blob: 69ce2e50befdd2f210f8c34772462741efba10e6 [file] [log] [blame]
/* Parser for C and Objective-C.
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
Free Software Foundation, Inc.
Parser actions based on the old Bison parser; structure somewhat
influenced by and fragments based on the C++ parser.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* TODO:
Make sure all relevant comments, and all relevant code from all
actions, brought over from old parser. Verify exact correspondence
of syntax accepted.
Add testcases covering every input symbol in every state in old and
new parsers.
Include full syntax for GNU C, including erroneous cases accepted
with error messages, in syntax productions in comments.
Make more diagnostics in the front end generally take an explicit
location rather than implicitly using input_location. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h" /* For rtl.h: needs enum reg_class. */
#include "tree.h"
#include "langhooks.h"
#include "input.h"
#include "cpplib.h"
#include "timevar.h"
#include "c-family/c-pragma.h"
#include "c-tree.h"
#include "flags.h"
#include "output.h"
#include "ggc.h"
#include "c-family/c-common.h"
#include "c-family/c-objc.h"
#include "vec.h"
#include "target.h"
#include "cgraph.h"
#include "plugin.h"
/* Initialization routine for this file. */
void
c_parse_init (void)
{
/* The only initialization required is of the reserved word
identifiers. */
unsigned int i;
tree id;
int mask = 0;
/* Make sure RID_MAX hasn't grown past the 8 bits used to hold the keyword in
the c_token structure. */
gcc_assert (RID_MAX <= 255);
mask |= D_CXXONLY;
if (!flag_isoc99)
mask |= D_C99;
if (flag_no_asm)
{
mask |= D_ASM | D_EXT;
if (!flag_isoc99)
mask |= D_EXT89;
}
if (!c_dialect_objc ())
mask |= D_OBJC | D_CXX_OBJC;
ridpointers = ggc_alloc_cleared_vec_tree ((int) RID_MAX);
for (i = 0; i < num_c_common_reswords; i++)
{
/* If a keyword is disabled, do not enter it into the table
and so create a canonical spelling that isn't a keyword. */
if (c_common_reswords[i].disable & mask)
{
if (warn_cxx_compat
&& (c_common_reswords[i].disable & D_CXXWARN))
{
id = get_identifier (c_common_reswords[i].word);
C_SET_RID_CODE (id, RID_CXX_COMPAT_WARN);
C_IS_RESERVED_WORD (id) = 1;
}
continue;
}
id = get_identifier (c_common_reswords[i].word);
C_SET_RID_CODE (id, c_common_reswords[i].rid);
C_IS_RESERVED_WORD (id) = 1;
ridpointers [(int) c_common_reswords[i].rid] = id;
}
}
/* The C lexer intermediates between the lexer in cpplib and c-lex.c
and the C parser. Unlike the C++ lexer, the parser structure
stores the lexer information instead of using a separate structure.
Identifiers are separated into ordinary identifiers, type names,
keywords and some other Objective-C types of identifiers, and some
look-ahead is maintained.
??? It might be a good idea to lex the whole file up front (as for
C++). It would then be possible to share more of the C and C++
lexer code, if desired. */
/* The following local token type is used. */
/* A keyword. */
#define CPP_KEYWORD ((enum cpp_ttype) (N_TTYPES + 1))
/* More information about the type of a CPP_NAME token. */
typedef enum c_id_kind {
/* An ordinary identifier. */
C_ID_ID,
/* An identifier declared as a typedef name. */
C_ID_TYPENAME,
/* An identifier declared as an Objective-C class name. */
C_ID_CLASSNAME,
/* An address space identifier. */
C_ID_ADDRSPACE,
/* Not an identifier. */
C_ID_NONE
} c_id_kind;
/* A single C token after string literal concatenation and conversion
of preprocessing tokens to tokens. */
typedef struct GTY (()) c_token {
/* The kind of token. */
ENUM_BITFIELD (cpp_ttype) type : 8;
/* If this token is a CPP_NAME, this value indicates whether also
declared as some kind of type. Otherwise, it is C_ID_NONE. */
ENUM_BITFIELD (c_id_kind) id_kind : 8;
/* If this token is a keyword, this value indicates which keyword.
Otherwise, this value is RID_MAX. */
ENUM_BITFIELD (rid) keyword : 8;
/* If this token is a CPP_PRAGMA, this indicates the pragma that
was seen. Otherwise it is PRAGMA_NONE. */
ENUM_BITFIELD (pragma_kind) pragma_kind : 8;
/* The location at which this token was found. */
location_t location;
/* The value associated with this token, if any. */
tree value;
} c_token;
/* A parser structure recording information about the state and
context of parsing. Includes lexer information with up to two
tokens of look-ahead; more are not needed for C. */
typedef struct GTY(()) c_parser {
/* The look-ahead tokens. */
c_token tokens[2];
/* How many look-ahead tokens are available (0, 1 or 2). */
short tokens_avail;
/* True if a syntax error is being recovered from; false otherwise.
c_parser_error sets this flag. It should clear this flag when
enough tokens have been consumed to recover from the error. */
BOOL_BITFIELD error : 1;
/* True if we're processing a pragma, and shouldn't automatically
consume CPP_PRAGMA_EOL. */
BOOL_BITFIELD in_pragma : 1;
/* True if we're parsing the outermost block of an if statement. */
BOOL_BITFIELD in_if_block : 1;
/* True if we want to lex an untranslated string. */
BOOL_BITFIELD lex_untranslated_string : 1;
/* Objective-C specific parser/lexer information. */
/* True if we are in a context where the Objective-C "PQ" keywords
are considered keywords. */
BOOL_BITFIELD objc_pq_context : 1;
/* True if we are parsing a (potential) Objective-C foreach
statement. This is set to true after we parsed 'for (' and while
we wait for 'in' or ';' to decide if it's a standard C for loop or an
Objective-C foreach loop. */
BOOL_BITFIELD objc_could_be_foreach_context : 1;
/* The following flag is needed to contextualize Objective-C lexical
analysis. In some cases (e.g., 'int NSObject;'), it is
undesirable to bind an identifier to an Objective-C class, even
if a class with that name exists. */
BOOL_BITFIELD objc_need_raw_identifier : 1;
/* True if we are in a context where the Objective-C "Property attribute"
keywords are valid. */
BOOL_BITFIELD objc_property_attr_context : 1;
} c_parser;
/* The actual parser and external interface. ??? Does this need to be
garbage-collected? */
static GTY (()) c_parser *the_parser;
/* Read in and lex a single token, storing it in *TOKEN. */
static void
c_lex_one_token (c_parser *parser, c_token *token)
{
timevar_push (TV_LEX);
token->type = c_lex_with_flags (&token->value, &token->location, NULL,
(parser->lex_untranslated_string
? C_LEX_STRING_NO_TRANSLATE : 0));
token->id_kind = C_ID_NONE;
token->keyword = RID_MAX;
token->pragma_kind = PRAGMA_NONE;
switch (token->type)
{
case CPP_NAME:
{
tree decl;
bool objc_force_identifier = parser->objc_need_raw_identifier;
if (c_dialect_objc ())
parser->objc_need_raw_identifier = false;
if (C_IS_RESERVED_WORD (token->value))
{
enum rid rid_code = C_RID_CODE (token->value);
if (rid_code == RID_CXX_COMPAT_WARN)
{
warning_at (token->location,
OPT_Wc___compat,
"identifier %qE conflicts with C++ keyword",
token->value);
}
else if (rid_code >= RID_FIRST_ADDR_SPACE
&& rid_code <= RID_LAST_ADDR_SPACE)
{
token->id_kind = C_ID_ADDRSPACE;
token->keyword = rid_code;
break;
}
else if (c_dialect_objc () && OBJC_IS_PQ_KEYWORD (rid_code))
{
/* We found an Objective-C "pq" keyword (in, out,
inout, bycopy, byref, oneway). They need special
care because the interpretation depends on the
context. */
if (parser->objc_pq_context)
{
token->type = CPP_KEYWORD;
token->keyword = rid_code;
break;
}
else if (parser->objc_could_be_foreach_context
&& rid_code == RID_IN)
{
/* We are in Objective-C, inside a (potential)
foreach context (which means after having
parsed 'for (', but before having parsed ';'),
and we found 'in'. We consider it the keyword
which terminates the declaration at the
beginning of a foreach-statement. Note that
this means you can't use 'in' for anything else
in that context; in particular, in Objective-C
you can't use 'in' as the name of the running
variable in a C for loop. We could potentially
try to add code here to disambiguate, but it
seems a reasonable limitation. */
token->type = CPP_KEYWORD;
token->keyword = rid_code;
break;
}
/* Else, "pq" keywords outside of the "pq" context are
not keywords, and we fall through to the code for
normal tokens. */
}
else if (c_dialect_objc () && OBJC_IS_PATTR_KEYWORD (rid_code))
{
/* We found an Objective-C "property attribute"
keyword (getter, setter, readonly, etc). These are
only valid in the property context. */
if (parser->objc_property_attr_context)
{
token->type = CPP_KEYWORD;
token->keyword = rid_code;
break;
}
/* Else they are not special keywords.
*/
}
else if (c_dialect_objc ()
&& (OBJC_IS_AT_KEYWORD (rid_code)
|| OBJC_IS_CXX_KEYWORD (rid_code)))
{
/* We found one of the Objective-C "@" keywords (defs,
selector, synchronized, etc) or one of the
Objective-C "cxx" keywords (class, private,
protected, public, try, catch, throw) without a
preceding '@' sign. Do nothing and fall through to
the code for normal tokens (in C++ we would still
consider the CXX ones keywords, but not in C). */
;
}
else
{
token->type = CPP_KEYWORD;
token->keyword = rid_code;
break;
}
}
decl = lookup_name (token->value);
if (decl)
{
if (TREE_CODE (decl) == TYPE_DECL)
{
token->id_kind = C_ID_TYPENAME;
break;
}
}
else if (c_dialect_objc ())
{
tree objc_interface_decl = objc_is_class_name (token->value);
/* Objective-C class names are in the same namespace as
variables and typedefs, and hence are shadowed by local
declarations. */
if (objc_interface_decl
&& (global_bindings_p ()
|| (!objc_force_identifier && !decl)))
{
token->value = objc_interface_decl;
token->id_kind = C_ID_CLASSNAME;
break;
}
}
token->id_kind = C_ID_ID;
}
break;
case CPP_AT_NAME:
/* This only happens in Objective-C; it must be a keyword. */
token->type = CPP_KEYWORD;
switch (C_RID_CODE (token->value))
{
/* Replace 'class' with '@class', 'private' with '@private',
etc. This prevents confusion with the C++ keyword
'class', and makes the tokens consistent with other
Objective-C 'AT' keywords. For example '@class' is
reported as RID_AT_CLASS which is consistent with
'@synchronized', which is reported as
RID_AT_SYNCHRONIZED.
