blob: 96c1caa7a6ea4ac3c036175fd5491fed1a8e7de7 [file] [log] [blame]
/* Subroutines for insn-output.c for Clipper
Copyright (C) 1987, 1988, 1991, 1997, 1998, 1999, 2000, 2001
Free Software Foundation, Inc.
Contributed by Holger Teutsch (holger@hotbso.rhein-main.de)
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "tree.h"
#include "expr.h"
#include "optabs.h"
#include "libfuncs.h"
#include "c-tree.h"
#include "function.h"
#include "flags.h"
#include "recog.h"
#include "tm_p.h"
#include "target.h"
#include "target-def.h"
static void clipper_output_function_prologue PARAMS ((FILE *, HOST_WIDE_INT));
static void clipper_output_function_epilogue PARAMS ((FILE *, HOST_WIDE_INT));
static void clix_asm_out_constructor PARAMS ((rtx, int));
static void clix_asm_out_destructor PARAMS ((rtx, int));
extern char regs_ever_live[];
extern int frame_pointer_needed;
static int frame_size;
/* Initialize the GCC target structure. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.word\t"
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE clipper_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE clipper_output_function_epilogue
struct gcc_target targetm = TARGET_INITIALIZER;
/* Compute size of a clipper stack frame where 'lsize' is the required
space for local variables. */
int
clipper_frame_size (lsize)
int lsize;
{
int i, size; /* total size of frame */
int save_size;
save_size = 0; /* compute size for reg saves */
for (i = 16; i < 32; i++)
if (regs_ever_live[i] && !call_used_regs[i])
save_size += 8;
for (i = 0; i < 16; i++)
if (regs_ever_live[i] && !call_used_regs[i])
save_size += 4;
size = lsize + save_size;
size = (size + 7) & ~7; /* align to 64 Bit */
return size;
}
/* Prologue and epilogue output
Function is entered with pc pushed, i.e. stack is 32 bit aligned
current_function_args_size == 0 means that the current function's args
are passed totally in registers i.e fp is not used as ap.
If frame_size is also 0 the current function does not push anything and
can run with misaligned stack -> subq $4,sp / add $4,sp on entry and exit
can be omitted. */
static void
clipper_output_function_prologue (file, lsize)
FILE *file;
HOST_WIDE_INT lsize; /* size for locals */
{
int i, offset;
int size;
frame_size = size = clipper_frame_size (lsize);
if (frame_pointer_needed)
{
fputs ("\tpushw fp,sp\n", file);
fputs ("\tmovw sp,fp\n", file);
}
else if (size != 0 || current_function_args_size != 0)
{
size += 4; /* keep stack aligned */
frame_size = size; /* must push data or access args */
}
if (size)
{
if (size < 16)
fprintf (file, "\tsubq $%d,sp\n", size);
else
fprintf (file, "\tsubi $%d,sp\n", size);
/* register save slots are relative to sp, because we have small positive
displacements and this works whether we have a frame pointer or not */
offset = 0;
for (i = 16; i < 32; i++)
if (regs_ever_live[i] && !call_used_regs[i])
{
if (offset == 0)
fprintf (file, "\tstord f%d,(sp)\n", i-16);
else
fprintf (file, "\tstord f%d,%d(sp)\n", i-16, offset);
offset += 8;
}
