blob: 0f089719082198b56c2a631620cb0799507e166c [file] [log] [blame]
/* Declarations for insn-output.c. These functions are defined in recog.c,
final.c, and varasm.c.
Copyright (C) 1987, 1991, 1994, 1997, 1998,
1999, 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* Compute branch alignments based on frequency information in the CFG. */
extern void compute_alignments PARAMS ((void));
/* Initialize data in final at the beginning of a compilation. */
extern void init_final PARAMS ((const char *));
/* Called at end of source file,
to output the block-profiling table for this entire compilation. */
extern void end_final PARAMS ((const char *));
/* Enable APP processing of subsequent output.
Used before the output from an `asm' statement. */
extern void app_enable PARAMS ((void));
/* Disable APP processing of subsequent output.
Called from varasm.c before most kinds of output. */
extern void app_disable PARAMS ((void));
/* Return the number of slots filled in the current
delayed branch sequence (we don't count the insn needing the
delay slot). Zero if not in a delayed branch sequence. */
extern int dbr_sequence_length PARAMS ((void));
/* Indicate that branch shortening hasn't yet been done. */
extern void init_insn_lengths PARAMS ((void));
/* Obtain the current length of an insn. If branch shortening has been done,
get its actual length. Otherwise, get its maximum length. */
extern int get_attr_length PARAMS ((rtx));
/* Make a pass over all insns and compute their actual lengths by shortening
any branches of variable length if possible. */
extern void shorten_branches PARAMS ((rtx));
/* Output assembler code for the start of a function,
and initialize some of the variables in this file
for the new function. The label for the function and associated
assembler pseudo-ops have already been output in
`assemble_start_function'. */
extern void final_start_function PARAMS ((rtx, FILE *, int));
/* Output assembler code for the end of a function.
For clarity, args are same as those of `final_start_function'
even though not all of them are needed. */
extern void final_end_function PARAMS ((void));
/* Output assembler code for some insns: all or part of a function. */
extern void final PARAMS ((rtx, FILE *, int, int));
/* The final scan for one insn, INSN. Args are same as in `final', except
that INSN is the insn being scanned. Value returned is the next insn to
be scanned. */
extern rtx final_scan_insn PARAMS ((rtx, FILE *, int, int, int));
/* Replace a SUBREG with a REG or a MEM, based on the thing it is a
subreg of. */
extern rtx alter_subreg PARAMS ((rtx *));
/* Report inconsistency between the assembler template and the operands.
In an `asm', it's the user's fault; otherwise, the compiler's fault. */
extern void output_operand_lossage PARAMS ((const char *, ...)) ATTRIBUTE_PRINTF_1;
/* Output a string of assembler code, substituting insn operands.
Defined in final.c. */
extern void output_asm_insn PARAMS ((const char *, rtx *));
/* Compute a worst-case reference address of a branch so that it
can be safely used in the presence of aligned labels.
Defined in final.c. */
extern int insn_current_reference_address PARAMS ((rtx));
/* Find the alignment associated with a CODE_LABEL.
Defined in final.c. */
extern int label_to_alignment PARAMS ((rtx));
/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
extern void output_asm_label PARAMS ((rtx));
/* Print a memory reference operand for address X
using machine-dependent assembler syntax. */
extern void output_address PARAMS ((rtx));
/* Print an integer constant expression in assembler syntax.
Addition and subtraction are the only arithmetic
that may appear in these expressions. */
extern void output_addr_const PARAMS ((FILE *, rtx));
/* Output a string of assembler code, substituting numbers, strings
and fixed syntactic prefixes. */
extern void asm_fprintf PARAMS ((FILE *file, const char *p, ...));
/* Split up a CONST_DOUBLE or integer constant rtx into two rtx's for single
words. */
extern void split_double PARAMS ((rtx, rtx *, rtx *));
/* Return nonzero if this function has no function calls. */
extern int leaf_function_p PARAMS ((void));
/* Return 1 if branch is a forward branch.
