blob: e804cd9dab21a2a92515bfe234574d5ce0ceed61 [file] [log] [blame]
/* FR30 specific functions.
Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
Contributed by Cygnus Solutions.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/*}}}*/
/*{{{ Includes */
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "recog.h"
#include "tree.h"
#include "expr.h"
#include "obstack.h"
#include "except.h"
#include "function.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
/*}}}*/
/*{{{ Function Prologues & Epilogues */
/* Define the information needed to generate branch and scc insns. This is
stored from the compare operation. */
struct rtx_def * fr30_compare_op0;
struct rtx_def * fr30_compare_op1;
/* The FR30 stack looks like this:
Before call After call
FP ->| | | |
+-----------------------+ +-----------------------+ high
| | | | memory
| local variables, | | local variables, |
| reg save area, etc. | | reg save area, etc. |
| | | |
+-----------------------+ +-----------------------+
| | | |
| args to the func that | | args to this func. |
| is being called that | | |
SP ->| do not fit in regs | | |
+-----------------------+ +-----------------------+
| args that used to be | \
| in regs; only created | | pretend_size
AP-> | for vararg funcs | /
+-----------------------+
| | \
| register save area | |
| | |
+-----------------------+ | reg_size
| return address | |
+-----------------------+ |
FP ->| previous frame ptr | /
+-----------------------+
| | \
| local variables | | var_size
| | /
+-----------------------+
| | \
low | room for args to | |
memory | other funcs called | | args_size
| from this one | |
SP ->| | /
+-----------------------+
Note, AP is a fake hard register. It will be eliminated in favour of
SP or FP as appropriate.
Note, Some or all of the stack sections above may be omitted if they
are not needed. */
/* Structure to be filled in by fr30_compute_frame_size() with register
save masks, and offsets for the current function. */
struct fr30_frame_info
{
unsigned int total_size; /* # Bytes that the entire frame takes up. */
unsigned int pretend_size; /* # Bytes we push and pretend caller did. */
unsigned int args_size; /* # Bytes that outgoing arguments take up. */
unsigned int reg_size; /* # Bytes needed to store regs. */
unsigned int var_size; /* # Bytes that variables take up. */
unsigned int frame_size; /* # Bytes in current frame. */
unsigned int gmask; /* Mask of saved registers. */
unsigned int save_fp; /* Nonzero if frame pointer must be saved. */
unsigned int save_rp; /* Nonzero if return popinter must be saved. */
int initialised; /* Nonzero if frame size already calculated. */
};
/* Current frame information calculated by fr30_compute_frame_size(). */
static struct fr30_frame_info current_frame_info;
/* Zero structure to initialize current_frame_info. */
static struct fr30_frame_info zero_frame_info;
static rtx fr30_pass_by_reference PARAMS ((tree, tree));
static rtx fr30_pass_by_value PARAMS ((tree, tree));
#define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
#define RETURN_POINTER_MASK (1 << (RETURN_POINTER_REGNUM))
/* Tell prologue and epilogue if register REGNO should be saved / restored.
The return address and frame pointer are treated separately.
