blob: 08d778f9231324025af2d0225623abf2a11e42f5 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . T A S K I N G . I N I T I A L I Z A T I O N --
-- --
-- B o d y --
-- --
-- $Revision: 1.63 $
-- --
-- Copyright (C) 1991-2001, Florida State University --
-- --
-- GNARL is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNARL; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. It is --
-- now maintained by Ada Core Technologies Inc. in cooperation with Florida --
-- State University (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
pragma Style_Checks (All_Checks);
-- Turn off subprogram alpha ordering check, since we group soft link
-- bodies and dummy soft link bodies together separately in this unit.
pragma Polling (Off);
-- Turn polling off for this package. We don't need polling during any
-- of the routines in this package, and more to the point, if we try
-- to poll it can cause infinite loops.
-- This package provides overall initialization of the tasking portion
-- of the RTS. This package must be elaborated before any tasking
-- features are used. It also contains initialization for
-- Ada Task Control Block (ATCB) records.
with Ada.Exceptions;
-- used for Exception_Occurrence_Access.
with System.Tasking;
pragma Elaborate_All (System.Tasking);
-- ensure that the first step initializations have been performed
with System.Task_Primitives;
-- used for Lock
with System.Task_Primitives.Operations;
-- used for Set_Priority
-- Write_Lock
-- Unlock
-- Initialize_Lock
with System.Soft_Links;
-- used for the non-tasking routines (*_NT) that refer to global data.
-- They are needed here before the tasking run time has been elaborated.
with System.Tasking.Debug;
-- used for Trace
with System.Tasking.Task_Attributes;
-- used for All_Attrs_L
with System.Stack_Checking;
package body System.Tasking.Initialization is
package STPO renames System.Task_Primitives.Operations;
package SSL renames System.Soft_Links;
package AE renames Ada.Exceptions;
use System.Task_Primitives.Operations;
Global_Task_Lock : aliased System.Task_Primitives.RTS_Lock;
-- This is a global lock; it is used to execute in mutual exclusion
-- from all other tasks. It is only used by Task_Lock,
-- Task_Unlock, and Final_Task_Unlock.
function Current_Target_Exception return AE.Exception_Occurrence;
pragma Import
(Ada, Current_Target_Exception, "__gnat_current_target_exception");
-- Import this subprogram from the private part of Ada.Exceptions.
-----------------------------------------------------------------
-- Tasking versions of services needed by non-tasking programs --
-----------------------------------------------------------------
procedure Task_Lock;
-- Locks out other tasks. Preceding a section of code by Task_Lock and
-- following it by Task_Unlock creates a critical region. This is used
-- for ensuring that a region of non-tasking code (such as code used to
-- allocate memory) is tasking safe. Note that it is valid for calls to
-- Task_Lock/Task_Unlock to be nested, and this must work properly, i.e.
-- only the corresponding outer level Task_Unlock will actually unlock.
procedure Task_Unlock;
-- Releases lock previously set by call to Task_Lock. In the nested case,
-- all nested locks must be released before other tasks competing for the
-- tasking lock are released.
function Get_Jmpbuf_Address return Address;
procedure Set_Jmpbuf_Address (Addr : Address);
-- Get/Set Jmpbuf_Address for current task
function Get_Sec_Stack_Addr return Address;
procedure Set_Sec_Stack_Addr (Addr : Address);
-- Get/Set location of current task's secondary stack
function Get_Exc_Stack_Addr return Address;
-- Get the exception stack for the current task
procedure Set_Exc_Stack_Addr (Self_ID : Address; Addr : Address);
-- Self_ID is the Task_ID of the task that gets the exception stack.
