blob: f52ebcaebc20645c93504f5857f17a7f3895e496 [file] [log] [blame]
------------------------------------------------------------------------------
-- --
-- GNU ADA RUN-TIME LIBRARY (GNARL) COMPONENTS --
-- --
-- S Y S T E M . T A S K I N G . S T A G E S --
-- --
-- S p e c --
-- --
-- $Revision: 1.1 $
-- --
-- Copyright (C) 1992-1999, Free Software Foundation, Inc. --
-- --
-- GNARL is free software; you can redistribute it and/or modify it under --
-- terms of the GNU General Public License as published by the Free Soft- --
-- ware Foundation; either version 2, or (at your option) any later ver- --
-- sion. GNARL is distributed in the hope that it will be useful, but WITH- --
-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
-- for more details. You should have received a copy of the GNU General --
-- Public License distributed with GNARL; see file COPYING. If not, write --
-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, --
-- MA 02111-1307, USA. --
-- --
-- As a special exception, if other files instantiate generics from this --
-- unit, or you link this unit with other files to produce an executable, --
-- this unit does not by itself cause the resulting executable to be --
-- covered by the GNU General Public License. This exception does not --
-- however invalidate any other reasons why the executable file might be --
-- covered by the GNU Public License. --
-- --
-- GNARL was developed by the GNARL team at Florida State University. It is --
-- now maintained by Ada Core Technologies Inc. in cooperation with Florida --
-- State University (http://www.gnat.com). --
-- --
------------------------------------------------------------------------------
-- This package represents the high level tasking interface used by the
-- compiler to expand Ada 95 tasking constructs into simpler run time calls
-- (aka GNARLI, GNU Ada Run-time Library Interface)
-- Note: Only the compiler is allowed to use this interface, by generating
-- direct calls to it, via Rtsfind.
-- Any changes to this interface may require corresponding compiler changes
-- in exp_ch9.adb and possibly exp_ch7.adb
with System.Task_Info;
-- used for Task_Info_Type
with System.Parameters;
-- used for Size_Type
package System.Tasking.Stages is
pragma Elaborate_Body;
-- The compiler will expand in the GNAT tree the following construct:
--
-- task type T (Discr : Integer);
--
-- task body T is
-- ...declarations, possibly some controlled...
-- begin
-- ...B...;
-- end T;
--
-- T1 : T (1);
--
-- as follows:
--
-- enter_master.all;
--
-- _chain : aliased activation_chain;
-- _init_proc (_chain);
--
-- task type t (discr : integer);
-- tE : aliased boolean := false;
-- tZ : size_type := unspecified_size;
-- type tV (discr : integer) is limited record
-- _task_id : task_id;
-- end record;
-- procedure tB (_task : access tV);
-- freeze tV [
-- procedure _init_proc (_init : in out tV; _master : master_id;
-- _chain : in out activation_chain; _task_id : in task_image_type;
-- discr : integer) is
-- begin
-- _init.discr := discr;
-- _init._task_id := null;
-- create_task (unspecified_priority, tZ,
-- unspecified_task_info, 0, _master,
-- task_procedure_access!(tB'address),
-- _init'address, tE'unchecked_access, _chain, _task_id, _init.
-- _task_id);
-- return;
-- end _init_proc;
-- ]
--
-- procedure tB (_task : access tV) is
-- discr : integer renames _task.discr;
--
-- procedure _clean is
-- begin
-- abort_defer.all;
-- complete_task;
-- finalize_list (F14b);
-- abort_undefer.all;
-- return;
-- end _clean;
-- begin
-- abort_undefer.all;
-- ...declarations...
-- complete_activation;
-- ...B...;
-- return;
-- at end
-- _clean;
-- end tB;
--
-- tE := true;
-- t1 : t (1);
-- master : constant master_id := current_master.all;
-- t1I : task_image_type := new string'"t1";
-- _init_proc (t1, _master, _chain, t1I, 1);
--
-- activate_tasks (_chain'unchecked_access);
procedure Abort_Tasks (Tasks : Task_List);
-- Compiler interface only. Do not call from within the RTS.
-- Initiate abortion, however, the actual abortion is done by abortee by
-- means of Abort_Handler and Abort_Undefer
--
-- source code:
-- Abort T1, T2;
-- code expansion:
-- abort_tasks (task_list'(t1._task_id, t2._task_id));
procedure Activate_Tasks (Chain_Access : Activation_Chain_Access);
-- Compiler interface only. Do not call from within the RTS.
-- This must be called by the creator of a chain of one or more new tasks,
-- to activate them. The chain is a linked list that up to this point is
-- only known to the task that created them, though the individual tasks
-- are already in the All_Tasks_List.
--
-- The compiler builds the chain in LIFO order (as a stack). Another
-- version of this procedure had code to reverse the chain, so as to
-- activate the tasks in the order of declaration. This might be nice, but
-- it is not needed if priority-based scheduling is supported, since all
-- the activated tasks synchronize on the activators lock before they
-- start activating and so they should start activating in priority order.
procedure Complete_Activation;
-- Compiler interface only. Do not call from within the RTS.
