setup” [(unspec_volatile [(const_int 0)] 5)] "" “* { if (!current_function_calls_alloca) return ""; if (TARGET_V9) return "flushw"; return "ta\t3"; }” [(set_attr “type” “misc”)])

;; Pattern for use after a setjmp to store FP and the return register ;; into the stack area.

(define_expand “setjmp” [(const_int 0)] "" " { if (TARGET_ARCH64) emit_insn (gen_setjmp_64 ()); else emit_insn (gen_setjmp_32 ()); DONE; }")

(define_expand “setjmp_32” [(set (mem:SI (plus:SI (reg:SI 14) (const_int 56))) (match_dup 0)) (set (mem:SI (plus:SI (reg:SI 14) (const_int 60))) (reg:SI 31))] "" " { operands[0] = frame_pointer_rtx; }")

(define_expand “setjmp_64” [(set (mem:DI (plus:DI (reg:DI 14) (const_int 112))) (match_dup 0)) (set (mem:DI (plus:DI (reg:DI 14) (const_int 120))) (reg:DI 31))] "" " { operands[0] = frame_pointer_rtx; }")

;; Special pattern for the FLUSH instruction.

; We do SImode and DImode versions of this to quiet down genrecog's complaints ; of the define_insn otherwise missing a mode. We make “flush”, aka ; gen_flush, the default one since sparc_initialize_trampoline uses ; it on SImode mem values.

(define_insn “flush” [(unspec_volatile [(match_operand:SI 0 “memory_operand” “m”)] 3)] "" “* return TARGET_V9 ? "flush\t%f0" : "iflush\t%f0";” [(set_attr “type” “misc”)])

(define_insn “flushdi” [(unspec_volatile [(match_operand:DI 0 “memory_operand” “m”)] 3)] "" “* return TARGET_V9 ? "flush\t%f0" : "iflush\t%f0";” [(set_attr “type” “misc”)])

;; find first set.

;; The scan instruction searches from the most significant bit while ffs ;; searches from the least significant bit. The bit index and treatment of ;; zero also differ. It takes at least 7 instructions to get the proper ;; result. Here is an obvious 8 instruction sequence.

;; XXX (define_insn “ffssi2” [(set (match_operand:SI 0 “register_operand” “=&r”) (ffs:SI (match_operand:SI 1 “register_operand” “r”))) (clobber (match_scratch:SI 2 “=&r”))] “TARGET_SPARCLITE || TARGET_SPARCLET” “* { return "sub\t%%g0, %1, %0;and\t%0, %1, %0;scan\t%0, 0, %0;mov\t32, %2;sub\t%2, %0, %0;sra\t%0, 31, %2;and\t%2, 31, %2;add\t%2, %0, %0"; }” [(set_attr “type” “multi”) (set_attr “length” “8”)])

;; ??? This should be a define expand, so that the extra instruction have ;; a chance of being optimized away.

;; Disabled because none of the UltraSparcs implement popc. The HAL R1 ;; does, but no one uses that and we don't have a switch for it. ; ;(define_insn “ffsdi2” ; [(set (match_operand:DI 0 “register_operand” “=&r”) ; (ffs:DI (match_operand:DI 1 “register_operand” “r”))) ; (clobber (match_scratch:DI 2 “=&r”))] ; “TARGET_ARCH64” ; “neg\t%1, %2;xnor\t%1, %2, %2;popc\t%2, %0;movzr\t%1, 0, %0” ; [(set_attr “type” “multi”) ; (set_attr “length” “4”)])

;; Peepholes go at the end.

;; Optimize consecutive loads or stores into ldd and std when possible. ;; The conditions in which we do this are very restricted and are ;; explained in the code for {registers,memory}_ok_for_ldd functions.