Don't consider them here. */
#define MUST_SAVE_REGISTER(regno) \
( (regno) != RETURN_POINTER_REGNUM \
&& (regno) != FRAME_POINTER_REGNUM \
&& regs_ever_live [regno] \
&& ! call_used_regs [regno] )
#define MUST_SAVE_FRAME_POINTER (regs_ever_live [FRAME_POINTER_REGNUM] || frame_pointer_needed)
#define MUST_SAVE_RETURN_POINTER (regs_ever_live [RETURN_POINTER_REGNUM] || current_function_profile)
#if UNITS_PER_WORD == 4
#define WORD_ALIGN(SIZE) (((SIZE) + 3) & ~3)
#endif
/* Initialize the GCC target structure. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
struct gcc_target targetm = TARGET_INITIALIZER;
/* Returns the number of bytes offset between FROM_REG and TO_REG
for the current function. As a side effect it fills in the
current_frame_info structure, if the data is available. */
unsigned int
fr30_compute_frame_size (from_reg, to_reg)
int from_reg;
int to_reg;
{
int regno;
unsigned int return_value;
unsigned int var_size;
unsigned int args_size;
unsigned int pretend_size;
unsigned int reg_size;
unsigned int gmask;
var_size = WORD_ALIGN (get_frame_size ());
args_size = WORD_ALIGN (current_function_outgoing_args_size);
pretend_size = current_function_pretend_args_size;
reg_size = 0;
gmask = 0;
/* Calculate space needed for registers. */
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno ++)
{
if (MUST_SAVE_REGISTER (regno))
{
reg_size += UNITS_PER_WORD;
gmask |= 1 << regno;
}
}
current_frame_info.save_fp = MUST_SAVE_FRAME_POINTER;
current_frame_info.save_rp = MUST_SAVE_RETURN_POINTER;
reg_size += (current_frame_info.save_fp + current_frame_info.save_rp)
* UNITS_PER_WORD;
/* Save computed information. */
current_frame_info.pretend_size = pretend_size;
current_frame_info.var_size = var_size;
current_frame_info.args_size = args_size;
current_frame_info.reg_size = reg_size;
current_frame_info.frame_size = args_size + var_size;
current_frame_info.total_size = args_size + var_size + reg_size + pretend_size;
current_frame_info.gmask = gmask;
current_frame_info.initialised = reload_completed;
/* Calculate the required distance. */
return_value = 0;
if (to_reg == STACK_POINTER_REGNUM)
return_value += args_size + var_size;
if (from_reg == ARG_POINTER_REGNUM)
return_value += reg_size;
return return_value;
}
/* Called after register allocation to add any instructions needed for the
prologue. Using a prologue insn is favored compared to putting all of the
instructions in output_function_prologue(), since it allows the scheduler
to intermix instructions with the saves of the caller saved registers. In
some cases, it might be necessary to emit a barrier instruction as the last
insn to prevent such scheduling. */
void
fr30_expand_prologue ()
{
int regno;
rtx insn;
if (! current_frame_info.initialised)
fr30_compute_frame_size (0, 0);
/* This cases shouldn't happen. Catch it now. */
if (current_frame_info.total_size == 0
&& current_frame_info.gmask)
abort ();
/* Allocate space for register arguments if this is a variadic function. */
if (current_frame_info.pretend_size)
{
int regs_to_save = current_frame_info.pretend_size / UNITS_PER_WORD;
/* Push argument registers into the pretend arg area. */
for (regno = FIRST_ARG_REGNUM + FR30_NUM_ARG_REGS; regno --, regs_to_save --;)
{
insn = emit_insn (gen_movsi_push (gen_rtx_REG (Pmode, regno)));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
if (current_frame_info.gmask)
{
/* Save any needed call-saved regs. */
for (regno = STACK_POINTER_REGNUM; regno--;)
{
if ((current_frame_info.gmask & (1 << regno)) != 0)
{
insn = emit_insn (gen_movsi_push (gen_rtx_REG (Pmode, regno)));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
}
/* Save return address if necessary. */
if (current_frame_info.save_rp)
{
insn = emit_insn (gen_movsi_push (gen_rtx_REG (Pmode,
RETURN_POINTER_REGNUM)));
RTX_FRAME_RELATED_P (insn) = 1;
}
/* Save old frame pointer and create new one, if necessary. */
if (current_frame_info.save_fp)
{
if (current_frame_info.frame_size < ((1 << 10) - UNITS_PER_WORD))
{
