| // Special functions -*- C++ -*- |
| |
| // Copyright (C) 2006-2020 Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| // |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| // |
| // Under Section 7 of GPL version 3, you are granted additional |
| // permissions described in the GCC Runtime Library Exception, version |
| // 3.1, as published by the Free Software Foundation. |
| |
| // You should have received a copy of the GNU General Public License and |
| // a copy of the GCC Runtime Library Exception along with this program; |
| // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| // <http://www.gnu.org/licenses/>. |
| |
| /** @file tr1/gamma.tcc |
| * This is an internal header file, included by other library headers. |
| * Do not attempt to use it directly. @headername{tr1/cmath} |
| */ |
| |
| // |
| // ISO C++ 14882 TR1: 5.2 Special functions |
| // |
| |
| // Written by Edward Smith-Rowland based on: |
| // (1) Handbook of Mathematical Functions, |
| // ed. Milton Abramowitz and Irene A. Stegun, |
| // Dover Publications, |
| // Section 6, pp. 253-266 |
| // (2) The Gnu Scientific Library, http://www.gnu.org/software/gsl |
| // (3) Numerical Recipes in C, by W. H. Press, S. A. Teukolsky, |
| // W. T. Vetterling, B. P. Flannery, Cambridge University Press (1992), |
| // 2nd ed, pp. 213-216 |
| // (4) Gamma, Exploring Euler's Constant, Julian Havil, |
| // Princeton, 2003. |
| |
| #ifndef _GLIBCXX_TR1_GAMMA_TCC |
| #define _GLIBCXX_TR1_GAMMA_TCC 1 |
| |
| #include <tr1/special_function_util.h> |
| |
| namespace std _GLIBCXX_VISIBILITY(default) |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| |
| #if _GLIBCXX_USE_STD_SPEC_FUNCS |
| # define _GLIBCXX_MATH_NS ::std |
| #elif defined(_GLIBCXX_TR1_CMATH) |
| namespace tr1 |
| { |
| # define _GLIBCXX_MATH_NS ::std::tr1 |
| #else |
| # error do not include this header directly, use <cmath> or <tr1/cmath> |
| #endif |
| // Implementation-space details. |
| namespace __detail |
| { |
| /** |
| * @brief This returns Bernoulli numbers from a table or by summation |
| * for larger values. |
| * |
| * Recursion is unstable. |
| * |
| * @param __n the order n of the Bernoulli number. |
| * @return The Bernoulli number of order n. |
| */ |
| template <typename _Tp> |
| _Tp |
| __bernoulli_series(unsigned int __n) |
| { |
| |
| static const _Tp __num[28] = { |
| _Tp(1UL), -_Tp(1UL) / _Tp(2UL), |
| _Tp(1UL) / _Tp(6UL), _Tp(0UL), |
| -_Tp(1UL) / _Tp(30UL), _Tp(0UL), |
| _Tp(1UL) / _Tp(42UL), _Tp(0UL), |
| -_Tp(1UL) / _Tp(30UL), _Tp(0UL), |
| _Tp(5UL) / _Tp(66UL), _Tp(0UL), |
| -_Tp(691UL) / _Tp(2730UL), _Tp(0UL), |
| _Tp(7UL) / _Tp(6UL), _Tp(0UL), |
| -_Tp(3617UL) / _Tp(510UL), _Tp(0UL), |
| _Tp(43867UL) / _Tp(798UL), _Tp(0UL), |
| -_Tp(174611) / _Tp(330UL), _Tp(0UL), |
| _Tp(854513UL) / _Tp(138UL), _Tp(0UL), |
| -_Tp(236364091UL) / _Tp(2730UL), _Tp(0UL), |
| _Tp(8553103UL) / _Tp(6UL), _Tp(0UL) |
| }; |
| |
| if (__n == 0) |
| return _Tp(1); |
| |
| if (__n == 1) |
| return -_Tp(1) / _Tp(2); |
| |
| // Take care of the rest of the odd ones. |
| if (__n % 2 == 1) |
| return _Tp(0); |
| |
| // Take care of some small evens that are painful for the series. |
| if (__n < 28) |
| return __num[__n]; |
| |
| |
| _Tp __fact = _Tp(1); |
| if ((__n / 2) % 2 == 0) |
| __fact *= _Tp(-1); |