for (i = 0; i < 16; i++)
if (regs_ever_live[i] && !call_used_regs[i])
{
if (offset == 0)
fprintf (file, "\tstorw r%d,(sp)\n", i);
else
fprintf (file, "\tstorw r%d,%d(sp)\n", i, offset);
offset += 4;
}
}
}
static void
clipper_output_function_epilogue (file, size)
FILE *file;
HOST_WIDE_INT size ATTRIBUTE_UNUSED;
{
int i, offset;
if (frame_pointer_needed)
{
offset = -frame_size;
for (i = 16; i < 32; i++)
if (regs_ever_live[i] && !call_used_regs[i])
{
fprintf (file, "\tloadd %d(fp),f%d\n", offset, i-16);
offset += 8;
}
for (i = 0; i < 16; i++)
if (regs_ever_live[i] && !call_used_regs[i])
{
fprintf (file, "\tloadw %d(fp),r%d\n", offset, i);
offset += 4;
}
fputs ("\tmovw fp,sp\n\tpopw sp,fp\n\tret sp\n",
file);
}
else /* no frame pointer */
{
offset = 0;
for (i = 16; i < 32; i++)
if (regs_ever_live[i] && !call_used_regs[i])
{
if (offset == 0)
fprintf (file, "\tloadd (sp),f%d\n", i-16);
else
fprintf (file, "\tloadd %d(sp),f%d\n", offset, i-16);
offset += 8;
}
for (i = 0; i < 16; i++)
if (regs_ever_live[i] && !call_used_regs[i])
{
if (offset == 0)
fprintf (file, "\tloadw (sp),r%d\n", i);
else
fprintf (file, "\tloadw %d(sp),r%d\n", offset, i);
offset += 4;
}
if (frame_size > 0)
{
if (frame_size < 16)
fprintf (file, "\taddq $%d,sp\n", frame_size);
else
fprintf (file, "\taddi $%d,sp\n", frame_size);
}
fputs ("\tret sp\n", file);
}
}
/*
* blockmove
*
* clipper_movstr ()
*/
void
clipper_movstr (operands)
rtx *operands;
{
rtx dst,src,cnt,tmp,top,bottom=NULL_RTX,xops[3];
int align;
int fixed;
extern FILE *asm_out_file;
dst = operands[0];
src = operands[1];
/* don't change this operands[2]; gcc 2.3.3 doesn't honor clobber note */
align = INTVAL (operands[3]);
tmp = operands[4];
cnt = operands[5];
if (GET_CODE (operands[2]) == CONST_INT) /* fixed size move */
{
if ((fixed = INTVAL (operands[2])) <= 0)
abort ();
if (fixed <16)
output_asm_insn ("loadq %2,%5", operands);
else
output_asm_insn ("loadi %2,%5", operands);
}
else
{
fixed = 0;
bottom = (rtx)gen_label_rtx (); /* need a bottom label */
xops[0] = cnt; xops[1] = bottom;
output_asm_insn ("movw %2,%5", operands); /* count is scratch reg 5 */
output_asm_insn ("brle %l1", xops);
}
top = (rtx)gen_label_rtx (); /* top of loop label */
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (top));
xops[0] = src; xops[1] = tmp; xops[2] = dst;
if (fixed && (align & 0x3) == 0) /* word aligned move with known size */
{
if (fixed >= 4)
{
rtx xops1[2];
output_asm_insn(
"loadw %a0,%1\n\taddq $4,%0\n\tstorw %1,%a2\n\taddq $4,%2",
xops);
xops1[0] = cnt; xops1[1] = top;
output_asm_insn ("subq $4,%0\n\tbrgt %l1", xops1);
}
if (fixed & 0x2)
{
output_asm_insn ("loadh %a0,%1\n\tstorh %1,%a2", xops);
if (fixed & 0x1)
output_asm_insn ("loadb 2%a0,%1\n\tstorb %1,2%a2", xops);
}
else
if (fixed & 0x1)
output_asm_insn ("loadb %a0,%1\n\tstorb %1,%a2", xops);
}
else
{
output_asm_insn(
"loadb %a0,%1\n\taddq $1,%0\n\tstorb %1,%a2\n\taddq $1,%2",
xops);
xops[0] = cnt; xops[1] = top;
output_asm_insn ("subq $1,%0\n\tbrgt %l1", xops);
}
if (fixed == 0)
ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (bottom));
}
void
print_operand_address (file, addr)
FILE *file;
register rtx addr;
{
rtx op0,op1;
switch (GET_CODE (addr))
{
case REG:
fprintf (file, "(%s)", reg_names[REGNO (addr)]);
break;
case PLUS:
/* can be 'symbol + reg' or 'reg + reg' */
op0 = XEXP (addr, 0);
op1 = XEXP (addr, 1);
if (GET_CODE (op0) == REG && GET_CODE (op1) == REG)
{
fprintf (file, "[%s](%s)",
reg_names[REGNO (op0)], reg_names[REGNO (op1)]);
break;
}
if (GET_CODE (op0) == REG && CONSTANT_ADDRESS_P (op1))
{
output_addr_const (file, op1);
fprintf (file, "(%s)", reg_names[REGNO (op0)]);
break;
}
if (GET_CODE (op1) == REG && CONSTANT_ADDRESS_P (op0))
{
output_addr_const (file, op0);
fprintf (file, "(%s)", reg_names[REGNO (op1)]);
break;
}
abort (); /* Oh no */
default:
output_addr_const (file, addr);
}
}
const char *
rev_cond_name (op)
rtx op;
{
switch (GET_CODE (op))
{
case EQ:
return "ne";
case NE:
return "eq";
case LT:
return "ge";
case LE:
return "gt";
case GT:
return "le";
case GE:
return "lt";
case LTU:
return "geu";
case LEU:
return "gtu";
case GTU:
return "leu";
case GEU:
return "ltu";
default:
abort ();
}
}
/* Dump the argument register to the stack; return the location
of the block. */
struct rtx_def *
clipper_builtin_saveregs ()
{
rtx block, addr, r0_addr, r1_addr, f0_addr, f1_addr, mem;
int set = get_varargs_alias_set ();
/* Allocate the save area for r0,r1,f0,f1 */
block = assign_stack_local (BLKmode, 6 * UNITS_PER_WORD, 2 * BITS_PER_WORD);
RTX_UNCHANGING_P (block) = 1;
RTX_UNCHANGING_P (XEXP (block, 0)) = 1;
addr = XEXP (block, 0);
r0_addr = addr;
r1_addr = plus_constant (addr, 4);
f0_addr = plus_constant (addr, 8);
f1_addr = plus_constant (addr, 16);
/* Store int regs */
mem = gen_rtx_MEM (SImode, r0_addr);
set_mem_alias_set (mem, set);
emit_move_insn (mem, gen_rtx_REG (SImode, 0));
mem = gen_rtx_MEM (SImode, r1_addr);
set_mem_alias_set (mem, set);
emit_move_insn (mem, gen_rtx_REG (SImode, 1));
/* Store float regs */
mem = gen_rtx_MEM (DFmode, f0_addr);
set_mem_alias_set (mem, set);
emit_move_insn (mem, gen_rtx_REG (DFmode, 16));
mem = gen_rtx_MEM (DFmode, f1_addr);
set_mem_alias_set (mem, set);
emit_move_insn (mem, gen_rtx_REG (DFmode, 17));
return addr;
}
tree
clipper_build_va_list ()
{
tree record, ap, reg, num;
/*
struct
{
int __va_ap; // pointer to stack args
void *__va_reg[4]; // pointer to r0,f0,r1,f1
int __va_num; // number of args processed
};
*/
record = make_node (RECORD_TYPE);
num = build_decl (FIELD_DECL, get_identifier ("__va_num"),
integer_type_node);
DECL_FIELD_CONTEXT (num) = record;
reg = build_decl (FIELD_DECL, get_identifier ("__va_reg"),
build_array_type (ptr_type_node,
build_index_type (build_int_2 (3, 0))));
DECL_FIELD_CONTEXT (reg) = record;
TREE_CHAIN (reg) = num;
ap = build_decl (FIELD_DECL, get_identifier ("__va_ap"),
integer_type_node);
DECL_FIELD_CONTEXT (ap) = record;
TREE_CHAIN (ap) = reg;
TYPE_FIELDS (record) = ap;
layout_type (record);
return record;
}
void
clipper_va_start (stdarg_p, valist, nextarg)