(define_peephole2 [(set (match_operand:SI 0 “memory_operand” "") (const_int 0)) (set (match_operand:SI 1 “memory_operand” "") (const_int 0))] “TARGET_V9 && ! MEM_VOLATILE_P (operands[0]) && ! MEM_VOLATILE_P (operands[1]) && mems_ok_for_ldd_peep (operands[0], operands[1])” [(set (match_dup 0) (const_int 0))] “operands[0] = change_address (operands[0], DImode, NULL);”)

(define_peephole2 [(set (match_operand:SI 0 “memory_operand” "") (const_int 0)) (set (match_operand:SI 1 “memory_operand” "") (const_int 0))] “TARGET_V9 && ! MEM_VOLATILE_P (operands[0]) && ! MEM_VOLATILE_P (operands[1]) && mems_ok_for_ldd_peep (operands[1], operands[0])” [(set (match_dup 1) (const_int 0))] “operands[1] = change_address (operands[1], DImode, NULL);”)

(define_peephole2 [(set (match_operand:SI 0 “register_operand” "") (match_operand:SI 1 “memory_operand” "")) (set (match_operand:SI 2 “register_operand” "") (match_operand:SI 3 “memory_operand” ""))] “registers_ok_for_ldd_peep (operands[0], operands[2]) && ! MEM_VOLATILE_P (operands[1]) && ! MEM_VOLATILE_P (operands[3]) && mems_ok_for_ldd_peep (operands[1], operands[3])” [(set (match_dup 0) (match_dup 1))] “operands[1] = change_address (operands[1], DImode, NULL); operands[0] = gen_rtx_REG (DImode, REGNO (operands[0]));”)

(define_peephole2 [(set (match_operand:SI 0 “memory_operand” "") (match_operand:SI 1 “register_operand” "")) (set (match_operand:SI 2 “memory_operand” "") (match_operand:SI 3 “register_operand” ""))] “registers_ok_for_ldd_peep (operands[1], operands[3]) && ! MEM_VOLATILE_P (operands[0]) && ! MEM_VOLATILE_P (operands[2]) && mems_ok_for_ldd_peep (operands[0], operands[2])” [(set (match_dup 0) (match_dup 1))] “operands[0] = change_address (operands[0], DImode, NULL); operands[1] = gen_rtx_REG (DImode, REGNO (operands[1]));”)

(define_peephole2 [(set (match_operand:SF 0 “register_operand” "") (match_operand:SF 1 “memory_operand” "")) (set (match_operand:SF 2 “register_operand” "") (match_operand:SF 3 “memory_operand” ""))] “registers_ok_for_ldd_peep (operands[0], operands[2]) && ! MEM_VOLATILE_P (operands[1]) && ! MEM_VOLATILE_P (operands[3]) && mems_ok_for_ldd_peep (operands[1], operands[3])” [(set (match_dup 0) (match_dup 1))] “operands[1] = change_address (operands[1], DFmode, NULL); operands[0] = gen_rtx_REG (DFmode, REGNO (operands[0]));”)

(define_peephole2 [(set (match_operand:SF 0 “memory_operand” "") (match_operand:SF 1 “register_operand” "")) (set (match_operand:SF 2 “memory_operand” "") (match_operand:SF 3 “register_operand” ""))] “registers_ok_for_ldd_peep (operands[1], operands[3]) && ! MEM_VOLATILE_P (operands[0]) && ! MEM_VOLATILE_P (operands[2]) && mems_ok_for_ldd_peep (operands[0], operands[2])” [(set (match_dup 0) (match_dup 1))] “operands[0] = change_address (operands[0], DFmode, NULL); operands[1] = gen_rtx_REG (DFmode, REGNO (operands[1]));”)

(define_peephole2 [(set (match_operand:SI 0 “register_operand” "") (match_operand:SI 1 “memory_operand” "")) (set (match_operand:SI 2 “register_operand” "") (match_operand:SI 3 “memory_operand” ""))] “registers_ok_for_ldd_peep (operands[2], operands[0]) && ! MEM_VOLATILE_P (operands[3]) && ! MEM_VOLATILE_P (operands[1]) && mems_ok_for_ldd_peep (operands[3], operands[1])” [(set (match_dup 2) (match_dup 3))] “operands[3] = change_address (operands[3], DImode, NULL); operands[2] = gen_rtx_REG (DImode, REGNO (operands[2]));”)