Uses insn_shuid array, so it works only in the final pass. May be used by
output templates to add branch prediction hints, for example. */
extern int final_forward_branch_p PARAMS ((rtx));
/* Return 1 if this function uses only the registers that can be
safely renumbered. */
extern int only_leaf_regs_used PARAMS ((void));
/* Scan IN_RTX and its subexpressions, and renumber all regs into those
available in leaf functions. */
extern void leaf_renumber_regs_insn PARAMS ((rtx));
/* Locate the proper template for the given insn-code. */
extern const char *get_insn_template PARAMS ((int, rtx));
/* Add function NAME to the weak symbols list. VALUE is a weak alias
associated with NAME. */
extern int add_weak PARAMS ((tree, const char *, const char *));
/* Functions in flow.c */
extern void allocate_for_life_analysis PARAMS ((void));
extern int regno_uninitialized PARAMS ((unsigned int));
extern int regno_clobbered_at_setjmp PARAMS ((int));
extern void find_basic_blocks PARAMS ((rtx, int, FILE *));
extern bool cleanup_cfg PARAMS ((int));
extern bool delete_unreachable_blocks PARAMS ((void));
extern void check_function_return_warnings PARAMS ((void));
/* Functions in varasm.c. */
/* Tell assembler to switch to text section. */
extern void text_section PARAMS ((void));
/* Tell assembler to switch to data section. */
extern void data_section PARAMS ((void));
/* Tell assembler to make sure its in the data section. */
extern void force_data_section PARAMS ((void));
/* Tell assembler to switch to read-only data section. This is normally
the text section. */
extern void readonly_data_section PARAMS ((void));
/* Determine if we're in the text section. */
extern int in_text_section PARAMS ((void));
extern void ctors_section PARAMS ((void));
extern void dtors_section PARAMS ((void));
extern void bss_section PARAMS ((void));
extern void const_section PARAMS ((void));
extern void init_section PARAMS ((void));
extern void fini_section PARAMS ((void));
extern void exports_section PARAMS ((void));
extern void tdesc_section PARAMS ((void));
extern void drectve_section PARAMS ((void));
extern void sdata_section PARAMS ((void));
extern void rdata_section PARAMS ((void));
/* Tell assembler to change to section NAME for DECL.
If DECL is NULL, just switch to section NAME.
If NAME is NULL, get the name from DECL.
If RELOC is 1, the initializer for DECL contains relocs. */
extern void named_section PARAMS ((tree, const char *, int));
/* Tell assembler to switch to the section for function DECL. */
extern void function_section PARAMS ((tree));
/* Tell assembler to switch to the section for string merging. */
extern void mergeable_string_section PARAMS ((tree, unsigned HOST_WIDE_INT,
unsigned int));
/* Tell assembler to switch to the section for constant merging. */
extern void mergeable_constant_section PARAMS ((enum machine_mode,
unsigned HOST_WIDE_INT,
unsigned int));
/* Declare DECL to be a weak symbol. */
extern void declare_weak PARAMS ((tree));
/* Merge weak status. */
extern void merge_weak PARAMS ((tree, tree));
/* Emit any pending weak declarations. */
extern void weak_finish PARAMS ((void));
/* Decode an `asm' spec for a declaration as a register name.
Return the register number, or -1 if nothing specified,
or -2 if the ASMSPEC is not `cc' or `memory' and is not recognized,
or -3 if ASMSPEC is `cc' and is not recognized,
or -4 if ASMSPEC is `memory' and is not recognized.
Accept an exact spelling or a decimal number.
Prefixes such as % are optional. */
extern int decode_reg_name PARAMS ((const char *));
/* Make the rtl for variable VAR be volatile.