int stdarg_p;
tree valist;
rtx nextarg ATTRIBUTE_UNUSED;
{
tree ap_field, reg_field, num_field;
tree t, u, save_area;
ap_field = TYPE_FIELDS (TREE_TYPE (valist));
reg_field = TREE_CHAIN (ap_field);
num_field = TREE_CHAIN (reg_field);
ap_field = build (COMPONENT_REF, TREE_TYPE (ap_field), valist, ap_field);
reg_field = build (COMPONENT_REF, TREE_TYPE (reg_field), valist, reg_field);
num_field = build (COMPONENT_REF, TREE_TYPE (num_field), valist, num_field);
/* Call __builtin_saveregs to save r0, r1, f0, and f1 in a block. */
save_area = make_tree (integer_type_node, expand_builtin_saveregs ());
/* Set __va_ap. */
t = make_tree (ptr_type_node, virtual_incoming_args_rtx);
if (stdarg_p && current_function_args_info.size != 0)
t = build (PLUS_EXPR, ptr_type_node, t,
build_int_2 (current_function_args_info.size, 0));
t = build (MODIFY_EXPR, TREE_TYPE (ap_field), ap_field, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Set the four entries of __va_reg. */
t = build1 (NOP_EXPR, ptr_type_node, save_area);
u = build (ARRAY_REF, ptr_type_node, reg_field, build_int_2 (0, 0));
t = build (MODIFY_EXPR, ptr_type_node, u, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
t = fold (build (PLUS_EXPR, integer_type_node, save_area,
build_int_2 (8, 0)));
t = build1 (NOP_EXPR, ptr_type_node, save_area);
u = build (ARRAY_REF, ptr_type_node, reg_field, build_int_2 (1, 0));
t = build (MODIFY_EXPR, ptr_type_node, u, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
t = fold (build (PLUS_EXPR, integer_type_node, save_area,
build_int_2 (4, 0)));
t = build1 (NOP_EXPR, ptr_type_node, save_area);
u = build (ARRAY_REF, ptr_type_node, reg_field, build_int_2 (2, 0));
t = build (MODIFY_EXPR, ptr_type_node, u, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
t = fold (build (PLUS_EXPR, integer_type_node, save_area,
build_int_2 (16, 0)));
t = build1 (NOP_EXPR, ptr_type_node, save_area);
u = build (ARRAY_REF, ptr_type_node, reg_field, build_int_2 (3, 0));
t = build (MODIFY_EXPR, ptr_type_node, u, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
/* Set __va_num. */
t = build_int_2 (current_function_args_info.num, 0);
t = build (MODIFY_EXPR, TREE_TYPE (num_field), num_field, t);
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
}
rtx
clipper_va_arg (valist, type)
tree valist, type;
{
tree ap_field, reg_field, num_field;
tree addr, t;
HOST_WIDE_INT align;
rtx addr_rtx, over_label = NULL_RTX, tr;
/*
Integers:
if (VA.__va_num < 2)
addr = VA.__va_reg[2 * VA.__va_num];
else
addr = round(VA.__va_ap), VA.__va_ap = round(VA.__va_ap) + sizeof(TYPE);
VA.__va_num++;
Floats:
if (VA.__va_num < 2)
addr = VA.__va_reg[2 * VA.__va_num + 1];
else
addr = round(VA.__va_ap), VA.__va_ap = round(VA.__va_ap) + sizeof(TYPE);
VA.__va_num++;
Aggregates:
addr = round(VA.__va_ap), VA.__va_ap = round(VA.__va_ap) + sizeof(TYPE);
VA.__va_num++;
*/
ap_field = TYPE_FIELDS (TREE_TYPE (valist));
reg_field = TREE_CHAIN (ap_field);
num_field = TREE_CHAIN (reg_field);
ap_field = build (COMPONENT_REF, TREE_TYPE (ap_field), valist, ap_field);