(define_peephole2 [(set (match_operand:SI 0 “memory_operand” "") (match_operand:SI 1 “register_operand” "")) (set (match_operand:SI 2 “memory_operand” "") (match_operand:SI 3 “register_operand” ""))] “registers_ok_for_ldd_peep (operands[3], operands[1]) && ! MEM_VOLATILE_P (operands[2]) && ! MEM_VOLATILE_P (operands[0]) && mems_ok_for_ldd_peep (operands[2], operands[0])” [(set (match_dup 2) (match_dup 3))] "operands[2] = change_address (operands[2], DImode, NULL); operands[3] = gen_rtx_REG (DImode, REGNO (operands[3])); ")

(define_peephole2 [(set (match_operand:SF 0 “register_operand” "") (match_operand:SF 1 “memory_operand” "")) (set (match_operand:SF 2 “register_operand” "") (match_operand:SF 3 “memory_operand” ""))] “registers_ok_for_ldd_peep (operands[2], operands[0]) && ! MEM_VOLATILE_P (operands[3]) && ! MEM_VOLATILE_P (operands[1]) && mems_ok_for_ldd_peep (operands[3], operands[1])” [(set (match_dup 2) (match_dup 3))] “operands[3] = change_address (operands[3], DFmode, NULL); operands[2] = gen_rtx_REG (DFmode, REGNO (operands[2]));”)

(define_peephole2 [(set (match_operand:SF 0 “memory_operand” "") (match_operand:SF 1 “register_operand” "")) (set (match_operand:SF 2 “memory_operand” "") (match_operand:SF 3 “register_operand” ""))] “registers_ok_for_ldd_peep (operands[3], operands[1]) && ! MEM_VOLATILE_P (operands[2]) && ! MEM_VOLATILE_P (operands[0]) && mems_ok_for_ldd_peep (operands[2], operands[0])” [(set (match_dup 2) (match_dup 3))] “operands[2] = change_address (operands[2], DFmode, NULL); operands[3] = gen_rtx_REG (DFmode, REGNO (operands[3]));”)

;; Optimize the case of following a reg-reg move with a test ;; of reg just moved. Don't allow floating point regs for operand 0 or 1. ;; This can result from a float to fix conversion.

(define_peephole2 [(set (match_operand:SI 0 “register_operand” "") (match_operand:SI 1 “register_operand” "")) (set (reg:CC 100) (compare:CC (match_operand:SI 2 “register_operand” "") (const_int 0)))] “(rtx_equal_p (operands[2], operands[0]) || rtx_equal_p (operands[2], operands[1])) && ! SPARC_FP_REG_P (REGNO (operands[0])) && ! SPARC_FP_REG_P (REGNO (operands[1]))” [(parallel [(set (match_dup 0) (match_dup 1)) (set (reg:CC 100) (compare:CC (match_dup 1) (const_int 0)))])] "")

(define_peephole2 [(set (match_operand:DI 0 “register_operand” "") (match_operand:DI 1 “register_operand” "")) (set (reg:CCX 100) (compare:CCX (match_operand:DI 2 “register_operand” "") (const_int 0)))] “TARGET_ARCH64 && (rtx_equal_p (operands[2], operands[0]) || rtx_equal_p (operands[2], operands[1])) && ! SPARC_FP_REG_P (REGNO (operands[0])) && ! SPARC_FP_REG_P (REGNO (operands[1]))” [(parallel [(set (match_dup 0) (match_dup 1)) (set (reg:CCX 100) (compare:CC (match_dup 1) (const_int 0)))])] "")

;; Return peepholes. First the “normal” ones. ;; These are necessary to catch insns ending up in the epilogue delay list.

