blob: 14b0295e1e1e7339d395f427027ab3d3542c73e3 [file] [log] [blame]
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 1996, 1998, 1999, 2001 Red Hat, Inc.
Copyright (c) 2002 Ranjit Mathew
Copyright (c) 2002 Bo Thorsen
Copyright (c) 2002 Roger Sayle
x86 Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#ifndef __x86_64__
#include <ffi.h>
#include <ffi_common.h>
#include <stdlib.h>
/* ffi_prep_args is called by the assembly routine once stack space
has been allocated for the function's arguments */
/*@-exportheader@*/
void ffi_prep_args(char *stack, extended_cif *ecif)
/*@=exportheader@*/
{
register unsigned int i;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
if (ecif->cif->rtype->type == FFI_TYPE_STRUCT)
{
*(void **) argp = ecif->rvalue;
argp += 4;
}
p_argv = ecif->avalue;
for (i = ecif->cif->nargs, p_arg = ecif->cif->arg_types;
i != 0;
i--, p_arg++)
{
size_t z;
/* Align if necessary */
if ((sizeof(int) - 1) & (unsigned) argp)
argp = (char *) ALIGN(argp, sizeof(int));
z = (*p_arg)->size;
if (z < sizeof(int))
{
z = sizeof(int);
switch ((*p_arg)->type)
{
case FFI_TYPE_SINT8:
*(signed int *) argp = (signed int)*(SINT8 *)(* p_argv);
break;
case FFI_TYPE_UINT8:
*(unsigned int *) argp = (unsigned int)*(UINT8 *)(* p_argv);
break;
case FFI_TYPE_SINT16:
*(signed int *) argp = (signed int)*(SINT16 *)(* p_argv);
break;
case FFI_TYPE_UINT16:
*(unsigned int *) argp = (unsigned int)*(UINT16 *)(* p_argv);
break;
case FFI_TYPE_SINT32:
*(signed int *) argp = (signed int)*(SINT32 *)(* p_argv);
break;
case FFI_TYPE_UINT32:
*(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv);
break;
case FFI_TYPE_STRUCT:
*(unsigned int *) argp = (unsigned int)*(UINT32 *)(* p_argv);
break;
default:
FFI_ASSERT(0);
}
}
else
{
memcpy(argp, *p_argv, z);
}
p_argv++;
argp += z;
}
return;
}
/* Perform machine dependent cif processing */
ffi_status ffi_prep_cif_machdep(ffi_cif *cif)
{
/* Set the return type flag */
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
case FFI_TYPE_STRUCT:
case FFI_TYPE_SINT64:
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
case FFI_TYPE_LONGDOUBLE:
cif->flags = (unsigned) cif->rtype->type;
break;
case FFI_TYPE_UINT64:
cif->flags = FFI_TYPE_SINT64;
break;
default:
cif->flags = FFI_TYPE_INT;
break;
}
return FFI_OK;
}
/*@-declundef@*/
/*@-exportheader@*/
extern void ffi_call_SYSV(void (*)(char *, extended_cif *),
/*@out@*/ extended_cif *,
unsigned, unsigned,
/*@out@*/ unsigned *,
void (*fn)());
/*@=declundef@*/
/*@=exportheader@*/
#ifdef X86_WIN32
/*@-declundef@*/
/*@-exportheader@*/
extern void ffi_call_STDCALL(void (*)(char *, extended_cif *),
/*@out@*/ extended_cif *,
unsigned, unsigned,
/*@out@*/ unsigned *,
void (*fn)());
/*@=declundef@*/
/*@=exportheader@*/
#endif /* X86_WIN32 */
void ffi_call(/*@dependent@*/ ffi_cif *cif,
void (*fn)(),
/*@out@*/ void *rvalue,
/*@dependent@*/ void **avalue)
{
extended_cif ecif;
ecif.cif = cif;
ecif.avalue = avalue;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
if ((rvalue == NULL) &&
(cif->rtype->type == FFI_TYPE_STRUCT))
{
/*@-sysunrecog@*/
ecif.rvalue = alloca(cif->rtype->size);
/*@=sysunrecog@*/
}
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
case FFI_SYSV:
/*@-usedef@*/
ffi_call_SYSV(ffi_prep_args, &ecif, cif->bytes,
cif->flags, ecif.rvalue, fn);
/*@=usedef@*/
break;
#ifdef X86_WIN32
case FFI_STDCALL:
/*@-usedef@*/
ffi_call_STDCALL(ffi_prep_args, &ecif, cif->bytes,
cif->flags, ecif.rvalue, fn);
/*@=usedef@*/
break;
#endif /* X86_WIN32 */
default:
FFI_ASSERT(0);
break;
}
}
/** private members **/
static void ffi_prep_incoming_args_SYSV (char *stack, void **ret,
void** args, ffi_cif* cif);
static void ffi_closure_SYSV (ffi_closure *)
__attribute__ ((regparm(1)));
static void ffi_closure_raw_SYSV (ffi_raw_closure *)
__attribute__ ((regparm(1)));
/* This function is jumped to by the trampoline */
static void
ffi_closure_SYSV (closure)
ffi_closure *closure;
{
// this is our return value storage
long double res;
// our various things...
