| // Allocator details. |
| |
| // Copyright (C) 2004-2020 Free Software Foundation, Inc. |
| // |
| // This file is part of the GNU ISO C++ Library. This library is free |
| // software; you can redistribute it and/or modify it under the |
| // terms of the GNU General Public License as published by the |
| // Free Software Foundation; either version 3, or (at your option) |
| // any later version. |
| |
| // This library is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // Under Section 7 of GPL version 3, you are granted additional |
| // permissions described in the GCC Runtime Library Exception, version |
| // 3.1, as published by the Free Software Foundation. |
| |
| // You should have received a copy of the GNU General Public License and |
| // a copy of the GCC Runtime Library Exception along with this program; |
| // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| // <http://www.gnu.org/licenses/>. |
| |
| // |
| // ISO C++ 14882: |
| // |
| |
| #include <bits/c++config.h> |
| #include <ext/concurrence.h> |
| #include <ext/mt_allocator.h> |
| #include <cstring> |
| |
| // The include file is needed for uintptr_t. If this file does not compile, |
| // check to make sure the target has <stdint.h> and that it provides |
| // uintptr_t. |
| #include <stdint.h> |
| |
| namespace |
| { |
| #ifdef __GTHREADS |
| struct __freelist |
| { |
| typedef __gnu_cxx::__pool<true>::_Thread_record _Thread_record; |
| _Thread_record* _M_thread_freelist; |
| _Thread_record* _M_thread_freelist_array; |
| size_t _M_max_threads; |
| __gthread_key_t _M_key; |
| |
| ~__freelist() |
| { |
| if (_M_thread_freelist_array) |
| { |
| __gthread_key_delete(_M_key); |
| ::operator delete(static_cast<void*>(_M_thread_freelist_array)); |
| _M_thread_freelist = 0; |
| } |
| } |
| }; |
| |
| __freelist& |
| get_freelist() |
| { |
| static __freelist freelist; |
| return freelist; |
| } |
| |
| __gnu_cxx::__mutex& |
| get_freelist_mutex() |
| { |
| static __gnu_cxx::__mutex freelist_mutex; |
| return freelist_mutex; |
| } |
| |
| static void |
| _M_destroy_thread_key(void* __id) |
| { |
| // Return this thread id record to the front of thread_freelist. |
| __freelist& freelist = get_freelist(); |
| { |
| __gnu_cxx::__scoped_lock sentry(get_freelist_mutex()); |
| uintptr_t _M_id = reinterpret_cast<uintptr_t>(__id); |
| |
| typedef __gnu_cxx::__pool<true>::_Thread_record _Thread_record; |
| _Thread_record* __tr = &freelist._M_thread_freelist_array[_M_id - 1]; |
| __tr->_M_next = freelist._M_thread_freelist; |
| freelist._M_thread_freelist = __tr; |
| } |
| } |
| #endif |
| } // anonymous namespace |
| |
| namespace __gnu_cxx _GLIBCXX_VISIBILITY(default) |
| { |
| _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| |
| void |
| __pool<false>::_M_destroy() throw() |
| { |
| if (_M_init && !_M_options._M_force_new) |
| { |
| for (size_t __n = 0; __n < _M_bin_size; ++__n) |
| { |
| _Bin_record& __bin = _M_bin[__n]; |
| while (__bin._M_address) |
| { |
| _Block_address* __tmp = __bin._M_address->_M_next; |
| ::operator delete(__bin._M_address->_M_initial); |
| __bin._M_address = __tmp; |
| } |
| ::operator delete(__bin._M_first); |
| } |
| ::operator delete(_M_bin); |
| ::operator delete(_M_binmap); |
| } |
| } |
