blob: a53b418f1fc8511223e9b278a37826e558731b12 [file] [log] [blame]
`/* Implementation of the FINDLOC intrinsic
Copyright (C) 2018-2021 Free Software Foundation, Inc.
Contributed by Thomas König <tk@tkoenig.net>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <assert.h>
#if defined (HAVE_'atype_name`)
'header1`
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type dstride;
const 'atype_name` *base;
index_type * restrict dest;
index_type rank;
index_type n;
index_type sz;
rank = GFC_DESCRIPTOR_RANK (array);
if (rank <= 0)
runtime_error ("Rank of array needs to be > 0");
if (retarray->base_addr == NULL)
{
GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
retarray->dtype.rank = 1;
retarray->offset = 0;
retarray->base_addr = xmallocarray (rank, sizeof (index_type));
}
else
{
if (unlikely (compile_options.bounds_check))
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
"FINDLOC");
}
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
dest = retarray->base_addr;
/* Set the return value. */
for (n = 0; n < rank; n++)
dest[n * dstride] = 0;
sz = 1;
for (n = 0; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
sz *= extent[n];
if (extent[n] <= 0)
return;
}
for (n = 0; n < rank; n++)
count[n] = 0;
if (back)
{
base = array->base_addr + (sz - 1) * 'base_mult`'`;
while (1)
{
do
{
if (unlikely('comparison`))
{
for (n = 0; n < rank; n++)
dest[n * dstride] = extent[n] - count[n];
return;
}
base -= sstride[0] * 'base_mult`'`;
} while(++count[0] != extent[0]);
n = 0;
do
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base += sstride[n] * extent[n] * 'base_mult`'`;
n++;
if (n >= rank)
return;
else
{
count[n]++;
base -= sstride[n] * 'base_mult`'`;
}
} while (count[n] == extent[n]);
}
}
else
{
base = array->base_addr;
while (1)
{
do
{
if (unlikely('comparison`))
{
for (n = 0; n < rank; n++)
dest[n * dstride] = count[n] + 1;
return;
}
base += sstride[0] * 'base_mult`'`;
} while(++count[0] != extent[0]);
n = 0;
do
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n] * 'base_mult`'`;
n++;
if (n >= rank)
return;
else
{
count[n]++;
base += sstride[n] * 'base_mult`'`;
}
} while (count[n] == extent[n]);
}
}
return;
}
'header2`
{
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type sstride[GFC_MAX_DIMENSIONS];
index_type mstride[GFC_MAX_DIMENSIONS];
index_type dstride;
const 'atype_name` *base;
index_type * restrict dest;
GFC_LOGICAL_1 *mbase;
index_type rank;
index_type n;
int mask_kind;
index_type sz;
rank = GFC_DESCRIPTOR_RANK (array);
if (rank <= 0)
runtime_error ("Rank of array needs to be > 0");
if (retarray->base_addr == NULL)
{
GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
retarray->dtype.rank = 1;
retarray->offset = 0;
retarray->base_addr = xmallocarray (rank, sizeof (index_type));
}
else
{
if (unlikely (compile_options.bounds_check))
{
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
"FINDLOC");
bounds_equal_extents ((array_t *) mask, (array_t *) array,
"MASK argument", "FINDLOC");
}
}
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
mbase = mask->base_addr;
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
#ifdef HAVE_GFC_LOGICAL_16
|| mask_kind == 16
#endif
)
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
else
internal_error (NULL, "Funny sized logical array");
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
dest = retarray->base_addr;
/* Set the return value. */
for (n = 0; n < rank; n++)
dest[n * dstride] = 0;
sz = 1;
for (n = 0; n < rank; n++)
{
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n);
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
sz *= extent[n];
if (extent[n] <= 0)
return;
}
for (n = 0; n < rank; n++)
count[n] = 0;
if (back)
{
base = array->base_addr + (sz - 1) * 'base_mult`'`;
mbase = mbase + (sz - 1) * mask_kind;
while (1)
{
do
{
if (unlikely(*mbase && 'comparison`))
{
for (n = 0; n < rank; n++)
dest[n * dstride] = extent[n] - count[n];
return;
}
base -= sstride[0] * 'base_mult`'`;
mbase -= mstride[0];
} while(++count[0] != extent[0]);
n = 0;
do
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base += sstride[n] * extent[n] * 'base_mult`'`;
mbase -= mstride[n] * extent[n];
n++;
if (n >= rank)
return;
else
{
count[n]++;
base -= sstride[n] * 'base_mult`'`;
mbase += mstride[n];
}
} while (count[n] == extent[n]);
}
}
else
{
base = array->base_addr;
while (1)
{
do
{
if (unlikely(*mbase && 'comparison`))
{
for (n = 0; n < rank; n++)
dest[n * dstride] = count[n] + 1;
return;
}
base += sstride[0] * 'base_mult`'`;
mbase += mstride[0];
} while(++count[0] != extent[0]);
n = 0;
do
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
base -= sstride[n] * extent[n] * 'base_mult`'`;
mbase -= mstride[n] * extent[n];
n++;
if (n >= rank)
return;
else
{
count[n]++;
base += sstride[n]* 'base_mult`'`;
mbase += mstride[n];
}
} while (count[n] == extent[n]);
}
}
return;
}
'header3`
{
index_type rank;
index_type dstride;
index_type * restrict dest;
index_type n;
if (mask == NULL || *mask)
{
findloc0_'atype_code` (retarray, array, value, back'len_arg`);
return;
}
rank = GFC_DESCRIPTOR_RANK (array);
if (rank <= 0)
internal_error (NULL, "Rank of array needs to be > 0");
if (retarray->base_addr == NULL)
{
GFC_DIMENSION_SET(retarray->dim[0], 0, rank-1, 1);
retarray->dtype.rank = 1;
retarray->offset = 0;
retarray->base_addr = xmallocarray (rank, sizeof (index_type));
}
else if (unlikely (compile_options.bounds_check))
{
bounds_iforeach_return ((array_t *) retarray, (array_t *) array,
"FINDLOC");
}
dstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
dest = retarray->base_addr;
for (n = 0; n<rank; n++)
dest[n * dstride] = 0 ;
}
#endif'