*/
case RID_CLASS: token->keyword = RID_AT_CLASS; break;
case RID_PRIVATE: token->keyword = RID_AT_PRIVATE; break;
case RID_PROTECTED: token->keyword = RID_AT_PROTECTED; break;
case RID_PUBLIC: token->keyword = RID_AT_PUBLIC; break;
case RID_THROW: token->keyword = RID_AT_THROW; break;
case RID_TRY: token->keyword = RID_AT_TRY; break;
case RID_CATCH: token->keyword = RID_AT_CATCH; break;
default: token->keyword = C_RID_CODE (token->value);
}
break;
case CPP_COLON:
case CPP_COMMA:
case CPP_CLOSE_PAREN:
case CPP_SEMICOLON:
/* These tokens may affect the interpretation of any identifiers
following, if doing Objective-C. */
if (c_dialect_objc ())
parser->objc_need_raw_identifier = false;
break;
case CPP_PRAGMA:
/* We smuggled the cpp_token->u.pragma value in an INTEGER_CST. */
token->pragma_kind = (enum pragma_kind) TREE_INT_CST_LOW (token->value);
token->value = NULL;
break;
default:
break;
}
timevar_pop (TV_LEX);
}
/* Return a pointer to the next token from PARSER, reading it in if
necessary. */
static inline c_token *
c_parser_peek_token (c_parser *parser)
{
if (parser->tokens_avail == 0)
{
c_lex_one_token (parser, &parser->tokens[0]);
parser->tokens_avail = 1;
}
return &parser->tokens[0];
}
/* Return true if the next token from PARSER has the indicated
TYPE. */
static inline bool
c_parser_next_token_is (c_parser *parser, enum cpp_ttype type)
{
return c_parser_peek_token (parser)->type == type;
}
/* Return true if the next token from PARSER does not have the
indicated TYPE. */
static inline bool
c_parser_next_token_is_not (c_parser *parser, enum cpp_ttype type)
{
return !c_parser_next_token_is (parser, type);
}
/* Return true if the next token from PARSER is the indicated
KEYWORD. */
static inline bool
c_parser_next_token_is_keyword (c_parser *parser, enum rid keyword)
{
return c_parser_peek_token (parser)->keyword == keyword;
}
/* Return a pointer to the next-but-one token from PARSER, reading it
in if necessary. The next token is already read in. */
static c_token *
c_parser_peek_2nd_token (c_parser *parser)
{
if (parser->tokens_avail >= 2)
return &parser->tokens[1];
gcc_assert (parser->tokens_avail == 1);
gcc_assert (parser->tokens[0].type != CPP_EOF);
gcc_assert (parser->tokens[0].type != CPP_PRAGMA_EOL);
c_lex_one_token (parser, &parser->tokens[1]);
parser->tokens_avail = 2;
return &parser->tokens[1];
}
/* Return true if TOKEN can start a type name,
false otherwise. */
static bool
c_token_starts_typename (c_token *token)
{
switch (token->type)
{
case CPP_NAME:
switch (token->id_kind)
{
case C_ID_ID:
return false;
case C_ID_ADDRSPACE:
return true;
case C_ID_TYPENAME:
return true;
case C_ID_CLASSNAME:
gcc_assert (c_dialect_objc ());
return true;
default:
gcc_unreachable ();
}
case CPP_KEYWORD:
switch (token->keyword)
{
case RID_UNSIGNED:
case RID_LONG:
case RID_INT128:
case RID_SHORT:
case RID_SIGNED:
case RID_COMPLEX:
case RID_INT:
case RID_CHAR:
case RID_FLOAT:
case RID_DOUBLE:
case RID_VOID:
case RID_DFLOAT32:
case RID_DFLOAT64:
case RID_DFLOAT128:
case RID_BOOL:
case RID_ENUM:
case RID_STRUCT:
case RID_UNION:
case RID_TYPEOF:
case RID_CONST:
case RID_VOLATILE:
case RID_RESTRICT:
case RID_ATTRIBUTE:
case RID_FRACT:
case RID_ACCUM:
case RID_SAT:
return true;
default:
return false;
}
case CPP_LESS:
if (c_dialect_objc ())
return true;
return false;
default:
return false;
}
}
enum c_lookahead_kind {
/* Always treat unknown identifiers as typenames. */
cla_prefer_type,
/* Could be parsing a nonabstract declarator. Only treat an identifier
as a typename if followed by another identifier or a star. */
cla_nonabstract_decl,
/* Never treat identifiers as typenames. */
cla_prefer_id
};
/* Return true if the next token from PARSER can start a type name,
false otherwise. LA specifies how to do lookahead in order to
detect unknown type names. If unsure, pick CLA_PREFER_ID. */
static inline bool
c_parser_next_tokens_start_typename (c_parser *parser, enum c_lookahead_kind la)
{
c_token *token = c_parser_peek_token (parser);
if (c_token_starts_typename (token))
return true;
/* Try a bit harder to detect an unknown typename. */
if (la != cla_prefer_id
&& token->type == CPP_NAME
&& token->id_kind == C_ID_ID
/* Do not try too hard when we could have "object in array". */
&& !parser->objc_could_be_foreach_context
&& (la == cla_prefer_type
|| c_parser_peek_2nd_token (parser)->type == CPP_NAME
|| c_parser_peek_2nd_token (parser)->type == CPP_MULT)
/* Only unknown identifiers. */
&& !lookup_name (token->value))
return true;
return false;
}
/* Return true if TOKEN is a type qualifier, false otherwise. */
static bool
c_token_is_qualifier (c_token *token)
{
switch (token->type)
{
case CPP_NAME:
switch (token->id_kind)
{
case C_ID_ADDRSPACE:
return true;
default:
return false;
}
case CPP_KEYWORD:
switch (token->keyword)
{
case RID_CONST:
case RID_VOLATILE:
case RID_RESTRICT:
case RID_ATTRIBUTE:
return true;
default:
return false;
}
case CPP_LESS:
return false;
default:
gcc_unreachable ();
}
}
/* Return true if the next token from PARSER is a type qualifier,
false otherwise. */
static inline bool
c_parser_next_token_is_qualifier (c_parser *parser)
{
c_token *token = c_parser_peek_token (parser);
return c_token_is_qualifier (token);
}
/* Return true if TOKEN can start declaration specifiers, false
otherwise. */
static bool
c_token_starts_declspecs (c_token *token)
{
switch (token->type)
{
case CPP_NAME:
switch (token->id_kind)
{
case C_ID_ID:
return false;
case C_ID_ADDRSPACE:
return true;
case C_ID_TYPENAME:
return true;
case C_ID_CLASSNAME:
gcc_assert (c_dialect_objc ());
return true;
default:
gcc_unreachable ();
}
case CPP_KEYWORD:
switch (token->keyword)
{
case RID_STATIC:
case RID_EXTERN:
case RID_REGISTER:
case RID_TYPEDEF:
case RID_INLINE:
case RID_AUTO:
case RID_THREAD:
case RID_UNSIGNED:
case RID_LONG:
case RID_INT128:
case RID_SHORT:
case RID_SIGNED:
case RID_COMPLEX:
case RID_INT:
case RID_CHAR:
case RID_FLOAT:
case RID_DOUBLE:
case RID_VOID:
case RID_DFLOAT32:
case RID_DFLOAT64:
case RID_DFLOAT128:
case RID_BOOL:
case RID_ENUM:
case RID_STRUCT:
case RID_UNION:
case RID_TYPEOF:
case RID_CONST:
case RID_VOLATILE:
case RID_RESTRICT:
case RID_ATTRIBUTE:
case RID_FRACT:
case RID_ACCUM:
case RID_SAT:
return true;
default:
return false;
}
case CPP_LESS:
if (c_dialect_objc ())
return true;
return false;
default:
return false;
}
}
/* Return true if TOKEN can start declaration specifiers or a static
assertion, false otherwise. */
static bool
c_token_starts_declaration (c_token *token)
{
if (c_token_starts_declspecs (token)
|| token->keyword == RID_STATIC_ASSERT)
return true;
else
return false;
}
/* Return true if the next token from PARSER can start declaration
specifiers, false otherwise. */
static inline bool
c_parser_next_token_starts_declspecs (c_parser *parser)
{
c_token *token = c_parser_peek_token (parser);
/* In Objective-C, a classname normally starts a declspecs unless it
is immediately followed by a dot. In that case, it is the
Objective-C 2.0 "dot-syntax" for class objects, ie, calls the
setter/getter on the class. c_token_starts_declspecs() can't
differentiate between the two cases because it only checks the
current token, so we have a special check here. */
if (c_dialect_objc ()
&& token->type == CPP_NAME
&& token->id_kind == C_ID_CLASSNAME
&& c_parser_peek_2nd_token (parser)->type == CPP_DOT)
return false;
return c_token_starts_declspecs (token);
}
/* Return true if the next tokens from PARSER can start declaration
specifiers or a static assertion, false otherwise. */
static inline bool
c_parser_next_tokens_start_declaration (c_parser *parser)
{
c_token *token = c_parser_peek_token (parser);
/* Same as above. */
if (c_dialect_objc ()
&& token->type == CPP_NAME
&& token->id_kind == C_ID_CLASSNAME
&& c_parser_peek_2nd_token (parser)->type == CPP_DOT)
return false;
/* Labels do not start declarations. */
if (token->type == CPP_NAME
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON)
return false;
if (c_token_starts_declaration (token))
return true;
if (c_parser_next_tokens_start_typename (parser, cla_nonabstract_decl))
return true;
return false;
}
/* Consume the next token from PARSER. */
static void
c_parser_consume_token (c_parser *parser)
{
gcc_assert (parser->tokens_avail >= 1);
gcc_assert (parser->tokens[0].type != CPP_EOF);
gcc_assert (!parser->in_pragma || parser->tokens[0].type != CPP_PRAGMA_EOL);
gcc_assert (parser->error || parser->tokens[0].type != CPP_PRAGMA);
if (parser->tokens_avail == 2)
parser->tokens[0] = parser->tokens[1];
parser->tokens_avail--;
}
/* Expect the current token to be a #pragma. Consume it and remember
that we've begun parsing a pragma. */
static void
c_parser_consume_pragma (c_parser *parser)
{
gcc_assert (!parser->in_pragma);
gcc_assert (parser->tokens_avail >= 1);
gcc_assert (parser->tokens[0].type == CPP_PRAGMA);
if (parser->tokens_avail == 2)
parser->tokens[0] = parser->tokens[1];
parser->tokens_avail--;
parser->in_pragma = true;
}
/* Update the globals input_location and in_system_header from
TOKEN. */
static inline void
c_parser_set_source_position_from_token (c_token *token)
{
if (token->type != CPP_EOF)
{
input_location = token->location;
}
}
/* Issue a diagnostic of the form
FILE:LINE: MESSAGE before TOKEN
where TOKEN is the next token in the input stream of PARSER.
MESSAGE (specified by the caller) is usually of the form "expected
OTHER-TOKEN".
Do not issue a diagnostic if still recovering from an error.