Use this only for static variables. */
extern void make_var_volatile PARAMS ((tree));
/* Output alignment directive to align for constant expression EXP. */
extern void assemble_constant_align PARAMS ((tree));
extern void assemble_alias PARAMS ((tree, tree));
extern void default_assemble_visibility PARAMS ((tree, int));
/* Output a string of literal assembler code
for an `asm' keyword used between functions. */
extern void assemble_asm PARAMS ((tree));
/* Output assembler code for the constant pool of a function and associated
with defining the name of the function. DECL describes the function.
NAME is the function's name. For the constant pool, we use the current
constant pool data. */
extern void assemble_start_function PARAMS ((tree, const char *));
/* Output assembler code associated with defining the size of the
function. DECL describes the function. NAME is the function's name. */
extern void assemble_end_function PARAMS ((tree, const char *));
/* Assemble everything that is needed for a variable or function declaration.
Not used for automatic variables, and not used for function definitions.
Should not be called for variables of incomplete structure type.
TOP_LEVEL is nonzero if this variable has file scope.
AT_END is nonzero if this is the special handling, at end of compilation,
to define things that have had only tentative definitions.
DONT_OUTPUT_DATA if nonzero means don't actually output the
initial value (that will be done by the caller). */
extern void assemble_variable PARAMS ((tree, int, int, int));
/* Output something to declare an external symbol to the assembler.
(Most assemblers don't need this, so we normally output nothing.)
Do nothing if DECL is not external. */
extern void assemble_external PARAMS ((tree));
/* Assemble code to leave SIZE bytes of zeros. */
extern void assemble_zeros PARAMS ((int));
/* Assemble an alignment pseudo op for an ALIGN-bit boundary. */
extern void assemble_align PARAMS ((int));
extern void assemble_eh_align PARAMS ((int));
/* Assemble a string constant with the specified C string as contents. */
extern void assemble_string PARAMS ((const char *, int));
/* Similar, for calling a library function FUN. */
extern void assemble_external_libcall PARAMS ((rtx));
/* Assemble a label named NAME. */
extern void assemble_label PARAMS ((const char *));
extern void assemble_eh_label PARAMS ((const char *));
/* Output to FILE a reference to the assembler name of a C-level name NAME.
If NAME starts with a *, the rest of NAME is output verbatim.
Otherwise NAME is transformed in an implementation-defined way
(usually by the addition of an underscore).
Many macros in the tm file are defined to call this function. */
extern void assemble_name PARAMS ((FILE *, const char *));
/* Return the assembler directive for creating a given kind of integer
object. SIZE is the number of bytes in the object and ALIGNED_P
indicates whether it is known to be aligned. Return NULL if the
assembly dialect has no such directive.
The returned string should be printed at the start of a new line and
be followed immediately by the object's initial value. */
extern const char *integer_asm_op PARAMS ((int, int));
/* Use directive OP to assemble an integer object X. Print OP at the
start of the line, followed immediately by the value of X. */
extern void assemble_integer_with_op PARAMS ((const char *, rtx));
/* The default implementation of the asm_out.integer target hook. */
extern bool default_assemble_integer PARAMS ((rtx, unsigned int, int));
/* Assemble the integer constant X into an object of SIZE bytes. ALIGN is
the alignment of the integer in bits. Return 1 if we were able to output
the constant, otherwise 0. If FORCE is nonzero, abort if we can't output
the constant. */
extern bool assemble_integer PARAMS ((rtx, unsigned, unsigned, int));
/* An interface to assemble_integer for the common case in which a value is
fully aligned and must be printed. VALUE is the value of the integer
object and SIZE is the number of bytes it contains. */
#define assemble_aligned_integer(SIZE, VALUE) \
assemble_integer (VALUE, SIZE, (SIZE) * BITS_PER_UNIT, 1)
/* Assemble the floating-point constant D into an object of size MODE. */
extern void assemble_real PARAMS ((REAL_VALUE_TYPE,
enum machine_mode,
/* Start deferring output of subconstants. */
extern void defer_addressed_constants PARAMS ((void));
/* Stop deferring output of subconstants,
and output now all those that have been deferred. */
extern void output_deferred_addressed_constants PARAMS ((void));
/* Return the size of the constant pool. */
extern int get_pool_size PARAMS ((void));
#ifdef HAVE_peephole
extern rtx peephole PARAMS ((rtx));
/* Write all the constants in the constant pool. */
extern void output_constant_pool PARAMS ((const char *, tree));
/* Return nonzero if VALUE is a valid constant-valued expression
for use in initializing a static variable; one that can be an
element of a "constant" initializer.