| |
| void |
| __pool<false>::_M_reclaim_block(char* __p, size_t __bytes) throw () |
| { |
| // Round up to power of 2 and figure out which bin to use. |
| const size_t __which = _M_binmap[__bytes]; |
| _Bin_record& __bin = _M_bin[__which]; |
| |
| char* __c = __p - _M_get_align(); |
| _Block_record* __block = reinterpret_cast<_Block_record*>(__c); |
| |
| // Single threaded application - return to global pool. |
| __block->_M_next = __bin._M_first[0]; |
| __bin._M_first[0] = __block; |
| } |
| |
| char* |
| __pool<false>::_M_reserve_block(size_t __bytes, const size_t __thread_id) |
| { |
| // Round up to power of 2 and figure out which bin to use. |
| const size_t __which = _M_binmap[__bytes]; |
| _Bin_record& __bin = _M_bin[__which]; |
| const _Tune& __options = _M_get_options(); |
| const size_t __bin_size = (__options._M_min_bin << __which) |
| + __options._M_align; |
| size_t __block_count = __options._M_chunk_size - sizeof(_Block_address); |
| __block_count /= __bin_size; |
| |
| // Get a new block dynamically, set it up for use. |
| void* __v = ::operator new(__options._M_chunk_size); |
| _Block_address* __address = static_cast<_Block_address*>(__v); |
| __address->_M_initial = __v; |
| __address->_M_next = __bin._M_address; |
| __bin._M_address = __address; |
| |
| char* __c = static_cast<char*>(__v) + sizeof(_Block_address); |
| _Block_record* __block = reinterpret_cast<_Block_record*>(__c); |
| __bin._M_first[__thread_id] = __block; |
| while (--__block_count > 0) |
| { |
| __c += __bin_size; |
| __block->_M_next = reinterpret_cast<_Block_record*>(__c); |
| __block = __block->_M_next; |
| } |
| __block->_M_next = 0; |
| |
| __block = __bin._M_first[__thread_id]; |
| __bin._M_first[__thread_id] = __block->_M_next; |
| |
| // NB: For alignment reasons, we can't use the first _M_align |
| // bytes, even when sizeof(_Block_record) < _M_align. |
| return reinterpret_cast<char*>(__block) + __options._M_align; |
| } |
| |
| void |
| __pool<false>::_M_initialize() |
| { |
| // _M_force_new must not change after the first allocate(), which |
| // in turn calls this method, so if it's false, it's false forever |
| // and we don't need to return here ever again. |
| if (_M_options._M_force_new) |
| { |
| _M_init = true; |
| return; |
| } |
| |
| // Create the bins. |
| // Calculate the number of bins required based on _M_max_bytes. |
| // _M_bin_size is statically-initialized to one. |
| size_t __bin_size = _M_options._M_min_bin; |
| while (_M_options._M_max_bytes > __bin_size) |
| { |
| __bin_size <<= 1; |
| ++_M_bin_size; |
| } |
| |
| // Setup the bin map for quick lookup of the relevant bin. |
| const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type); |
| _M_binmap = static_cast<_Binmap_type*>(::operator new(__j)); |
| _Binmap_type* __bp = _M_binmap; |
| _Binmap_type __bin_max = _M_options._M_min_bin; |
| _Binmap_type __bint = 0; |
| for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct) |
| { |
| if (__ct > __bin_max) |
| { |
| __bin_max <<= 1; |
| ++__bint; |
| } |
| *__bp++ = __bint; |
| } |
| |
| // Initialize _M_bin and its members. |
| void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size); |
| _M_bin = static_cast<_Bin_record*>(__v); |
| for (size_t __n = 0; __n < _M_bin_size; ++__n) |