-- For Self_ID = Null_Address, the current task gets the exception stack.
function Get_Machine_State_Addr return Address;
procedure Set_Machine_State_Addr (Addr : Address);
-- Get/Set the address for storing the current task's machine state
function Get_Current_Excep return SSL.EOA;
-- Comments needed???
procedure Timed_Delay_T (Time : Duration; Mode : Integer);
-- Comments needed???
function Get_Stack_Info return Stack_Checking.Stack_Access;
-- Get access to the current task's Stack_Info
procedure Update_Exception
(X : AE.Exception_Occurrence := Current_Target_Exception);
-- Handle exception setting and check for pending actions
------------------------
-- Local Subprograms --
------------------------
procedure Do_Pending_Action (Self_ID : Task_ID);
-- This is introduced to allow more efficient
-- in-line expansion of Undefer_Abort.
----------------------------
-- Tasking Initialization --
----------------------------
procedure Init_RTS;
-- This procedure completes the initialization of the GNARL. The first
-- part of the initialization is done in the body of System.Tasking.
-- It consists of initializing global locks, and installing tasking
-- versions of certain operations used by the compiler. Init_RTS is called
-- during elaboration.
--------------------------
-- Change_Base_Priority --
--------------------------
-- Call only with abort deferred and holding Self_ID locked.
procedure Change_Base_Priority (T : Task_ID) is
begin
if T.Common.Base_Priority /= T.New_Base_Priority then
T.Common.Base_Priority := T.New_Base_Priority;
Set_Priority (T, T.Common.Base_Priority);
end if;
end Change_Base_Priority;
------------------------
-- Check_Abort_Status --
------------------------
function Check_Abort_Status return Integer is
Self_ID : Task_ID := Self;
begin
if Self_ID /= null and then Self_ID.Deferral_Level = 0
and then Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
then
return 1;
else
return 0;
end if;
end Check_Abort_Status;
-----------------
-- Defer_Abort --
-----------------
procedure Defer_Abort (Self_ID : Task_ID) is
begin
pragma Assert (Self_ID.Deferral_Level = 0);
-- pragma Assert
-- (Self_ID.Pending_ATC_Level >= Self_ID.ATC_Nesting_Level);
-- The above check has been useful in detecting mismatched
-- defer/undefer pairs. You may uncomment it when testing on
-- systems that support preemptive abort.
-- If the OS supports preemptive abort (e.g. pthread_kill),
-- it should have happened already. A problem is with systems
-- that do not support preemptive abort, and so rely on polling.
-- On such systems we may get false failures of the assertion,
-- since polling for pending abort does no occur until the abort
-- undefer operation.
-- Even on systems that only poll for abort, the assertion may
-- be useful for catching missed abort completion polling points.
-- The operations that undefer abort poll for pending aborts.
-- This covers most of the places where the core Ada semantics
-- require abort to be caught, without any special attention.
-- However, this generally happens on exit from runtime system
-- call, which means a pending abort will not be noticed on the
-- way into the runtime system. We considered adding a check
-- for pending aborts at this point, but chose not to, because
-- of the overhead. Instead, we searched for RTS calls that
-- where abort completion is required and a task could go
-- farther than Ada allows before undeferring abort; we then
-- modified the code to ensure the abort would be detected.
Self_ID.Deferral_Level := Self_ID.Deferral_Level + 1;
end Defer_Abort;
--------------------------
-- Defer_Abort_Nestable --
--------------------------
procedure Defer_Abort_Nestable (Self_ID : Task_ID) is
begin
-- pragma Assert
-- ((Self_ID.Pending_ATC_Level >= Self_ID.ATC_Nesting_Level or else
-- Self_ID.Deferral_Level > 0));
-- See comment in Defer_Abort on the situations in which it may
-- be useful to uncomment the above assertion.
Self_ID.Deferral_Level := Self_ID.Deferral_Level + 1;
end Defer_Abort_Nestable;
--------------------
-- Defer_Abortion --
--------------------
-- ??????