| for (unsigned int __k = 1; __k <= __n; ++__k) |
| __fact *= __k / (_Tp(2) * __numeric_constants<_Tp>::__pi()); |
| __fact *= _Tp(2); |
| |
| _Tp __sum = _Tp(0); |
| for (unsigned int __i = 1; __i < 1000; ++__i) |
| { |
| _Tp __term = std::pow(_Tp(__i), -_Tp(__n)); |
| if (__term < std::numeric_limits<_Tp>::epsilon()) |
| break; |
| __sum += __term; |
| } |
| |
| return __fact * __sum; |
| } |
| |
| |
| /** |
| * @brief This returns Bernoulli number \f$B_n\f$. |
| * |
| * @param __n the order n of the Bernoulli number. |
| * @return The Bernoulli number of order n. |
| */ |
| template<typename _Tp> |
| inline _Tp |
| __bernoulli(int __n) |
| { return __bernoulli_series<_Tp>(__n); } |
| |
| |
| /** |
| * @brief Return \f$log(\Gamma(x))\f$ by asymptotic expansion |
| * with Bernoulli number coefficients. This is like |
| * Sterling's approximation. |
| * |
| * @param __x The argument of the log of the gamma function. |
| * @return The logarithm of the gamma function. |
| */ |
| template<typename _Tp> |
| _Tp |
| __log_gamma_bernoulli(_Tp __x) |
| { |
| _Tp __lg = (__x - _Tp(0.5L)) * std::log(__x) - __x |
| + _Tp(0.5L) * std::log(_Tp(2) |
| * __numeric_constants<_Tp>::__pi()); |
| |
| const _Tp __xx = __x * __x; |
| _Tp __help = _Tp(1) / __x; |
| for ( unsigned int __i = 1; __i < 20; ++__i ) |
| { |
| const _Tp __2i = _Tp(2 * __i); |
| __help /= __2i * (__2i - _Tp(1)) * __xx; |
| __lg += __bernoulli<_Tp>(2 * __i) * __help; |
| } |
| |
| return __lg; |
| } |
| |
| |
| /** |
| * @brief Return \f$log(\Gamma(x))\f$ by the Lanczos method. |
| * This method dominates all others on the positive axis I think. |
| * |
| * @param __x The argument of the log of the gamma function. |
| * @return The logarithm of the gamma function. |
| */ |
| template<typename _Tp> |
| _Tp |
| __log_gamma_lanczos(_Tp __x) |
| { |
| const _Tp __xm1 = __x - _Tp(1); |
| |
| static const _Tp __lanczos_cheb_7[9] = { |
| _Tp( 0.99999999999980993227684700473478L), |
| _Tp( 676.520368121885098567009190444019L), |
| _Tp(-1259.13921672240287047156078755283L), |
| _Tp( 771.3234287776530788486528258894L), |
| _Tp(-176.61502916214059906584551354L), |
| _Tp( 12.507343278686904814458936853L), |
| _Tp(-0.13857109526572011689554707L), |
| _Tp( 9.984369578019570859563e-6L), |
| _Tp( 1.50563273514931155834e-7L) |
| }; |
| |
| static const _Tp __LOGROOT2PI |
| = _Tp(0.9189385332046727417803297364056176L); |
| |
| _Tp __sum = __lanczos_cheb_7[0]; |
| for(unsigned int __k = 1; __k < 9; ++__k) |
| __sum += __lanczos_cheb_7[__k] / (__xm1 + __k); |
| |
| const _Tp __term1 = (__xm1 + _Tp(0.5L)) |
| * std::log((__xm1 + _Tp(7.5L)) |
| / __numeric_constants<_Tp>::__euler()); |
| const _Tp __term2 = __LOGROOT2PI + std::log(__sum); |
| const _Tp __result = __term1 + (__term2 - _Tp(7)); |
| |
| return __result; |
| } |
| |
| |
| /** |
| * @brief Return \f$ log(|\Gamma(x)|) \f$. |
| * This will return values even for \f$ x < 0 \f$. |
| * To recover the sign of \f$ \Gamma(x) \f$ for |
| * any argument use @a __log_gamma_sign. |
| * |
| * @param __x The argument of the log of the gamma function. |
| * @return The logarithm of the gamma function. |
| */ |
| template<typename _Tp> |
| _Tp |
| __log_gamma(_Tp __x) |
| { |
| if (__x > _Tp(0.5L)) |
| return __log_gamma_lanczos(__x); |
| else |
| { |
| const _Tp __sin_fact |