int enter_size = current_frame_info.frame_size + UNITS_PER_WORD;
rtx pattern;
insn = emit_insn (gen_enter_func (GEN_INT (enter_size)));
RTX_FRAME_RELATED_P (insn) = 1;
pattern = PATTERN (insn);
/* Also mark all 3 subexpressions as RTX_FRAME_RELATED_P. */
if (GET_CODE (pattern) == PARALLEL)
{
int x;
for (x = XVECLEN (pattern, 0); x--;)
{
rtx part = XVECEXP (pattern, 0, x);
/* One of the insns in the ENTER pattern updates the
frame pointer. If we do not actually need the frame
pointer in this function then this is a side effect
rather than a desired effect, so we do not mark that
insn as being related to the frame set up. Doing this
allows us to compile the crash66.C test file in the
G++ testsuite. */
if (! frame_pointer_needed
&& GET_CODE (part) == SET
&& REGNO (SET_DEST (part)) == HARD_FRAME_POINTER_REGNUM)
RTX_FRAME_RELATED_P (part) = 0;
else
RTX_FRAME_RELATED_P (part) = 1;
}
}
}
else
{
insn = emit_insn (gen_movsi_push (frame_pointer_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
if (frame_pointer_needed)
{
insn = emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
RTX_FRAME_RELATED_P (insn) = 1;
}
}
}
/* Allocate the stack frame. */
if (current_frame_info.frame_size == 0)
; /* Nothing to do. */
else if (current_frame_info.save_fp
&& current_frame_info.frame_size < ((1 << 10) - UNITS_PER_WORD))
; /* Nothing to do. */
else if (current_frame_info.frame_size <= 512)
{
insn = emit_insn (gen_add_to_stack (GEN_INT (- current_frame_info.frame_size)));
RTX_FRAME_RELATED_P (insn) = 1;
}
else
{
rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
insn = emit_insn (gen_movsi (tmp, GEN_INT (current_frame_info.frame_size)));
RTX_FRAME_RELATED_P (insn) = 1;
insn = emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
RTX_FRAME_RELATED_P (insn) = 1;
}
if (current_function_profile)
emit_insn (gen_blockage ());
}
/* Called after register allocation to add any instructions needed for the
epilogue. Using an epilogue insn is favored compared to putting all of the
instructions in output_function_epilogue(), since it allows the scheduler
to intermix instructions with the restores of the caller saved registers.
In some cases, it might be necessary to emit a barrier instruction as the
first insn to prevent such scheduling. */
void
fr30_expand_epilogue ()
{
int regno;
/* Perform the inversion operations of the prologue. */
if (! current_frame_info.initialised)
abort ();
/* Pop local variables and arguments off the stack.
If frame_pointer_needed is TRUE then the frame pointer register
has actually been used as a frame pointer, and we can recover
the stack pointer from it, otherwise we must unwind the stack
manually. */
if (current_frame_info.frame_size > 0)
{
if (current_frame_info.save_fp && frame_pointer_needed)
{
emit_insn (gen_leave_func ());
current_frame_info.save_fp = 0;
}
else if (current_frame_info.frame_size <= 508)
emit_insn (gen_add_to_stack
(GEN_INT (current_frame_info.frame_size)));
else
{
rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
emit_insn (gen_movsi (tmp, GEN_INT (current_frame_info.frame_size)));
emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
}
}
if (current_frame_info.save_fp)
emit_insn (gen_movsi_pop (frame_pointer_rtx));
/* Pop all the registers that were pushed. */
if (current_frame_info.save_rp)
emit_insn (gen_movsi_pop (gen_rtx_REG (Pmode, RETURN_POINTER_REGNUM)));
for (regno = 0; regno < STACK_POINTER_REGNUM; regno ++)
if (current_frame_info.gmask & (1 << regno))
emit_insn (gen_movsi_pop (gen_rtx_REG (Pmode, regno)));
if (current_frame_info.pretend_size)
emit_insn (gen_add_to_stack (GEN_INT (current_frame_info.pretend_size)));
/* Reset state info for each function. */
current_frame_info = zero_frame_info;
emit_jump_insn (gen_return_from_func ());
}
/* Do any needed setup for a variadic function. We must create a register
parameter block, and then copy any anonymous arguments, plus the last
named argument, from registers into memory. * copying actually done in
fr30_expand_prologue().