| { |
| _Bin_record& __bin = _M_bin[__n]; |
| __v = ::operator new(sizeof(_Block_record*)); |
| __bin._M_first = static_cast<_Block_record**>(__v); |
| __bin._M_first[0] = 0; |
| __bin._M_address = 0; |
| } |
| _M_init = true; |
| } |
| |
| |
| #ifdef __GTHREADS |
| void |
| __pool<true>::_M_destroy() throw() |
| { |
| if (_M_init && !_M_options._M_force_new) |
| { |
| if (__gthread_active_p()) |
| { |
| for (size_t __n = 0; __n < _M_bin_size; ++__n) |
| { |
| _Bin_record& __bin = _M_bin[__n]; |
| while (__bin._M_address) |
| { |
| _Block_address* __tmp = __bin._M_address->_M_next; |
| ::operator delete(__bin._M_address->_M_initial); |
| __bin._M_address = __tmp; |
| } |
| ::operator delete(__bin._M_first); |
| ::operator delete(__bin._M_free); |
| ::operator delete(__bin._M_used); |
| ::operator delete(__bin._M_mutex); |
| } |
| } |
| else |
| { |
| for (size_t __n = 0; __n < _M_bin_size; ++__n) |
| { |
| _Bin_record& __bin = _M_bin[__n]; |
| while (__bin._M_address) |
| { |
| _Block_address* __tmp = __bin._M_address->_M_next; |
| ::operator delete(__bin._M_address->_M_initial); |
| __bin._M_address = __tmp; |
| } |
| ::operator delete(__bin._M_first); |
| } |
| } |
| ::operator delete(_M_bin); |
| ::operator delete(_M_binmap); |
| } |
| } |
| |
| void |
| __pool<true>::_M_reclaim_block(char* __p, size_t __bytes) throw () |
| { |
| // Round up to power of 2 and figure out which bin to use. |
| const size_t __which = _M_binmap[__bytes]; |
| const _Bin_record& __bin = _M_bin[__which]; |
| |
| // Know __p not null, assume valid block. |
| char* __c = __p - _M_get_align(); |
| _Block_record* __block = reinterpret_cast<_Block_record*>(__c); |
| if (__gthread_active_p()) |
| { |
| // Calculate the number of records to remove from our freelist: |
| // in order to avoid too much contention we wait until the |
| // number of records is "high enough". |
| const size_t __thread_id = _M_get_thread_id(); |
| const _Tune& __options = _M_get_options(); |
| const size_t __limit = (100 * (_M_bin_size - __which) |
| * __options._M_freelist_headroom); |
| |
| size_t __remove = __bin._M_free[__thread_id]; |
| __remove *= __options._M_freelist_headroom; |
| |
| // NB: We assume that reads of _Atomic_words are atomic. |
| const size_t __max_threads = __options._M_max_threads + 1; |
| _Atomic_word* const __reclaimed_base = |
| reinterpret_cast<_Atomic_word*>(__bin._M_used + __max_threads); |
| const _Atomic_word __reclaimed = __reclaimed_base[__thread_id]; |
| const size_t __net_used = __bin._M_used[__thread_id] - __reclaimed; |
| |
| // NB: For performance sake we don't resync every time, in order |
| // to spare atomic ops. Note that if __reclaimed increased by, |
| // say, 1024, since the last sync, it means that the other |
| // threads executed the atomic in the else below at least the |
| // same number of times (at least, because _M_reserve_block may |
| // have decreased the counter), therefore one more cannot hurt. |
| if (__reclaimed > 1024) |
| { |
| __bin._M_used[__thread_id] -= __reclaimed; |
| __atomic_add(&__reclaimed_base[__thread_id], -__reclaimed); |
| } |
| |
| if (__remove >= __net_used) |
| __remove -= __net_used; |
| else |
| __remove = 0; |