??? This is taken from the C++ parser, but building up messages in
this way is not i18n-friendly and some other approach should be
used. */
static void
c_parser_error (c_parser *parser, const char *gmsgid)
{
c_token *token = c_parser_peek_token (parser);
if (parser->error)
return;
parser->error = true;
if (!gmsgid)
return;
/* This diagnostic makes more sense if it is tagged to the line of
the token we just peeked at. */
c_parser_set_source_position_from_token (token);
c_parse_error (gmsgid,
/* Because c_parse_error does not understand
CPP_KEYWORD, keywords are treated like
identifiers. */
(token->type == CPP_KEYWORD ? CPP_NAME : token->type),
/* ??? The C parser does not save the cpp flags of a
token, we need to pass 0 here and we will not get
the source spelling of some tokens but rather the
canonical spelling. */
token->value, /*flags=*/0);
}
/* If the next token is of the indicated TYPE, consume it. Otherwise,
issue the error MSGID. If MSGID is NULL then a message has already
been produced and no message will be produced this time. Returns
true if found, false otherwise. */
static bool
c_parser_require (c_parser *parser,
enum cpp_ttype type,
const char *msgid)
{
if (c_parser_next_token_is (parser, type))
{
c_parser_consume_token (parser);
return true;
}
else
{
c_parser_error (parser, msgid);
return false;
}
}
/* If the next token is the indicated keyword, consume it. Otherwise,
issue the error MSGID. Returns true if found, false otherwise. */
static bool
c_parser_require_keyword (c_parser *parser,
enum rid keyword,
const char *msgid)
{
if (c_parser_next_token_is_keyword (parser, keyword))
{
c_parser_consume_token (parser);
return true;
}
else
{
c_parser_error (parser, msgid);
return false;
}
}
/* Like c_parser_require, except that tokens will be skipped until the
desired token is found. An error message is still produced if the
next token is not as expected. If MSGID is NULL then a message has
already been produced and no message will be produced this
time. */
static void
c_parser_skip_until_found (c_parser *parser,
enum cpp_ttype type,
const char *msgid)
{
unsigned nesting_depth = 0;
if (c_parser_require (parser, type, msgid))
return;
/* Skip tokens until the desired token is found. */
while (true)
{
/* Peek at the next token. */
c_token *token = c_parser_peek_token (parser);
/* If we've reached the token we want, consume it and stop. */
if (token->type == type && !nesting_depth)
{
c_parser_consume_token (parser);
break;
}
/* If we've run out of tokens, stop. */
if (token->type == CPP_EOF)
return;
if (token->type == CPP_PRAGMA_EOL && parser->in_pragma)
return;
if (token->type == CPP_OPEN_BRACE
|| token->type == CPP_OPEN_PAREN
|| token->type == CPP_OPEN_SQUARE)
++nesting_depth;
else if (token->type == CPP_CLOSE_BRACE
|| token->type == CPP_CLOSE_PAREN
|| token->type == CPP_CLOSE_SQUARE)
{
if (nesting_depth-- == 0)
break;
}
/* Consume this token. */
c_parser_consume_token (parser);
}
parser->error = false;
}
/* Skip tokens until the end of a parameter is found, but do not
consume the comma, semicolon or closing delimiter. */
static void
c_parser_skip_to_end_of_parameter (c_parser *parser)
{
unsigned nesting_depth = 0;
while (true)
{
c_token *token = c_parser_peek_token (parser);
if ((token->type == CPP_COMMA || token->type == CPP_SEMICOLON)
&& !nesting_depth)
break;
/* If we've run out of tokens, stop. */
if (token->type == CPP_EOF)
return;
if (token->type == CPP_PRAGMA_EOL && parser->in_pragma)
return;
if (token->type == CPP_OPEN_BRACE
|| token->type == CPP_OPEN_PAREN
|| token->type == CPP_OPEN_SQUARE)
++nesting_depth;
else if (token->type == CPP_CLOSE_BRACE
|| token->type == CPP_CLOSE_PAREN
|| token->type == CPP_CLOSE_SQUARE)
{
if (nesting_depth-- == 0)
break;
}
/* Consume this token. */
c_parser_consume_token (parser);
}
parser->error = false;
}
/* Expect to be at the end of the pragma directive and consume an
end of line marker. */
static void
c_parser_skip_to_pragma_eol (c_parser *parser)
{
gcc_assert (parser->in_pragma);
parser->in_pragma = false;
if (!c_parser_require (parser, CPP_PRAGMA_EOL, "expected end of line"))
while (true)
{
c_token *token = c_parser_peek_token (parser);
if (token->type == CPP_EOF)
break;
if (token->type == CPP_PRAGMA_EOL)
{
c_parser_consume_token (parser);
break;
}
c_parser_consume_token (parser);
}
parser->error = false;
}
/* Skip tokens until we have consumed an entire block, or until we
have consumed a non-nested ';'. */
static void
c_parser_skip_to_end_of_block_or_statement (c_parser *parser)
{
unsigned nesting_depth = 0;
bool save_error = parser->error;
while (true)
{
c_token *token;
/* Peek at the next token. */
token = c_parser_peek_token (parser);
switch (token->type)
{
case CPP_EOF:
return;
case CPP_PRAGMA_EOL:
if (parser->in_pragma)
return;
break;
case CPP_SEMICOLON:
/* If the next token is a ';', we have reached the
end of the statement. */
if (!nesting_depth)
{
/* Consume the ';'. */
c_parser_consume_token (parser);
goto finished;
}
break;
case CPP_CLOSE_BRACE:
/* If the next token is a non-nested '}', then we have
reached the end of the current block. */
if (nesting_depth == 0 || --nesting_depth == 0)
{
c_parser_consume_token (parser);
goto finished;
}
break;
case CPP_OPEN_BRACE:
/* If it the next token is a '{', then we are entering a new
block. Consume the entire block. */
++nesting_depth;
break;
case CPP_PRAGMA:
/* If we see a pragma, consume the whole thing at once. We
have some safeguards against consuming pragmas willy-nilly.
Normally, we'd expect to be here with parser->error set,
which disables these safeguards. But it's possible to get
here for secondary error recovery, after parser->error has
been cleared. */
c_parser_consume_pragma (parser);
c_parser_skip_to_pragma_eol (parser);
parser->error = save_error;
continue;
default:
break;
}
c_parser_consume_token (parser);
}
finished:
parser->error = false;
}
/* CPP's options (initialized by c-opts.c). */
extern cpp_options *cpp_opts;
/* Save the warning flags which are controlled by __extension__. */
static inline int
disable_extension_diagnostics (void)
{
int ret = (pedantic
| (warn_pointer_arith << 1)
| (warn_traditional << 2)
| (flag_iso << 3)
| (warn_long_long << 4)
| (warn_cxx_compat << 5));
cpp_opts->cpp_pedantic = pedantic = 0;
warn_pointer_arith = 0;
cpp_opts->cpp_warn_traditional = warn_traditional = 0;
flag_iso = 0;
cpp_opts->cpp_warn_long_long = warn_long_long = 0;
warn_cxx_compat = 0;
return ret;
}
/* Restore the warning flags which are controlled by __extension__.
FLAGS is the return value from disable_extension_diagnostics. */
static inline void
restore_extension_diagnostics (int flags)
{
cpp_opts->cpp_pedantic = pedantic = flags & 1;
warn_pointer_arith = (flags >> 1) & 1;
cpp_opts->cpp_warn_traditional = warn_traditional = (flags >> 2) & 1;
flag_iso = (flags >> 3) & 1;
cpp_opts->cpp_warn_long_long = warn_long_long = (flags >> 4) & 1;
warn_cxx_compat = (flags >> 5) & 1;
}
/* Possibly kinds of declarator to parse. */
typedef enum c_dtr_syn {
/* A normal declarator with an identifier. */
C_DTR_NORMAL,
/* An abstract declarator (maybe empty). */
C_DTR_ABSTRACT,
/* A parameter declarator: may be either, but after a type name does
not redeclare a typedef name as an identifier if it can
alternatively be interpreted as a typedef name; see DR#009,
applied in C90 TC1, omitted from C99 and reapplied in C99 TC2
following DR#249. For example, given a typedef T, "int T" and
"int *T" are valid parameter declarations redeclaring T, while
"int (T)" and "int * (T)" and "int (T[])" and "int (T (int))" are
abstract declarators rather than involving redundant parentheses;
the same applies with attributes inside the parentheses before
"T". */
C_DTR_PARM
} c_dtr_syn;
static void c_parser_external_declaration (c_parser *);
static void c_parser_asm_definition (c_parser *);
static void c_parser_declaration_or_fndef (c_parser *, bool, bool, bool,
bool, bool, tree *);
static void c_parser_static_assert_declaration_no_semi (c_parser *);
static void c_parser_static_assert_declaration (c_parser *);
static void c_parser_declspecs (c_parser *, struct c_declspecs *, bool, bool,
bool, enum c_lookahead_kind);
static struct c_typespec c_parser_enum_specifier (c_parser *);
static struct c_typespec c_parser_struct_or_union_specifier (c_parser *);
static tree c_parser_struct_declaration (c_parser *);
static struct c_typespec c_parser_typeof_specifier (c_parser *);
static struct c_declarator *c_parser_declarator (c_parser *, bool, c_dtr_syn,
bool *);
static struct c_declarator *c_parser_direct_declarator (c_parser *, bool,
c_dtr_syn, bool *);
static struct c_declarator *c_parser_direct_declarator_inner (c_parser *,
bool,
struct c_declarator *);
static struct c_arg_info *c_parser_parms_declarator (c_parser *, bool, tree);
static struct c_arg_info *c_parser_parms_list_declarator (c_parser *, tree);
static struct c_parm *c_parser_parameter_declaration (c_parser *, tree);
static tree c_parser_simple_asm_expr (c_parser *);
static tree c_parser_attributes (c_parser *);
static struct c_type_name *c_parser_type_name (c_parser *);
static struct c_expr c_parser_initializer (c_parser *);
static struct c_expr c_parser_braced_init (c_parser *, tree, bool);
static void c_parser_initelt (c_parser *, struct obstack *);
static void c_parser_initval (c_parser *, struct c_expr *,
struct obstack *);
static tree c_parser_compound_statement (c_parser *);
static void c_parser_compound_statement_nostart (c_parser *);
static void c_parser_label (c_parser *);
static void c_parser_statement (c_parser *);
static void c_parser_statement_after_labels (c_parser *);
static void c_parser_if_statement (c_parser *);
static void c_parser_switch_statement (c_parser *);
static void c_parser_while_statement (c_parser *);
static void c_parser_do_statement (c_parser *);
static void c_parser_for_statement (c_parser *);
static tree c_parser_asm_statement (c_parser *);
static tree c_parser_asm_operands (c_parser *, bool);
static tree c_parser_asm_goto_operands (c_parser *);
static tree c_parser_asm_clobbers (c_parser *);
static struct c_expr c_parser_expr_no_commas (c_parser *, struct c_expr *);
static struct c_expr c_parser_conditional_expression (c_parser *,
struct c_expr *);
static struct c_expr c_parser_binary_expression (c_parser *, struct c_expr *);
static struct c_expr c_parser_cast_expression (c_parser *, struct c_expr *);
static struct c_expr c_parser_unary_expression (c_parser *);
static struct c_expr c_parser_sizeof_expression (c_parser *);
static struct c_expr c_parser_alignof_expression (c_parser *);
static struct c_expr c_parser_postfix_expression (c_parser *);
static struct c_expr c_parser_postfix_expression_after_paren_type (c_parser *,
struct c_type_name *,
location_t);
static struct c_expr c_parser_postfix_expression_after_primary (c_parser *,
location_t loc,
struct c_expr);
static struct c_expr c_parser_expression (c_parser *);
static struct c_expr c_parser_expression_conv (c_parser *);
static VEC(tree,gc) *c_parser_expr_list (c_parser *, bool, bool,
VEC(tree,gc) **);
static void c_parser_omp_construct (c_parser *);
static void c_parser_omp_threadprivate (c_parser *);
static void c_parser_omp_barrier (c_parser *);
static void c_parser_omp_flush (c_parser *);
static void c_parser_omp_taskwait (c_parser *);
enum pragma_context { pragma_external, pragma_stmt, pragma_compound };
static bool c_parser_pragma (c_parser *, enum pragma_context);
/* These Objective-C parser functions are only ever called when
compiling Objective-C. */
static void c_parser_objc_class_definition (c_parser *, tree);
static void c_parser_objc_class_instance_variables (c_parser *);
static void c_parser_objc_class_declaration (c_parser *);
static void c_parser_objc_alias_declaration (c_parser *);
static void c_parser_objc_protocol_definition (c_parser *, tree);
static bool c_parser_objc_method_type (c_parser *);
static void c_parser_objc_method_definition (c_parser *);
static void c_parser_objc_methodprotolist (c_parser *);
static void c_parser_objc_methodproto (c_parser *);
static tree c_parser_objc_method_decl (c_parser *, bool, tree *);
static tree c_parser_objc_type_name (c_parser *);
static tree c_parser_objc_protocol_refs (c_parser *);
static void c_parser_objc_try_catch_finally_statement (c_parser *);
static void c_parser_objc_synchronized_statement (c_parser *);
static tree c_parser_objc_selector (c_parser *);
static tree c_parser_objc_selector_arg (c_parser *);
static tree c_parser_objc_receiver (c_parser *);
static tree c_parser_objc_message_args (c_parser *);
static tree c_parser_objc_keywordexpr (c_parser *);
static void c_parser_objc_at_property_declaration (c_parser *);
static void c_parser_objc_at_synthesize_declaration (c_parser *);
static void c_parser_objc_at_dynamic_declaration (c_parser *);
static bool c_parser_objc_diagnose_bad_element_prefix
(c_parser *, struct c_declspecs *);
/* Parse a translation unit (C90 6.7, C99 6.9).