ARG_REGS_USED_SO_FAR has *not* been updated for the last named argument
which has type TYPE and mode MODE, and we rely on this fact. */
void
fr30_setup_incoming_varargs (arg_regs_used_so_far, int_mode, type, pretend_size)
CUMULATIVE_ARGS arg_regs_used_so_far;
int int_mode;
tree type ATTRIBUTE_UNUSED;
int * pretend_size;
{
enum machine_mode mode = (enum machine_mode)int_mode;
int size;
/* All BLKmode values are passed by reference. */
if (mode == BLKmode)
abort ();
#if STRICT_ARGUMENT_NAMING
/* We must treat `__builtin_va_alist' as an anonymous arg.
But otherwise if STRICT_ARGUMENT_NAMING is true then the
last named arg must not be treated as an anonymous arg. */
if (! current_function_varargs)
arg_regs_used_so_far += fr30_num_arg_regs (int_mode, type);
#endif
size = FR30_NUM_ARG_REGS - arg_regs_used_so_far;
if (size <= 0)
return;
* pretend_size = (size * UNITS_PER_WORD);
}
/*}}}*/
/*{{{ Printing operands */
/* Print a memory address as an operand to reference that memory location. */
void
fr30_print_operand_address (stream, address)
FILE * stream;
rtx address;
{
switch (GET_CODE (address))
{
case SYMBOL_REF:
output_addr_const (stream, address);
break;
default:
fprintf (stderr, "code = %x\n", GET_CODE (address));
debug_rtx (address);
output_operand_lossage ("fr30_print_operand_address: unhandled address");
break;
}
}
/* Print an operand. */
void
fr30_print_operand (file, x, code)
FILE * file;
rtx x;
int code;
{
rtx x0;
switch (code)
{
case '#':
/* Output a :D if this instruction is delayed. */
if (dbr_sequence_length () != 0)
fputs (":D", file);
return;
case 'p':
/* Compute the register name of the second register in a hi/lo
register pair. */
if (GET_CODE (x) != REG)
output_operand_lossage ("fr30_print_operand: unrecognized %p code");
else
fprintf (file, "r%d", REGNO (x) + 1);
return;
case 'b':
/* Convert GCC's comparison operators into FR30 comparison codes. */
switch (GET_CODE (x))
{
case EQ: fprintf (file, "eq"); break;
case NE: fprintf (file, "ne"); break;
case LT: fprintf (file, "lt"); break;
case LE: fprintf (file, "le"); break;
case GT: fprintf (file, "gt"); break;
case GE: fprintf (file, "ge"); break;
case LTU: fprintf (file, "c"); break;
case LEU: fprintf (file, "ls"); break;
case GTU: fprintf (file, "hi"); break;
case GEU: fprintf (file, "nc"); break;
default:
output_operand_lossage ("fr30_print_operand: unrecognized %b code");
break;
}
return;
case 'B':
/* Convert GCC's comparison operators into the complimentary FR30
comparison codes. */
switch (GET_CODE (x))
{
case EQ: fprintf (file, "ne"); break;
case NE: fprintf (file, "eq"); break;
case LT: fprintf (file, "ge"); break;
case LE: fprintf (file, "gt"); break;
case GT: fprintf (file, "le"); break;
case GE: fprintf (file, "lt"); break;
case LTU: fprintf (file, "nc"); break;
case LEU: fprintf (file, "hi"); break;
case GTU: fprintf (file, "ls"); break;
case GEU: fprintf (file, "c"); break;
default:
output_operand_lossage ("fr30_print_operand: unrecognized %B code");
break;
}
return;
case 'A':
/* Print a signed byte value as an unsigned value. */