| = std::abs(std::sin(__numeric_constants<_Tp>::__pi() * __x)); |
| if (__sin_fact == _Tp(0)) |
| std::__throw_domain_error(__N("Argument is nonpositive integer " |
| "in __log_gamma")); |
| return __numeric_constants<_Tp>::__lnpi() |
| - std::log(__sin_fact) |
| - __log_gamma_lanczos(_Tp(1) - __x); |
| } |
| } |
| |
| |
| /** |
| * @brief Return the sign of \f$ \Gamma(x) \f$. |
| * At nonpositive integers zero is returned. |
| * |
| * @param __x The argument of the gamma function. |
| * @return The sign of the gamma function. |
| */ |
| template<typename _Tp> |
| _Tp |
| __log_gamma_sign(_Tp __x) |
| { |
| if (__x > _Tp(0)) |
| return _Tp(1); |
| else |
| { |
| const _Tp __sin_fact |
| = std::sin(__numeric_constants<_Tp>::__pi() * __x); |
| if (__sin_fact > _Tp(0)) |
| return (1); |
| else if (__sin_fact < _Tp(0)) |
| return -_Tp(1); |
| else |
| return _Tp(0); |
| } |
| } |
| |
| |
| /** |
| * @brief Return the logarithm of the binomial coefficient. |
| * The binomial coefficient is given by: |
| * @f[ |
| * \left( \right) = \frac{n!}{(n-k)! k!} |
| * @f] |
| * |
| * @param __n The first argument of the binomial coefficient. |
| * @param __k The second argument of the binomial coefficient. |
| * @return The binomial coefficient. |
| */ |
| template<typename _Tp> |
| _Tp |
| __log_bincoef(unsigned int __n, unsigned int __k) |
| { |
| // Max e exponent before overflow. |
| static const _Tp __max_bincoeff |
| = std::numeric_limits<_Tp>::max_exponent10 |
| * std::log(_Tp(10)) - _Tp(1); |
| #if _GLIBCXX_USE_C99_MATH_TR1 |
| _Tp __coeff = _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n)) |
| - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __k)) |
| - _GLIBCXX_MATH_NS::lgamma(_Tp(1 + __n - __k)); |
| #else |
| _Tp __coeff = __log_gamma(_Tp(1 + __n)) |
| - __log_gamma(_Tp(1 + __k)) |
| - __log_gamma(_Tp(1 + __n - __k)); |
| #endif |
| } |
| |
| |
| /** |
| * @brief Return the binomial coefficient. |
| * The binomial coefficient is given by: |
| * @f[ |
| * \left( \right) = \frac{n!}{(n-k)! k!} |
| * @f] |
| * |
| * @param __n The first argument of the binomial coefficient. |
| * @param __k The second argument of the binomial coefficient. |
| * @return The binomial coefficient. |
| */ |
| template<typename _Tp> |
| _Tp |
| __bincoef(unsigned int __n, unsigned int __k) |
| { |
| // Max e exponent before overflow. |
| static const _Tp __max_bincoeff |
| = std::numeric_limits<_Tp>::max_exponent10 |
| * std::log(_Tp(10)) - _Tp(1); |
| |
| const _Tp __log_coeff = __log_bincoef<_Tp>(__n, __k); |
| if (__log_coeff > __max_bincoeff) |
| return std::numeric_limits<_Tp>::quiet_NaN(); |
| else |
| return std::exp(__log_coeff); |
| } |
| |
| |
| /** |
| * @brief Return \f$ \Gamma(x) \f$. |
| * |
| * @param __x The argument of the gamma function. |
| * @return The gamma function. |
| */ |
| template<typename _Tp> |
| inline _Tp |
| __gamma(_Tp __x) |
| { return std::exp(__log_gamma(__x)); } |
| |
| |
| /** |
| * @brief Return the digamma function by series expansion. |
| * The digamma or @f$ \psi(x) @f$ function is defined by |
| * @f[ |
| * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} |
| * @f] |
| * |
| * The series is given by: |
| * @f[ |
| * \psi(x) = -\gamma_E - \frac{1}{x} |
| * \sum_{k=1}^{\infty} \frac{x}{k(x + k)} |
