| // random number generation (out of line) -*- C++ -*- |
| |
| // Copyright (C) 2009-2020 Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // Under Section 7 of GPL version 3, you are granted additional |
| // permissions described in the GCC Runtime Library Exception, version |
| // 3.1, as published by the Free Software Foundation. |
| |
| // You should have received a copy of the GNU General Public License and |
| // a copy of the GCC Runtime Library Exception along with this program; |
| // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| // <http://www.gnu.org/licenses/>. |
| |
| |
| /** @file tr1/random.tcc |
| * This is an internal header file, included by other library headers. |
| * Do not attempt to use it directly. @headername{tr1/random} |
| */ |
| |
| #ifndef _GLIBCXX_TR1_RANDOM_TCC |
| #define _GLIBCXX_TR1_RANDOM_TCC 1 |
| |
| namespace std _GLIBCXX_VISIBILITY(default) |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| |
| namespace tr1 |
| { |
| /* |
| * (Further) implementation-space details. |
| */ |
| namespace __detail |
| { |
| // General case for x = (ax + c) mod m -- use Schrage's algorithm to avoid |
| // integer overflow. |
| // |
| // Because a and c are compile-time integral constants the compiler kindly |
| // elides any unreachable paths. |
| // |
| // Preconditions: a > 0, m > 0. |
| // |
| template<typename _Tp, _Tp __a, _Tp __c, _Tp __m, bool> |
| struct _Mod |
| { |
| static _Tp |
| __calc(_Tp __x) |
| { |
| if (__a == 1) |
| __x %= __m; |
| else |
| { |
| static const _Tp __q = __m / __a; |
| static const _Tp __r = __m % __a; |
| |
| _Tp __t1 = __a * (__x % __q); |
| _Tp __t2 = __r * (__x / __q); |
| if (__t1 >= __t2) |
| __x = __t1 - __t2; |
| else |
| __x = __m - __t2 + __t1; |
| } |
| |
| if (__c != 0) |
| { |
| const _Tp __d = __m - __x; |
| if (__d > __c) |
| __x += __c; |
| else |
| __x = __c - __d; |
| } |
| return __x; |
| } |
| }; |
| |
| // Special case for m == 0 -- use unsigned integer overflow as modulo |
| // operator. |
| template<typename _Tp, _Tp __a, _Tp __c, _Tp __m> |
| struct _Mod<_Tp, __a, __c, __m, true> |
| { |
| static _Tp |
| __calc(_Tp __x) |
| { return __a * __x + __c; } |
| }; |
| } // namespace __detail |
| |
| template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| const _UIntType |
| linear_congruential<_UIntType, __a, __c, __m>::multiplier; |
| |
| template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| const _UIntType |
| linear_congruential<_UIntType, __a, __c, __m>::increment; |
| |
| template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| const _UIntType |
| linear_congruential<_UIntType, __a, __c, __m>::modulus; |
| |
| /** |
| * Seeds the LCR with integral value @p __x0, adjusted so that the |
| * ring identity is never a member of the convergence set. |
| */ |
| template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| void |
| linear_congruential<_UIntType, __a, __c, __m>:: |
| seed(unsigned long __x0) |
| { |
| if ((__detail::__mod<_UIntType, 1, 0, __m>(__c) == 0) |
| && (__detail::__mod<_UIntType, 1, 0, __m>(__x0) == 0)) |
| _M_x = __detail::__mod<_UIntType, 1, 0, __m>(1); |
| else |
| _M_x = __detail::__mod<_UIntType, 1, 0, __m>(__x0); |
| } |
| |
| /** |
| * Seeds the LCR engine with a value generated by @p __g. |
| */ |
| template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| template<class _Gen> |
| void |
| linear_congruential<_UIntType, __a, __c, __m>:: |
| seed(_Gen& __g, false_type) |
| { |
| _UIntType __x0 = __g(); |
| if ((__detail::__mod<_UIntType, 1, 0, __m>(__c) == 0) |
| && (__detail::__mod<_UIntType, 1, 0, __m>(__x0) == 0)) |
| _M_x = __detail::__mod<_UIntType, 1, 0, __m>(1); |
| else |
| _M_x = __detail::__mod<_UIntType, 1, 0, __m>(__x0); |
| } |
| |
| /** |
| * Gets the next generated value in sequence. |
| */ |
| template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| typename linear_congruential<_UIntType, __a, __c, __m>::result_type |
| linear_congruential<_UIntType, __a, __c, __m>:: |
| operator()() |
| { |
| _M_x = __detail::__mod<_UIntType, __a, __c, __m>(_M_x); |
| return _M_x; |
| } |
| |
| template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const linear_congruential<_UIntType, __a, __c, __m>& __lcr) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| __os.fill(__os.widen(' ')); |
| |
| __os << __lcr._M_x; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| return __os; |
| } |
| |
| template<class _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| linear_congruential<_UIntType, __a, __c, __m>& __lcr) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec); |
| |
| __is >> __lcr._M_x; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, |
| _UIntType __b, int __t, _UIntType __c, int __l> |
| const int |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>::word_size; |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, |
| _UIntType __b, int __t, _UIntType __c, int __l> |
| const int |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>::state_size; |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, |
| _UIntType __b, int __t, _UIntType __c, int __l> |
| const int |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>::shift_size; |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, |