translation-unit:
external-declarations
external-declarations:
external-declaration
external-declarations external-declaration
GNU extensions:
translation-unit:
empty
*/
static void
c_parser_translation_unit (c_parser *parser)
{
if (c_parser_next_token_is (parser, CPP_EOF))
{
pedwarn (c_parser_peek_token (parser)->location, OPT_pedantic,
"ISO C forbids an empty translation unit");
}
else
{
void *obstack_position = obstack_alloc (&parser_obstack, 0);
mark_valid_location_for_stdc_pragma (false);
do
{
ggc_collect ();
c_parser_external_declaration (parser);
obstack_free (&parser_obstack, obstack_position);
}
while (c_parser_next_token_is_not (parser, CPP_EOF));
}
}
/* Parse an external declaration (C90 6.7, C99 6.9).
external-declaration:
function-definition
declaration
GNU extensions:
external-declaration:
asm-definition
;
__extension__ external-declaration
Objective-C:
external-declaration:
objc-class-definition
objc-class-declaration
objc-alias-declaration
objc-protocol-definition
objc-method-definition
@end
*/
static void
c_parser_external_declaration (c_parser *parser)
{
int ext;
switch (c_parser_peek_token (parser)->type)
{
case CPP_KEYWORD:
switch (c_parser_peek_token (parser)->keyword)
{
case RID_EXTENSION:
ext = disable_extension_diagnostics ();
c_parser_consume_token (parser);
c_parser_external_declaration (parser);
restore_extension_diagnostics (ext);
break;
case RID_ASM:
c_parser_asm_definition (parser);
break;
case RID_AT_INTERFACE:
case RID_AT_IMPLEMENTATION:
gcc_assert (c_dialect_objc ());
c_parser_objc_class_definition (parser, NULL_TREE);
break;
case RID_AT_CLASS:
gcc_assert (c_dialect_objc ());
c_parser_objc_class_declaration (parser);
break;
case RID_AT_ALIAS:
gcc_assert (c_dialect_objc ());
c_parser_objc_alias_declaration (parser);
break;
case RID_AT_PROTOCOL:
gcc_assert (c_dialect_objc ());
c_parser_objc_protocol_definition (parser, NULL_TREE);
break;
case RID_AT_PROPERTY:
gcc_assert (c_dialect_objc ());
c_parser_objc_at_property_declaration (parser);
break;
case RID_AT_SYNTHESIZE:
gcc_assert (c_dialect_objc ());
c_parser_objc_at_synthesize_declaration (parser);
break;
case RID_AT_DYNAMIC:
gcc_assert (c_dialect_objc ());
c_parser_objc_at_dynamic_declaration (parser);
break;
case RID_AT_END:
gcc_assert (c_dialect_objc ());
c_parser_consume_token (parser);
objc_finish_implementation ();
break;
default:
goto decl_or_fndef;
}
break;
case CPP_SEMICOLON:
pedwarn (c_parser_peek_token (parser)->location, OPT_pedantic,
"ISO C does not allow extra %<;%> outside of a function");
c_parser_consume_token (parser);
break;
case CPP_PRAGMA:
mark_valid_location_for_stdc_pragma (true);
c_parser_pragma (parser, pragma_external);
mark_valid_location_for_stdc_pragma (false);
break;
case CPP_PLUS:
case CPP_MINUS:
if (c_dialect_objc ())
{
c_parser_objc_method_definition (parser);
break;
}
/* Else fall through, and yield a syntax error trying to parse
as a declaration or function definition. */
default:
decl_or_fndef:
/* A declaration or a function definition (or, in Objective-C,
an @interface or @protocol with prefix attributes). We can
only tell which after parsing the declaration specifiers, if
any, and the first declarator. */
c_parser_declaration_or_fndef (parser, true, true, true, false, true, NULL);
break;
}
}
/* Parse a declaration or function definition (C90 6.5, 6.7.1, C99
6.7, 6.9.1). If FNDEF_OK is true, a function definition is
accepted; otherwise (old-style parameter declarations) only other
declarations are accepted. If STATIC_ASSERT_OK is true, a static
assertion is accepted; otherwise (old-style parameter declarations)
it is not. If NESTED is true, we are inside a function or parsing
old-style parameter declarations; any functions encountered are
nested functions and declaration specifiers are required; otherwise
we are at top level and functions are normal functions and
declaration specifiers may be optional. If EMPTY_OK is true, empty
declarations are OK (subject to all other constraints); otherwise
(old-style parameter declarations) they are diagnosed. If
START_ATTR_OK is true, the declaration specifiers may start with
attributes; otherwise they may not.
OBJC_FOREACH_OBJECT_DECLARATION can be used to get back the parsed
declaration when parsing an Objective-C foreach statement.
declaration:
declaration-specifiers init-declarator-list[opt] ;
static_assert-declaration
function-definition:
declaration-specifiers[opt] declarator declaration-list[opt]
compound-statement
declaration-list:
declaration
declaration-list declaration
init-declarator-list:
init-declarator
init-declarator-list , init-declarator
init-declarator:
declarator simple-asm-expr[opt] attributes[opt]
declarator simple-asm-expr[opt] attributes[opt] = initializer
GNU extensions:
nested-function-definition:
declaration-specifiers declarator declaration-list[opt]
compound-statement
Objective-C:
attributes objc-class-definition
attributes objc-category-definition
attributes objc-protocol-definition
The simple-asm-expr and attributes are GNU extensions.
This function does not handle __extension__; that is handled in its
callers. ??? Following the old parser, __extension__ may start
external declarations, declarations in functions and declarations
at the start of "for" loops, but not old-style parameter
declarations.
C99 requires declaration specifiers in a function definition; the
absence is diagnosed through the diagnosis of implicit int. In GNU
C we also allow but diagnose declarations without declaration
specifiers, but only at top level (elsewhere they conflict with
other syntax).
In Objective-C, declarations of the looping variable in a foreach
statement are exceptionally terminated by 'in' (for example, 'for
(NSObject *object in array) { ... }').
OpenMP:
declaration:
threadprivate-directive */
static void
c_parser_declaration_or_fndef (c_parser *parser, bool fndef_ok,
bool static_assert_ok, bool empty_ok,
bool nested, bool start_attr_ok,
tree *objc_foreach_object_declaration)
{
struct c_declspecs *specs;
tree prefix_attrs;
tree all_prefix_attrs;
bool diagnosed_no_specs = false;
location_t here = c_parser_peek_token (parser)->location;
if (static_assert_ok
&& c_parser_next_token_is_keyword (parser, RID_STATIC_ASSERT))
{
c_parser_static_assert_declaration (parser);
return;
}
specs = build_null_declspecs ();
/* Try to detect an unknown type name when we have "A B" or "A *B". */
if (c_parser_peek_token (parser)->type == CPP_NAME
&& c_parser_peek_token (parser)->id_kind == C_ID_ID
&& (c_parser_peek_2nd_token (parser)->type == CPP_NAME
|| c_parser_peek_2nd_token (parser)->type == CPP_MULT)
&& (!nested || !lookup_name (c_parser_peek_token (parser)->value)))
{
error_at (here, "unknown type name %qE",
c_parser_peek_token (parser)->value);
/* Parse declspecs normally to get a correct pointer type, but avoid
a further "fails to be a type name" error. Refuse nested functions
since it is not how the user likely wants us to recover. */
c_parser_peek_token (parser)->type = CPP_KEYWORD;
c_parser_peek_token (parser)->keyword = RID_VOID;
c_parser_peek_token (parser)->value = error_mark_node;
fndef_ok = !nested;
}
c_parser_declspecs (parser, specs, true, true, start_attr_ok, cla_nonabstract_decl);
if (parser->error)
{
c_parser_skip_to_end_of_block_or_statement (parser);
return;
}
if (nested && !specs->declspecs_seen_p)
{
c_parser_error (parser, "expected declaration specifiers");
c_parser_skip_to_end_of_block_or_statement (parser);
return;
}
finish_declspecs (specs);
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
if (empty_ok)
shadow_tag (specs);
else
{
shadow_tag_warned (specs, 1);
pedwarn (here, 0, "empty declaration");
}
c_parser_consume_token (parser);
return;
}
/* Provide better error recovery. Note that a type name here is usually
better diagnosed as a redeclaration. */
if (empty_ok
&& specs->typespec_kind == ctsk_tagdef
&& c_parser_next_token_starts_declspecs (parser)
&& !c_parser_next_token_is (parser, CPP_NAME))
{
c_parser_error (parser, "expected %<;%>, identifier or %<(%>");
parser->error = false;
shadow_tag_warned (specs, 1);
return;
}
else if (c_dialect_objc ())
{
/* Prefix attributes are an error on method decls. */
switch (c_parser_peek_token (parser)->type)
{
case CPP_PLUS:
case CPP_MINUS:
if (c_parser_objc_diagnose_bad_element_prefix (parser, specs))
return;
if (specs->attrs)
{
warning_at (c_parser_peek_token (parser)->location,
OPT_Wattributes,
"prefix attributes are ignored for methods");
specs->attrs = NULL_TREE;
}
if (fndef_ok)
c_parser_objc_method_definition (parser);
else
c_parser_objc_methodproto (parser);
return;
break;
default:
break;
}
/* This is where we parse 'attributes @interface ...',
'attributes @implementation ...', 'attributes @protocol ...'
(where attributes could be, for example, __attribute__
((deprecated)).