| * @f] |
| */ |
| template<typename _Tp> |
| _Tp |
| __psi_series(_Tp __x) |
| { |
| _Tp __sum = -__numeric_constants<_Tp>::__gamma_e() - _Tp(1) / __x; |
| const unsigned int __max_iter = 100000; |
| for (unsigned int __k = 1; __k < __max_iter; ++__k) |
| { |
| const _Tp __term = __x / (__k * (__k + __x)); |
| __sum += __term; |
| if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon()) |
| break; |
| } |
| return __sum; |
| } |
| |
| |
| /** |
| * @brief Return the digamma function for large argument. |
| * The digamma or @f$ \psi(x) @f$ function is defined by |
| * @f[ |
| * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} |
| * @f] |
| * |
| * The asymptotic series is given by: |
| * @f[ |
| * \psi(x) = \ln(x) - \frac{1}{2x} |
| * - \sum_{n=1}^{\infty} \frac{B_{2n}}{2 n x^{2n}} |
| * @f] |
| */ |
| template<typename _Tp> |
| _Tp |
| __psi_asymp(_Tp __x) |
| { |
| _Tp __sum = std::log(__x) - _Tp(0.5L) / __x; |
| const _Tp __xx = __x * __x; |
| _Tp __xp = __xx; |
| const unsigned int __max_iter = 100; |
| for (unsigned int __k = 1; __k < __max_iter; ++__k) |
| { |
| const _Tp __term = __bernoulli<_Tp>(2 * __k) / (2 * __k * __xp); |
| __sum -= __term; |
| if (std::abs(__term / __sum) < std::numeric_limits<_Tp>::epsilon()) |
| break; |
| __xp *= __xx; |
| } |
| return __sum; |
| } |
| |
| |
| /** |
| * @brief Return the digamma function. |
| * The digamma or @f$ \psi(x) @f$ function is defined by |
| * @f[ |
| * \psi(x) = \frac{\Gamma'(x)}{\Gamma(x)} |
| * @f] |
| * For negative argument the reflection formula is used: |
| * @f[ |
| * \psi(x) = \psi(1-x) - \pi \cot(\pi x) |
| * @f] |
| */ |
| template<typename _Tp> |
| _Tp |
| __psi(_Tp __x) |
| { |
| const int __n = static_cast<int>(__x + 0.5L); |
| const _Tp __eps = _Tp(4) * std::numeric_limits<_Tp>::epsilon(); |
| if (__n <= 0 && std::abs(__x - _Tp(__n)) < __eps) |
| return std::numeric_limits<_Tp>::quiet_NaN(); |
| else if (__x < _Tp(0)) |
| { |
| const _Tp __pi = __numeric_constants<_Tp>::__pi(); |
| return __psi(_Tp(1) - __x) |
| - __pi * std::cos(__pi * __x) / std::sin(__pi * __x); |
| } |
| else if (__x > _Tp(100)) |
| return __psi_asymp(__x); |
| else |
| return __psi_series(__x); |
| } |
| |
| |
| /** |
| * @brief Return the polygamma function @f$ \psi^{(n)}(x) @f$. |
| * |
| * The polygamma function is related to the Hurwitz zeta function: |
| * @f[ |
| * \psi^{(n)}(x) = (-1)^{n+1} m! \zeta(m+1,x) |
| * @f] |
| */ |
| template<typename _Tp> |
| _Tp |
| __psi(unsigned int __n, _Tp __x) |
| { |
| if (__x <= _Tp(0)) |
| std::__throw_domain_error(__N("Argument out of range " |
| "in __psi")); |
| else if (__n == 0) |
| return __psi(__x); |
| else |
| { |
| const _Tp __hzeta = __hurwitz_zeta(_Tp(__n + 1), __x); |
| #if _GLIBCXX_USE_C99_MATH_TR1 |
| const _Tp __ln_nfact = _GLIBCXX_MATH_NS::lgamma(_Tp(__n + 1)); |
| #else |
| const _Tp __ln_nfact = __log_gamma(_Tp(__n + 1)); |
| #endif |
| _Tp __result = std::exp(__ln_nfact) * __hzeta; |
| if (__n % 2 == 1) |
| __result = -__result; |
| return __result; |
| } |
| } |
| } // namespace __detail |
| #undef _GLIBCXX_MATH_NS |
| #if ! _GLIBCXX_USE_STD_SPEC_FUNCS && defined(_GLIBCXX_TR1_CMATH) |
| } // namespace tr1 |
| #endif |
| |
| _GLIBCXX_END_NAMESPACE_VERSION |
| } // namespace std |
| |
| #endif // _GLIBCXX_TR1_GAMMA_TCC |
| |