(define_insn “*return_qi” [(set (match_operand:QI 0 “restore_operand” "") (match_operand:QI 1 “arith_operand” “rI”)) (return)] “! TARGET_EPILOGUE” “* { if (! TARGET_ARCH64 && current_function_returns_struct) return "jmp\t%%i7+12\n\trestore %%g0, %1, %Y0"; else if (TARGET_V9 && (GET_CODE (operands[1]) == CONST_INT || IN_OR_GLOBAL_P (operands[1]))) return "return\t%%i7+8\n\tmov\t%Y1, %Y0"; else return "ret\n\trestore %%g0, %1, %Y0"; }” [(set_attr “type” “multi”) (set_attr “length” “2”)])

(define_insn “*return_hi” [(set (match_operand:HI 0 “restore_operand” "") (match_operand:HI 1 “arith_operand” “rI”)) (return)] “! TARGET_EPILOGUE” “* { if (! TARGET_ARCH64 && current_function_returns_struct) return "jmp\t%%i7+12\n\trestore %%g0, %1, %Y0"; else if (TARGET_V9 && (GET_CODE (operands[1]) == CONST_INT || IN_OR_GLOBAL_P (operands[1]))) return "return\t%%i7+8\n\tmov\t%Y1, %Y0"; else return "ret;restore %%g0, %1, %Y0"; }” [(set_attr “type” “multi”) (set_attr “length” “2”)])

(define_insn “*return_si” [(set (match_operand:SI 0 “restore_operand” "") (match_operand:SI 1 “arith_operand” “rI”)) (return)] “! TARGET_EPILOGUE” “* { if (! TARGET_ARCH64 && current_function_returns_struct) return "jmp\t%%i7+12\n\trestore %%g0, %1, %Y0"; else if (TARGET_V9 && (GET_CODE (operands[1]) == CONST_INT || IN_OR_GLOBAL_P (operands[1]))) return "return\t%%i7+8\n\tmov\t%Y1, %Y0"; else return "ret;restore %%g0, %1, %Y0"; }” [(set_attr “type” “multi”) (set_attr “length” “2”)])

;; The following pattern is only generated by delayed-branch scheduling, ;; when the insn winds up in the epilogue. This can happen not only when ;; ! TARGET_FPU because we move complex types around by parts using ;; SF mode SUBREGs. (define_insn “*return_sf_no_fpu” [(set (match_operand:SF 0 “restore_operand” “=r”) (match_operand:SF 1 “register_operand” “r”)) (return)] “! TARGET_EPILOGUE” “* { if (! TARGET_ARCH64 && current_function_returns_struct) return "jmp\t%%i7+12\n\trestore %%g0, %1, %Y0"; else if (TARGET_V9 && IN_OR_GLOBAL_P (operands[1])) return "return\t%%i7+8\n\tmov\t%Y1, %Y0"; else return "ret;restore %%g0, %1, %Y0"; }” [(set_attr “type” “multi”) (set_attr “length” “2”)])

(define_insn “*return_df_no_fpu” [(set (match_operand:DF 0 “restore_operand” “=r”) (match_operand:DF 1 “register_operand” “r”)) (return)] “! TARGET_EPILOGUE && TARGET_ARCH64” “* { if (IN_OR_GLOBAL_P (operands[1])) return "return\t%%i7+8\n\tmov\t%Y1, %Y0"; else return "ret;restore %%g0, %1, %Y0"; }” [(set_attr “type” “multi”) (set_attr “length” “2”)])