| if (__remove > __limit && __remove > __bin._M_free[__thread_id]) |
| { |
| _Block_record* __first = __bin._M_first[__thread_id]; |
| _Block_record* __tmp = __first; |
| __remove /= __options._M_freelist_headroom; |
| const size_t __removed = __remove; |
| while (--__remove > 0) |
| __tmp = __tmp->_M_next; |
| __bin._M_first[__thread_id] = __tmp->_M_next; |
| __bin._M_free[__thread_id] -= __removed; |
| |
| __gthread_mutex_lock(__bin._M_mutex); |
| __tmp->_M_next = __bin._M_first[0]; |
| __bin._M_first[0] = __first; |
| __bin._M_free[0] += __removed; |
| __gthread_mutex_unlock(__bin._M_mutex); |
| } |
| |
| // Return this block to our list and update counters and |
| // owner id as needed. |
| if (__block->_M_thread_id == __thread_id) |
| --__bin._M_used[__thread_id]; |
| else |
| __atomic_add(&__reclaimed_base[__block->_M_thread_id], 1); |
| |
| __block->_M_next = __bin._M_first[__thread_id]; |
| __bin._M_first[__thread_id] = __block; |
| |
| ++__bin._M_free[__thread_id]; |
| } |
| else |
| { |
| // Not using threads, so single threaded application - return |
| // to global pool. |
| __block->_M_next = __bin._M_first[0]; |
| __bin._M_first[0] = __block; |
| } |
| } |
| |
| char* |
| __pool<true>::_M_reserve_block(size_t __bytes, const size_t __thread_id) |
| { |
| // Round up to power of 2 and figure out which bin to use. |
| const size_t __which = _M_binmap[__bytes]; |
| const _Tune& __options = _M_get_options(); |
| const size_t __bin_size = ((__options._M_min_bin << __which) |
| + __options._M_align); |
| size_t __block_count = __options._M_chunk_size - sizeof(_Block_address); |
| __block_count /= __bin_size; |
| |
| // Are we using threads? |
| // - Yes, check if there are free blocks on the global |
| // list. If so, grab up to __block_count blocks in one |
| // lock and change ownership. If the global list is |
| // empty, we allocate a new chunk and add those blocks |
| // directly to our own freelist (with us as owner). |
| // - No, all operations are made directly to global pool 0 |
| // no need to lock or change ownership but check for free |
| // blocks on global list (and if not add new ones) and |
| // get the first one. |
| _Bin_record& __bin = _M_bin[__which]; |
| _Block_record* __block = 0; |
| if (__gthread_active_p()) |
| { |
| // Resync the _M_used counters. |
| const size_t __max_threads = __options._M_max_threads + 1; |
| _Atomic_word* const __reclaimed_base = |
| reinterpret_cast<_Atomic_word*>(__bin._M_used + __max_threads); |
| const _Atomic_word __reclaimed = __reclaimed_base[__thread_id]; |
| __bin._M_used[__thread_id] -= __reclaimed; |
| __atomic_add(&__reclaimed_base[__thread_id], -__reclaimed); |
| |
| __gthread_mutex_lock(__bin._M_mutex); |
| if (__bin._M_first[0] == 0) |
| { |
| void* __v = ::operator new(__options._M_chunk_size); |
| _Block_address* __address = static_cast<_Block_address*>(__v); |
| __address->_M_initial = __v; |
| __address->_M_next = __bin._M_address; |
| __bin._M_address = __address; |
| __gthread_mutex_unlock(__bin._M_mutex); |
| |
| // No need to hold the lock when we are adding a whole |
| // chunk to our own list. |
| char* __c = static_cast<char*>(__v) + sizeof(_Block_address); |
| __block = reinterpret_cast<_Block_record*>(__c); |
| __bin._M_free[__thread_id] = __block_count; |