-- Phase out Defer_Abortion without Self_ID
-- to reduce overhead due to multiple calls to Self
procedure Defer_Abortion is
Self_ID : constant Task_ID := STPO.Self;
begin
Self_ID.Deferral_Level := Self_ID.Deferral_Level + 1;
end Defer_Abortion;
-----------------------
-- Do_Pending_Action --
-----------------------
-- Call only when holding no locks
procedure Do_Pending_Action (Self_ID : Task_ID) is
use type Ada.Exceptions.Exception_Id;
begin
pragma Assert (Self_ID = Self and then Self_ID.Deferral_Level = 0);
-- Needs loop to recheck for pending action in case a new one occurred
-- while we had abort deferred below.
loop
-- Temporarily defer abortion so that we can lock Self_ID.
Self_ID.Deferral_Level := Self_ID.Deferral_Level + 1;
Write_Lock (Self_ID);
Self_ID.Pending_Action := False;
Poll_Base_Priority_Change (Self_ID);
Unlock (Self_ID);
-- Restore the original Deferral value.
Self_ID.Deferral_Level := Self_ID.Deferral_Level - 1;
if not Self_ID.Pending_Action then
if Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level then
if not Self_ID.Aborting then
Self_ID.Aborting := True;
pragma Debug
(Debug.Trace (Self_ID, "raise Abort_Signal", 'B'));
raise Standard'Abort_Signal;
pragma Assert (not Self_ID.ATC_Hack);
elsif Self_ID.ATC_Hack then
-- The solution really belongs in the Abort_Signal handler
-- for async. entry calls. The present hack is very
-- fragile. It relies that the very next point after
-- Exit_One_ATC_Level at which the task becomes abortable
-- will be the call to Undefer_Abort in the
-- Abort_Signal handler.
Self_ID.ATC_Hack := False;
pragma Debug
(Debug.Trace
(Self_ID, "raise Abort_Signal (ATC hack)", 'B'));
raise Standard'Abort_Signal;
end if;
end if;
return;
end if;
end loop;
end Do_Pending_Action;
-----------------------
-- Final_Task_Unlock --
-----------------------
-- This version is only for use in Terminate_Task, when the task
-- is relinquishing further rights to its own ATCB.
-- There is a very interesting potential race condition there, where
-- the old task may run concurrently with a new task that is allocated
-- the old tasks (now reused) ATCB. The critical thing here is to
-- not make any reference to the ATCB after the lock is released.
-- See also comments on Terminate_Task and Unlock.
procedure Final_Task_Unlock (Self_ID : Task_ID) is
begin
pragma Assert (Self_ID.Global_Task_Lock_Nesting = 1);
Unlock (Global_Task_Lock'Access);
end Final_Task_Unlock;
--------------
-- Init_RTS --
--------------
procedure Init_RTS is
Self_Id : Task_ID;
begin
-- Terminate run time (regular vs restricted) specific initialization
-- of the environment task.
Self_Id := Environment_Task;
Self_Id.Master_of_Task := Environment_Task_Level;
Self_Id.Master_Within := Self_Id.Master_of_Task + 1;
for L in Self_Id.Entry_Calls'Range loop
Self_Id.Entry_Calls (L).Self := Self_Id;
Self_Id.Entry_Calls (L).Level := L;
end loop;
Self_Id.Awake_Count := 1;
Self_Id.Alive_Count := 1;
Self_Id.Master_Within := Library_Task_Level;
-- Normally, a task starts out with internal master nesting level
-- one larger than external master nesting level. It is incremented
-- to one by Enter_Master, which is called in the task body only if
-- the compiler thinks the task may have dependent tasks. There is no
-- corresponding call to Enter_Master for the environment task, so we
-- would need to increment it to 2 here. Instead, we set it to 3.
-- By doing this we reserve the level 2 for server tasks of the runtime
-- system. The environment task does not need to wait for these server
-- Initialize lock used to implement mutual exclusion between all tasks
Initialize_Lock (Global_Task_Lock'Access, STPO.Global_Task_Level);
-- Initialize lock used to implement mutual exclusion in the package
-- System.Task_Attributes.
