blob: acfb35769bf4dd1abdfe6d97cec04f9726d4f222 [file] [log] [blame]
/* Assembly functions for the Xtensa version of libgcc1.
Copyright (C) 2001 Free Software Foundation, Inc.
Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include "xtensa/xtensa-config.h"
#ifdef L_mulsi3
.align 4
.global __mulsi3
.type __mulsi3,@function
__mulsi3:
entry sp, 16
#if XCHAL_HAVE_MUL16
or a4, a2, a3
srai a4, a4, 16
bnez a4, .LMUL16
mul16u a2, a2, a3
retw
.LMUL16:
srai a4, a2, 16
srai a5, a3, 16
mul16u a7, a4, a3
mul16u a6, a5, a2
mul16u a4, a2, a3
add a7, a7, a6
slli a7, a7, 16
add a2, a7, a4
#elif XCHAL_HAVE_MAC16
mul.aa.hl a2, a3
mula.aa.lh a2, a3
rsr a5, 16 # ACCLO
umul.aa.ll a2, a3
rsr a4, 16 # ACCLO
slli a5, a5, 16
add a2, a4, a5
#else /* !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MAC16 */
# Multiply one bit at a time, but unroll the loop 4x to better
# exploit the addx instructions.
# Peel the first iteration to save a cycle on init
# avoid negative numbers
xor a5, a2, a3 # top bit is 1 iff one of the inputs is negative
abs a3, a3
abs a2, a2
# swap so that second argument is smaller
sub a7, a2, a3
mov a4, a3
movgez a4, a2, a7 # a4 = max(a2, a3)
movltz a3, a2, a7 # a3 = min(a2, a3)
movi a2, 0
extui a6, a3, 0, 1
movnez a2, a4, a6
addx2 a7, a4, a2
extui a6, a3, 1, 1
movnez a2, a7, a6
addx4 a7, a4, a2
extui a6, a3, 2, 1
movnez a2, a7, a6
addx8 a7, a4, a2
extui a6, a3, 3, 1
movnez a2, a7, a6
bgeui a3, 16, .Lmult_main_loop
neg a3, a2
movltz a2, a3, a5
retw
.align 4
.Lmult_main_loop:
srli a3, a3, 4
slli a4, a4, 4
add a7, a4, a2
extui a6, a3, 0, 1
movnez a2, a7, a6
addx2 a7, a4, a2
extui a6, a3, 1, 1
movnez a2, a7, a6
addx4 a7, a4, a2
extui a6, a3, 2, 1
movnez a2, a7, a6
addx8 a7, a4, a2
extui a6, a3, 3, 1
movnez a2, a7, a6
bgeui a3, 16, .Lmult_main_loop
neg a3, a2
movltz a2, a3, a5
#endif /* !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MAC16 */
retw
.Lfe0:
.size __mulsi3,.Lfe0-__mulsi3
#endif /* L_mulsi3 */
# Some Xtensa configurations include the NSAU (unsigned
# normalize shift amount) instruction which computes the number
# of leading zero bits. For other configurations, the "nsau"
# operation is implemented as a macro.
#if !XCHAL_HAVE_NSA
.macro nsau cnt, val, tmp, a
mov \a, \val
movi \cnt, 0
extui \tmp, \a, 16, 16
bnez \tmp, 0f
movi \cnt, 16
slli \a, \a, 16
0:
extui \tmp, \a, 24, 8
bnez \tmp, 1f
addi \cnt, \cnt, 8
slli \a, \a, 8
1:
movi \tmp, __nsau_data
extui \a, \a, 24, 8
add \tmp, \tmp, \a
l8ui \tmp, \tmp, 0
add \cnt, \cnt, \tmp
.endm
#endif /* !XCHAL_HAVE_NSA */
#ifdef L_nsau
.section .rodata
.align 4
.global __nsau_data
.type __nsau_data,@object
__nsau_data:
#if !XCHAL_HAVE_NSA
.byte 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4
.byte 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
.byte 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
.byte 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
.byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
.byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
.byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
.byte 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
.byte 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
#endif /* !XCHAL_HAVE_NSA */
.Lfe1:
.size __nsau_data,.Lfe1-__nsau_data
.hidden __nsau_data
#endif /* L_nsau */
#ifdef L_udivsi3
.align 4
.global __udivsi3
.type __udivsi3,@function
__udivsi3:
entry sp, 16
bltui a3, 2, .Lle_one # check if the divisor <= 1
mov a6, a2 # keep dividend in a6
#if XCHAL_HAVE_NSA
nsau a5, a6 # dividend_shift = nsau(dividend)
nsau a4, a3 # divisor_shift = nsau(divisor)
#else /* !XCHAL_HAVE_NSA */
nsau a5, a6, a2, a7 # dividend_shift = nsau(dividend)
nsau a4, a3, a2, a7 # divisor_shift = nsau(divisor)
#endif /* !XCHAL_HAVE_NSA */
bgeu a5, a4, .Lspecial
sub a4, a4, a5 # count = divisor_shift - dividend_shift
ssl a4
sll a3, a3 # divisor <<= count
movi a2, 0 # quotient = 0
# test-subtract-and-shift loop; one quotient bit on each iteration
loopnez a4, .Lloopend
bltu a6, a3, .Lzerobit
sub a6, a6, a3
addi a2, a2, 1
.Lzerobit:
slli a2, a2, 1
srli a3, a3, 1
.Lloopend:
bltu a6, a3, .Lreturn
addi a2, a2, 1 # increment quotient if dividend >= divisor
.Lreturn:
retw
.Lspecial:
# return dividend >= divisor
movi a2, 0
bltu a6, a3, .Lreturn2
movi a2, 1
.Lreturn2:
retw
.Lle_one:
beqz a3, .Lerror # if divisor == 1, return the dividend
retw
.Lerror:
movi a2, 0 # just return 0; could throw an exception
retw
.Lfe2:
.size __udivsi3,.Lfe2-__udivsi3
#endif /* L_udivsi3 */
#ifdef L_divsi3
.align 4
.global __divsi3
.type __divsi3,@function
__divsi3:
entry sp, 16
xor a7, a2, a3 # sign = dividend ^ divisor
abs a6, a2 # udividend = abs(dividend)
abs a3, a3 # udivisor = abs(divisor)
bltui a3, 2, .Lle_one # check if udivisor <= 1
#if XCHAL_HAVE_NSA
nsau a5, a6 # udividend_shift = nsau(udividend)
nsau a4, a3 # udivisor_shift = nsau(udivisor)
#else /* !XCHAL_HAVE_NSA */
nsau a5, a6, a2, a8 # udividend_shift = nsau(udividend)
nsau a4, a3, a2, a8 # udivisor_shift = nsau(udivisor)
#endif /* !XCHAL_HAVE_NSA */
bgeu a5, a4, .Lspecial
sub a4, a4, a5 # count = udivisor_shift - udividend_shift
ssl a4
sll a3, a3 # udivisor <<= count
movi a2, 0 # quotient = 0
# test-subtract-and-shift loop; one quotient bit on each iteration
loopnez a4, .Lloopend
bltu a6, a3, .Lzerobit
sub a6, a6, a3
addi a2, a2, 1
.Lzerobit:
slli a2, a2, 1
srli a3, a3, 1
.Lloopend:
bltu a6, a3, .Lreturn
addi a2, a2, 1 # increment quotient if udividend >= udivisor
.Lreturn:
neg a5, a2
movltz a2, a5, a7 # return (sign < 0) ? -quotient : quotient
retw
.Lspecial:
movi a2, 0
bltu a6, a3, .Lreturn2 # if dividend < divisor, return 0
movi a2, 1
movi a4, -1
movltz a2, a4, a7 # else return (sign < 0) ? -1 : 1
.Lreturn2:
retw
.Lle_one:
beqz a3, .Lerror
neg a2, a6 # if udivisor == 1, then return...