reg_field = build (COMPONENT_REF, TREE_TYPE (reg_field), valist, reg_field);
num_field = build (COMPONENT_REF, TREE_TYPE (num_field), valist, num_field);
addr_rtx = gen_reg_rtx (Pmode);
if (! AGGREGATE_TYPE_P (type))
{
tree inreg;
rtx false_label;
over_label = gen_label_rtx ();
false_label = gen_label_rtx ();
emit_cmp_and_jump_insns (expand_expr (num_field, NULL_RTX, 0,
OPTAB_LIB_WIDEN),
GEN_INT (2), GE, const0_rtx,
TYPE_MODE (TREE_TYPE (num_field)),
TREE_UNSIGNED (num_field), false_label);
inreg = fold (build (MULT_EXPR, integer_type_node, num_field,
build_int_2 (2, 0)));
if (FLOAT_TYPE_P (type))
inreg = fold (build (PLUS_EXPR, integer_type_node, inreg,
build_int_2 (1, 0)));
inreg = fold (build (ARRAY_REF, ptr_type_node, reg_field, inreg));
tr = expand_expr (inreg, addr_rtx, VOIDmode, EXPAND_NORMAL);
if (tr != addr_rtx)
emit_move_insn (addr_rtx, tr);
emit_jump_insn (gen_jump (over_label));
emit_barrier ();
emit_label (false_label);
}
/* Round to alignment of `type', or at least integer alignment. */
align = TYPE_ALIGN (type);
if (align < TYPE_ALIGN (integer_type_node))
align = TYPE_ALIGN (integer_type_node);
align /= BITS_PER_UNIT;
addr = fold (build (PLUS_EXPR, ptr_type_node, ap_field,
build_int_2 (align-1, 0)));
addr = fold (build (BIT_AND_EXPR, ptr_type_node, addr,
build_int_2 (-align, -1)));
addr = save_expr (addr);
tr = expand_expr (addr, addr_rtx, Pmode, EXPAND_NORMAL);
if (tr != addr_rtx)
emit_move_insn (addr_rtx, tr);
t = build (MODIFY_EXPR, TREE_TYPE (ap_field), ap_field,
build (PLUS_EXPR, TREE_TYPE (ap_field),
addr, build_int_2 (int_size_in_bytes (type), 0)));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
if (over_label)
emit_label (over_label);
t = build (MODIFY_EXPR, TREE_TYPE (num_field), num_field,
build (PLUS_EXPR, TREE_TYPE (num_field),
num_field, build_int_2 (1, 0)));
TREE_SIDE_EFFECTS (t) = 1;
expand_expr (t, const0_rtx, VOIDmode, EXPAND_NORMAL);
return addr_rtx;
}
/* Return truth value of whether OP can be used as an word register
operand. Reject (SUBREG:SI (REG:SF )) */
int
int_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode) &&
(GET_CODE (op) != SUBREG ||
GET_MODE_CLASS (GET_MODE (SUBREG_REG (op))) == MODE_INT));
}
/* Return truth value of whether OP can be used as a float register
operand. Reject (SUBREG:SF (REG:SI )) )) */
int
fp_reg_operand (op, mode)
rtx op;
enum machine_mode mode;
{
return (register_operand (op, mode) &&
(GET_CODE (op) != SUBREG ||
GET_MODE_CLASS (GET_MODE (SUBREG_REG (op))) == MODE_FLOAT));
}
static void
clix_asm_out_constructor (symbol, priority)
rtx symbol;
int priority ATTRIBUTE_UNUSED;
{
init_section ();
fputs ("\tloada ", asm_out_file);
assemble_name (asm_out_file, XSTR (symbol, 0));
fputs (",r0\n\tsubq $8,sp\n\tstorw r0,(sp)\n", asm_out_file);
}
static void
clix_asm_out_destructor (symbol, priority)
rtx symbol;
int priority ATTRIBUTE_UNUSED;
{
fini_section ();
assemble_integer (symbol, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, POINTER_SIZE, 1);
}