blob: 4c24dccfa82b49c1d1d1c98b9529e09de42b8313 [file] [log] [blame]
/* libgcc routines for M68HC11 & M68HC12.
Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2, or (at your option) any
later version.
In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file with other programs, and to distribute
those programs without any restriction coming from the use of this
file. (The General Public License restrictions do apply in other
respects; for example, they cover modification of the file, and
distribution when not linked into another program.)
This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* As a special exception, if you link this library with other files,
some of which are compiled with GCC, to produce an executable,
this library does not by itself cause the resulting executable
to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why
the executable file might be covered by the GNU General Public License. */
.file "larith.asm"
.sect .text
#define REG(NAME) \
NAME: .word 0; \
.type NAME,@object ; \
.size NAME,2
#ifdef L_regs_min
/* Pseudo hard registers used by gcc.
They must be located in page0.
They will normally appear at the end of .page0 section. */
#ifdef mc68hc12
.sect .bss
#else
.sect .page0
#endif
.globl _.tmp
.globl _.z,_.xy
REG(_.tmp)
REG(_.z)
REG(_.xy)
#endif
#ifdef L_regs_frame
#ifdef mc68hc12
.sect .bss
#else
.sect .page0
#endif
.globl _.frame
REG(_.frame)
#endif
#ifdef L_regs_d1_2
#ifdef mc68hc12
.sect .bss
#else
.sect .page0
#endif
.globl _.d1,_.d2
REG(_.d1)
REG(_.d2)
#endif
#ifdef L_regs_d3_4
#ifdef mc68hc12
.sect .bss
#else
.sect .page0
#endif
.globl _.d3,_.d4
REG(_.d3)
REG(_.d4)
#endif
#ifdef L_regs_d5_6
#ifdef mc68hc12
.sect .bss
#else
.sect .page0
#endif
.globl _.d5,_.d6
REG(_.d5)
REG(_.d6)
#endif
#ifdef L_regs_d7_8
#ifdef mc68hc12
.sect .bss
#else
.sect .page0
#endif
.globl _.d7,_.d8
REG(_.d7)
REG(_.d8)
#endif
#ifdef L_regs_d9_16
/* Pseudo hard registers used by gcc.
They must be located in page0.
They will normally appear at the end of .page0 section. */
.sect .page0
.globl _.d9,_.d10,_.d11,_.d12,_.d13,_.d14
.globl _.d15,_.d16
REG(_.d9)
REG(_.d10)
REG(_.d11)
REG(_.d12)
REG(_.d13)
REG(_.d14)
REG(_.d15)
REG(_.d16)
#endif
#ifdef L_regs_d17_32
/* Pseudo hard registers used by gcc.
They must be located in page0.
They will normally appear at the end of .page0 section. */
#ifdef mc68hc12
.sect .bss
#else
.sect .page0
#endif
.globl _.d17,_.d18,_.d19,_.d20,_.d21,_.d22
.globl _.d23,_.d24,_.d25,_.d26,_.d27,_.d28
.globl _.d29,_.d30,_.d31,_.d32
REG(_.d17)
REG(_.d18)
REG(_.d19)
REG(_.d20)
REG(_.d21)
REG(_.d22)
REG(_.d23)
REG(_.d24)
REG(_.d25)
REG(_.d26)
REG(_.d27)
REG(_.d28)
REG(_.d29)
REG(_.d30)
REG(_.d31)
REG(_.d32)
#endif
#ifdef L_premain
;;
;; Specific initialization for 68hc11 before the main.
;; Nothing special for a generic routine; Just enable interrupts.
;;
.sect .text
.globl __premain
__premain:
clra
tap ; Clear both I and X.
rts
#endif
#ifdef L__exit
;;
;; Exit operation. Just loop forever and wait for interrupts.
;; (no other place to go)
;; This operation is split in several pieces collected together by
;; the linker script. This allows to support destructors at the
;; exit stage while not impacting program sizes when there is no
;; destructors.