Initialize_Lock (System.Tasking.Task_Attributes.All_Attrs_L'Access,
All_Attrs_Level);
-- Notify that the tasking run time has been elaborated so that
-- the tasking version of the soft links can be used.
SSL.Abort_Defer := Defer_Abortion'Access;
SSL.Abort_Undefer := Undefer_Abortion'Access;
SSL.Update_Exception := Update_Exception'Access;
SSL.Lock_Task := Task_Lock'Access;
SSL.Unlock_Task := Task_Unlock'Access;
SSL.Get_Jmpbuf_Address := Get_Jmpbuf_Address'Access;
SSL.Set_Jmpbuf_Address := Set_Jmpbuf_Address'Access;
SSL.Get_Sec_Stack_Addr := Get_Sec_Stack_Addr'Access;
SSL.Set_Sec_Stack_Addr := Set_Sec_Stack_Addr'Access;
SSL.Get_Exc_Stack_Addr := Get_Exc_Stack_Addr'Access;
SSL.Set_Exc_Stack_Addr := Set_Exc_Stack_Addr'Access;
SSL.Get_Machine_State_Addr := Get_Machine_State_Addr'Access;
SSL.Set_Machine_State_Addr := Set_Machine_State_Addr'Access;
SSL.Get_Current_Excep := Get_Current_Excep'Access;
SSL.Timed_Delay := Timed_Delay_T'Access;
SSL.Check_Abort_Status := Check_Abort_Status'Access;
SSL.Get_Stack_Info := Get_Stack_Info'Access;
-- No need to create a new Secondary Stack, since we will use the
-- default one created in s-secsta.adb
SSL.Set_Sec_Stack_Addr (SSL.Get_Sec_Stack_Addr_NT);
SSL.Set_Exc_Stack_Addr (Null_Address, SSL.Get_Exc_Stack_Addr_NT);
SSL.Set_Jmpbuf_Address (SSL.Get_Jmpbuf_Address_NT);
SSL.Set_Machine_State_Addr (SSL.Get_Machine_State_Addr_NT);
-- Abortion is deferred in a new ATCB, so we need to undefer abortion
-- at this stage to make the environment task abortable.
Undefer_Abort (Environment_Task);
end Init_RTS;
---------------------------
-- Locked_Abort_To_Level--
---------------------------
-- Abort a task to the specified ATC nesting level.
-- Call this only with T locked.
-- An earlier version of this code contained a call to Wakeup. That
-- should not be necessary here, if Abort_Task is implemented correctly,
-- since Abort_Task should include the effect of Wakeup. However, the
-- above call was in earlier versions of this file, and at least for
-- some targets Abort_Task has not beek doing Wakeup. It should not
-- hurt to uncomment the above call, until the error is corrected for
-- all targets.
-- See extended comments in package body System.Tasking.Abortion
-- for the overall design of the implementation of task abort.
-- If the task is sleeping it will be in an abort-deferred region,
-- and will not have Abort_Signal raised by Abort_Task.
-- Such an "abort deferral" is just to protect the RTS internals,
-- and not necessarily required to enforce Ada semantics.
-- Abort_Task should wake the task up and let it decide if it wants
-- to complete the aborted construct immediately.
-- Note that the effect of the lowl-level Abort_Task is not persistent.
-- If the target task is not blocked, this wakeup will be missed.
-- We don't bother calling Abort_Task if this task is aborting itself,
-- since we are inside the RTS and have abort deferred. Similarly, We
-- don't bother to call Abort_Task if T is terminated, since there is
-- no need to abort a terminated task, and it could be dangerous to try
-- if the task has stopped executing.
-- Note that an earlier version of this code had some false reasoning
-- about being able to reliably wake up a task that had suspended on
-- a blocking system call that does not atomically relase the task's
-- lock (e.g., UNIX nanosleep, which we once thought could be used to
-- implement delays). That still left the possibility of missed
-- wakeups.