*/
switch (c_parser_peek_token (parser)->keyword)
{
case RID_AT_INTERFACE:
{
if (c_parser_objc_diagnose_bad_element_prefix (parser, specs))
return;
c_parser_objc_class_definition (parser, specs->attrs);
return;
}
break;
case RID_AT_IMPLEMENTATION:
{
if (c_parser_objc_diagnose_bad_element_prefix (parser, specs))
return;
if (specs->attrs)
{
warning_at (c_parser_peek_token (parser)->location,
OPT_Wattributes,
"prefix attributes are ignored for implementations");
specs->attrs = NULL_TREE;
}
c_parser_objc_class_definition (parser, NULL_TREE);
return;
}
break;
case RID_AT_PROTOCOL:
{
if (c_parser_objc_diagnose_bad_element_prefix (parser, specs))
return;
c_parser_objc_protocol_definition (parser, specs->attrs);
return;
}
break;
case RID_AT_ALIAS:
case RID_AT_CLASS:
case RID_AT_END:
case RID_AT_PROPERTY:
if (specs->attrs)
{
c_parser_error (parser, "unexpected attribute");
specs->attrs = NULL;
}
break;
default:
break;
}
}
pending_xref_error ();
prefix_attrs = specs->attrs;
all_prefix_attrs = prefix_attrs;
specs->attrs = NULL_TREE;
while (true)
{
struct c_declarator *declarator;
bool dummy = false;
tree fnbody;
/* Declaring either one or more declarators (in which case we
should diagnose if there were no declaration specifiers) or a
function definition (in which case the diagnostic for
implicit int suffices). */
declarator = c_parser_declarator (parser,
specs->typespec_kind != ctsk_none,
C_DTR_NORMAL, &dummy);
if (declarator == NULL)
{
c_parser_skip_to_end_of_block_or_statement (parser);
return;
}
if (c_parser_next_token_is (parser, CPP_EQ)
|| c_parser_next_token_is (parser, CPP_COMMA)
|| c_parser_next_token_is (parser, CPP_SEMICOLON)
|| c_parser_next_token_is_keyword (parser, RID_ASM)
|| c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE)
|| c_parser_next_token_is_keyword (parser, RID_IN))
{
tree asm_name = NULL_TREE;
tree postfix_attrs = NULL_TREE;
if (!diagnosed_no_specs && !specs->declspecs_seen_p)
{
diagnosed_no_specs = true;
pedwarn (here, 0, "data definition has no type or storage class");
}
/* Having seen a data definition, there cannot now be a
function definition. */
fndef_ok = false;
if (c_parser_next_token_is_keyword (parser, RID_ASM))
asm_name = c_parser_simple_asm_expr (parser);
if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
postfix_attrs = c_parser_attributes (parser);
if (c_parser_next_token_is (parser, CPP_EQ))
{
tree d;
struct c_expr init;
location_t init_loc;
c_parser_consume_token (parser);
/* The declaration of the variable is in effect while
its initializer is parsed. */
d = start_decl (declarator, specs, true,
chainon (postfix_attrs, all_prefix_attrs));
if (!d)
d = error_mark_node;
start_init (d, asm_name, global_bindings_p ());
init_loc = c_parser_peek_token (parser)->location;
init = c_parser_initializer (parser);
finish_init ();
if (d != error_mark_node)
{
maybe_warn_string_init (TREE_TYPE (d), init);
finish_decl (d, init_loc, init.value,
init.original_type, asm_name);
}
}
else
{
tree d = start_decl (declarator, specs, false,
chainon (postfix_attrs,
all_prefix_attrs));
if (d)
finish_decl (d, UNKNOWN_LOCATION, NULL_TREE,
NULL_TREE, asm_name);
if (c_parser_next_token_is_keyword (parser, RID_IN))
{
if (d)
*objc_foreach_object_declaration = d;
else
*objc_foreach_object_declaration = error_mark_node;
}
}
if (c_parser_next_token_is (parser, CPP_COMMA))
{
c_parser_consume_token (parser);
if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
all_prefix_attrs = chainon (c_parser_attributes (parser),
prefix_attrs);
else
all_prefix_attrs = prefix_attrs;
continue;
}
else if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
c_parser_consume_token (parser);
return;
}
else if (c_parser_next_token_is_keyword (parser, RID_IN))
{
/* This can only happen in Objective-C: we found the
'in' that terminates the declaration inside an
Objective-C foreach statement. Do not consume the
token, so that the caller can use it to determine
that this indeed is a foreach context. */
return;
}
else
{
c_parser_error (parser, "expected %<,%> or %<;%>");
c_parser_skip_to_end_of_block_or_statement (parser);
return;
}
}
else if (!fndef_ok)
{
c_parser_error (parser, "expected %<=%>, %<,%>, %<;%>, "
"%<asm%> or %<__attribute__%>");
c_parser_skip_to_end_of_block_or_statement (parser);
return;
}
/* Function definition (nested or otherwise). */
if (nested)
{
pedwarn (here, OPT_pedantic, "ISO C forbids nested functions");
c_push_function_context ();
}
if (!start_function (specs, declarator, all_prefix_attrs))
{
/* This can appear in many cases looking nothing like a
function definition, so we don't give a more specific
error suggesting there was one. */
c_parser_error (parser, "expected %<=%>, %<,%>, %<;%>, %<asm%> "
"or %<__attribute__%>");
if (nested)
c_pop_function_context ();
break;
}
/* Parse old-style parameter declarations. ??? Attributes are
not allowed to start declaration specifiers here because of a
syntax conflict between a function declaration with attribute
suffix and a function definition with an attribute prefix on
first old-style parameter declaration. Following the old
parser, they are not accepted on subsequent old-style
parameter declarations either. However, there is no
ambiguity after the first declaration, nor indeed on the
first as long as we don't allow postfix attributes after a
declarator with a nonempty identifier list in a definition;
and postfix attributes have never been accepted here in
function definitions either. */
while (c_parser_next_token_is_not (parser, CPP_EOF)
&& c_parser_next_token_is_not (parser, CPP_OPEN_BRACE))
c_parser_declaration_or_fndef (parser, false, false, false,
true, false, NULL);
store_parm_decls ();
DECL_STRUCT_FUNCTION (current_function_decl)->function_start_locus
= c_parser_peek_token (parser)->location;
fnbody = c_parser_compound_statement (parser);
if (nested)
{
tree decl = current_function_decl;
/* Mark nested functions as needing static-chain initially.
lower_nested_functions will recompute it but the
DECL_STATIC_CHAIN flag is also used before that happens,
by initializer_constant_valid_p. See gcc.dg/nested-fn-2.c. */
DECL_STATIC_CHAIN (decl) = 1;
add_stmt (fnbody);
finish_function ();
c_pop_function_context ();
add_stmt (build_stmt (DECL_SOURCE_LOCATION (decl), DECL_EXPR, decl));
}
else
{
add_stmt (fnbody);
finish_function ();
}
break;
}
}
/* Parse an asm-definition (asm() outside a function body). This is a
GNU extension.
asm-definition:
simple-asm-expr ;
*/
static void
c_parser_asm_definition (c_parser *parser)
{
tree asm_str = c_parser_simple_asm_expr (parser);
if (asm_str)
cgraph_add_asm_node (asm_str);
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
/* Parse a static assertion (C1X N1425 6.7.10).
static_assert-declaration:
static_assert-declaration-no-semi ;
*/
static void
c_parser_static_assert_declaration (c_parser *parser)
{
c_parser_static_assert_declaration_no_semi (parser);
if (parser->error
|| !c_parser_require (parser, CPP_SEMICOLON, "expected %<;%>"))
c_parser_skip_to_end_of_block_or_statement (parser);
}
/* Parse a static assertion (C1X N1425 6.7.10), without the trailing
semicolon.
static_assert-declaration-no-semi:
_Static_assert ( constant-expression , string-literal )
*/
static void
c_parser_static_assert_declaration_no_semi (c_parser *parser)
{
location_t assert_loc, value_loc;
tree value;
tree string;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_STATIC_ASSERT));
assert_loc = c_parser_peek_token (parser)->location;
if (!flag_isoc1x)
{
if (flag_isoc99)
pedwarn (assert_loc, OPT_pedantic,
"ISO C99 does not support %<_Static_assert%>");
else
pedwarn (assert_loc, OPT_pedantic,
"ISO C90 does not support %<_Static_assert%>");
}
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
return;
value_loc = c_parser_peek_token (parser)->location;
value = c_parser_expr_no_commas (parser, NULL).value;
parser->lex_untranslated_string = true;
if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>"))
{
parser->lex_untranslated_string = false;
return;
}
switch (c_parser_peek_token (parser)->type)
{
case CPP_STRING:
case CPP_STRING16:
case CPP_STRING32:
case CPP_WSTRING:
case CPP_UTF8STRING:
string = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
parser->lex_untranslated_string = false;
break;
default:
c_parser_error (parser, "expected string literal");
parser->lex_untranslated_string = false;
return;
}
c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>");
if (!INTEGRAL_TYPE_P (TREE_TYPE (value)))
{
error_at (value_loc, "expression in static assertion is not an integer");
return;
}
if (TREE_CODE (value) != INTEGER_CST)
{
value = c_fully_fold (value, false, NULL);
if (TREE_CODE (value) == INTEGER_CST)
pedwarn (value_loc, OPT_pedantic, "expression in static assertion "
"is not an integer constant expression");
}
if (TREE_CODE (value) != INTEGER_CST)
{
error_at (value_loc, "expression in static assertion is not constant");
return;
}
constant_expression_warning (value);
if (integer_zerop (value))
error_at (assert_loc, "static assertion failed: %E", string);
}
/* Parse some declaration specifiers (possibly none) (C90 6.5, C99
6.7), adding them to SPECS (which may already include some).
Storage class specifiers are accepted iff SCSPEC_OK; type
specifiers are accepted iff TYPESPEC_OK; attributes are accepted at
the start iff START_ATTR_OK.
declaration-specifiers:
storage-class-specifier declaration-specifiers[opt]
type-specifier declaration-specifiers[opt]
type-qualifier declaration-specifiers[opt]
function-specifier declaration-specifiers[opt]
Function specifiers (inline) are from C99, and are currently
handled as storage class specifiers, as is __thread.
C90 6.5.1, C99 6.7.1:
storage-class-specifier:
typedef
extern
static
auto
register
C99 6.7.4:
function-specifier:
inline
C90 6.5.2, C99 6.7.2:
type-specifier:
void
char
short
int
long
float
double
signed
unsigned
_Bool
_Complex
[_Imaginary removed in C99 TC2]
struct-or-union-specifier
enum-specifier
typedef-name
(_Bool and _Complex are new in C99.)
C90 6.5.3, C99 6.7.3:
type-qualifier:
const
restrict
volatile
address-space-qualifier
(restrict is new in C99.)
GNU extensions:
declaration-specifiers:
attributes declaration-specifiers[opt]
type-qualifier:
address-space
address-space:
identifier recognized by the target
storage-class-specifier:
__thread
type-specifier:
typeof-specifier
__int128
_Decimal32
_Decimal64
_Decimal128
_Fract
_Accum
_Sat
(_Fract, _Accum, and _Sat are new from ISO/IEC DTR 18037:
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf)
Objective-C:
type-specifier:
class-name objc-protocol-refs[opt]
typedef-name objc-protocol-refs
objc-protocol-refs
*/
static void
c_parser_declspecs (c_parser *parser, struct c_declspecs *specs,
bool scspec_ok, bool typespec_ok, bool start_attr_ok,
enum c_lookahead_kind la)
{
bool attrs_ok = start_attr_ok;
bool seen_type = specs->typespec_kind != ctsk_none;
if (!typespec_ok)
gcc_assert (la == cla_prefer_id);
while (c_parser_next_token_is (parser, CPP_NAME)
|| c_parser_next_token_is (parser, CPP_KEYWORD)
|| (c_dialect_objc () && c_parser_next_token_is (parser, CPP_LESS)))
{
struct c_typespec t;
tree attrs;
location_t loc = c_parser_peek_token (parser)->location;
/* If we cannot accept a type, exit if the next token must start
one. Also, if we already have seen a tagged definition,
a typename would be an error anyway and likely the user
has simply forgotten a semicolon, so we exit. */
if ((!typespec_ok || specs->typespec_kind == ctsk_tagdef)
&& c_parser_next_tokens_start_typename (parser, la)
&& !c_parser_next_token_is_qualifier (parser))
break;
if (c_parser_next_token_is (parser, CPP_NAME))
{
tree value = c_parser_peek_token (parser)->value;
c_id_kind kind = c_parser_peek_token (parser)->id_kind;
if (kind == C_ID_ADDRSPACE)
{
addr_space_t as
= c_parser_peek_token (parser)->keyword - RID_FIRST_ADDR_SPACE;
declspecs_add_addrspace (specs, as);
c_parser_consume_token (parser);
attrs_ok = true;
continue;
}
gcc_assert (!c_parser_next_token_is_qualifier (parser));
/* If we cannot accept a type, and the next token must start one,
exit. Do the same if we already have seen a tagged definition,
since it would be an error anyway and likely the user has simply
forgotten a semicolon. */
if (seen_type || !c_parser_next_tokens_start_typename (parser, la))
break;
/* Now at an unknown typename (C_ID_ID), a C_ID_TYPENAME or
a C_ID_CLASSNAME. */
c_parser_consume_token (parser);
seen_type = true;
attrs_ok = true;
if (kind == C_ID_ID)
{
error ("unknown type name %qE", value);
t.kind = ctsk_typedef;
t.spec = error_mark_node;
}
else if (kind == C_ID_TYPENAME
&& (!c_dialect_objc ()
|| c_parser_next_token_is_not (parser, CPP_LESS)))
{
t.kind = ctsk_typedef;
/* For a typedef name, record the meaning, not the name.