| _UIntType __b, int __t, _UIntType __c, int __l> |
| const int |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>::mask_bits; |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, |
| _UIntType __b, int __t, _UIntType __c, int __l> |
| const _UIntType |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>::parameter_a; |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, |
| _UIntType __b, int __t, _UIntType __c, int __l> |
| const int |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>::output_u; |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, |
| _UIntType __b, int __t, _UIntType __c, int __l> |
| const int |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>::output_s; |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, |
| _UIntType __b, int __t, _UIntType __c, int __l> |
| const _UIntType |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>::output_b; |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, |
| _UIntType __b, int __t, _UIntType __c, int __l> |
| const int |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>::output_t; |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, |
| _UIntType __b, int __t, _UIntType __c, int __l> |
| const _UIntType |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>::output_c; |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, |
| _UIntType __b, int __t, _UIntType __c, int __l> |
| const int |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>::output_l; |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, |
| _UIntType __b, int __t, _UIntType __c, int __l> |
| void |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>:: |
| seed(unsigned long __value) |
| { |
| _M_x[0] = __detail::__mod<_UIntType, 1, 0, |
| __detail::_Shift<_UIntType, __w>::__value>(__value); |
| |
| for (int __i = 1; __i < state_size; ++__i) |
| { |
| _UIntType __x = _M_x[__i - 1]; |
| __x ^= __x >> (__w - 2); |
| __x *= 1812433253ul; |
| __x += __i; |
| _M_x[__i] = __detail::__mod<_UIntType, 1, 0, |
| __detail::_Shift<_UIntType, __w>::__value>(__x); |
| } |
| _M_p = state_size; |
| } |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, |
| _UIntType __b, int __t, _UIntType __c, int __l> |
| template<class _Gen> |
| void |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>:: |
| seed(_Gen& __gen, false_type) |
| { |
| for (int __i = 0; __i < state_size; ++__i) |
| _M_x[__i] = __detail::__mod<_UIntType, 1, 0, |
| __detail::_Shift<_UIntType, __w>::__value>(__gen()); |
| _M_p = state_size; |
| } |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, |
| _UIntType __b, int __t, _UIntType __c, int __l> |
| typename |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>::result_type |
| mersenne_twister<_UIntType, __w, __n, __m, __r, __a, __u, __s, |
| __b, __t, __c, __l>:: |
| operator()() |
| { |
| // Reload the vector - cost is O(n) amortized over n calls. |
| if (_M_p >= state_size) |
| { |
| const _UIntType __upper_mask = (~_UIntType()) << __r; |
| const _UIntType __lower_mask = ~__upper_mask; |
| |
| for (int __k = 0; __k < (__n - __m); ++__k) |
| { |
| _UIntType __y = ((_M_x[__k] & __upper_mask) |
| | (_M_x[__k + 1] & __lower_mask)); |
| _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1) |
| ^ ((__y & 0x01) ? __a : 0)); |
| } |
| |
| for (int __k = (__n - __m); __k < (__n - 1); ++__k) |
| { |
| _UIntType __y = ((_M_x[__k] & __upper_mask) |
| | (_M_x[__k + 1] & __lower_mask)); |
| _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1) |
| ^ ((__y & 0x01) ? __a : 0)); |
| } |
| |
| _UIntType __y = ((_M_x[__n - 1] & __upper_mask) |
| | (_M_x[0] & __lower_mask)); |
| _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1) |
| ^ ((__y & 0x01) ? __a : 0)); |
| _M_p = 0; |
| } |
| |
| // Calculate o(x(i)). |
| result_type __z = _M_x[_M_p++]; |
| __z ^= (__z >> __u); |
| __z ^= (__z << __s) & __b; |
| __z ^= (__z << __t) & __c; |
| __z ^= (__z >> __l); |
| |
| return __z; |
| } |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, _UIntType __b, int __t, |
| _UIntType __c, int __l, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const mersenne_twister<_UIntType, __w, __n, __m, |
| __r, __a, __u, __s, __b, __t, __c, __l>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| __os.fill(__space); |
| |
| for (int __i = 0; __i < __n - 1; ++__i) |
| __os << __x._M_x[__i] << __space; |
| __os << __x._M_x[__n - 1]; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| return __os; |
| } |
| |
| template<class _UIntType, int __w, int __n, int __m, int __r, |
| _UIntType __a, int __u, int __s, _UIntType __b, int __t, |
| _UIntType __c, int __l, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| mersenne_twister<_UIntType, __w, __n, __m, |
| __r, __a, __u, __s, __b, __t, __c, __l>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| for (int __i = 0; __i < __n; ++__i) |
| __is >> __x._M_x[__i]; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _IntType, _IntType __m, int __s, int __r> |
| const _IntType |
| subtract_with_carry<_IntType, __m, __s, __r>::modulus; |
| |
| template<typename _IntType, _IntType __m, int __s, int __r> |
| const int |
| subtract_with_carry<_IntType, __m, __s, __r>::long_lag; |
| |
| template<typename _IntType, _IntType __m, int __s, int __r> |