-- We cannot safely call Vulnerable_Complete_Activation here,
-- since that requires locking Self_ID.Parent. The anti-deadlock
-- lock ordering rules would then require us to release the lock
-- on Self_ID first, which would create a timing window for other
-- tasks to lock Self_ID. This is significant for tasks that may be
-- aborted before their execution can enter the task body, and so
-- they do not get a chance to call Complete_Task. The actual work
-- for this case is done in Terminate_Task.
procedure Locked_Abort_To_Level
(Self_ID : Task_ID;
T : Task_ID;
L : ATC_Level) is
begin
if not T.Aborting and then T /= Self_ID then
case T.Common.State is
when Unactivated | Terminated =>
pragma Assert (False);
null;
when Runnable =>
-- This is needed to cancel an asynchronous protected entry
-- call during a requeue with abort.
T.Entry_Calls
(T.ATC_Nesting_Level).Cancellation_Attempted := True;
when Interrupt_Server_Blocked_On_Event_Flag =>
null;
when Delay_Sleep |
Async_Select_Sleep |
Interrupt_Server_Idle_Sleep |
Interrupt_Server_Blocked_Interrupt_Sleep |
Timer_Server_Sleep |
AST_Server_Sleep =>
Wakeup (T, T.Common.State);
when Acceptor_Sleep =>
T.Open_Accepts := null;
Wakeup (T, T.Common.State);
when Entry_Caller_Sleep =>
T.Entry_Calls
(T.ATC_Nesting_Level).Cancellation_Attempted := True;
Wakeup (T, T.Common.State);
when Activator_Sleep |
Master_Completion_Sleep |
Master_Phase_2_Sleep |
Asynchronous_Hold =>
null;
end case;
end if;
if T.Pending_ATC_Level > L then
T.Pending_ATC_Level := L;
T.Pending_Action := True;
if L = 0 then
T.Callable := False;
end if;
-- This prevents aborted task from accepting calls
if T.Aborting then
-- The test above is just a heuristic, to reduce wasteful
-- calls to Abort_Task. We are holding T locked, and this
-- value will not be set to False except with T also locked,
-- inside Exit_One_ATC_Level, so we should not miss wakeups.
if T.Common.State = Acceptor_Sleep then
T.Open_Accepts := null;
end if;
elsif T /= Self_ID and then
(T.Common.State = Runnable
or else T.Common.State = Interrupt_Server_Blocked_On_Event_Flag)
-- The task is blocked on a system call waiting for the
-- completion event. In this case Abort_Task may need to take
-- special action in order to succeed. Example system: VMS.
then
Abort_Task (T);
end if;
end if;
end Locked_Abort_To_Level;
-------------------------------
-- Poll_Base_Priority_Change --
-------------------------------
-- Poll for pending base priority change and for held tasks.
-- This should always be called with (only) Self_ID locked.
-- It may temporarily release Self_ID's lock.
-- The call to Yield is to force enqueuing at the
-- tail of the dispatching queue.
-- We must unlock Self_ID for this to take effect,
-- since we are inheriting high active priority from the lock.
-- See also Poll_Base_Priority_Change_At_Entry_Call,
-- in package System.Tasking.Entry_Calls.
-- In this version, we check if the task is held too because
-- doing this only in Do_Pending_Action is not enough.
procedure Poll_Base_Priority_Change (Self_ID : Task_ID) is
begin
if Dynamic_Priority_Support
and then Self_ID.Pending_Priority_Change
then
-- Check for ceiling violations ???