(define_insn “*return_addsi” [(set (match_operand:SI 0 “restore_operand” "") (plus:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “arith_operand” “rI”))) (return)] “! TARGET_EPILOGUE” “* { if (! TARGET_ARCH64 && current_function_returns_struct) return "jmp\t%%i7+12\n\trestore %r1, %2, %Y0"; /* If operands are global or in registers, can use return */ else if (TARGET_V9 && IN_OR_GLOBAL_P (operands[1]) && (GET_CODE (operands[2]) == CONST_INT || IN_OR_GLOBAL_P (operands[2]))) return "return\t%%i7+8\n\tadd\t%Y1, %Y2, %Y0"; else return "ret;restore %r1, %2, %Y0"; }” [(set_attr “type” “multi”) (set_attr “length” “2”)])

(define_insn “*return_losum_si” [(set (match_operand:SI 0 “restore_operand” "") (lo_sum:SI (match_operand:SI 1 “register_operand” “r”) (match_operand:SI 2 “immediate_operand” “in”))) (return)] “! TARGET_EPILOGUE && ! TARGET_CM_MEDMID” “* { if (! TARGET_ARCH64 && current_function_returns_struct) return "jmp\t%%i7+12\n\trestore %r1, %%lo(%a2), %Y0"; /* If operands are global or in registers, can use return */ else if (TARGET_V9 && IN_OR_GLOBAL_P (operands[1])) return "return\t%%i7+8\n\tor\t%Y1, %%lo(%a2), %Y0"; else return "ret;restore %r1, %%lo(%a2), %Y0"; }” [(set_attr “type” “multi”) (set_attr “length” “2”)])

(define_insn “*return_di” [(set (match_operand:DI 0 “restore_operand” "") (match_operand:DI 1 “arith_double_operand” “rHI”)) (return)] “TARGET_ARCH64 && ! TARGET_EPILOGUE” “ret;restore %%g0, %1, %Y0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

(define_insn “*return_adddi” [(set (match_operand:DI 0 “restore_operand” "") (plus:DI (match_operand:DI 1 “arith_operand” “%r”) (match_operand:DI 2 “arith_double_operand” “rHI”))) (return)] “TARGET_ARCH64 && ! TARGET_EPILOGUE” “ret;restore %r1, %2, %Y0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

(define_insn “*return_losum_di” [(set (match_operand:DI 0 “restore_operand” "") (lo_sum:DI (match_operand:DI 1 “arith_operand” “%r”) (match_operand:DI 2 “immediate_operand” “in”))) (return)] “TARGET_ARCH64 && ! TARGET_EPILOGUE && ! TARGET_CM_MEDMID” “ret;restore %r1, %%lo(%a2), %Y0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

;; The following pattern is only generated by delayed-branch scheduling, ;; when the insn winds up in the epilogue. (define_insn “*return_sf” [(set (reg:SF 32) (match_operand:SF 0 “register_operand” “f”)) (return)] “! TARGET_EPILOGUE” “ret;fmovs\t%0, %%f0” [(set_attr “type” “multi”) (set_attr “length” “2”)])

;; Now peepholes to do a call followed by a jump.

(define_peephole [(parallel [(set (match_operand 0 "" "") (call (mem:SI (match_operand:SI 1 “call_operand_address” “ps”)) (match_operand 2 "" ""))) (clobber (reg:SI 15))]) (set (pc) (label_ref (match_operand 3 "" "")))] “short_branch (INSN_UID (insn), INSN_UID (operands[3])) && (USING_SJLJ_EXCEPTIONS || ! can_throw_internal (insn))” “call\t%a1, %2\n\tadd\t%%o7, (%l3-.-4), %%o7”)

(define_peephole [(parallel [(call (mem:SI (match_operand:SI 0 “call_operand_address” “ps”)) (match_operand 1 "" "")) (clobber (reg:SI 15))]) (set (pc) (label_ref (match_operand 2 "" "")))] “short_branch (INSN_UID (insn), INSN_UID (operands[2])) && (USING_SJLJ_EXCEPTIONS || ! can_throw_internal (insn))” “call\t%a0, %1\n\tadd\t%%o7, (%l2-.-4), %%o7”)