;;
;; _exit:
;; *(.fini0) /* Beginning of finish code (_exit symbol). */
;; *(.fini1) /* Place holder for applications. */
;; *(.fini2) /* C++ destructors. */
;; *(.fini3) /* Place holder for applications. */
;; *(.fini4) /* Runtime exit. */
;;
.sect .fini0,"ax",@progbits
.globl _exit
.globl exit
.weak exit
exit:
_exit:
.sect .fini4,"ax",@progbits
fatal:
cli
wai
bra fatal
#endif
#ifdef L_abort
;;
;; Abort operation. This is defined for the GCC testsuite.
;;
.sect .text
.globl abort
abort:
ldd #255 ;
#ifdef mc68hc12
trap #0x30
#else
.byte 0xCD ; Generate an illegal instruction trap
.byte 0x03 ; The simulator catches this and stops.
#endif
jmp _exit
#endif
#ifdef L_cleanup
;;
;; Cleanup operation used by exit().
;;
.sect .text
.globl _cleanup
_cleanup:
rts
#endif
;-----------------------------------------
; required gcclib code
;-----------------------------------------
#ifdef L_memcpy
.sect .text
.weak memcpy
.globl memcpy
.globl __memcpy
;;;
;;; void* memcpy(void*, const void*, size_t)
;;;
;;; D = dst Pmode
;;; 2,sp = src Pmode
;;; 4,sp = size HImode (size_t)
;;;
__memcpy:
memcpy:
#ifdef mc68hc12
ldx 2,sp
ldy 4,sp
pshd
xgdy
lsrd
bcc Start
movb 1,x+,1,y+
Start:
beq Done
Loop:
movw 2,x+,2,y+
dbne d,Loop
Done:
puld
rts
#else
xgdy
tsx
ldd 4,x
ldx 2,x ; SRC = X, DST = Y
cpd #0
beq End
pshy
inca ; Correction for the deca below
L0:
psha ; Save high-counter part
L1:
ldaa 0,x ; Copy up to 256 bytes
staa 0,y
inx
iny
decb
bne L1
pula
deca
bne L0
puly ; Restore Y to return the DST
End:
xgdy
rts
#endif
#endif
#ifdef L_memset
.sect .text
.globl memset
.globl __memset
;;;
;;; void* memset(void*, int value, size_t)
;;;
#ifndef __HAVE_SHORT_INT__
;;; D = dst Pmode
;;; 2,sp = src SImode
;;; 6,sp = size HImode (size_t)
val = 5
size = 6
#else
;;; D = dst Pmode
;;; 2,sp = src SImode
;;; 6,sp = size HImode (size_t)
val = 3
size = 4
#endif
__memset:
memset:
#ifdef mc68hc12
xgdx
ldab val,sp
ldy size,sp
pshx
beq End
Loop:
stab 1,x+
dbne y,Loop
End:
puld
rts
#else
xgdx
tsy
ldab val,y
ldy size,y ; DST = X, CNT = Y
beq End
pshx
L0:
stab 0,x ; Fill up to 256 bytes
inx
dey
bne L0
pulx ; Restore X to return the DST
End:
xgdx
rts
#endif
#endif
#ifdef L_adddi3
.sect .text
.globl ___adddi3
___adddi3:
tsx
pshb
psha
ldd 8,x
addd 16,x
pshb
psha
ldd 6,x
adcb 15,x
adca 14,x
pshb
psha
ldd 4,x
adcb 13,x
adca 12,x
pshb
psha
ldd 2,x
adcb 11,x
adca 10,x
tsx
ldy 6,x
std 0,y
pulx
stx 2,y
pulx
stx 4,y
pulx
stx 6,y
pulx
rts
#endif
#ifdef L_subdi3
.sect .text
.globl ___subdi3
___subdi3:
tsx
pshb
psha
ldd 8,x
subd 16,x
pshb
psha
ldd 6,x
sbcb 15,x
sbca 14,x
pshb
psha
ldd 4,x
sbcb 13,x
sbca 12,x
pshb
psha
ldd 2,x
sbcb 11,x
sbca 10,x
tsx
ldy 6,x
std 0,y
pulx
stx 2,y
pulx
stx 4,y
pulx
stx 6,y
pulx
rts
#endif
#ifdef L_notdi2
.sect .text
.globl ___notdi2
___notdi2:
tsy
xgdx
ldd 8,y
coma
comb
std 6,x
ldd 6,y
coma
comb
std 4,x
ldd 4,y
coma
comb
std 2,x