Self_ID.Pending_Priority_Change := False;
if Self_ID.Common.Base_Priority = Self_ID.New_Base_Priority then
Unlock (Self_ID);
Yield;
Write_Lock (Self_ID);
elsif Self_ID.Common.Base_Priority < Self_ID.New_Base_Priority then
Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
else
-- Lowering priority
Self_ID.Common.Base_Priority := Self_ID.New_Base_Priority;
Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
Unlock (Self_ID);
Yield;
Write_Lock (Self_ID);
end if;
end if;
end Poll_Base_Priority_Change;
--------------------------------
-- Remove_From_All_Tasks_List --
--------------------------------
procedure Remove_From_All_Tasks_List (T : Task_ID) is
C : Task_ID;
Previous : Task_ID;
begin
pragma Debug
(Debug.Trace ("Remove_From_All_Tasks_List", 'C'));
Lock_All_Tasks_List;
Previous := Null_Task;
C := All_Tasks_List;
while C /= Null_Task loop
if C = T then
if Previous = Null_Task then
All_Tasks_List :=
All_Tasks_List.Common.All_Tasks_Link;
else
Previous.Common.All_Tasks_Link := C.Common.All_Tasks_Link;
end if;
Unlock_All_Tasks_List;
return;
end if;
Previous := C;
C := C.Common.All_Tasks_Link;
end loop;
pragma Assert (False);
end Remove_From_All_Tasks_List;
---------------
-- Task_Lock --
---------------
procedure Task_Lock is
T : Task_ID := STPO.Self;
begin
T.Global_Task_Lock_Nesting := T.Global_Task_Lock_Nesting + 1;
if T.Global_Task_Lock_Nesting = 1 then
Defer_Abort_Nestable (T);
Write_Lock (Global_Task_Lock'Access);
end if;
end Task_Lock;
procedure Task_Lock (Self_ID : Task_ID) is
begin
Self_ID.Global_Task_Lock_Nesting := Self_ID.Global_Task_Lock_Nesting + 1;
if Self_ID.Global_Task_Lock_Nesting = 1 then
Defer_Abort_Nestable (Self_ID);
Write_Lock (Global_Task_Lock'Access);
end if;
end Task_Lock;
-----------------
-- Task_Unlock --
-----------------
procedure Task_Unlock is
T : Task_ID := STPO.Self;
begin
pragma Assert (T.Global_Task_Lock_Nesting > 0);
T.Global_Task_Lock_Nesting := T.Global_Task_Lock_Nesting - 1;
if T.Global_Task_Lock_Nesting = 0 then
Unlock (Global_Task_Lock'Access);
Undefer_Abort_Nestable (T);
end if;
end Task_Unlock;
procedure Task_Unlock (Self_ID : Task_ID) is
begin
Self_ID.Global_Task_Lock_Nesting := Self_ID.Global_Task_Lock_Nesting - 1;
if Self_ID.Global_Task_Lock_Nesting = 0 then
Unlock (Global_Task_Lock'Access);
Undefer_Abort_Nestable (Self_ID);
end if;
end Task_Unlock;
-------------------
-- Undefer_Abort --
-------------------
-- Precondition : Self does not hold any locks!
-- Undefer_Abort is called on any abortion completion point (aka.
-- synchronization point). It performs the following actions if they
-- are pending: (1) change the base priority, (2) abort the task,
-- (3) raise a pending exception.
-- The priority change has to occur before abortion. Otherwise, it would
-- take effect no earlier than the next abortion completion point.
procedure Undefer_Abort (Self_ID : Task_ID) is
begin
pragma Assert (Self_ID.Deferral_Level = 1);
Self_ID.Deferral_Level := Self_ID.Deferral_Level - 1;
if Self_ID.Deferral_Level = 0 then
pragma Assert (Check_No_Locks (Self_ID));
if Self_ID.Pending_Action then
Do_Pending_Action (Self_ID);
end if;
end if;
end Undefer_Abort;
----------------------------
-- Undefer_Abort_Nestable --
----------------------------
-- An earlier version would re-defer abort if an abort is
-- in progress. Then, we modified the effect of the raise
-- statement so that it defers abort until control reaches a
-- handler. That was done to prevent "skipping over" a
-- handler if another asynchronous abort occurs during the
-- propagation of the abort to the handler.