| const int |
| subtract_with_carry<_IntType, __m, __s, __r>::short_lag; |
| |
| template<typename _IntType, _IntType __m, int __s, int __r> |
| void |
| subtract_with_carry<_IntType, __m, __s, __r>:: |
| seed(unsigned long __value) |
| { |
| if (__value == 0) |
| __value = 19780503; |
| |
| std::tr1::linear_congruential<unsigned long, 40014, 0, 2147483563> |
| __lcg(__value); |
| |
| for (int __i = 0; __i < long_lag; ++__i) |
| _M_x[__i] = __detail::__mod<_UIntType, 1, 0, modulus>(__lcg()); |
| |
| _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; |
| _M_p = 0; |
| } |
| |
| template<typename _IntType, _IntType __m, int __s, int __r> |
| template<class _Gen> |
| void |
| subtract_with_carry<_IntType, __m, __s, __r>:: |
| seed(_Gen& __gen, false_type) |
| { |
| const int __n = (std::numeric_limits<_UIntType>::digits + 31) / 32; |
| |
| for (int __i = 0; __i < long_lag; ++__i) |
| { |
| _UIntType __tmp = 0; |
| _UIntType __factor = 1; |
| for (int __j = 0; __j < __n; ++__j) |
| { |
| __tmp += __detail::__mod<__detail::_UInt32Type, 1, 0, 0> |
| (__gen()) * __factor; |
| __factor *= __detail::_Shift<_UIntType, 32>::__value; |
| } |
| _M_x[__i] = __detail::__mod<_UIntType, 1, 0, modulus>(__tmp); |
| } |
| _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; |
| _M_p = 0; |
| } |
| |
| template<typename _IntType, _IntType __m, int __s, int __r> |
| typename subtract_with_carry<_IntType, __m, __s, __r>::result_type |
| subtract_with_carry<_IntType, __m, __s, __r>:: |
| operator()() |
| { |
| // Derive short lag index from current index. |
| int __ps = _M_p - short_lag; |
| if (__ps < 0) |
| __ps += long_lag; |
| |
| // Calculate new x(i) without overflow or division. |
| // NB: Thanks to the requirements for _IntType, _M_x[_M_p] + _M_carry |
| // cannot overflow. |
| _UIntType __xi; |
| if (_M_x[__ps] >= _M_x[_M_p] + _M_carry) |
| { |
| __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry; |
| _M_carry = 0; |
| } |
| else |
| { |
| __xi = modulus - _M_x[_M_p] - _M_carry + _M_x[__ps]; |
| _M_carry = 1; |
| } |
| _M_x[_M_p] = __xi; |
| |
| // Adjust current index to loop around in ring buffer. |
| if (++_M_p >= long_lag) |
| _M_p = 0; |
| |
| return __xi; |
| } |
| |
| template<typename _IntType, _IntType __m, int __s, int __r, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const subtract_with_carry<_IntType, __m, __s, __r>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| __os.fill(__space); |
| |
| for (int __i = 0; __i < __r; ++__i) |
| __os << __x._M_x[__i] << __space; |
| __os << __x._M_carry; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| return __os; |
| } |
| |
| template<typename _IntType, _IntType __m, int __s, int __r, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| subtract_with_carry<_IntType, __m, __s, __r>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| for (int __i = 0; __i < __r; ++__i) |
| __is >> __x._M_x[__i]; |
| __is >> __x._M_carry; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType, int __w, int __s, int __r> |
| const int |
| subtract_with_carry_01<_RealType, __w, __s, __r>::word_size; |
| |
| template<typename _RealType, int __w, int __s, int __r> |
| const int |
| subtract_with_carry_01<_RealType, __w, __s, __r>::long_lag; |
| |
| template<typename _RealType, int __w, int __s, int __r> |
| const int |
| subtract_with_carry_01<_RealType, __w, __s, __r>::short_lag; |
| |
| template<typename _RealType, int __w, int __s, int __r> |
| void |
| subtract_with_carry_01<_RealType, __w, __s, __r>:: |
| _M_initialize_npows() |
| { |
| for (int __j = 0; __j < __n; ++__j) |
| #if _GLIBCXX_USE_C99_MATH_TR1 |
| _M_npows[__j] = std::tr1::ldexp(_RealType(1), -__w + __j * 32); |
| #else |
| _M_npows[__j] = std::pow(_RealType(2), -__w + __j * 32); |
| #endif |
| } |
| |
| template<typename _RealType, int __w, int __s, int __r> |
| void |
| subtract_with_carry_01<_RealType, __w, __s, __r>:: |
| seed(unsigned long __value) |
| { |
| if (__value == 0) |
| __value = 19780503; |
| |
| // _GLIBCXX_RESOLVE_LIB_DEFECTS |
| // 512. Seeding subtract_with_carry_01 from a single unsigned long. |
| std::tr1::linear_congruential<unsigned long, 40014, 0, 2147483563> |
| __lcg(__value); |
| |
| this->seed(__lcg); |
| } |
| |
| template<typename _RealType, int __w, int __s, int __r> |
| template<class _Gen> |
| void |
| subtract_with_carry_01<_RealType, __w, __s, __r>:: |
| seed(_Gen& __gen, false_type) |
| { |
| for (int __i = 0; __i < long_lag; ++__i) |
| { |
| for (int __j = 0; __j < __n - 1; ++__j) |
| _M_x[__i][__j] = __detail::__mod<_UInt32Type, 1, 0, 0>(__gen()); |
| _M_x[__i][__n - 1] = __detail::__mod<_UInt32Type, 1, 0, |
| __detail::_Shift<_UInt32Type, __w % 32>::__value>(__gen()); |
| } |
| |
| _M_carry = 1; |
| for (int __j = 0; __j < __n; ++__j) |
| if (_M_x[long_lag - 1][__j] != 0) |
| { |
| _M_carry = 0; |
| break; |
| } |
| |
| _M_p = 0; |
| } |
| |
| template<typename _RealType, int __w, int __s, int __r> |
| typename subtract_with_carry_01<_RealType, __w, __s, __r>::result_type |
| subtract_with_carry_01<_RealType, __w, __s, __r>:: |
| operator()() |
| { |
| // Derive short lag index from current index. |
| int __ps = _M_p - short_lag; |
| if (__ps < 0) |
| __ps += long_lag; |