(define_peephole [(parallel [(set (match_operand 0 "" "") (call (mem:SI (match_operand:DI 1 “call_operand_address” “ps”)) (match_operand 2 "" ""))) (clobber (reg:DI 15))]) (set (pc) (label_ref (match_operand 3 "" "")))] “TARGET_ARCH64 && short_branch (INSN_UID (insn), INSN_UID (operands[3])) && (USING_SJLJ_EXCEPTIONS || ! can_throw_internal (insn))” “call\t%a1, %2\n\tadd\t%%o7, (%l3-.-4), %%o7”)

(define_peephole [(parallel [(call (mem:SI (match_operand:DI 0 “call_operand_address” “ps”)) (match_operand 1 "" "")) (clobber (reg:DI 15))]) (set (pc) (label_ref (match_operand 2 "" "")))] “TARGET_ARCH64 && short_branch (INSN_UID (insn), INSN_UID (operands[2])) && (USING_SJLJ_EXCEPTIONS || ! can_throw_internal (insn))” “call\t%a0, %1\n\tadd\t%%o7, (%l2-.-4), %%o7”)

(define_insn “prefetch” [(prefetch (match_operand:DI 0 “address_operand” “p”) (match_operand:DI 1 “const_int_operand” “n”) (match_operand:DI 2 “const_int_operand” “n”))] “TARGET_V9” { static const char * const prefetch_instr[2][4] = { { “prefetch\t[%a0], 1”, /* no locality: prefetch for one read / “prefetch\t[%a0], 0”, / medium locality: prefetch for several reads / “prefetch\t[%a0], 0”, / medium locality: prefetch for several reads / “prefetch\t[%a0], 4”, / high locality: prefetch page / }, { “prefetch\t[%a0], 3”, / no locality: prefetch for one write / “prefetch\t[%a0], 2”, / medium locality: prefetch for several writes / “prefetch\t[%a0], 2”, / medium locality: prefetch for several writes / “prefetch\t[%a0], 4”, / high locality: prefetch page */ } }; int read_or_write = INTVAL (operands[1]); int locality = INTVAL (operands[2]);

if (read_or_write != 0 && read_or_write != 1) abort (); if (locality < 0 || locality > 3) abort (); return prefetch_instr [read_or_write][locality]; } [(set_attr “type” “load”)]) (define_expand “prologue” [(const_int 1)] “flag_pic && current_function_uses_pic_offset_table” " { load_pic_register (); DONE; }")

;; We need to reload %l7 for -mflat -fpic, ;; otherwise %l7 should be preserved simply ;; by loading the function's register window (define_expand “exception_receiver” [(const_int 0)] “TARGET_FLAT && flag_pic” " { load_pic_register (); DONE; }")

;; Likewise (define_expand “builtin_setjmp_receiver” [(label_ref (match_operand 0 "" "“))] “TARGET_FLAT && flag_pic” " { load_pic_register (); DONE; }”) (define_insn “trap” [(trap_if (const_int 1) (const_int 5))] "" “ta\t5” [(set_attr “type” “misc”)])

(define_expand “conditional_trap” [(trap_if (match_operator 0 “noov_compare_op” [(match_dup 2) (match_dup 3)]) (match_operand:SI 1 “arith_operand” ""))] "" “operands[2] = gen_compare_reg (GET_CODE (operands[0]), sparc_compare_op0, sparc_compare_op1); operands[3] = const0_rtx;”)

(define_insn "" [(trap_if (match_operator 0 “noov_compare_op” [(reg:CC 100) (const_int 0)]) (match_operand:SI 1 “arith_operand” “rM”))] "" “t%C0\t%1” [(set_attr “type” “misc”)])

(define_insn "" [(trap_if (match_operator 0 “noov_compare_op” [(reg:CCX 100) (const_int 0)]) (match_operand:SI 1 “arith_operand” “rM”))] “TARGET_V9” “t%C0\t%%xcc, %1” [(set_attr “type” “misc”)])