-- This should be called from the task body at the end of
-- the elaboration code for its declarative part.
-- Decrement the count of tasks to be activated by the activator and
-- wake it up so it can check to see if all tasks have been activated.
-- Except for the environment task, which should never call this procedure,
-- T.Activator should only be null iff T has completed activation.
procedure Complete_Master;
-- Compiler interface only. Do not call from within the RTS. This must
-- be called on exit from any master where Enter_Master was called.
-- Assume abort is deferred at this point.
procedure Complete_Task;
-- Compiler interface only. Do not call from within the RTS.
-- This should be called from an implicit at-end handler
-- associated with the task body, when it completes.
-- From this point, the current task will become not callable.
-- If the current task have not completed activation, this should be done
-- now in order to wake up the activator (the environment task).
procedure Create_Task
(Priority : Integer;
Size : System.Parameters.Size_Type;
Task_Info : System.Task_Info.Task_Info_Type;
Num_Entries : Task_Entry_Index;
Master : Master_Level;
State : Task_Procedure_Access;
Discriminants : System.Address;
Elaborated : Access_Boolean;
Chain : in out Activation_Chain;
Task_Image : System.Task_Info.Task_Image_Type;
Created_Task : out Task_ID);
-- Compiler interface only. Do not call from within the RTS.
-- This must be called to create a new task.
--
-- Priority is the task's priority (assumed to be in the
-- System.Any_Priority'Range)
-- Size is the stack size of the task to create
-- Task_Info is the task info associated with the created task, or
-- Unspecified_Task_Info if none.
-- State is the compiler generated task's procedure body
-- Discriminants is a pointer to a limited record whose discriminants
-- are those of the task to create. This parameter should be passed as
-- the single argument to State.
-- Elaborated is a pointer to a Boolean that must be set to true on exit
-- if the task could be successfully elaborated.
-- Chain is a linked list of task that needs to be created. On exit,
-- Created_Task.Activation_Link will be Chain.T_ID, and Chain.T_ID
-- will be Created_Task (e.g the created task will be linked at the front
-- of Chain).
-- Task_Image is a pointer to a string created by the compiler that the
-- run time can store to ease the debugging and the
-- Ada.Task_Identification facility.
-- Created_Task is the resulting task.
--
-- This procedure can raise Storage_Error if the task creation failed.
function Current_Master return Master_Level;
-- Compiler interface only.
-- This is called to obtain the current master nesting level.
procedure Enter_Master;
-- Compiler interface only. Do not call from within the RTS.
-- This must be called on entry to any "master" where a task,
-- or access type designating objects containing tasks, may be
-- declared.
procedure Expunge_Unactivated_Tasks (Chain : in out Activation_Chain);
-- Compiler interface only. Do not call from within the RTS.
-- This must be called by the compiler-generated code for an allocator if
-- the allocated object contains tasks, if the allocator exits without
-- calling Activate_Tasks for a given activation chains, as can happen if
-- an exception occurs during initialization of the object.
--
-- This should be called ONLY for tasks created via an allocator. Recovery
-- of storage for unactivated local task declarations is done by
-- Complete_Master and Complete_Task.
--
-- We remove each task from Chain and All_Tasks_List before we free the
-- storage of its ATCB.
--
-- In other places where we recover the storage of unactivated tasks, we
-- need to clean out the entry queues, but here that should not be
-- necessary, since these tasks should not have been visible to any other
-- tasks, and so no task should be able to queue a call on their entries.
--
-- Just in case somebody misuses this subprogram, there is a check to
-- verify this condition.
procedure Finalize_Global_Tasks;
-- This should be called to complete the execution of the environment task
-- and shut down the tasking runtime system. It is the equivalent of
-- Complete_Task, but for the environment task.
--
-- The environment task must first call Complete_Master, to wait for user
-- tasks that depend on library-level packages to terminate. It then calls
-- Abort_Dependents to abort the "independent" library-level server tasks
-- that are created implicitly by the RTS packages (signal and timer server
-- tasks), and then waits for them to terminate. Then, it calls
-- Vulnerable_Complete_Task.
--
-- It currently also executes the global finalization list, and then resets
-- the "soft links".
procedure Free_Task (T : Task_ID);
-- Recover all runtime system storage associated with the task T, but only
-- if T has terminated. Do nothing in the other case. It is called from
-- Unchecked_Deallocation, for objects that are or contain tasks.
function Terminated (T : Task_ID) return Boolean;
-- This is called by the compiler to implement the 'Terminated attribute.
-- Though is not required to be so by the ARM, we choose to synchronize
-- with the task's ATCB, so that this is more useful for polling the state
-- of a task, and so that it becomes an abort completion point for the
-- calling task (via Undefer_Abort).
--
-- source code:
-- T1'Terminated
--
-- code expansion:
-- terminated (t1._task_id)
end System.Tasking.Stages;