ffi_cif *cif;
void **arg_area;
unsigned short rtype;
void *resp = (void*)&res;
void *args = __builtin_dwarf_cfa ();
cif = closure->cif;
arg_area = (void**) alloca (cif->nargs * sizeof (void*));
/* this call will initialize ARG_AREA, such that each
* element in that array points to the corresponding
* value on the stack; and if the function returns
* a structure, it will re-set RESP to point to the
* structure return address. */
ffi_prep_incoming_args_SYSV(args, (void**)&resp, arg_area, cif);
(closure->fun) (cif, resp, arg_area, closure->user_data);
rtype = cif->flags;
/* now, do a generic return based on the value of rtype */
if (rtype == FFI_TYPE_INT)
{
asm ("movl (%0),%%eax" : : "r" (resp) : "eax");
}
else if (rtype == FFI_TYPE_FLOAT)
{
asm ("flds (%0)" : : "r" (resp) : "st" );
}
else if (rtype == FFI_TYPE_DOUBLE)
{
asm ("fldl (%0)" : : "r" (resp) : "st", "st(1)" );
}
else if (rtype == FFI_TYPE_LONGDOUBLE)
{
asm ("fldt (%0)" : : "r" (resp) : "st", "st(1)" );
}
else if (rtype == FFI_TYPE_SINT64)
{
asm ("movl 0(%0),%%eax;"
"movl 4(%0),%%edx"
: : "r"(resp)
: "eax", "edx");
}
}
/*@-exportheader@*/
static void
ffi_prep_incoming_args_SYSV(char *stack, void **rvalue,
void **avalue, ffi_cif *cif)
/*@=exportheader@*/
{
register unsigned int i;
register void **p_argv;
register char *argp;
register ffi_type **p_arg;
argp = stack;
if ( cif->rtype->type == FFI_TYPE_STRUCT ) {
*rvalue = *(void **) argp;
argp += 4;
}
p_argv = avalue;
for (i = cif->nargs, p_arg = cif->arg_types; (i != 0); i--, p_arg++)
{
size_t z;
/* Align if necessary */
if ((sizeof(int) - 1) & (unsigned) argp) {
argp = (char *) ALIGN(argp, sizeof(int));
}
z = (*p_arg)->size;
/* because we're little endian, this is what it turns into. */
*p_argv = (void*) argp;
p_argv++;
argp += z;
}
return;
}
/* How to make a trampoline. Derived from gcc/config/i386/i386.c. */
#define FFI_INIT_TRAMPOLINE(TRAMP,FUN,CTX) \
({ unsigned char *__tramp = (unsigned char*)(TRAMP); \
unsigned int __fun = (unsigned int)(FUN); \
unsigned int __ctx = (unsigned int)(CTX); \
unsigned int __dis = __fun - ((unsigned int) __tramp + FFI_TRAMPOLINE_SIZE); \
*(unsigned char*) &__tramp[0] = 0xb8; \
*(unsigned int*) &__tramp[1] = __ctx; /* movl __ctx, %eax */ \
*(unsigned char *) &__tramp[5] = 0xe9; \
*(unsigned int*) &__tramp[6] = __dis; /* jmp __fun */ \
})
/* the cif must already be prep'ed */
ffi_status
ffi_prep_closure (ffi_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,void**,void*),
void *user_data)
{
FFI_ASSERT (cif->abi == FFI_SYSV);
FFI_INIT_TRAMPOLINE (&closure->tramp[0], \
&ffi_closure_SYSV, \
(void*)closure);
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
/* ------- Native raw API support -------------------------------- */
#if !FFI_NO_RAW_API
static void
ffi_closure_raw_SYSV (closure)
ffi_raw_closure *closure;
{
// this is our return value storage
long double res;
// our various things...