ldd 2,y
coma
comb
std 0,x
rts
#endif
#ifdef L_negsi2
.sect .text
.globl ___negsi2
___negsi2:
comb
coma
addd #1
xgdx
eorb #0xFF
eora #0xFF
adcb #0
adca #0
xgdx
rts
#endif
#ifdef L_one_cmplsi2
.sect .text
.globl ___one_cmplsi2
___one_cmplsi2:
comb
coma
xgdx
comb
coma
xgdx
rts
#endif
#ifdef L_ashlsi3
.sect .text
.globl ___ashlsi3
___ashlsi3:
xgdy
clra
andb #0x1f
xgdy
beq Return
Loop:
lsld
xgdx
rolb
rola
xgdx
dey
bne Loop
Return:
rts
#endif
#ifdef L_ashrsi3
.sect .text
.globl ___ashrsi3
___ashrsi3:
xgdy
clra
andb #0x1f
xgdy
beq Return
Loop:
xgdx
asra
rorb
xgdx
rora
rorb
dey
bne Loop
Return:
rts
#endif
#ifdef L_lshrsi3
.sect .text
.globl ___lshrsi3
___lshrsi3:
xgdy
clra
andb #0x1f
xgdy
beq Return
Loop:
xgdx
lsrd
xgdx
rora
rorb
dey
bne Loop
Return:
rts
#endif
#ifdef L_lshrhi3
.sect .text
.globl ___lshrhi3
___lshrhi3:
cpx #16
bge Return_zero
cpx #0
beq Return
Loop:
lsrd
dex
bne Loop
Return:
rts
Return_zero:
clra
clrb
rts
#endif
#ifdef L_lshlhi3
.sect .text
.globl ___lshlhi3
___lshlhi3:
cpx #16
bge Return_zero
cpx #0
beq Return
Loop:
lsld
dex
bne Loop
Return:
rts
Return_zero:
clra
clrb
rts
#endif
#ifdef L_ashrhi3
.sect .text
.globl ___ashrhi3
___ashrhi3:
cpx #16
bge Return_minus_1_or_zero
cpx #0
beq Return
Loop:
asra
rorb
dex
bne Loop
Return:
rts
Return_minus_1_or_zero:
clrb
tsta
bpl Return_zero
comb
Return_zero:
tba
rts
#endif
#ifdef L_ashrqi3
.sect .text
.globl ___ashrqi3
___ashrqi3:
cmpa #8
bge Return_minus_1_or_zero
tsta
beq Return
Loop:
asrb
deca
bne Loop
Return:
rts
Return_minus_1_or_zero:
clrb
tstb
bpl Return_zero
coma
Return_zero:
tab
rts
#endif
#ifdef L_lshlqi3
.sect .text
.globl ___lshlqi3
___lshlqi3:
cmpa #8
bge Return_zero
tsta
beq Return
Loop:
lslb
deca
bne Loop
Return:
rts
Return_zero:
clrb
rts
#endif
#ifdef L_divmodhi4
#ifndef mc68hc12
/* 68HC12 signed divisions are generated inline (idivs). */
.sect .text
.globl __divmodhi4
;
;; D = numerator
;; X = denominator
;;
;; Result: D = D / X
;; X = D % X
;;
__divmodhi4:
tsta
bpl Numerator_pos
comb ; D = -D <=> D = (~D) + 1
coma
xgdx
inx
tsta
bpl Numerator_neg_denominator_pos
Numerator_neg_denominator_neg:
comb ; X = -X
coma
addd #1
xgdx
idiv
coma
comb
xgdx ; Remainder <= 0 and result >= 0
inx
rts
Numerator_pos_denominator_pos:
xgdx
idiv
xgdx ; Both values are >= 0
rts
Numerator_pos:
xgdx
tsta
bpl Numerator_pos_denominator_pos
Numerator_pos_denominator_neg:
coma ; X = -X
comb
xgdx
inx
idiv
xgdx ; Remainder >= 0 but result <= 0
coma
comb
addd #1
rts
Numerator_neg_denominator_pos:
xgdx
idiv
coma ; One value is > 0 and the other < 0
comb ; Change the sign of result and remainder
xgdx
inx
coma
comb
addd #1
rts
#endif /* !mc68hc12 */
#endif
#ifdef L_mulqi3
.sect .text
.globl __mulqi3
;
; short __mulqi3(signed char a, signed char b);
;
; signed char a -> register A
; signed char b -> register B
;
; returns the signed result of A * B in register D.