| |
| _UInt32Type __new_carry; |
| for (int __j = 0; __j < __n - 1; ++__j) |
| { |
| if (_M_x[__ps][__j] > _M_x[_M_p][__j] |
| || (_M_x[__ps][__j] == _M_x[_M_p][__j] && _M_carry == 0)) |
| __new_carry = 0; |
| else |
| __new_carry = 1; |
| |
| _M_x[_M_p][__j] = _M_x[__ps][__j] - _M_x[_M_p][__j] - _M_carry; |
| _M_carry = __new_carry; |
| } |
| |
| if (_M_x[__ps][__n - 1] > _M_x[_M_p][__n - 1] |
| || (_M_x[__ps][__n - 1] == _M_x[_M_p][__n - 1] && _M_carry == 0)) |
| __new_carry = 0; |
| else |
| __new_carry = 1; |
| |
| _M_x[_M_p][__n - 1] = __detail::__mod<_UInt32Type, 1, 0, |
| __detail::_Shift<_UInt32Type, __w % 32>::__value> |
| (_M_x[__ps][__n - 1] - _M_x[_M_p][__n - 1] - _M_carry); |
| _M_carry = __new_carry; |
| |
| result_type __ret = 0.0; |
| for (int __j = 0; __j < __n; ++__j) |
| __ret += _M_x[_M_p][__j] * _M_npows[__j]; |
| |
| // Adjust current index to loop around in ring buffer. |
| if (++_M_p >= long_lag) |
| _M_p = 0; |
| |
| return __ret; |
| } |
| |
| template<typename _RealType, int __w, int __s, int __r, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const subtract_with_carry_01<_RealType, __w, __s, __r>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| __os.fill(__space); |
| |
| for (int __i = 0; __i < __r; ++__i) |
| for (int __j = 0; __j < __x.__n; ++__j) |
| __os << __x._M_x[__i][__j] << __space; |
| __os << __x._M_carry; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| return __os; |
| } |
| |
| template<typename _RealType, int __w, int __s, int __r, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| subtract_with_carry_01<_RealType, __w, __s, __r>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| for (int __i = 0; __i < __r; ++__i) |
| for (int __j = 0; __j < __x.__n; ++__j) |
| __is >> __x._M_x[__i][__j]; |
| __is >> __x._M_carry; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| template<class _UniformRandomNumberGenerator, int __p, int __r> |
| const int |
| discard_block<_UniformRandomNumberGenerator, __p, __r>::block_size; |
| |
| template<class _UniformRandomNumberGenerator, int __p, int __r> |
| const int |
| discard_block<_UniformRandomNumberGenerator, __p, __r>::used_block; |
| |
| template<class _UniformRandomNumberGenerator, int __p, int __r> |
| typename discard_block<_UniformRandomNumberGenerator, |
| __p, __r>::result_type |
| discard_block<_UniformRandomNumberGenerator, __p, __r>:: |
| operator()() |
| { |
| if (_M_n >= used_block) |
| { |
| while (_M_n < block_size) |
| { |
| _M_b(); |
| ++_M_n; |
| } |
| _M_n = 0; |
| } |
| ++_M_n; |
| return _M_b(); |
| } |
| |
| template<class _UniformRandomNumberGenerator, int __p, int __r, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const discard_block<_UniformRandomNumberGenerator, |
| __p, __r>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::dec | __ios_base::fixed |
| | __ios_base::left); |
| __os.fill(__space); |
| |
| __os << __x._M_b << __space << __x._M_n; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| return __os; |
| } |
| |
| template<class _UniformRandomNumberGenerator, int __p, int __r, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| discard_block<_UniformRandomNumberGenerator, __p, __r>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| __is >> __x._M_b >> __x._M_n; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<class _UniformRandomNumberGenerator1, int __s1, |
| class _UniformRandomNumberGenerator2, int __s2> |
| const int |
| xor_combine<_UniformRandomNumberGenerator1, __s1, |
| _UniformRandomNumberGenerator2, __s2>::shift1; |
| |
| template<class _UniformRandomNumberGenerator1, int __s1, |
| class _UniformRandomNumberGenerator2, int __s2> |
| const int |
| xor_combine<_UniformRandomNumberGenerator1, __s1, |
| _UniformRandomNumberGenerator2, __s2>::shift2; |
| |
| template<class _UniformRandomNumberGenerator1, int __s1, |
| class _UniformRandomNumberGenerator2, int __s2> |
| void |
| xor_combine<_UniformRandomNumberGenerator1, __s1, |
| _UniformRandomNumberGenerator2, __s2>:: |
| _M_initialize_max() |
| { |
| const int __w = std::numeric_limits<result_type>::digits; |
| |
| const result_type __m1 = |
| std::min(result_type(_M_b1.max() - _M_b1.min()), |
| __detail::_Shift<result_type, __w - __s1>::__value - 1); |
| |
| const result_type __m2 = |
| std::min(result_type(_M_b2.max() - _M_b2.min()), |
| __detail::_Shift<result_type, __w - __s2>::__value - 1); |
| |
| // NB: In TR1 s1 is not required to be >= s2. |
| if (__s1 < __s2) |
| _M_max = _M_initialize_max_aux(__m2, __m1, __s2 - __s1) << __s1; |
| else |
| _M_max = _M_initialize_max_aux(__m1, __m2, __s1 - __s2) << __s2; |
| } |
| |
| template<class _UniformRandomNumberGenerator1, int __s1, |
| class _UniformRandomNumberGenerator2, int __s2> |
| typename xor_combine<_UniformRandomNumberGenerator1, __s1, |
| _UniformRandomNumberGenerator2, __s2>::result_type |
| xor_combine<_UniformRandomNumberGenerator1, __s1, |
| _UniformRandomNumberGenerator2, __s2>:: |
| _M_initialize_max_aux(result_type __a, result_type __b, int __d) |
| { |
| const result_type __two2d = result_type(1) << __d; |
| const result_type __c = __a * __two2d; |
| |
| if (__a == 0 || __b < __two2d) |
| return __c + __b; |
| |
| const result_type __t = std::max(__c, __b); |