| __bin._M_first[__thread_id] = __block; |
| while (--__block_count > 0) |
| { |
| __c += __bin_size; |
| __block->_M_next = reinterpret_cast<_Block_record*>(__c); |
| __block = __block->_M_next; |
| } |
| __block->_M_next = 0; |
| } |
| else |
| { |
| // Is the number of required blocks greater than or equal |
| // to the number that can be provided by the global free |
| // list? |
| __bin._M_first[__thread_id] = __bin._M_first[0]; |
| if (__block_count >= __bin._M_free[0]) |
| { |
| __bin._M_free[__thread_id] = __bin._M_free[0]; |
| __bin._M_free[0] = 0; |
| __bin._M_first[0] = 0; |
| } |
| else |
| { |
| __bin._M_free[__thread_id] = __block_count; |
| __bin._M_free[0] -= __block_count; |
| __block = __bin._M_first[0]; |
| while (--__block_count > 0) |
| __block = __block->_M_next; |
| __bin._M_first[0] = __block->_M_next; |
| __block->_M_next = 0; |
| } |
| __gthread_mutex_unlock(__bin._M_mutex); |
| } |
| } |
| else |
| { |
| void* __v = ::operator new(__options._M_chunk_size); |
| _Block_address* __address = static_cast<_Block_address*>(__v); |
| __address->_M_initial = __v; |
| __address->_M_next = __bin._M_address; |
| __bin._M_address = __address; |
| |
| char* __c = static_cast<char*>(__v) + sizeof(_Block_address); |
| __block = reinterpret_cast<_Block_record*>(__c); |
| __bin._M_first[0] = __block; |
| while (--__block_count > 0) |
| { |
| __c += __bin_size; |
| __block->_M_next = reinterpret_cast<_Block_record*>(__c); |
| __block = __block->_M_next; |
| } |
| __block->_M_next = 0; |
| } |
| |
| __block = __bin._M_first[__thread_id]; |
| __bin._M_first[__thread_id] = __block->_M_next; |
| |
| if (__gthread_active_p()) |
| { |
| __block->_M_thread_id = __thread_id; |
| --__bin._M_free[__thread_id]; |
| ++__bin._M_used[__thread_id]; |
| } |
| |
| // NB: For alignment reasons, we can't use the first _M_align |
| // bytes, even when sizeof(_Block_record) < _M_align. |
| return reinterpret_cast<char*>(__block) + __options._M_align; |
| } |
| |
| void |
| __pool<true>::_M_initialize() |
| { |
| // _M_force_new must not change after the first allocate(), |
| // which in turn calls this method, so if it's false, it's false |
| // forever and we don't need to return here ever again. |
| if (_M_options._M_force_new) |
| { |
| _M_init = true; |
| return; |
| } |
| |
| // Create the bins. |
| // Calculate the number of bins required based on _M_max_bytes. |
| // _M_bin_size is statically-initialized to one. |
| size_t __bin_size = _M_options._M_min_bin; |
| while (_M_options._M_max_bytes > __bin_size) |
| { |
| __bin_size <<= 1; |
| ++_M_bin_size; |
| } |
| |
| // Setup the bin map for quick lookup of the relevant bin. |
| const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type); |
| _M_binmap = static_cast<_Binmap_type*>(::operator new(__j)); |
| _Binmap_type* __bp = _M_binmap; |
| _Binmap_type __bin_max = _M_options._M_min_bin; |
| _Binmap_type __bint = 0; |
| for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct) |
| { |
| if (__ct > __bin_max) |
| { |
| __bin_max <<= 1; |
| ++__bint; |
| } |
| *__bp++ = __bint; |
| } |
| |
| // Initialize _M_bin and its members. |
| void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size); |
| _M_bin = static_cast<_Bin_record*>(__v); |