ffi_raw *raw_args;
ffi_cif *cif;
unsigned short rtype;
void *resp = (void*)&res;
/* get the cif */
cif = closure->cif;
/* the SYSV/X86 abi matches the RAW API exactly, well.. almost */
raw_args = (ffi_raw*) __builtin_dwarf_cfa ();
(closure->fun) (cif, resp, raw_args, closure->user_data);
rtype = cif->flags;
/* now, do a generic return based on the value of rtype */
if (rtype == FFI_TYPE_INT)
{
asm ("movl (%0),%%eax" : : "r" (resp) : "eax");
}
else if (rtype == FFI_TYPE_FLOAT)
{
asm ("flds (%0)" : : "r" (resp) : "st" );
}
else if (rtype == FFI_TYPE_DOUBLE)
{
asm ("fldl (%0)" : : "r" (resp) : "st", "st(1)" );
}
else if (rtype == FFI_TYPE_LONGDOUBLE)
{
asm ("fldt (%0)" : : "r" (resp) : "st", "st(1)" );
}
else if (rtype == FFI_TYPE_SINT64)
{
asm ("movl 0(%0),%%eax; movl 4(%0),%%edx"
: : "r"(resp)
: "eax", "edx");
}
}
ffi_status
ffi_prep_raw_closure (ffi_raw_closure* closure,
ffi_cif* cif,
void (*fun)(ffi_cif*,void*,ffi_raw*,void*),
void *user_data)
{
int i;
FFI_ASSERT (cif->abi == FFI_SYSV);
// we currently don't support certain kinds of arguments for raw
// closures. This should be implemented by a separate assembly language
// routine, since it would require argument processing, something we
// don't do now for performance.
for (i = cif->nargs-1; i >= 0; i--)
{
FFI_ASSERT (cif->arg_types[i]->type != FFI_TYPE_STRUCT);
FFI_ASSERT (cif->arg_types[i]->type != FFI_TYPE_LONGDOUBLE);
}
FFI_INIT_TRAMPOLINE (&closure->tramp[0], &ffi_closure_raw_SYSV,
(void*)closure);
closure->cif = cif;
closure->user_data = user_data;
closure->fun = fun;
return FFI_OK;
}
static void
ffi_prep_args_raw(char *stack, extended_cif *ecif)
{
memcpy (stack, ecif->avalue, ecif->cif->bytes);
}
/* we borrow this routine from libffi (it must be changed, though, to
* actually call the function passed in the first argument. as of
* libffi-1.20, this is not the case.)
*/
extern void
ffi_call_SYSV(void (*)(char *, extended_cif *),
/*@out@*/ extended_cif *,
unsigned, unsigned,
/*@out@*/ unsigned *,
void (*fn)());
#ifdef X86_WIN32
extern void
ffi_call_STDCALL(void (*)(char *, extended_cif *),
/*@out@*/ extended_cif *,
unsigned, unsigned,
/*@out@*/ unsigned *,
void (*fn)());
#endif /* X86_WIN32 */
void
ffi_raw_call(/*@dependent@*/ ffi_cif *cif,
void (*fn)(),
/*@out@*/ void *rvalue,
/*@dependent@*/ ffi_raw *fake_avalue)
{
extended_cif ecif;
void **avalue = (void **)fake_avalue;
ecif.cif = cif;
ecif.avalue = avalue;
/* If the return value is a struct and we don't have a return */
/* value address then we need to make one */
if ((rvalue == NULL) &&
(cif->rtype->type == FFI_TYPE_STRUCT))
{
/*@-sysunrecog@*/
ecif.rvalue = alloca(cif->rtype->size);
/*@=sysunrecog@*/
}
else
ecif.rvalue = rvalue;
switch (cif->abi)
{
case FFI_SYSV:
/*@-usedef@*/
ffi_call_SYSV(ffi_prep_args_raw, &ecif, cif->bytes,
cif->flags, ecif.rvalue, fn);
/*@=usedef@*/
break;
#ifdef X86_WIN32
case FFI_STDCALL:
/*@-usedef@*/
ffi_call_STDCALL(ffi_prep_args_raw, &ecif, cif->bytes,
cif->flags, ecif.rvalue, fn);
/*@=usedef@*/
break;
#endif /* X86_WIN32 */
default:
FFI_ASSERT(0);
break;
}
}
#endif
#endif /* __x86_64__ */