In case of 'foo foo, bar;'. */
t.spec = lookup_name (value);
}
else
{
tree proto = NULL_TREE;
gcc_assert (c_dialect_objc ());
t.kind = ctsk_objc;
if (c_parser_next_token_is (parser, CPP_LESS))
proto = c_parser_objc_protocol_refs (parser);
t.spec = objc_get_protocol_qualified_type (value, proto);
}
t.expr = NULL_TREE;
t.expr_const_operands = true;
declspecs_add_type (loc, specs, t);
continue;
}
if (c_parser_next_token_is (parser, CPP_LESS))
{
/* Make "<SomeProtocol>" equivalent to "id <SomeProtocol>" -
nisse@lysator.liu.se. */
tree proto;
gcc_assert (c_dialect_objc ());
if (!typespec_ok || seen_type)
break;
proto = c_parser_objc_protocol_refs (parser);
t.kind = ctsk_objc;
t.spec = objc_get_protocol_qualified_type (NULL_TREE, proto);
t.expr = NULL_TREE;
t.expr_const_operands = true;
declspecs_add_type (loc, specs, t);
continue;
}
gcc_assert (c_parser_next_token_is (parser, CPP_KEYWORD));
switch (c_parser_peek_token (parser)->keyword)
{
case RID_STATIC:
case RID_EXTERN:
case RID_REGISTER:
case RID_TYPEDEF:
case RID_INLINE:
case RID_AUTO:
case RID_THREAD:
if (!scspec_ok)
goto out;
attrs_ok = true;
/* TODO: Distinguish between function specifiers (inline)
and storage class specifiers, either here or in
declspecs_add_scspec. */
declspecs_add_scspec (specs, c_parser_peek_token (parser)->value);
c_parser_consume_token (parser);
break;
case RID_UNSIGNED:
case RID_LONG:
case RID_INT128:
case RID_SHORT:
case RID_SIGNED:
case RID_COMPLEX:
case RID_INT:
case RID_CHAR:
case RID_FLOAT:
case RID_DOUBLE:
case RID_VOID:
case RID_DFLOAT32:
case RID_DFLOAT64:
case RID_DFLOAT128:
case RID_BOOL:
case RID_FRACT:
case RID_ACCUM:
case RID_SAT:
if (!typespec_ok)
goto out;
attrs_ok = true;
seen_type = true;
if (c_dialect_objc ())
parser->objc_need_raw_identifier = true;
t.kind = ctsk_resword;
t.spec = c_parser_peek_token (parser)->value;
t.expr = NULL_TREE;
t.expr_const_operands = true;
declspecs_add_type (loc, specs, t);
c_parser_consume_token (parser);
break;
case RID_ENUM:
if (!typespec_ok)
goto out;
attrs_ok = true;
seen_type = true;
t = c_parser_enum_specifier (parser);
declspecs_add_type (loc, specs, t);
break;
case RID_STRUCT:
case RID_UNION:
if (!typespec_ok)
goto out;
attrs_ok = true;
seen_type = true;
t = c_parser_struct_or_union_specifier (parser);
invoke_plugin_callbacks (PLUGIN_FINISH_TYPE, t.spec);
declspecs_add_type (loc, specs, t);
break;
case RID_TYPEOF:
/* ??? The old parser rejected typeof after other type
specifiers, but is a syntax error the best way of
handling this? */
if (!typespec_ok || seen_type)
goto out;
attrs_ok = true;
seen_type = true;
t = c_parser_typeof_specifier (parser);
declspecs_add_type (loc, specs, t);
break;
case RID_CONST:
case RID_VOLATILE:
case RID_RESTRICT:
attrs_ok = true;
declspecs_add_qual (specs, c_parser_peek_token (parser)->value);
c_parser_consume_token (parser);
break;
case RID_ATTRIBUTE:
if (!attrs_ok)
goto out;
attrs = c_parser_attributes (parser);
declspecs_add_attrs (specs, attrs);
break;
default:
goto out;
}
}
out: ;
}
/* Parse an enum specifier (C90 6.5.2.2, C99 6.7.2.2).
enum-specifier:
enum attributes[opt] identifier[opt] { enumerator-list } attributes[opt]
enum attributes[opt] identifier[opt] { enumerator-list , } attributes[opt]
enum attributes[opt] identifier
The form with trailing comma is new in C99. The forms with
attributes are GNU extensions. In GNU C, we accept any expression
without commas in the syntax (assignment expressions, not just
conditional expressions); assignment expressions will be diagnosed
as non-constant.
enumerator-list:
enumerator
enumerator-list , enumerator
enumerator:
enumeration-constant
enumeration-constant = constant-expression
*/
static struct c_typespec
c_parser_enum_specifier (c_parser *parser)
{
struct c_typespec ret;
tree attrs;
tree ident = NULL_TREE;
location_t enum_loc;
location_t ident_loc = UNKNOWN_LOCATION; /* Quiet warning. */
gcc_assert (c_parser_next_token_is_keyword (parser, RID_ENUM));
enum_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
attrs = c_parser_attributes (parser);
enum_loc = c_parser_peek_token (parser)->location;
/* Set the location in case we create a decl now. */
c_parser_set_source_position_from_token (c_parser_peek_token (parser));
if (c_parser_next_token_is (parser, CPP_NAME))
{
ident = c_parser_peek_token (parser)->value;
ident_loc = c_parser_peek_token (parser)->location;
enum_loc = ident_loc;
c_parser_consume_token (parser);
}
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
{
/* Parse an enum definition. */
struct c_enum_contents the_enum;
tree type = start_enum (enum_loc, &the_enum, ident);
tree postfix_attrs;
/* We chain the enumerators in reverse order, then put them in
forward order at the end. */
tree values = NULL_TREE;
c_parser_consume_token (parser);
while (true)
{
tree enum_id;
tree enum_value;
tree enum_decl;
bool seen_comma;
c_token *token;
location_t comma_loc = UNKNOWN_LOCATION; /* Quiet warning. */
location_t decl_loc, value_loc;
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_CLOSE_BRACE, NULL);
values = error_mark_node;
break;
}
token = c_parser_peek_token (parser);
enum_id = token->value;
/* Set the location in case we create a decl now. */
c_parser_set_source_position_from_token (token);
decl_loc = value_loc = token->location;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_EQ))
{
c_parser_consume_token (parser);
value_loc = c_parser_peek_token (parser)->location;
enum_value = c_parser_expr_no_commas (parser, NULL).value;
}
else
enum_value = NULL_TREE;
enum_decl = build_enumerator (decl_loc, value_loc,
&the_enum, enum_id, enum_value);
TREE_CHAIN (enum_decl) = values;
values = enum_decl;
seen_comma = false;
if (c_parser_next_token_is (parser, CPP_COMMA))
{
comma_loc = c_parser_peek_token (parser)->location;
seen_comma = true;
c_parser_consume_token (parser);
}
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
if (seen_comma && !flag_isoc99)
pedwarn (comma_loc, OPT_pedantic, "comma at end of enumerator list");
c_parser_consume_token (parser);
break;
}
if (!seen_comma)
{
c_parser_error (parser, "expected %<,%> or %<}%>");
c_parser_skip_until_found (parser, CPP_CLOSE_BRACE, NULL);
values = error_mark_node;
break;
}
}
postfix_attrs = c_parser_attributes (parser);
ret.spec = finish_enum (type, nreverse (values),
chainon (attrs, postfix_attrs));
ret.kind = ctsk_tagdef;
ret.expr = NULL_TREE;
ret.expr_const_operands = true;
return ret;
}
else if (!ident)
{
c_parser_error (parser, "expected %<{%>");
ret.spec = error_mark_node;
ret.kind = ctsk_tagref;
ret.expr = NULL_TREE;
ret.expr_const_operands = true;
return ret;
}
ret = parser_xref_tag (ident_loc, ENUMERAL_TYPE, ident);
/* In ISO C, enumerated types can be referred to only if already
defined. */
if (pedantic && !COMPLETE_TYPE_P (ret.spec))
{
gcc_assert (ident);
pedwarn (enum_loc, OPT_pedantic,
"ISO C forbids forward references to %<enum%> types");
}
return ret;
}
/* Parse a struct or union specifier (C90 6.5.2.1, C99 6.7.2.1).
struct-or-union-specifier:
struct-or-union attributes[opt] identifier[opt]
{ struct-contents } attributes[opt]
struct-or-union attributes[opt] identifier
struct-contents:
struct-declaration-list
struct-declaration-list:
struct-declaration ;
struct-declaration-list struct-declaration ;
GNU extensions:
struct-contents:
empty
struct-declaration
struct-declaration-list struct-declaration
struct-declaration-list:
struct-declaration-list ;
;
(Note that in the syntax here, unlike that in ISO C, the semicolons
are included here rather than in struct-declaration, in order to
describe the syntax with extra semicolons and missing semicolon at
end.)
Objective-C:
struct-declaration-list:
@defs ( class-name )
(Note this does not include a trailing semicolon, but can be
followed by further declarations, and gets a pedwarn-if-pedantic
when followed by a semicolon.) */
static struct c_typespec
c_parser_struct_or_union_specifier (c_parser *parser)
{
struct c_typespec ret;
tree attrs;
tree ident = NULL_TREE;
location_t struct_loc;
location_t ident_loc = UNKNOWN_LOCATION;
enum tree_code code;
switch (c_parser_peek_token (parser)->keyword)
{
case RID_STRUCT:
code = RECORD_TYPE;
break;
case RID_UNION:
code = UNION_TYPE;
break;
default:
gcc_unreachable ();
}
struct_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
attrs = c_parser_attributes (parser);
/* Set the location in case we create a decl now. */
c_parser_set_source_position_from_token (c_parser_peek_token (parser));
if (c_parser_next_token_is (parser, CPP_NAME))
{
ident = c_parser_peek_token (parser)->value;
ident_loc = c_parser_peek_token (parser)->location;
struct_loc = ident_loc;
c_parser_consume_token (parser);
}
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
{
/* Parse a struct or union definition. Start the scope of the
tag before parsing components. */
struct c_struct_parse_info *struct_info;
tree type = start_struct (struct_loc, code, ident, &struct_info);
tree postfix_attrs;
/* We chain the components in reverse order, then put them in
forward order at the end. Each struct-declaration may
declare multiple components (comma-separated), so we must use
chainon to join them, although when parsing each
struct-declaration we can use TREE_CHAIN directly.
The theory behind all this is that there will be more
semicolon separated fields than comma separated fields, and
so we'll be minimizing the number of node traversals required
by chainon. */
tree contents = NULL_TREE;
c_parser_consume_token (parser);
/* Handle the Objective-C @defs construct,
e.g. foo(sizeof(struct{ @defs(ClassName) }));. */
if (c_parser_next_token_is_keyword (parser, RID_AT_DEFS))
{
tree name;
gcc_assert (c_dialect_objc ());
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
goto end_at_defs;
if (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_token (parser)->id_kind == C_ID_CLASSNAME)
{
name = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
}
else
{
c_parser_error (parser, "expected class name");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
goto end_at_defs;
}
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
contents = nreverse (objc_get_class_ivars (name));
}
end_at_defs:
/* Parse the struct-declarations and semicolons. Problems with
semicolons are diagnosed here; empty structures are diagnosed
elsewhere. */
while (true)
{
tree decls;
/* Parse any stray semicolon. */
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
pedwarn (c_parser_peek_token (parser)->location, OPT_pedantic,
"extra semicolon in struct or union specified");
c_parser_consume_token (parser);
continue;
}
/* Stop if at the end of the struct or union contents. */
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
c_parser_consume_token (parser);
break;
}
/* Accept #pragmas at struct scope. */
if (c_parser_next_token_is (parser, CPP_PRAGMA))
{
c_parser_pragma (parser, pragma_external);
continue;
}
/* Parse some comma-separated declarations, but not the
trailing semicolon if any. */
decls = c_parser_struct_declaration (parser);
contents = chainon (decls, contents);
/* If no semicolon follows, either we have a parse error or
are at the end of the struct or union and should
pedwarn. */
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
c_parser_consume_token (parser);
else
{
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
pedwarn (c_parser_peek_token (parser)->location, 0,
"no semicolon at end of struct or union");
else if (parser->error
|| !c_parser_next_token_starts_declspecs (parser))
{
c_parser_error (parser, "expected %<;%>");
c_parser_skip_until_found (parser, CPP_CLOSE_BRACE, NULL);
break;
}
/* If we come here, we have already emitted an error
for an expected `;', identifier or `(', and we also
recovered already. Go on with the next field. */
}
}
postfix_attrs = c_parser_attributes (parser);
ret.spec = finish_struct (struct_loc, type, nreverse (contents),
chainon (attrs, postfix_attrs), struct_info);
ret.kind = ctsk_tagdef;
ret.expr = NULL_TREE;
ret.expr_const_operands = true;
return ret;
}
else if (!ident)
{
c_parser_error (parser, "expected %<{%>");
ret.spec = error_mark_node;
ret.kind = ctsk_tagref;
ret.expr = NULL_TREE;
ret.expr_const_operands = true;
return ret;
}
ret = parser_xref_tag (ident_loc, code, ident);
return ret;
}
/* Parse a struct-declaration (C90 6.5.2.1, C99 6.7.2.1), *without*
the trailing semicolon.