| |
| // If __gthread_active_p() create and initialize the list of |
| // free thread ids. Single threaded applications use thread id 0 |
| // directly and have no need for this. |
| if (__gthread_active_p()) |
| { |
| __freelist& freelist = get_freelist(); |
| { |
| __gnu_cxx::__scoped_lock sentry(get_freelist_mutex()); |
| |
| if (!freelist._M_thread_freelist_array |
| || freelist._M_max_threads < _M_options._M_max_threads) |
| { |
| const size_t __k = sizeof(_Thread_record) |
| * _M_options._M_max_threads; |
| __v = ::operator new(__k); |
| _M_thread_freelist = static_cast<_Thread_record*>(__v); |
| |
| // NOTE! The first assignable thread id is 1 since the |
| // global pool uses id 0 |
| size_t __i; |
| for (__i = 1; __i < _M_options._M_max_threads; ++__i) |
| { |
| _Thread_record& __tr = _M_thread_freelist[__i - 1]; |
| __tr._M_next = &_M_thread_freelist[__i]; |
| __tr._M_id = __i; |
| } |
| |
| // Set last record. |
| _M_thread_freelist[__i - 1]._M_next = 0; |
| _M_thread_freelist[__i - 1]._M_id = __i; |
| |
| if (!freelist._M_thread_freelist_array) |
| { |
| // Initialize per thread key to hold pointer to |
| // _M_thread_freelist. |
| __gthread_key_create(&freelist._M_key, |
| ::_M_destroy_thread_key); |
| freelist._M_thread_freelist = _M_thread_freelist; |
| } |
| else |
| { |
| _Thread_record* _M_old_freelist |
| = freelist._M_thread_freelist; |
| _Thread_record* _M_old_array |
| = freelist._M_thread_freelist_array; |
| freelist._M_thread_freelist |
| = &_M_thread_freelist[_M_old_freelist - _M_old_array]; |
| while (_M_old_freelist) |
| { |
| size_t next_id; |
| if (_M_old_freelist->_M_next) |
| next_id = _M_old_freelist->_M_next - _M_old_array; |
| else |
| next_id = freelist._M_max_threads; |
| _M_thread_freelist[_M_old_freelist->_M_id - 1]._M_next |
| = &_M_thread_freelist[next_id]; |
| _M_old_freelist = _M_old_freelist->_M_next; |
| } |
| ::operator delete(static_cast<void*>(_M_old_array)); |
| } |
| freelist._M_thread_freelist_array = _M_thread_freelist; |
| freelist._M_max_threads = _M_options._M_max_threads; |
| } |
| } |
| |
| const size_t __max_threads = _M_options._M_max_threads + 1; |
| for (size_t __n = 0; __n < _M_bin_size; ++__n) |
| { |
| _Bin_record& __bin = _M_bin[__n]; |
| __v = ::operator new(sizeof(_Block_record*) * __max_threads); |
| std::memset(__v, 0, sizeof(_Block_record*) * __max_threads); |
| __bin._M_first = static_cast<_Block_record**>(__v); |
| |
| __bin._M_address = 0; |
| |
| __v = ::operator new(sizeof(size_t) * __max_threads); |
| std::memset(__v, 0, sizeof(size_t) * __max_threads); |
| |
| __bin._M_free = static_cast<size_t*>(__v); |
| |
| __v = ::operator new(sizeof(size_t) * __max_threads |
| + sizeof(_Atomic_word) * __max_threads); |
| std::memset(__v, 0, (sizeof(size_t) * __max_threads |
| + sizeof(_Atomic_word) * __max_threads)); |
| __bin._M_used = static_cast<size_t*>(__v); |
| |
| __v = ::operator new(sizeof(__gthread_mutex_t)); |
| __bin._M_mutex = static_cast<__gthread_mutex_t*>(__v); |
| |
| #ifdef __GTHREAD_MUTEX_INIT |
| { |
| // Do not copy a POSIX/gthr mutex once in use. |
| __gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT; |
| *__bin._M_mutex = __tmp; |
| } |
| #else |
| { __GTHREAD_MUTEX_INIT_FUNCTION(__bin._M_mutex); } |