if (GET_CODE (x) != CONST_INT)
output_operand_lossage ("fr30_print_operand: invalid operand to %A code");
else
{
HOST_WIDE_INT val;
val = INTVAL (x);
val &= 0xff;
fprintf (file, "%d", val);
}
return;
case 'x':
if (GET_CODE (x) != CONST_INT
|| INTVAL (x) < 16
|| INTVAL (x) > 32)
output_operand_lossage ("fr30_print_operand: invalid %x code");
else
fprintf (file, "%d", INTVAL (x) - 16);
return;
case 'F':
if (GET_CODE (x) != CONST_DOUBLE)
output_operand_lossage ("fr30_print_operand: invalid %F code");
else
{
REAL_VALUE_TYPE d;
REAL_VALUE_FROM_CONST_DOUBLE (d, x);
fprintf (file, "%.8f", d);
}
return;
case 0:
/* Handled below. */
break;
default:
fprintf (stderr, "unknown code = %x\n", code);
output_operand_lossage ("fr30_print_operand: unknown code");
return;
}
switch (GET_CODE (x))
{
case REG:
fputs (reg_names [REGNO (x)], file);
break;
case MEM:
x0 = XEXP (x,0);
switch (GET_CODE (x0))
{
case REG:
if ((unsigned) REGNO (x0) >= ARRAY_SIZE (reg_names))
abort ();
fprintf (file, "@%s", reg_names [REGNO (x0)]);
break;
case PLUS:
if (GET_CODE (XEXP (x0, 0)) != REG
|| REGNO (XEXP (x0, 0)) < FRAME_POINTER_REGNUM
|| REGNO (XEXP (x0, 0)) > STACK_POINTER_REGNUM
|| GET_CODE (XEXP (x0, 1)) != CONST_INT)
{
fprintf (stderr, "bad INDEXed address:");
debug_rtx (x);
output_operand_lossage ("fr30_print_operand: unhandled MEM");
}
else if (REGNO (XEXP (x0, 0)) == FRAME_POINTER_REGNUM)
{
HOST_WIDE_INT val = INTVAL (XEXP (x0, 1));
if (val < -(1 << 9) || val > ((1 << 9) - 4))
{
fprintf (stderr, "frame INDEX out of range:");
debug_rtx (x);
output_operand_lossage ("fr30_print_operand: unhandled MEM");
}
fprintf (file, "@(r14, #%d)", val);
}
else
{
HOST_WIDE_INT val = INTVAL (XEXP (x0, 1));
if (val < 0 || val > ((1 << 6) - 4))
{
fprintf (stderr, "stack INDEX out of range:");
debug_rtx (x);
output_operand_lossage ("fr30_print_operand: unhandled MEM");
}
fprintf (file, "@(r15, #%d)", val);
}
break;
case SYMBOL_REF:
output_address (x0);
break;
default:
fprintf (stderr, "bad MEM code = %x\n", GET_CODE (x0));
debug_rtx (x);
output_operand_lossage ("fr30_print_operand: unhandled MEM");
break;
}
break;
case CONST_DOUBLE :
/* We handle SFmode constants here as output_addr_const doesn't. */
if (GET_MODE (x) == SFmode)
{
REAL_VALUE_TYPE d;
long l;
REAL_VALUE_FROM_CONST_DOUBLE (d, x);
REAL_VALUE_TO_TARGET_SINGLE (d, l);
fprintf (file, "0x%08lx", l);
break;
}
/* Fall through. Let output_addr_const deal with it. */
default:
output_addr_const (file, x);
break;
}
return;
}
/*}}}*/
/*{{{ Function arguments */
/* Compute the number of word sized registers needed to hold a
function argument of mode INT_MODE and tree type TYPE. */
int
fr30_num_arg_regs (int_mode, type)
int int_mode;
tree type;
{
enum machine_mode mode = (enum machine_mode) int_mode;
int size;
if (MUST_PASS_IN_STACK (mode, type))
return 0;
if (type && mode == BLKmode)
size = int_size_in_bytes (type);
else
size = GET_MODE_SIZE (mode);
return (size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
}
/* Implements the FUNCTION_ARG_PARTIAL_NREGS macro.