;
__mulqi3:
tsta
bmi A_neg
tstb
bmi B_neg
mul
rts
B_neg:
negb
bra A_or_B_neg
A_neg:
nega
tstb
bmi AB_neg
A_or_B_neg:
mul
coma
comb
addd #1
rts
AB_neg:
negb
mul
rts
#endif
#ifdef L_mulhi3
.sect .text
.globl ___mulhi3
;
;
; unsigned short ___mulhi3(unsigned short a, unsigned short b)
;
; a = register D
; b = register X
;
___mulhi3:
#ifdef mc68hc12
pshx ; Preserve X
exg x,y
emul
exg x,y
pulx
#else
stx *_.tmp
pshb
ldab *_.tmp+1
mul ; A.high * B.low
ldaa *_.tmp
stab *_.tmp
pulb
pshb
mul ; A.low * B.high
addb *_.tmp
stab *_.tmp
ldaa *_.tmp+1
pulb
mul ; A.low * B.low
adda *_.tmp
#endif
rts
#endif
#ifdef L_mulhi32
.sect .text
.globl __mulhi32
;
;
; unsigned long __mulhi32(unsigned short a, unsigned short b)
;
; a = register D
; b = value on stack
;
; +---------------+
; | B low | <- 5,x
; +---------------+
; | B high | <- 4,x
; +---------------+
; | PC low |
; +---------------+
; | PC high |
; +---------------+
; | A low |
; +---------------+
; | A high |
; +---------------+ <- 0,x
;
;
; <B-low> 5,x
; <B-high> 4,x
; <ret> 2,x
; <A-low> 1,x
; <A-high> 0,x
;
__mulhi32:
#ifdef mc68hc12
ldy 2,sp
emul
exg x,y
#else
pshb
psha
tsx
ldab 4,x
mul
xgdy ; A.high * B.high
ldab 5,x
pula
mul ; A.high * B.low
std *_.tmp
ldaa 1,x
ldab 4,x
mul ; A.low * B.high
addd *_.tmp
stab *_.tmp
tab
aby
bcc N
ldab #0xff
aby
iny
N:
ldab 5,x
pula
mul ; A.low * B.low
adda *_.tmp
bcc Ret
iny
Ret:
pshy
pulx
#endif
rts
#endif
#ifdef L_mulsi3
.sect .text
.globl __mulsi3
;
; <B-low> 8,y
; <B-high> 6,y
; <ret> 4,y
; <tmp> 2,y
; <A-low> 0,y
;
; D,X -> A
; Stack -> B
;
; The result is:
;
; (((A.low * B.high) + (A.high * B.low)) << 16) + (A.low * B.low)
;
;
;
__mulsi3:
#ifdef mc68hc12
pshd ; Save A.low
ldy 4,sp
emul ; A.low * B.high
ldy 6,sp
exg x,d
emul ; A.high * B.low
leax d,x
ldy 6,sp
puld
emul ; A.low * B.low
exg d,y
leax d,x
exg d,y
rts
#else
B_low = 8
B_high = 6
A_low = 0
A_high = 2
pshx
pshb
psha
tsy
;
; If B.low is 0, optimize into: (A.low * B.high) << 16
;
ldd B_low,y
beq B_low_zero
;
; If A.high is 0, optimize into: (A.low * B.high) << 16 + (A.low * B.low)
;
stx *_.tmp
beq A_high_zero
bsr ___mulhi3 ; A.high * B.low
;
; If A.low is 0, optimize into: (A.high * B.low) << 16
;
ldx A_low,y
beq A_low_zero ; X = 0, D = A.high * B.low
std 2,y
;
; If B.high is 0, we can avoid the (A.low * B.high) << 16 term.