| #endif |
| } |
| } |
| else |
| { |
| for (size_t __n = 0; __n < _M_bin_size; ++__n) |
| { |
| _Bin_record& __bin = _M_bin[__n]; |
| __v = ::operator new(sizeof(_Block_record*)); |
| __bin._M_first = static_cast<_Block_record**>(__v); |
| __bin._M_first[0] = 0; |
| __bin._M_address = 0; |
| } |
| } |
| _M_init = true; |
| } |
| |
| size_t |
| __pool<true>::_M_get_thread_id() |
| { |
| // If we have thread support and it's active we check the thread |
| // key value and return its id or if it's not set we take the |
| // first record from _M_thread_freelist and sets the key and |
| // returns its id. |
| if (__gthread_active_p()) |
| { |
| __freelist& freelist = get_freelist(); |
| void* v = __gthread_getspecific(freelist._M_key); |
| uintptr_t _M_id = (uintptr_t)v; |
| if (_M_id == 0) |
| { |
| { |
| __gnu_cxx::__scoped_lock sentry(get_freelist_mutex()); |
| if (freelist._M_thread_freelist) |
| { |
| _M_id = freelist._M_thread_freelist->_M_id; |
| freelist._M_thread_freelist |
| = freelist._M_thread_freelist->_M_next; |
| } |
| } |
| |
| __gthread_setspecific(freelist._M_key, (void*)_M_id); |
| } |
| return _M_id >= _M_options._M_max_threads ? 0 : _M_id; |
| } |
| |
| // Otherwise (no thread support or inactive) all requests are |
| // served from the global pool 0. |
| return 0; |
| } |
| |
| // XXX GLIBCXX_ABI Deprecated |
| void |
| __pool<true>::_M_destroy_thread_key(void*) throw () { } |
| |
| // XXX GLIBCXX_ABI Deprecated |
| void |
| __pool<true>::_M_initialize(__destroy_handler) |
| { |
| // _M_force_new must not change after the first allocate(), |
| // which in turn calls this method, so if it's false, it's false |
| // forever and we don't need to return here ever again. |
| if (_M_options._M_force_new) |
| { |
| _M_init = true; |
| return; |
| } |
| |
| // Create the bins. |
| // Calculate the number of bins required based on _M_max_bytes. |
| // _M_bin_size is statically-initialized to one. |
| size_t __bin_size = _M_options._M_min_bin; |
| while (_M_options._M_max_bytes > __bin_size) |
| { |
| __bin_size <<= 1; |
| ++_M_bin_size; |
| } |
| |
| // Setup the bin map for quick lookup of the relevant bin. |
| const size_t __j = (_M_options._M_max_bytes + 1) * sizeof(_Binmap_type); |
| _M_binmap = static_cast<_Binmap_type*>(::operator new(__j)); |
| _Binmap_type* __bp = _M_binmap; |
| _Binmap_type __bin_max = _M_options._M_min_bin; |
| _Binmap_type __bint = 0; |
| for (_Binmap_type __ct = 0; __ct <= _M_options._M_max_bytes; ++__ct) |
| { |
| if (__ct > __bin_max) |
| { |
| __bin_max <<= 1; |
| ++__bint; |
| } |
| *__bp++ = __bint; |
| } |
| |
| // Initialize _M_bin and its members. |
| void* __v = ::operator new(sizeof(_Bin_record) * _M_bin_size); |
| _M_bin = static_cast<_Bin_record*>(__v); |
| |
| // If __gthread_active_p() create and initialize the list of |
| // free thread ids. Single threaded applications use thread id 0 |
| // directly and have no need for this. |
| if (__gthread_active_p()) |
| { |
| __freelist& freelist = get_freelist(); |
| { |
| __gnu_cxx::__scoped_lock sentry(get_freelist_mutex()); |
| |
| if (!freelist._M_thread_freelist_array |
| || freelist._M_max_threads < _M_options._M_max_threads) |
| { |
| const size_t __k = sizeof(_Thread_record) |