movgez a2, a6, a7 # (sign < 0) ? -udividend : udividend
retw
.Lerror:
movi a2, 0 # just return 0; could throw an exception
retw
.Lfe3:
.size __divsi3,.Lfe3-__divsi3
#endif /* L_divsi3 */
#ifdef L_umodsi3
.align 4
.global __umodsi3
.type __umodsi3,@function
__umodsi3:
entry sp, 16
bltui a3, 2, .Lle_one # check if the divisor is <= 1
#if XCHAL_HAVE_NSA
nsau a5, a2 # dividend_shift = nsau(dividend)
nsau a4, a3 # divisor_shift = nsau(divisor)
#else /* !XCHAL_HAVE_NSA */
nsau a5, a2, a6, a7 # dividend_shift = nsau(dividend)
nsau a4, a3, a6, a7 # divisor_shift = nsau(divisor)
#endif /* !XCHAL_HAVE_NSA */
bgeu a5, a4, .Lspecial
sub a4, a4, a5 # count = divisor_shift - dividend_shift
ssl a4
sll a3, a3 # divisor <<= count
# test-subtract-and-shift loop
loopnez a4, .Lloopend
bltu a2, a3, .Lzerobit
sub a2, a2, a3
.Lzerobit:
srli a3, a3, 1
.Lloopend:
bltu a2, a3, .Lreturn
sub a2, a2, a3 # subtract once more if dividend >= divisor
.Lreturn:
retw
.Lspecial:
bltu a2, a3, .Lreturn2
sub a2, a2, a3 # subtract once if dividend >= divisor
.Lreturn2:
retw
.Lle_one:
# the divisor is either 0 or 1, so just return 0.
# someday we may want to throw an exception if the divisor is 0.
movi a2, 0
retw
.Lfe4:
.size __umodsi3,.Lfe4-__umodsi3
#endif /* L_umodsi3 */
#ifdef L_modsi3
.align 4
.global __modsi3
.type __modsi3,@function
__modsi3:
entry sp, 16
mov a7, a2 # save original (signed) dividend
abs a2, a2 # udividend = abs(dividend)
abs a3, a3 # udivisor = abs(divisor)
bltui a3, 2, .Lle_one # check if udivisor <= 1
#if XCHAL_HAVE_NSA
nsau a5, a2 # udividend_shift = nsau(udividend)
nsau a4, a3 # udivisor_shift = nsau(udivisor)
#else /* !XCHAL_HAVE_NSA */
nsau a5, a2, a6, a8 # udividend_shift = nsau(udividend)
nsau a4, a3, a6, a8 # udivisor_shift = nsau(udivisor)
#endif /* !XCHAL_HAVE_NSA */
bgeu a5, a4, .Lspecial
sub a4, a4, a5 # count = udivisor_shift - udividend_shift
ssl a4
sll a3, a3 # udivisor <<= count
# test-subtract-and-shift loop
loopnez a4, .Lloopend
bltu a2, a3, .Lzerobit
sub a2, a2, a3
.Lzerobit:
srli a3, a3, 1
.Lloopend:
bltu a2, a3, .Lreturn
sub a2, a2, a3 # subtract once more if udividend >= udivisor
.Lreturn:
bgez a7, .Lpositive
neg a2, a2 # if (dividend < 0), return -udividend
.Lpositive:
retw
.Lspecial:
bltu a2, a3, .Lreturn2
sub a2, a2, a3 # subtract once if dividend >= divisor
.Lreturn2:
bgez a7, .Lpositive2
neg a2, a2 # if (dividend < 0), return -udividend
.Lpositive2:
retw
.Lle_one:
# udivisor is either 0 or 1, so just return 0.
# someday we may want to throw an exception if udivisor is 0.
movi a2, 0
retw
.Lfe5:
.size __modsi3,.Lfe5-__modsi3
#endif /* L_modsi3 */