| const result_type __u = std::min(__c, __b); |
| |
| result_type __ub = __u; |
| result_type __p; |
| for (__p = 0; __ub != 1; __ub >>= 1) |
| ++__p; |
| |
| const result_type __two2p = result_type(1) << __p; |
| const result_type __k = __t / __two2p; |
| |
| if (__k & 1) |
| return (__k + 1) * __two2p - 1; |
| |
| if (__c >= __b) |
| return (__k + 1) * __two2p + _M_initialize_max_aux((__t % __two2p) |
| / __two2d, |
| __u % __two2p, __d); |
| else |
| return (__k + 1) * __two2p + _M_initialize_max_aux((__u % __two2p) |
| / __two2d, |
| __t % __two2p, __d); |
| } |
| |
| template<class _UniformRandomNumberGenerator1, int __s1, |
| class _UniformRandomNumberGenerator2, int __s2, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const xor_combine<_UniformRandomNumberGenerator1, __s1, |
| _UniformRandomNumberGenerator2, __s2>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| __os.fill(__space); |
| |
| __os << __x.base1() << __space << __x.base2(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| return __os; |
| } |
| |
| template<class _UniformRandomNumberGenerator1, int __s1, |
| class _UniformRandomNumberGenerator2, int __s2, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| xor_combine<_UniformRandomNumberGenerator1, __s1, |
| _UniformRandomNumberGenerator2, __s2>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::skipws); |
| |
| __is >> __x._M_b1 >> __x._M_b2; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _IntType> |
| template<typename _UniformRandomNumberGenerator> |
| typename uniform_int<_IntType>::result_type |
| uniform_int<_IntType>:: |
| _M_call(_UniformRandomNumberGenerator& __urng, |
| result_type __min, result_type __max, true_type) |
| { |
| // XXX Must be fixed to work well for *arbitrary* __urng.max(), |
| // __urng.min(), __max, __min. Currently works fine only in the |
| // most common case __urng.max() - __urng.min() >= __max - __min, |
| // with __urng.max() > __urng.min() >= 0. |
| typedef typename __gnu_cxx::__add_unsigned<typename |
| _UniformRandomNumberGenerator::result_type>::__type __urntype; |
| typedef typename __gnu_cxx::__add_unsigned<result_type>::__type |
| __utype; |
| typedef typename __gnu_cxx::__conditional_type<(sizeof(__urntype) |
| > sizeof(__utype)), |
| __urntype, __utype>::__type __uctype; |
| |
| result_type __ret; |
| |
| const __urntype __urnmin = __urng.min(); |
| const __urntype __urnmax = __urng.max(); |
| const __urntype __urnrange = __urnmax - __urnmin; |
| const __uctype __urange = __max - __min; |
| const __uctype __udenom = (__urnrange <= __urange |
| ? 1 : __urnrange / (__urange + 1)); |
| do |
| __ret = (__urntype(__urng()) - __urnmin) / __udenom; |
| while (__ret > __max - __min); |
| |
| return __ret + __min; |
| } |
| |
| template<typename _IntType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const uniform_int<_IntType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| |
| __os << __x.min() << __space << __x.max(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| return __os; |
| } |
| |
| template<typename _IntType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| uniform_int<_IntType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| __is >> __x._M_min >> __x._M_max; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const bernoulli_distribution& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__os.widen(' ')); |
| __os.precision(__gnu_cxx::__numeric_traits<double>::__max_digits10); |
| |
| __os << __x.p(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| |
| template<typename _IntType, typename _RealType> |
| template<class _UniformRandomNumberGenerator> |
| typename geometric_distribution<_IntType, _RealType>::result_type |
| geometric_distribution<_IntType, _RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { |
| // About the epsilon thing see this thread: |
| // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html |
| const _RealType __naf = |
| (1 - std::numeric_limits<_RealType>::epsilon()) / 2; |
| // The largest _RealType convertible to _IntType. |
| const _RealType __thr = |
| std::numeric_limits<_IntType>::max() + __naf; |
| |
| _RealType __cand; |
| do |
| __cand = std::ceil(std::log(__urng()) / _M_log_p); |
| while (__cand >= __thr); |
| |
| return result_type(__cand + __naf); |
| } |
| |
| template<typename _IntType, typename _RealType, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const geometric_distribution<_IntType, _RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__os.widen(' ')); |
| __os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10); |
| |
| __os << __x.p(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| |
| template<typename _IntType, typename _RealType> |
| void |
| poisson_distribution<_IntType, _RealType>:: |
| _M_initialize() |
| { |
| #if _GLIBCXX_USE_C99_MATH_TR1 |
| if (_M_mean >= 12) |
| { |
| const _RealType __m = std::floor(_M_mean); |
| _M_lm_thr = std::log(_M_mean); |
| _M_lfm = std::tr1::lgamma(__m + 1); |
| _M_sm = std::sqrt(__m); |
| |
| const _RealType __pi_4 = 0.7853981633974483096156608458198757L; |
| const _RealType __dx = std::sqrt(2 * __m * std::log(32 * __m |
| / __pi_4)); |
| _M_d = std::tr1::round(std::max(_RealType(6), |
| std::min(__m, __dx))); |