Return null_pointer_node if the value is absolute;
if it is relocatable, return the variable that determines the relocation.
We assume that VALUE has been folded as much as possible;
therefore, we do not need to check for such things as
arithmetic-combinations of integers. */
extern tree initializer_constant_valid_p PARAMS ((tree, tree));
/* Output assembler code for constant EXP to FILE, with no label.
This includes the pseudo-op such as ".int" or ".byte", and a newline.
Assumes output_addressed_constants has been done on EXP already.
Generate exactly SIZE bytes of assembler data, padding at the end
with zeros if necessary. SIZE must always be specified.
ALIGN is the alignment in bits that may be assumed for the data. */
extern void output_constant PARAMS ((tree, HOST_WIDE_INT,
unsigned int));
/* When outputting delayed branch sequences, this rtx holds the
sequence being output. It is null when no delayed branch
sequence is being output, so it can be used as a test in the
insn output code.
This variable is defined in final.c. */
extern rtx final_sequence;
/* The line number of the beginning of the current function. Various
md code needs this so that it can output relative linenumbers. */
#ifdef SDB_DEBUGGING_INFO /* Avoid undef sym in certain broken linkers. */
extern int sdb_begin_function_line;
/* File in which assembler code is being written. */
#ifdef BUFSIZ
extern FILE *asm_out_file;
/* The first global object in the file. */
extern const char *first_global_object_name;
/* The first weak object in the file. */
extern const char *weak_global_object_name;
/* Nonzero if function being compiled doesn't contain any calls
(ignoring the prologue and epilogue). This is set prior to
local register allocation and is valid for the remaining
compiler passes. */
extern int current_function_is_leaf;
/* Nonzero if function being compiled doesn't contain any instructions
that can throw an exception. This is set prior to final. */
extern int current_function_nothrow;
/* Nonzero if function being compiled doesn't modify the stack pointer
(ignoring the prologue and epilogue). This is only valid after
life_analysis has run. */
extern int current_function_sp_is_unchanging;
/* Nonzero if the function being compiled is a leaf function which only
uses leaf registers. This is valid after reload (specifically after
sched2) and is useful only if the port defines LEAF_REGISTERS. */
extern int current_function_uses_only_leaf_regs;
/* Default file in which to dump debug output. */
#ifdef BUFSIZ
extern FILE *rtl_dump_file;
/* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
extern struct rtx_def *current_insn_predicate;
/* Last insn processed by final_scan_insn. */
extern struct rtx_def *current_output_insn;
/* Nonzero while outputting an `asm' with operands.
This means that inconsistencies are the user's fault, so don't abort.
The precise value is the insn being output, to pass to error_for_asm. */
extern rtx this_is_asm_operands;
/* Decide whether DECL needs to be in a writable section.