-- There has been talk of reversing that decision, based on
-- a newer implementation of exception propagation. Care must
-- be taken to evaluate how such a change would interact with
-- the above code and all the places where abort-deferral is
-- used to bridge over critical transitions, such as entry to
-- the scope of a region with a finalizer and entry into the
-- body of an accept-procedure.
procedure Undefer_Abort_Nestable (Self_ID : Task_ID) is
begin
pragma Assert (Self_ID.Deferral_Level > 0);
Self_ID.Deferral_Level := Self_ID.Deferral_Level - 1;
if Self_ID.Deferral_Level = 0 then
pragma Assert (Check_No_Locks (Self_ID));
if Self_ID.Pending_Action then
Do_Pending_Action (Self_ID);
end if;
end if;
end Undefer_Abort_Nestable;
----------------------
-- Undefer_Abortion --
----------------------
-- Phase out RTS-internal use of Undefer_Abortion
-- to reduce overhead due to multiple calls to Self.
procedure Undefer_Abortion is
Self_ID : constant Task_ID := STPO.Self;
begin
pragma Assert (Self_ID.Deferral_Level > 0);
Self_ID.Deferral_Level := Self_ID.Deferral_Level - 1;
if Self_ID.Deferral_Level = 0 then
pragma Assert (Check_No_Locks (Self_ID));
if Self_ID.Pending_Action then
Do_Pending_Action (Self_ID);
end if;
end if;
end Undefer_Abortion;
----------------------
-- Update_Exception --
----------------------
-- Call only when holding no locks.
procedure Update_Exception
(X : AE.Exception_Occurrence := Current_Target_Exception)
is
Self_Id : constant Task_ID := Self;
use Ada.Exceptions;
begin
Save_Occurrence (Self_Id.Common.Compiler_Data.Current_Excep, X);
if Self_Id.Deferral_Level = 0 then
if Self_Id.Pending_Action then
Self_Id.Pending_Action := False;
Self_Id.Deferral_Level := Self_Id.Deferral_Level + 1;
Write_Lock (Self_Id);
Self_Id.Pending_Action := False;
Poll_Base_Priority_Change (Self_Id);
Unlock (Self_Id);
Self_Id.Deferral_Level := Self_Id.Deferral_Level - 1;
if Self_Id.Pending_ATC_Level < Self_Id.ATC_Nesting_Level then
if not Self_Id.Aborting then
Self_Id.Aborting := True;
raise Standard'Abort_Signal;
end if;
end if;
end if;
end if;
end Update_Exception;
--------------------------
-- Wakeup_Entry_Caller --
--------------------------
-- This is called at the end of service of an entry call, to abort the
-- caller if he is in an abortable part, and to wake up the caller if it
-- is on Entry_Caller_Sleep. It assumes that the call is already off-queue.
-- (This enforces the rule that a task must be off-queue if its state is
-- Done or Cancelled.) Call it holding the lock of Entry_Call.Self.
-- Timed_Call or Simple_Call:
-- The caller is waiting on Entry_Caller_Sleep, in
-- Wait_For_Completion, or Wait_For_Completion_With_Timeout.
-- Conditional_Call:
-- The caller might be in Wait_For_Completion,
-- waiting for a rendezvous (possibly requeued without abort)
-- to complete.