| const _RealType __cx = 2 * __m + _M_d; |
| _M_scx = std::sqrt(__cx / 2); |
| _M_1cx = 1 / __cx; |
| |
| _M_c2b = std::sqrt(__pi_4 * __cx) * std::exp(_M_1cx); |
| _M_cb = 2 * __cx * std::exp(-_M_d * _M_1cx * (1 + _M_d / 2)) / _M_d; |
| } |
| else |
| #endif |
| _M_lm_thr = std::exp(-_M_mean); |
| } |
| |
| /** |
| * A rejection algorithm when mean >= 12 and a simple method based |
| * upon the multiplication of uniform random variates otherwise. |
| * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1 |
| * is defined. |
| * |
| * Reference: |
| * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
| * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!). |
| */ |
| template<typename _IntType, typename _RealType> |
| template<class _UniformRandomNumberGenerator> |
| typename poisson_distribution<_IntType, _RealType>::result_type |
| poisson_distribution<_IntType, _RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { |
| #if _GLIBCXX_USE_C99_MATH_TR1 |
| if (_M_mean >= 12) |
| { |
| _RealType __x; |
| |
| // See comments above... |
| const _RealType __naf = |
| (1 - std::numeric_limits<_RealType>::epsilon()) / 2; |
| const _RealType __thr = |
| std::numeric_limits<_IntType>::max() + __naf; |
| |
| const _RealType __m = std::floor(_M_mean); |
| // sqrt(pi / 2) |
| const _RealType __spi_2 = 1.2533141373155002512078826424055226L; |
| const _RealType __c1 = _M_sm * __spi_2; |
| const _RealType __c2 = _M_c2b + __c1; |
| const _RealType __c3 = __c2 + 1; |
| const _RealType __c4 = __c3 + 1; |
| // e^(1 / 78) |
| const _RealType __e178 = 1.0129030479320018583185514777512983L; |
| const _RealType __c5 = __c4 + __e178; |
| const _RealType __c = _M_cb + __c5; |
| const _RealType __2cx = 2 * (2 * __m + _M_d); |
| |
| bool __reject = true; |
| do |
| { |
| const _RealType __u = __c * __urng(); |
| const _RealType __e = -std::log(__urng()); |
| |
| _RealType __w = 0.0; |
| |
| if (__u <= __c1) |
| { |
| const _RealType __n = _M_nd(__urng); |
| const _RealType __y = -std::abs(__n) * _M_sm - 1; |
| __x = std::floor(__y); |
| __w = -__n * __n / 2; |
| if (__x < -__m) |
| continue; |
| } |
| else if (__u <= __c2) |
| { |
| const _RealType __n = _M_nd(__urng); |
| const _RealType __y = 1 + std::abs(__n) * _M_scx; |
| __x = std::ceil(__y); |
| __w = __y * (2 - __y) * _M_1cx; |
| if (__x > _M_d) |
| continue; |
| } |
| else if (__u <= __c3) |
| // NB: This case not in the book, nor in the Errata, |
| // but should be ok... |
| __x = -1; |
| else if (__u <= __c4) |
| __x = 0; |
| else if (__u <= __c5) |
| __x = 1; |
| else |
| { |
| const _RealType __v = -std::log(__urng()); |
| const _RealType __y = _M_d + __v * __2cx / _M_d; |
| __x = std::ceil(__y); |
| __w = -_M_d * _M_1cx * (1 + __y / 2); |
| } |
| |
| __reject = (__w - __e - __x * _M_lm_thr |
| > _M_lfm - std::tr1::lgamma(__x + __m + 1)); |
| |
| __reject |= __x + __m >= __thr; |
| |
| } while (__reject); |
| |
| return result_type(__x + __m + __naf); |
| } |
| else |
| #endif |
| { |
| _IntType __x = 0; |
| _RealType __prod = 1.0; |
| |
| do |
| { |
| __prod *= __urng(); |
| __x += 1; |
| } |
| while (__prod > _M_lm_thr); |
| |
| return __x - 1; |
| } |
| } |
| |
| template<typename _IntType, typename _RealType, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const poisson_distribution<_IntType, _RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10); |
| |
| __os << __x.mean() << __space << __x._M_nd; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _IntType, typename _RealType, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| poisson_distribution<_IntType, _RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::skipws); |
| |
| __is >> __x._M_mean >> __x._M_nd; |
| __x._M_initialize(); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _IntType, typename _RealType> |
| void |
| binomial_distribution<_IntType, _RealType>:: |
| _M_initialize() |
| { |
| const _RealType __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p; |
| |
| _M_easy = true; |
| |
| #if _GLIBCXX_USE_C99_MATH_TR1 |
| if (_M_t * __p12 >= 8) |
| { |
| _M_easy = false; |
| const _RealType __np = std::floor(_M_t * __p12); |
| const _RealType __pa = __np / _M_t; |
| const _RealType __1p = 1 - __pa; |
| |
| const _RealType __pi_4 = 0.7853981633974483096156608458198757L; |
| const _RealType __d1x = |
| std::sqrt(__np * __1p * std::log(32 * __np |
| / (81 * __pi_4 * __1p))); |
| _M_d1 = std::tr1::round(std::max(_RealType(1), __d1x)); |
| const _RealType __d2x = |
| std::sqrt(__np * __1p * std::log(32 * _M_t * __1p |
| / (__pi_4 * __pa))); |
| _M_d2 = std::tr1::round(std::max(_RealType(1), __d2x)); |
| |
| // sqrt(pi / 2) |
| const _RealType __spi_2 = 1.2533141373155002512078826424055226L; |
| _M_s1 = std::sqrt(__np * __1p) * (1 + _M_d1 / (4 * __np)); |
| _M_s2 = std::sqrt(__np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p)); |
| _M_c = 2 * _M_d1 / __np; |
| _M_a1 = std::exp(_M_c) * _M_s1 * __spi_2; |
| const _RealType __a12 = _M_a1 + _M_s2 * __spi_2; |
| const _RealType __s1s = _M_s1 * _M_s1; |
| _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p)) |
| * 2 * __s1s / _M_d1 |
| * std::exp(-_M_d1 * _M_d1 / (2 * __s1s))); |
| const _RealType __s2s = _M_s2 * _M_s2; |
| _M_s = (_M_a123 + 2 * __s2s / _M_d2 |