RELOC is the same as for SELECT_SECTION. */
extern bool decl_readonly_section PARAMS ((tree, int));
extern bool decl_readonly_section_1 PARAMS ((tree, int, int));
/* User label prefix in effect for this compilation. */
extern const char *user_label_prefix;
/* Default target function prologue and epilogue assembler output. */
extern void default_function_pro_epilogue PARAMS ((FILE *, HOST_WIDE_INT));
/* Tell assembler to switch to the section for the exception table. */
extern void default_exception_section PARAMS ((void));
/* Tell assembler to switch to the section for the EH frames. */
extern void default_eh_frame_section PARAMS ((void));
/* Default target hook that outputs nothing to a stream. */
extern void no_asm_to_stream PARAMS ((FILE *));
/* Flags controling properties of a section. */
#define SECTION_ENTSIZE 0x000ff /* entity size in section */
#define SECTION_CODE 0x00100 /* contains code */
#define SECTION_WRITE 0x00200 /* data is writable */
#define SECTION_DEBUG 0x00400 /* contains debug data */
#define SECTION_LINKONCE 0x00800 /* is linkonce */
#define SECTION_SMALL 0x01000 /* contains "small data" */
#define SECTION_BSS 0x02000 /* contains zeros only */
#define SECTION_FORGET 0x04000 /* forget that we've entered the section */
#define SECTION_MERGE 0x08000 /* contains mergeable data */
#define SECTION_STRINGS 0x10000 /* contains zero terminated strings without
embedded zeros */
#define SECTION_OVERRIDE 0x20000 /* allow override of default flags */
#define SECTION_TLS 0x40000 /* contains thread-local storage */
#define SECTION_NOTYPE 0x80000 /* don't output @progbits */
#define SECTION_MACH_DEP 0x100000 /* subsequent bits reserved for target */
extern unsigned int get_named_section_flags PARAMS ((const char *));
extern bool set_named_section_flags PARAMS ((const char *, unsigned int));
extern void named_section_flags PARAMS ((const char *, unsigned int));
extern bool named_section_first_declaration PARAMS((const char *));
union tree_node;
extern unsigned int default_section_type_flags PARAMS ((union tree_node *,
const char *, int));
extern unsigned int default_section_type_flags_1 PARAMS ((union tree_node *,
const char *,
int, int));
extern void default_no_named_section PARAMS ((const char *, unsigned int));
extern void default_elf_asm_named_section PARAMS ((const char *, unsigned int));
extern void default_coff_asm_named_section PARAMS ((const char *,
unsigned int));
extern void default_pe_asm_named_section PARAMS ((const char *, unsigned int));
extern void default_stabs_asm_out_destructor PARAMS ((struct rtx_def *, int));
extern void default_named_section_asm_out_destructor PARAMS ((struct rtx_def *,
extern void default_dtor_section_asm_out_destructor PARAMS ((struct rtx_def *,
extern void default_stabs_asm_out_constructor PARAMS ((struct rtx_def *, int));
extern void default_named_section_asm_out_constructor PARAMS ((struct rtx_def *,
extern void default_ctor_section_asm_out_constructor PARAMS ((struct rtx_def *,
extern void default_select_section PARAMS ((tree, int,
unsigned HOST_WIDE_INT));
extern void default_elf_select_section PARAMS ((tree, int,
unsigned HOST_WIDE_INT));
extern void default_elf_select_section_1 PARAMS ((tree, int,
unsigned HOST_WIDE_INT, int));
extern void default_unique_section PARAMS ((tree, int));
extern void default_unique_section_1 PARAMS ((tree, int, int));
extern void default_select_rtx_section PARAMS ((enum machine_mode, rtx,
unsigned HOST_WIDE_INT));
extern void default_elf_select_rtx_section PARAMS ((enum machine_mode, rtx,
unsigned HOST_WIDE_INT));
extern const char *default_strip_name_encoding PARAMS ((const char *));
extern bool default_binds_local_p PARAMS ((tree));
extern bool default_binds_local_p_1 PARAMS ((tree, int));
extern void default_globalize_label PARAMS ((FILE *, const char *));
/* Emit data for vtable gc for GNU binutils. */
extern void assemble_vtable_entry PARAMS ((struct rtx_def *, HOST_WIDE_INT));
extern void assemble_vtable_inherit PARAMS ((struct rtx_def *,
struct rtx_def *));