-- Asynchronous_Call:
-- The caller may be executing in the abortable part o
-- an async. select, or on a time delay,
-- if Entry_Call.State >= Was_Abortable.
procedure Wakeup_Entry_Caller
(Self_ID : Task_ID;
Entry_Call : Entry_Call_Link;
New_State : Entry_Call_State)
is
Caller : constant Task_ID := Entry_Call.Self;
begin
pragma Debug (Debug.Trace
(Self_ID, "Wakeup_Entry_Caller", Caller, 'E'));
pragma Assert (New_State = Done or else New_State = Cancelled);
pragma Assert
(Caller.Common.State /= Terminated
and then Caller.Common.State /= Unactivated);
Entry_Call.State := New_State;
if Entry_Call.Mode = Asynchronous_Call then
-- Abort the caller in his abortable part,
-- but do so only if call has been queued abortably
if Entry_Call.State >= Was_Abortable or else New_State = Done then
Locked_Abort_To_Level (Self_ID, Caller, Entry_Call.Level - 1);
end if;
elsif Caller.Common.State = Entry_Caller_Sleep then
Wakeup (Caller, Entry_Caller_Sleep);
end if;
end Wakeup_Entry_Caller;
----------------------
-- Soft-Link Bodies --
----------------------
function Get_Current_Excep return SSL.EOA is
Me : constant Task_ID := STPO.Self;
begin
return Me.Common.Compiler_Data.Current_Excep'Access;
end Get_Current_Excep;
function Get_Exc_Stack_Addr return Address is
Me : constant Task_ID := STPO.Self;
begin
return Me.Common.Compiler_Data.Exc_Stack_Addr;
end Get_Exc_Stack_Addr;
function Get_Jmpbuf_Address return Address is
Me : constant Task_ID := STPO.Self;
begin
return Me.Common.Compiler_Data.Jmpbuf_Address;
end Get_Jmpbuf_Address;
function Get_Machine_State_Addr return Address is
Me : constant Task_ID := STPO.Self;
begin
return Me.Common.Compiler_Data.Machine_State_Addr;
end Get_Machine_State_Addr;
function Get_Sec_Stack_Addr return Address is
Me : constant Task_ID := STPO.Self;
begin
return Me.Common.Compiler_Data.Sec_Stack_Addr;
end Get_Sec_Stack_Addr;
function Get_Stack_Info return Stack_Checking.Stack_Access is
Me : constant Task_ID := STPO.Self;
begin
return Me.Common.Compiler_Data.Pri_Stack_Info'Access;
end Get_Stack_Info;
procedure Set_Exc_Stack_Addr (Self_ID : Address; Addr : Address) is
Me : Task_ID := To_Task_Id (Self_ID);
begin
if Me = Null_Task then
Me := STPO.Self;
end if;
Me.Common.Compiler_Data.Exc_Stack_Addr := Addr;
end Set_Exc_Stack_Addr;
procedure Set_Jmpbuf_Address (Addr : Address) is
Me : Task_ID := STPO.Self;
begin
Me.Common.Compiler_Data.Jmpbuf_Address := Addr;
end Set_Jmpbuf_Address;
procedure Set_Machine_State_Addr (Addr : Address) is
Me : Task_ID := STPO.Self;
begin
Me.Common.Compiler_Data.Machine_State_Addr := Addr;
end Set_Machine_State_Addr;
procedure Set_Sec_Stack_Addr (Addr : Address) is
Me : Task_ID := STPO.Self;
begin
Me.Common.Compiler_Data.Sec_Stack_Addr := Addr;
end Set_Sec_Stack_Addr;
procedure Timed_Delay_T (Time : Duration; Mode : Integer) is
Self_ID : constant Task_ID := Self;
begin
STPO.Timed_Delay (Self_ID, Time, Mode);
end Timed_Delay_T;
------------------------
-- Soft-Link Dummies --
------------------------
-- These are dummies for subprograms that are only needed by certain
-- optional run-time system packages. If they are needed, the soft
-- links will be redirected to the real subprogram by elaboration of
-- the subprogram body where the real subprogram is declared.
procedure Finalize_Attributes (T : Task_ID) is
begin
null;
end Finalize_Attributes;
procedure Initialize_Attributes (T : Task_ID) is
begin
null;
end Initialize_Attributes;
begin
Init_RTS;
end System.Tasking.Initialization;