| * _M_options._M_max_threads; |
| __v = ::operator new(__k); |
| _M_thread_freelist = static_cast<_Thread_record*>(__v); |
| |
| // NOTE! The first assignable thread id is 1 since the |
| // global pool uses id 0 |
| size_t __i; |
| for (__i = 1; __i < _M_options._M_max_threads; ++__i) |
| { |
| _Thread_record& __tr = _M_thread_freelist[__i - 1]; |
| __tr._M_next = &_M_thread_freelist[__i]; |
| __tr._M_id = __i; |
| } |
| |
| // Set last record. |
| _M_thread_freelist[__i - 1]._M_next = 0; |
| _M_thread_freelist[__i - 1]._M_id = __i; |
| |
| if (!freelist._M_thread_freelist_array) |
| { |
| // Initialize per thread key to hold pointer to |
| // _M_thread_freelist. |
| __gthread_key_create(&freelist._M_key, |
| ::_M_destroy_thread_key); |
| freelist._M_thread_freelist = _M_thread_freelist; |
| } |
| else |
| { |
| _Thread_record* _M_old_freelist |
| = freelist._M_thread_freelist; |
| _Thread_record* _M_old_array |
| = freelist._M_thread_freelist_array; |
| freelist._M_thread_freelist |
| = &_M_thread_freelist[_M_old_freelist - _M_old_array]; |
| while (_M_old_freelist) |
| { |
| size_t next_id; |
| if (_M_old_freelist->_M_next) |
| next_id = _M_old_freelist->_M_next - _M_old_array; |
| else |
| next_id = freelist._M_max_threads; |
| _M_thread_freelist[_M_old_freelist->_M_id - 1]._M_next |
| = &_M_thread_freelist[next_id]; |
| _M_old_freelist = _M_old_freelist->_M_next; |
| } |
| ::operator delete(static_cast<void*>(_M_old_array)); |
| } |
| freelist._M_thread_freelist_array = _M_thread_freelist; |
| freelist._M_max_threads = _M_options._M_max_threads; |
| } |
| } |
| |
| const size_t __max_threads = _M_options._M_max_threads + 1; |
| for (size_t __n = 0; __n < _M_bin_size; ++__n) |
| { |
| _Bin_record& __bin = _M_bin[__n]; |
| __v = ::operator new(sizeof(_Block_record*) * __max_threads); |
| std::memset(__v, 0, sizeof(_Block_record*) * __max_threads); |
| __bin._M_first = static_cast<_Block_record**>(__v); |
| |
| __bin._M_address = 0; |
| |
| __v = ::operator new(sizeof(size_t) * __max_threads); |
| std::memset(__v, 0, sizeof(size_t) * __max_threads); |
| __bin._M_free = static_cast<size_t*>(__v); |
| |
| __v = ::operator new(sizeof(size_t) * __max_threads + |
| sizeof(_Atomic_word) * __max_threads); |
| std::memset(__v, 0, (sizeof(size_t) * __max_threads |
| + sizeof(_Atomic_word) * __max_threads)); |
| __bin._M_used = static_cast<size_t*>(__v); |
| |
| __v = ::operator new(sizeof(__gthread_mutex_t)); |
| __bin._M_mutex = static_cast<__gthread_mutex_t*>(__v); |
| |
| #ifdef __GTHREAD_MUTEX_INIT |
| { |
| // Do not copy a POSIX/gthr mutex once in use. |
| __gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT; |
| *__bin._M_mutex = __tmp; |
| } |
| #else |
| { __GTHREAD_MUTEX_INIT_FUNCTION(__bin._M_mutex); } |
| #endif |
| } |
| } |
| else |
| { |
| for (size_t __n = 0; __n < _M_bin_size; ++__n) |
| { |
| _Bin_record& __bin = _M_bin[__n]; |
| __v = ::operator new(sizeof(_Block_record*)); |
| __bin._M_first = static_cast<_Block_record**>(__v); |
| __bin._M_first[0] = 0; |
| __bin._M_address = 0; |
| } |
| } |
| _M_init = true; |
| } |
| #endif |
| |
| // Instantiations. |
| template class __mt_alloc<char>; |
| template class __mt_alloc<wchar_t>; |
| |
| _GLIBCXX_END_NAMESPACE_VERSION |
| } // namespace |