| * std::exp(-_M_d2 * _M_d2 / (2 * __s2s))); |
| _M_lf = (std::tr1::lgamma(__np + 1) |
| + std::tr1::lgamma(_M_t - __np + 1)); |
| _M_lp1p = std::log(__pa / __1p); |
| |
| _M_q = -std::log(1 - (__p12 - __pa) / __1p); |
| } |
| else |
| #endif |
| _M_q = -std::log(1 - __p12); |
| } |
| |
| template<typename _IntType, typename _RealType> |
| template<class _UniformRandomNumberGenerator> |
| typename binomial_distribution<_IntType, _RealType>::result_type |
| binomial_distribution<_IntType, _RealType>:: |
| _M_waiting(_UniformRandomNumberGenerator& __urng, _IntType __t) |
| { |
| _IntType __x = 0; |
| _RealType __sum = 0; |
| |
| do |
| { |
| const _RealType __e = -std::log(__urng()); |
| __sum += __e / (__t - __x); |
| __x += 1; |
| } |
| while (__sum <= _M_q); |
| |
| return __x - 1; |
| } |
| |
| /** |
| * A rejection algorithm when t * p >= 8 and a simple waiting time |
| * method - the second in the referenced book - otherwise. |
| * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1 |
| * is defined. |
| * |
| * Reference: |
| * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
| * New York, 1986, Ch. X, Sect. 4 (+ Errata!). |
| */ |
| template<typename _IntType, typename _RealType> |
| template<class _UniformRandomNumberGenerator> |
| typename binomial_distribution<_IntType, _RealType>::result_type |
| binomial_distribution<_IntType, _RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { |
| result_type __ret; |
| const _RealType __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p; |
| |
| #if _GLIBCXX_USE_C99_MATH_TR1 |
| if (!_M_easy) |
| { |
| _RealType __x; |
| |
| // See comments above... |
| const _RealType __naf = |
| (1 - std::numeric_limits<_RealType>::epsilon()) / 2; |
| const _RealType __thr = |
| std::numeric_limits<_IntType>::max() + __naf; |
| |
| const _RealType __np = std::floor(_M_t * __p12); |
| const _RealType __pa = __np / _M_t; |
| |
| // sqrt(pi / 2) |
| const _RealType __spi_2 = 1.2533141373155002512078826424055226L; |
| const _RealType __a1 = _M_a1; |
| const _RealType __a12 = __a1 + _M_s2 * __spi_2; |
| const _RealType __a123 = _M_a123; |
| const _RealType __s1s = _M_s1 * _M_s1; |
| const _RealType __s2s = _M_s2 * _M_s2; |
| |
| bool __reject; |
| do |
| { |
| const _RealType __u = _M_s * __urng(); |
| |
| _RealType __v; |
| |
| if (__u <= __a1) |
| { |
| const _RealType __n = _M_nd(__urng); |
| const _RealType __y = _M_s1 * std::abs(__n); |
| __reject = __y >= _M_d1; |
| if (!__reject) |
| { |
| const _RealType __e = -std::log(__urng()); |
| __x = std::floor(__y); |
| __v = -__e - __n * __n / 2 + _M_c; |
| } |
| } |
| else if (__u <= __a12) |
| { |
| const _RealType __n = _M_nd(__urng); |
| const _RealType __y = _M_s2 * std::abs(__n); |
| __reject = __y >= _M_d2; |
| if (!__reject) |
| { |
| const _RealType __e = -std::log(__urng()); |
| __x = std::floor(-__y); |
| __v = -__e - __n * __n / 2; |
| } |
| } |
| else if (__u <= __a123) |
| { |
| const _RealType __e1 = -std::log(__urng()); |
| const _RealType __e2 = -std::log(__urng()); |
| |
| const _RealType __y = _M_d1 + 2 * __s1s * __e1 / _M_d1; |
| __x = std::floor(__y); |
| __v = (-__e2 + _M_d1 * (1 / (_M_t - __np) |
| -__y / (2 * __s1s))); |
| __reject = false; |
| } |
| else |
| { |
| const _RealType __e1 = -std::log(__urng()); |
| const _RealType __e2 = -std::log(__urng()); |
| |
| const _RealType __y = _M_d2 + 2 * __s2s * __e1 / _M_d2; |
| __x = std::floor(-__y); |
| __v = -__e2 - _M_d2 * __y / (2 * __s2s); |
| __reject = false; |
| } |
| |
| __reject = __reject || __x < -__np || __x > _M_t - __np; |
| if (!__reject) |
| { |
| const _RealType __lfx = |
| std::tr1::lgamma(__np + __x + 1) |
| + std::tr1::lgamma(_M_t - (__np + __x) + 1); |
| __reject = __v > _M_lf - __lfx + __x * _M_lp1p; |
| } |
| |
| __reject |= __x + __np >= __thr; |
| } |
| while (__reject); |
| |
| __x += __np + __naf; |
| |
| const _IntType __z = _M_waiting(__urng, _M_t - _IntType(__x)); |
| __ret = _IntType(__x) + __z; |
| } |
| else |
| #endif |
| __ret = _M_waiting(__urng, _M_t); |
| |
| if (__p12 != _M_p) |
| __ret = _M_t - __ret; |
| return __ret; |
| } |
| |
| template<typename _IntType, typename _RealType, |
| typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const binomial_distribution<_IntType, _RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10); |
| |
| __os << __x.t() << __space << __x.p() |
| << __space << __x._M_nd; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _IntType, typename _RealType, |
| typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| binomial_distribution<_IntType, _RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| __is >> __x._M_t >> __x._M_p >> __x._M_nd; |
| __x._M_initialize(); |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const uniform_real<_RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10); |
| |
| __os << __x.min() << __space << __x.max(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| uniform_real<_RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::skipws); |
| |
| __is >> __x._M_min >> __x._M_max; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const exponential_distribution<_RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__os.widen(' ')); |
| __os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10); |