Returns the number of argument registers required to hold *part* of
a parameter of machine mode MODE and tree type TYPE (which may be
NULL if the type is not known). If the argument fits entirly in
the argument registers, or entirely on the stack, then 0 is returned.
CUM is the number of argument registers already used by earlier
parameters to the function. */
int
fr30_function_arg_partial_nregs (cum, int_mode, type, named)
CUMULATIVE_ARGS cum;
int int_mode;
tree type;
int named;
{
/* Unnamed arguments, ie those that are prototyped as ...
are always passed on the stack.
Also check here to see if all the argument registers are full. */
if (named == 0 || cum >= FR30_NUM_ARG_REGS)
return 0;
/* Work out how many argument registers would be needed if this
parameter were to be passed entirely in registers. If there
are sufficient argument registers available (or if no registers
are needed because the parameter must be passed on the stack)
then return zero, as this parameter does not require partial
register, partial stack stack space. */
if (cum + fr30_num_arg_regs (int_mode, type) <= FR30_NUM_ARG_REGS)
return 0;
/* Otherwise return the number of registers that would be used. */
return FR30_NUM_ARG_REGS - cum;
}
static rtx
fr30_pass_by_reference (valist, type)
tree valist;
tree type;
{
tree type_ptr;
tree type_ptr_ptr;
tree t;
type_ptr = build_pointer_type (type);
type_ptr_ptr = build_pointer_type (type_ptr);
t = build (POSTINCREMENT_EXPR, va_list_type_node, valist, build_int_2 (UNITS_PER_WORD, 0));
TREE_SIDE_EFFECTS (t) = 1;
t = build1 (NOP_EXPR, type_ptr_ptr, t);
TREE_SIDE_EFFECTS (t) = 1;
t = build1 (INDIRECT_REF, type_ptr, t);
return expand_expr (t, NULL_RTX, Pmode, EXPAND_NORMAL);
}
static rtx
fr30_pass_by_value (valist, type)
tree valist;
tree type;
{
HOST_WIDE_INT size = int_size_in_bytes (type);
HOST_WIDE_INT rsize;
rtx addr_rtx;
tree t;
if ((size % UNITS_PER_WORD) == 0)
{
t = build (POSTINCREMENT_EXPR, va_list_type_node, valist, build_int_2 (size, 0));
TREE_SIDE_EFFECTS (t) = 1;
return expand_expr (t, NULL_RTX, Pmode, EXPAND_NORMAL);
}
rsize = (size + UNITS_PER_WORD - 1) & - UNITS_PER_WORD;
/* Care for bigendian correction on the aligned address. */
t = build (PLUS_EXPR, ptr_type_node, valist, build_int_2 (rsize - size, 0));
addr_rtx = expand_expr (t, NULL_RTX, Pmode, EXPAND_NORMAL);
addr_rtx = copy_to_reg (addr_rtx);
/* Increment AP. */
t = build (PLUS_EXPR, va_list_type_node, valist, build_int_2 (rsize, 0));
t = build (MODIFY_EXPR, va_list_type_node, valist, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
return addr_rtx;
}
/* Implement `va_arg'. */
rtx
fr30_va_arg (valist, type)
tree valist;
tree type;
{
HOST_WIDE_INT size;
if (AGGREGATE_TYPE_P (type))
return fr30_pass_by_reference (valist, type);
size = int_size_in_bytes (type);
if ((size % sizeof (int)) == 0
|| size < 4)
return fr30_pass_by_value (valist, type);
return fr30_pass_by_reference (valist, type);
}
/*}}}*/
/*{{{ Operand predicates */
#ifndef Mmode
#define Mmode enum machine_mode
#endif