struct-declaration:
specifier-qualifier-list struct-declarator-list
static_assert-declaration-no-semi
specifier-qualifier-list:
type-specifier specifier-qualifier-list[opt]
type-qualifier specifier-qualifier-list[opt]
attributes specifier-qualifier-list[opt]
struct-declarator-list:
struct-declarator
struct-declarator-list , attributes[opt] struct-declarator
struct-declarator:
declarator attributes[opt]
declarator[opt] : constant-expression attributes[opt]
GNU extensions:
struct-declaration:
__extension__ struct-declaration
specifier-qualifier-list
Unlike the ISO C syntax, semicolons are handled elsewhere. The use
of attributes where shown is a GNU extension. In GNU C, we accept
any expression without commas in the syntax (assignment
expressions, not just conditional expressions); assignment
expressions will be diagnosed as non-constant. */
static tree
c_parser_struct_declaration (c_parser *parser)
{
struct c_declspecs *specs;
tree prefix_attrs;
tree all_prefix_attrs;
tree decls;
location_t decl_loc;
if (c_parser_next_token_is_keyword (parser, RID_EXTENSION))
{
int ext;
tree decl;
ext = disable_extension_diagnostics ();
c_parser_consume_token (parser);
decl = c_parser_struct_declaration (parser);
restore_extension_diagnostics (ext);
return decl;
}
if (c_parser_next_token_is_keyword (parser, RID_STATIC_ASSERT))
{
c_parser_static_assert_declaration_no_semi (parser);
return NULL_TREE;
}
specs = build_null_declspecs ();
decl_loc = c_parser_peek_token (parser)->location;
c_parser_declspecs (parser, specs, false, true, true, cla_nonabstract_decl);
if (parser->error)
return NULL_TREE;
if (!specs->declspecs_seen_p)
{
c_parser_error (parser, "expected specifier-qualifier-list");
return NULL_TREE;
}
finish_declspecs (specs);
if (c_parser_next_token_is (parser, CPP_SEMICOLON)
|| c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
tree ret;
if (specs->typespec_kind == ctsk_none)
{
pedwarn (decl_loc, OPT_pedantic,
"ISO C forbids member declarations with no members");
shadow_tag_warned (specs, pedantic);
ret = NULL_TREE;
}
else
{
/* Support for unnamed structs or unions as members of
structs or unions (which is [a] useful and [b] supports
MS P-SDK). */
tree attrs = NULL;
ret = grokfield (c_parser_peek_token (parser)->location,
build_id_declarator (NULL_TREE), specs,
NULL_TREE, &attrs);
if (ret)
decl_attributes (&ret, attrs, 0);
}
return ret;
}
/* Provide better error recovery. Note that a type name here is valid,
and will be treated as a field name. */
if (specs->typespec_kind == ctsk_tagdef
&& TREE_CODE (specs->type) != ENUMERAL_TYPE
&& c_parser_next_token_starts_declspecs (parser)
&& !c_parser_next_token_is (parser, CPP_NAME))
{
c_parser_error (parser, "expected %<;%>, identifier or %<(%>");
parser->error = false;
return NULL_TREE;
}
pending_xref_error ();
prefix_attrs = specs->attrs;
all_prefix_attrs = prefix_attrs;
specs->attrs = NULL_TREE;
decls = NULL_TREE;
while (true)
{
/* Declaring one or more declarators or un-named bit-fields. */
struct c_declarator *declarator;
bool dummy = false;
if (c_parser_next_token_is (parser, CPP_COLON))
declarator = build_id_declarator (NULL_TREE);
else
declarator = c_parser_declarator (parser,
specs->typespec_kind != ctsk_none,
C_DTR_NORMAL, &dummy);
if (declarator == NULL)
{
c_parser_skip_to_end_of_block_or_statement (parser);
break;
}
if (c_parser_next_token_is (parser, CPP_COLON)
|| c_parser_next_token_is (parser, CPP_COMMA)
|| c_parser_next_token_is (parser, CPP_SEMICOLON)
|| c_parser_next_token_is (parser, CPP_CLOSE_BRACE)
|| c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
{
tree postfix_attrs = NULL_TREE;
tree width = NULL_TREE;
tree d;
if (c_parser_next_token_is (parser, CPP_COLON))
{
c_parser_consume_token (parser);
width = c_parser_expr_no_commas (parser, NULL).value;
}
if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
postfix_attrs = c_parser_attributes (parser);
d = grokfield (c_parser_peek_token (parser)->location,
declarator, specs, width, &all_prefix_attrs);
decl_attributes (&d, chainon (postfix_attrs,
all_prefix_attrs), 0);
DECL_CHAIN (d) = decls;
decls = d;
if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
all_prefix_attrs = chainon (c_parser_attributes (parser),
prefix_attrs);
else
all_prefix_attrs = prefix_attrs;
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else if (c_parser_next_token_is (parser, CPP_SEMICOLON)
|| c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
/* Semicolon consumed in caller. */
break;
}
else
{
c_parser_error (parser, "expected %<,%>, %<;%> or %<}%>");
break;
}
}
else
{
c_parser_error (parser,
"expected %<:%>, %<,%>, %<;%>, %<}%> or "
"%<__attribute__%>");
break;
}
}
return decls;
}
/* Parse a typeof specifier (a GNU extension).
typeof-specifier:
typeof ( expression )
typeof ( type-name )
*/
static struct c_typespec
c_parser_typeof_specifier (c_parser *parser)
{
struct c_typespec ret;
ret.kind = ctsk_typeof;
ret.spec = error_mark_node;
ret.expr = NULL_TREE;
ret.expr_const_operands = true;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_TYPEOF));
c_parser_consume_token (parser);
c_inhibit_evaluation_warnings++;
in_typeof++;
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
c_inhibit_evaluation_warnings--;
in_typeof--;
return ret;
}
if (c_parser_next_tokens_start_typename (parser, cla_prefer_id))
{
struct c_type_name *type = c_parser_type_name (parser);
c_inhibit_evaluation_warnings--;
in_typeof--;
if (type != NULL)
{
ret.spec = groktypename (type, &ret.expr, &ret.expr_const_operands);
pop_maybe_used (variably_modified_type_p (ret.spec, NULL_TREE));
}
}
else
{
bool was_vm;
location_t here = c_parser_peek_token (parser)->location;
struct c_expr expr = c_parser_expression (parser);
c_inhibit_evaluation_warnings--;
in_typeof--;
if (TREE_CODE (expr.value) == COMPONENT_REF
&& DECL_C_BIT_FIELD (TREE_OPERAND (expr.value, 1)))
error_at (here, "%<typeof%> applied to a bit-field");
mark_exp_read (expr.value);
ret.spec = TREE_TYPE (expr.value);
was_vm = variably_modified_type_p (ret.spec, NULL_TREE);
/* This is returned with the type so that when the type is
evaluated, this can be evaluated. */
if (was_vm)
ret.expr = c_fully_fold (expr.value, false, &ret.expr_const_operands);
pop_maybe_used (was_vm);
}
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
return ret;
}
/* Parse a declarator, possibly an abstract declarator (C90 6.5.4,
6.5.5, C99 6.7.5, 6.7.6). If TYPE_SEEN_P then a typedef name may
be redeclared; otherwise it may not. KIND indicates which kind of
declarator is wanted. Returns a valid declarator except in the
case of a syntax error in which case NULL is returned. *SEEN_ID is
set to true if an identifier being declared is seen; this is used
to diagnose bad forms of abstract array declarators and to
determine whether an identifier list is syntactically permitted.
declarator:
pointer[opt] direct-declarator
direct-declarator:
identifier
( attributes[opt] declarator )
direct-declarator array-declarator
direct-declarator ( parameter-type-list )
direct-declarator ( identifier-list[opt] )
pointer:
* type-qualifier-list[opt]
* type-qualifier-list[opt] pointer
type-qualifier-list:
type-qualifier
attributes
type-qualifier-list type-qualifier
type-qualifier-list attributes
parameter-type-list:
parameter-list
parameter-list , ...
parameter-list:
parameter-declaration
parameter-list , parameter-declaration
parameter-declaration:
declaration-specifiers declarator attributes[opt]
declaration-specifiers abstract-declarator[opt] attributes[opt]
identifier-list:
identifier
identifier-list , identifier
abstract-declarator:
pointer
pointer[opt] direct-abstract-declarator
direct-abstract-declarator:
( attributes[opt] abstract-declarator )
direct-abstract-declarator[opt] array-declarator
direct-abstract-declarator[opt] ( parameter-type-list[opt] )
GNU extensions:
direct-declarator:
direct-declarator ( parameter-forward-declarations
parameter-type-list[opt] )
direct-abstract-declarator:
direct-abstract-declarator[opt] ( parameter-forward-declarations
parameter-type-list[opt] )
parameter-forward-declarations:
parameter-list ;
parameter-forward-declarations parameter-list ;
The uses of attributes shown above are GNU extensions.
Some forms of array declarator are not included in C99 in the
syntax for abstract declarators; these are disallowed elsewhere.
This may be a defect (DR#289).
This function also accepts an omitted abstract declarator as being
an abstract declarator, although not part of the formal syntax. */
static struct c_declarator *
c_parser_declarator (c_parser *parser, bool type_seen_p, c_dtr_syn kind,
bool *seen_id)
{
/* Parse any initial pointer part. */
if (c_parser_next_token_is (parser, CPP_MULT))
{
struct c_declspecs *quals_attrs = build_null_declspecs ();
struct c_declarator *inner;
c_parser_consume_token (parser);
c_parser_declspecs (parser, quals_attrs, false, false, true, cla_prefer_id);
inner = c_parser_declarator (parser, type_seen_p, kind, seen_id);
if (inner == NULL)
return NULL;
else
return make_pointer_declarator (quals_attrs, inner);
}
/* Now we have a direct declarator, direct abstract declarator or
nothing (which counts as a direct abstract declarator here). */
return c_parser_direct_declarator (parser, type_seen_p, kind, seen_id);
}
/* Parse a direct declarator or direct abstract declarator; arguments
as c_parser_declarator. */
static struct c_declarator *
c_parser_direct_declarator (c_parser *parser, bool type_seen_p, c_dtr_syn kind,
bool *seen_id)
{
/* The direct declarator must start with an identifier (possibly
omitted) or a parenthesized declarator (possibly abstract). In
an ordinary declarator, initial parentheses must start a
parenthesized declarator. In an abstract declarator or parameter
declarator, they could start a parenthesized declarator or a
parameter list. To tell which, the open parenthesis and any
following attributes must be read. If a declaration specifier
follows, then it is a parameter list; if the specifier is a
typedef name, there might be an ambiguity about redeclaring it,
which is resolved in the direction of treating it as a typedef
name. If a close parenthesis follows, it is also an empty
parameter list, as the syntax does not permit empty abstract
declarators. Otherwise, it is a parenthesized declarator (in
which case the analysis may be repeated inside it, recursively).
??? There is an ambiguity in a parameter declaration "int
(__attribute__((foo)) x)", where x is not a typedef name: it
could be an abstract declarator for a function, or declare x with
parentheses. The proper resolution of this ambiguity needs
documenting. At present we follow an accident of the old
parser's implementation, whereby the first parameter must have
some declaration specifiers other than just attributes. Thus as
a parameter declaration it is treated as a parenthesized
parameter named x, and as an abstract declarator it is
rejected.
??? Also following the old parser, attributes inside an empty
parameter list are ignored, making it a list not yielding a
prototype, rather than giving an error or making it have one
parameter with implicit type int.