;
ldd B_high,y
beq B_high_zero
bsr ___mulhi3 ; A.low * B.high
addd 2,y
std 2,y
;
; Here, we know that A.low and B.low are not 0.
;
B_high_zero:
ldd B_low,y ; A.low is on the stack
bsr __mulhi32 ; A.low * B.low
xgdx
tsy ; Y was clobbered, get it back
addd 2,y
A_low_zero: ; See A_low_zero_non_optimized below
xgdx
Return:
ins
ins
ins
ins
rts
;
;
; A_low_zero_non_optimized:
;
; At this step, X = 0 and D = (A.high * B.low)
; Optimize into: (A.high * B.low) << 16
;
; xgdx
; clra ; Since X was 0, clearing D is superfuous.
; clrb
; bra Return
; ----------------
; B.low == 0, the result is: (A.low * B.high) << 16
;
; At this step:
; D = B.low = 0
; X = A.high ?
; A.low is at A_low,y ?
; B.low is at B_low,y ?
;
B_low_zero:
ldd A_low,y
beq Zero1
ldx B_high,y
beq Zero2
bsr ___mulhi3
Zero1:
xgdx
Zero2:
clra
clrb
bra Return
; ----------------
; A.high is 0, optimize into: (A.low * B.high) << 16 + (A.low * B.low)
;
; At this step:
; D = B.low != 0
; X = A.high = 0
; A.low is at A_low,y ?
; B.low is at B_low,y ?
;
A_high_zero:
ldd A_low,y ; A.low
beq Zero1
ldx B_high,y ; B.high
beq A_low_B_low
bsr ___mulhi3
std 2,y
bra B_high_zero ; Do the (A.low * B.low) and the add.
; ----------------
; A.high and B.high are 0 optimize into: (A.low * B.low)
;
; At this step:
; D = B.high = 0
; X = A.low != 0
; A.low is at A_low,y != 0
; B.high is at B_high,y = 0
;
A_low_B_low:
ldd B_low,y ; A.low is on the stack
bsr __mulhi32
bra Return
#endif
#endif
#ifdef L_map_data
.sect .install2,"ax",@progbits
.globl __map_data_section
__map_data_section:
ldd #__data_section_size
beq Done
ldx #__data_image
ldy #__data_section_start
Loop:
#ifdef mc68hc12
movb 1,x+,1,y+
dbne d,Loop
#else
psha
ldaa 0,x
staa 0,y
pula
inx
iny
subd #1
bne Loop
#endif
Done:
#endif
#ifdef L_init_bss
.sect .install2,"ax",@progbits
.globl __init_bss_section
__init_bss_section:
ldd #__bss_size
beq Done
ldx #__bss_start
Loop:
#ifdef mc68hc12
clr 1,x+
dbne d,Loop
#else
clr 0,x
inx
subd #1
bne Loop
#endif
Done:
#endif
#ifdef L_ctor
; End of constructor table
.sect .install3,"ax",@progbits
.globl __do_global_ctors
__do_global_ctors:
; Start from the end - sizeof(void*)
ldx #__CTOR_END__-2
ctors_loop:
cpx #__CTOR_LIST__
blt ctors_done
pshx
ldx 0,x
jsr 0,x
pulx
dex
dex
bra ctors_loop
ctors_done:
#endif
#ifdef L_dtor
.sect .fini3,"ax",@progbits
.globl __do_global_dtors
;;
;; This piece of code is inserted in the _exit() code by the linker.
;;
__do_global_dtors:
pshb ; Save exit code
psha
ldx #__DTOR_LIST__
dtors_loop:
cpx #__DTOR_END__
bge dtors_done
pshx
ldx 0,x
jsr 0,x
pulx
inx
inx
bra dtors_loop
dtors_done:
pula ; Restore exit code
pulb
#endif
;-----------------------------------------
; end required gcclib code
;-----------------------------------------