/* Returns true if OPERAND is an integer value suitable for use in
an ADDSP instruction. */
int
stack_add_operand (operand, mode)
rtx operand;
Mmode mode ATTRIBUTE_UNUSED;
{
return
(GET_CODE (operand) == CONST_INT
&& INTVAL (operand) >= -512
&& INTVAL (operand) <= 508
&& ((INTVAL (operand) & 3) == 0));
}
/* Returns true if OPERAND is an integer value suitable for use in
an ADD por ADD2 instruction, or if it is a register. */
int
add_immediate_operand (operand, mode)
rtx operand;
Mmode mode ATTRIBUTE_UNUSED;
{
return
(GET_CODE (operand) == REG
|| (GET_CODE (operand) == CONST_INT
&& INTVAL (operand) >= -16
&& INTVAL (operand) <= 15));
}
/* Returns true if OPERAND is hard register in the range 8 - 15. */
int
high_register_operand (operand, mode)
rtx operand;
Mmode mode ATTRIBUTE_UNUSED;
{
return
(GET_CODE (operand) == REG
&& REGNO (operand) <= 15
&& REGNO (operand) >= 8);
}
/* Returns true if OPERAND is hard register in the range 0 - 7. */
int
low_register_operand (operand, mode)
rtx operand;
Mmode mode ATTRIBUTE_UNUSED;
{
return
(GET_CODE (operand) == REG
&& REGNO (operand) <= 7);
}
/* Returns true if OPERAND is suitable for use in a CALL insn. */
int
call_operand (operand, mode)
rtx operand;
Mmode mode ATTRIBUTE_UNUSED;
{
return (GET_CODE (operand) == MEM
&& (GET_CODE (XEXP (operand, 0)) == SYMBOL_REF
|| GET_CODE (XEXP (operand, 0)) == REG));
}
/* Returns TRUE if OP is a valid operand of a DImode operation. */
int
di_operand (op, mode)
rtx op;
Mmode mode;
{
if (register_operand (op, mode))
return TRUE;
if (mode != VOIDmode && GET_MODE (op) != VOIDmode && GET_MODE (op) != DImode)
return FALSE;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
switch (GET_CODE (op))
{
case CONST_DOUBLE:
case CONST_INT:
return TRUE;
case MEM:
return memory_address_p (DImode, XEXP (op, 0));
default:
return FALSE;
}
}
/* Returns TRUE if OP is a DImode register or MEM. */
int
nonimmediate_di_operand (op, mode)
rtx op;
Mmode mode;
{
if (register_operand (op, mode))
return TRUE;
if (mode != VOIDmode && GET_MODE (op) != VOIDmode && GET_MODE (op) != DImode)
return FALSE;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (GET_CODE (op) == MEM)
return memory_address_p (DImode, XEXP (op, 0));
return FALSE;
}
/* Returns true iff all the registers in the operands array
are in descending or ascending order. */
int
fr30_check_multiple_regs (operands, num_operands, descending)
rtx * operands;
int num_operands;
int descending;
{
if (descending)
{
unsigned int prev_regno = 0;
while (num_operands --)
{
if (GET_CODE (operands [num_operands]) != REG)
return 0;
if (REGNO (operands [num_operands]) < prev_regno)
return 0;
prev_regno = REGNO (operands [num_operands]);
}
}
else
{
unsigned int prev_regno = CONDITION_CODE_REGNUM;
while (num_operands --)
{
if (GET_CODE (operands [num_operands]) != REG)
return 0;
if (REGNO (operands [num_operands]) > prev_regno)
return 0;
prev_regno = REGNO (operands [num_operands]);
}
}
return 1;
}
/*}}}*/
/*{{{ Instruction Output Routines */
/* Output a double word move.
It must be REG<-REG, REG<-MEM, MEM<-REG or REG<-CONST.