| |
| __os << __x.lambda(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| |
| /** |
| * Polar method due to Marsaglia. |
| * |
| * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
| * New York, 1986, Ch. V, Sect. 4.4. |
| */ |
| template<typename _RealType> |
| template<class _UniformRandomNumberGenerator> |
| typename normal_distribution<_RealType>::result_type |
| normal_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { |
| result_type __ret; |
| |
| if (_M_saved_available) |
| { |
| _M_saved_available = false; |
| __ret = _M_saved; |
| } |
| else |
| { |
| result_type __x, __y, __r2; |
| do |
| { |
| __x = result_type(2.0) * __urng() - 1.0; |
| __y = result_type(2.0) * __urng() - 1.0; |
| __r2 = __x * __x + __y * __y; |
| } |
| while (__r2 > 1.0 || __r2 == 0.0); |
| |
| const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
| _M_saved = __x * __mult; |
| _M_saved_available = true; |
| __ret = __y * __mult; |
| } |
| |
| __ret = __ret * _M_sigma + _M_mean; |
| return __ret; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const normal_distribution<_RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| const _CharT __space = __os.widen(' '); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__space); |
| __os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10); |
| |
| __os << __x._M_saved_available << __space |
| << __x.mean() << __space |
| << __x.sigma(); |
| if (__x._M_saved_available) |
| __os << __space << __x._M_saved; |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_istream<_CharT, _Traits>& |
| operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| normal_distribution<_RealType>& __x) |
| { |
| typedef std::basic_istream<_CharT, _Traits> __istream_type; |
| typedef typename __istream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __is.flags(); |
| __is.flags(__ios_base::dec | __ios_base::skipws); |
| |
| __is >> __x._M_saved_available >> __x._M_mean |
| >> __x._M_sigma; |
| if (__x._M_saved_available) |
| __is >> __x._M_saved; |
| |
| __is.flags(__flags); |
| return __is; |
| } |
| |
| |
| template<typename _RealType> |
| void |
| gamma_distribution<_RealType>:: |
| _M_initialize() |
| { |
| if (_M_alpha >= 1) |
| _M_l_d = std::sqrt(2 * _M_alpha - 1); |
| else |
| _M_l_d = (std::pow(_M_alpha, _M_alpha / (1 - _M_alpha)) |
| * (1 - _M_alpha)); |
| } |
| |
| /** |
| * Cheng's rejection algorithm GB for alpha >= 1 and a modification |
| * of Vaduva's rejection from Weibull algorithm due to Devroye for |
| * alpha < 1. |
| * |
| * References: |
| * Cheng, R. C. The Generation of Gamma Random Variables with Non-integral |
| * Shape Parameter. Applied Statistics, 26, 71-75, 1977. |
| * |
| * Vaduva, I. Computer Generation of Gamma Gandom Variables by Rejection |
| * and Composition Procedures. Math. Operationsforschung and Statistik, |
| * Series in Statistics, 8, 545-576, 1977. |
| * |
| * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
| * New York, 1986, Ch. IX, Sect. 3.4 (+ Errata!). |
| */ |
| template<typename _RealType> |
| template<class _UniformRandomNumberGenerator> |
| typename gamma_distribution<_RealType>::result_type |
| gamma_distribution<_RealType>:: |
| operator()(_UniformRandomNumberGenerator& __urng) |
| { |
| result_type __x; |
| |
| bool __reject; |
| if (_M_alpha >= 1) |
| { |
| // alpha - log(4) |
| const result_type __b = _M_alpha |
| - result_type(1.3862943611198906188344642429163531L); |
| const result_type __c = _M_alpha + _M_l_d; |
| const result_type __1l = 1 / _M_l_d; |
| |
| // 1 + log(9 / 2) |
| const result_type __k = 2.5040773967762740733732583523868748L; |
| |
| do |
| { |
| const result_type __u = __urng(); |
| const result_type __v = __urng(); |
| |
| const result_type __y = __1l * std::log(__v / (1 - __v)); |
| __x = _M_alpha * std::exp(__y); |
| |
| const result_type __z = __u * __v * __v; |
| const result_type __r = __b + __c * __y - __x; |
| |
| __reject = __r < result_type(4.5) * __z - __k; |
| if (__reject) |
| __reject = __r < std::log(__z); |
| } |
| while (__reject); |
| } |
| else |
| { |
| const result_type __c = 1 / _M_alpha; |
| |
| do |
| { |
| const result_type __z = -std::log(__urng()); |
| const result_type __e = -std::log(__urng()); |
| |
| __x = std::pow(__z, __c); |
| |
| __reject = __z + __e < _M_l_d + __x; |
| } |
| while (__reject); |
| } |
| |
| return __x; |
| } |
| |
| template<typename _RealType, typename _CharT, typename _Traits> |
| std::basic_ostream<_CharT, _Traits>& |
| operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| const gamma_distribution<_RealType>& __x) |
| { |
| typedef std::basic_ostream<_CharT, _Traits> __ostream_type; |
| typedef typename __ostream_type::ios_base __ios_base; |
| |
| const typename __ios_base::fmtflags __flags = __os.flags(); |
| const _CharT __fill = __os.fill(); |
| const std::streamsize __precision = __os.precision(); |
| __os.flags(__ios_base::scientific | __ios_base::left); |
| __os.fill(__os.widen(' ')); |
| __os.precision(__gnu_cxx::__numeric_traits<_RealType>::__max_digits10); |
| |
| __os << __x.alpha(); |
| |
| __os.flags(__flags); |
| __os.fill(__fill); |
| __os.precision(__precision); |
| return __os; |
| } |
| } |
| |
| _GLIBCXX_END_NAMESPACE_VERSION |
| } |
| |
| #endif |