On the FR30 we are contrained by the fact that it does not
support offsetable addresses, and so we have to load the
address of the secnd word into the second destination register
before we can use it. */
rtx
fr30_move_double (operands)
rtx * operands;
{
rtx src = operands[1];
rtx dest = operands[0];
enum rtx_code src_code = GET_CODE (src);
enum rtx_code dest_code = GET_CODE (dest);
enum machine_mode mode = GET_MODE (dest);
rtx val;
start_sequence ();
if (dest_code == REG)
{
if (src_code == REG)
{
int reverse = (REGNO (dest) == REGNO (src) + 1);
/* We normally copy the low-numbered register first. However, if
the first register of operand 0 is the same as the second register
of operand 1, we must copy in the opposite order. */
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, reverse, TRUE, mode),
operand_subword (src, reverse, TRUE, mode)));
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, !reverse, TRUE, mode),
operand_subword (src, !reverse, TRUE, mode)));
}
else if (src_code == MEM)
{
rtx addr = XEXP (src, 0);
int dregno = REGNO (dest);
rtx dest0;
rtx dest1;
rtx new_mem;
/* If the high-address word is used in the address, we
must load it last. Otherwise, load it first. */
int reverse = (refers_to_regno_p (dregno, dregno + 1, addr, 0) != 0);
if (GET_CODE (addr) != REG)
abort ();
dest0 = operand_subword (dest, reverse, TRUE, mode);
dest1 = operand_subword (dest, !reverse, TRUE, mode);
if (reverse)
{
emit_insn (gen_rtx_SET (VOIDmode, dest1,
adjust_address (src, SImode, 0)));
emit_insn (gen_rtx_SET (SImode, dest0,
gen_rtx_REG (SImode, REGNO (addr))));
emit_insn (gen_rtx_SET (SImode, dest0,
plus_constant (dest0, UNITS_PER_WORD)));
new_mem = gen_rtx_MEM (SImode, dest0);
MEM_COPY_ATTRIBUTES (new_mem, src);
emit_insn (gen_rtx_SET (VOIDmode, dest0, new_mem));
}
else
{
emit_insn (gen_rtx_SET (VOIDmode, dest0,
adjust_address (src, SImode, 0)));
emit_insn (gen_rtx_SET (SImode, dest1,
gen_rtx_REG (SImode, REGNO (addr))));
emit_insn (gen_rtx_SET (SImode, dest1,
plus_constant (dest1, UNITS_PER_WORD)));
new_mem = gen_rtx_MEM (SImode, dest1);
MEM_COPY_ATTRIBUTES (new_mem, src);
emit_insn (gen_rtx_SET (VOIDmode, dest1, new_mem));
}
}
else if (src_code == CONST_INT || src_code == CONST_DOUBLE)
{
rtx words[2];
split_double (src, &words[0], &words[1]);
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, 0, TRUE, mode),
words[0]));
emit_insn (gen_rtx_SET (VOIDmode,
operand_subword (dest, 1, TRUE, mode),
words[1]));
}
}
else if (src_code == REG && dest_code == MEM)
{
rtx addr = XEXP (dest, 0);
rtx src0;
rtx src1;
if (GET_CODE (addr) != REG)
abort ();
src0 = operand_subword (src, 0, TRUE, mode);
src1 = operand_subword (src, 1, TRUE, mode);
emit_insn (gen_rtx_SET (VOIDmode, adjust_address (dest, SImode, 0),
src0));
if (REGNO (addr) == STACK_POINTER_REGNUM
|| REGNO (addr) == FRAME_POINTER_REGNUM)
emit_insn (gen_rtx_SET (VOIDmode,
adjust_address (dest, SImode, UNITS_PER_WORD),
src1));
else
{
rtx new_mem;
/* We need a scratch register to hold the value of 'address + 4'.
We ought to allow gcc to find one for us, but for now, just
push one of the source registers. */
emit_insn (gen_movsi_push (src0));
emit_insn (gen_movsi_internal (src0, addr));
emit_insn (gen_addsi_small_int (src0, src0, GEN_INT (UNITS_PER_WORD)));
new_mem = gen_rtx_MEM (SImode, src0);
MEM_COPY_ATTRIBUTES (new_mem, dest);
emit_insn (gen_rtx_SET (VOIDmode, new_mem, src1));
emit_insn (gen_movsi_pop (src0));
}
}
else
/* This should have been prevented by the constraints on movdi_insn. */
abort ();
val = gen_sequence ();
end_sequence ();
return val;
}