??? Also following the old parser, typedef names may be
redeclared in declarators, but not Objective-C class names. */
if (kind != C_DTR_ABSTRACT
&& c_parser_next_token_is (parser, CPP_NAME)
&& ((type_seen_p
&& (c_parser_peek_token (parser)->id_kind == C_ID_TYPENAME
|| c_parser_peek_token (parser)->id_kind == C_ID_CLASSNAME))
|| c_parser_peek_token (parser)->id_kind == C_ID_ID))
{
struct c_declarator *inner
= build_id_declarator (c_parser_peek_token (parser)->value);
*seen_id = true;
inner->id_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
return c_parser_direct_declarator_inner (parser, *seen_id, inner);
}
if (kind != C_DTR_NORMAL
&& c_parser_next_token_is (parser, CPP_OPEN_SQUARE))
{
struct c_declarator *inner = build_id_declarator (NULL_TREE);
return c_parser_direct_declarator_inner (parser, *seen_id, inner);
}
/* Either we are at the end of an abstract declarator, or we have
parentheses. */
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
tree attrs;
struct c_declarator *inner;
c_parser_consume_token (parser);
attrs = c_parser_attributes (parser);
if (kind != C_DTR_NORMAL
&& (c_parser_next_token_starts_declspecs (parser)
|| c_parser_next_token_is (parser, CPP_CLOSE_PAREN)))
{
struct c_arg_info *args
= c_parser_parms_declarator (parser, kind == C_DTR_NORMAL,
attrs);
if (args == NULL)
return NULL;
else
{
inner
= build_function_declarator (args,
build_id_declarator (NULL_TREE));
return c_parser_direct_declarator_inner (parser, *seen_id,
inner);
}
}
/* A parenthesized declarator. */
inner = c_parser_declarator (parser, type_seen_p, kind, seen_id);
if (inner != NULL && attrs != NULL)
inner = build_attrs_declarator (attrs, inner);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
c_parser_consume_token (parser);
if (inner == NULL)
return NULL;
else
return c_parser_direct_declarator_inner (parser, *seen_id, inner);
}
else
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
return NULL;
}
}
else
{
if (kind == C_DTR_NORMAL)
{
c_parser_error (parser, "expected identifier or %<(%>");
return NULL;
}
else
return build_id_declarator (NULL_TREE);
}
}
/* Parse part of a direct declarator or direct abstract declarator,
given that some (in INNER) has already been parsed; ID_PRESENT is
true if an identifier is present, false for an abstract
declarator. */
static struct c_declarator *
c_parser_direct_declarator_inner (c_parser *parser, bool id_present,
struct c_declarator *inner)
{
/* Parse a sequence of array declarators and parameter lists. */
if (c_parser_next_token_is (parser, CPP_OPEN_SQUARE))
{
location_t brace_loc = c_parser_peek_token (parser)->location;
struct c_declarator *declarator;
struct c_declspecs *quals_attrs = build_null_declspecs ();
bool static_seen;
bool star_seen;
tree dimen;
c_parser_consume_token (parser);
c_parser_declspecs (parser, quals_attrs, false, false, true, cla_prefer_id);
static_seen = c_parser_next_token_is_keyword (parser, RID_STATIC);
if (static_seen)
c_parser_consume_token (parser);
if (static_seen && !quals_attrs->declspecs_seen_p)
c_parser_declspecs (parser, quals_attrs, false, false, true, cla_prefer_id);
if (!quals_attrs->declspecs_seen_p)
quals_attrs = NULL;
/* If "static" is present, there must be an array dimension.
Otherwise, there may be a dimension, "*", or no
dimension. */
if (static_seen)
{
star_seen = false;
dimen = c_parser_expr_no_commas (parser, NULL).value;
}
else
{
if (c_parser_next_token_is (parser, CPP_CLOSE_SQUARE))
{
dimen = NULL_TREE;
star_seen = false;
}
else if (c_parser_next_token_is (parser, CPP_MULT))
{
if (c_parser_peek_2nd_token (parser)->type == CPP_CLOSE_SQUARE)
{
dimen = NULL_TREE;
star_seen = true;
c_parser_consume_token (parser);
}
else
{
star_seen = false;
dimen = c_parser_expr_no_commas (parser, NULL).value;
}
}
else
{
star_seen = false;
dimen = c_parser_expr_no_commas (parser, NULL).value;
}
}
if (c_parser_next_token_is (parser, CPP_CLOSE_SQUARE))
c_parser_consume_token (parser);
else
{
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE,
"expected %<]%>");
return NULL;
}
if (dimen)
mark_exp_read (dimen);
declarator = build_array_declarator (brace_loc, dimen, quals_attrs,
static_seen, star_seen);
if (declarator == NULL)
return NULL;
inner = set_array_declarator_inner (declarator, inner);
return c_parser_direct_declarator_inner (parser, id_present, inner);
}
else if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
tree attrs;
struct c_arg_info *args;
c_parser_consume_token (parser);
attrs = c_parser_attributes (parser);
args = c_parser_parms_declarator (parser, id_present, attrs);
if (args == NULL)
return NULL;
else
{
inner = build_function_declarator (args, inner);
return c_parser_direct_declarator_inner (parser, id_present, inner);
}
}
return inner;
}
/* Parse a parameter list or identifier list, including the closing
parenthesis but not the opening one. ATTRS are the attributes at
the start of the list. ID_LIST_OK is true if an identifier list is
acceptable; such a list must not have attributes at the start. */
static struct c_arg_info *
c_parser_parms_declarator (c_parser *parser, bool id_list_ok, tree attrs)
{
push_scope ();
declare_parm_level ();
/* If the list starts with an identifier, it is an identifier list.
Otherwise, it is either a prototype list or an empty list. */
if (id_list_ok
&& !attrs
&& c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_token (parser)->id_kind == C_ID_ID
/* Look ahead to detect typos in type names. */
&& c_parser_peek_2nd_token (parser)->type != CPP_NAME
&& c_parser_peek_2nd_token (parser)->type != CPP_MULT
&& c_parser_peek_2nd_token (parser)->type != CPP_OPEN_PAREN
&& c_parser_peek_2nd_token (parser)->type != CPP_OPEN_SQUARE)
{
tree list = NULL_TREE, *nextp = &list;
while (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_token (parser)->id_kind == C_ID_ID)
{
*nextp = build_tree_list (NULL_TREE,
c_parser_peek_token (parser)->value);
nextp = & TREE_CHAIN (*nextp);
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_COMMA))
break;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
c_parser_error (parser, "expected identifier");
break;
}
}
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
struct c_arg_info *ret = build_arg_info ();
ret->types = list;
c_parser_consume_token (parser);
pop_scope ();
return ret;
}
else
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
pop_scope ();
return NULL;
}
}
else
{
struct c_arg_info *ret = c_parser_parms_list_declarator (parser, attrs);
pop_scope ();
return ret;
}
}
/* Parse a parameter list (possibly empty), including the closing
parenthesis but not the opening one. ATTRS are the attributes at
the start of the list. */
static struct c_arg_info *
c_parser_parms_list_declarator (c_parser *parser, tree attrs)
{
bool bad_parm = false;
/* ??? Following the old parser, forward parameter declarations may
use abstract declarators, and if no real parameter declarations
follow the forward declarations then this is not diagnosed. Also
note as above that attributes are ignored as the only contents of
the parentheses, or as the only contents after forward
declarations. */
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
struct c_arg_info *ret = build_arg_info ();
c_parser_consume_token (parser);
return ret;
}
if (c_parser_next_token_is (parser, CPP_ELLIPSIS))
{
struct c_arg_info *ret = build_arg_info ();
/* Suppress -Wold-style-definition for this case. */
ret->types = error_mark_node;
error_at (c_parser_peek_token (parser)->location,
"ISO C requires a named argument before %<...%>");
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
c_parser_consume_token (parser);
return ret;
}
else
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
return NULL;
}
}
/* Nonempty list of parameters, either terminated with semicolon
(forward declarations; recurse) or with close parenthesis (normal
function) or with ", ... )" (variadic function). */
while (true)
{
/* Parse a parameter. */
struct c_parm *parm = c_parser_parameter_declaration (parser, attrs);
attrs = NULL_TREE;
if (parm == NULL)
bad_parm = true;
else
push_parm_decl (parm);
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
tree new_attrs;
c_parser_consume_token (parser);
mark_forward_parm_decls ();
new_attrs = c_parser_attributes (parser);
return c_parser_parms_list_declarator (parser, new_attrs);
}
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
c_parser_consume_token (parser);
if (bad_parm)
{
get_pending_sizes ();
return NULL;
}
else
return get_parm_info (false);
}
if (!c_parser_require (parser, CPP_COMMA,
"expected %<;%>, %<,%> or %<)%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
get_pending_sizes ();
return NULL;
}
if (c_parser_next_token_is (parser, CPP_ELLIPSIS))
{
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
c_parser_consume_token (parser);
if (bad_parm)
{
get_pending_sizes ();
return NULL;
}
else
return get_parm_info (true);
}
else
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
get_pending_sizes ();
return NULL;
}
}
}
}
/* Parse a parameter declaration. ATTRS are the attributes at the
start of the declaration if it is the first parameter. */
static struct c_parm *
c_parser_parameter_declaration (c_parser *parser, tree attrs)
{
struct c_declspecs *specs;
struct c_declarator *declarator;
tree prefix_attrs;
tree postfix_attrs = NULL_TREE;
bool dummy = false;
if (!c_parser_next_token_starts_declspecs (parser))
{
c_token *token = c_parser_peek_token (parser);
if (parser->error)
return NULL;
c_parser_set_source_position_from_token (token);
if (c_parser_next_tokens_start_typename (parser, cla_prefer_type))
{
error ("unknown type name %qE", token->value);
parser->error = true;
}
/* ??? In some Objective-C cases '...' isn't applicable so there
should be a different message. */
else
c_parser_error (parser,
"expected declaration specifiers or %<...%>");
c_parser_skip_to_end_of_parameter (parser);
return NULL;
}
specs = build_null_declspecs ();
if (attrs)
{
declspecs_add_attrs (specs, attrs);
attrs = NULL_TREE;
}
c_parser_declspecs (parser, specs, true, true, true, cla_nonabstract_decl);
finish_declspecs (specs);
pending_xref_error ();
prefix_attrs = specs->attrs;
specs->attrs = NULL_TREE;
declarator = c_parser_declarator (parser,
specs->typespec_kind != ctsk_none,
C_DTR_PARM, &dummy);
if (declarator == NULL)
{
c_parser_skip_until_found (parser, CPP_COMMA, NULL);
return NULL;
}
if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
postfix_attrs = c_parser_attributes (parser);
return build_c_parm (specs, chainon (postfix_attrs, prefix_attrs),
declarator);
}
/* Parse a string literal in an asm expression. It should not be
translated, and wide string literals are an error although
permitted by the syntax. This is a GNU extension.
asm-string-literal:
string-literal
??? At present, following the old parser, the caller needs to have
set lex_untranslated_string to 1. It would be better to follow the
C++ parser rather than using this kludge. */
static tree
c_parser_asm_string_literal (c_parser *parser)
{
tree str;
if (c_parser_next_token_is (parser, CPP_STRING))
{
str = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
}
else if (c_parser_next_token_is (parser, CPP_WSTRING))
{
error_at (c_parser_peek_token (parser)->location,
"wide string literal in %<asm%>");
str = build_string (1, "");
c_parser_consume_token (parser);
}
else
{
c_parser_error (parser, "expected string literal");
str = NULL_TREE;
}
return str;
}
/* Parse a simple asm expression. This is used in restricted
contexts, where a full expression with inputs and outputs does not
make sense. This is a GNU extension.
simple-asm-expr:
asm ( asm-string-literal )
*/
static tree
c_parser_simple_asm_expr (c_parser *parser)
{
tree str;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_ASM));
/* ??? Follow the C++ parser rather than using the
lex_untranslated_string kludge. */
parser->lex_untranslated_string = true;
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
parser->lex_untranslated_string = false;
return NULL_TREE;
}
str = c_parser_asm_string_literal (parser);
parser->lex_untranslated_string = false;
if (!c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return NULL_TREE;
}
return str;
}
/* Parse (possibly empty) attributes. This is a GNU extension.
attributes:
empty
attributes attribute
attribute:
__attribute__ ( ( attribute-list ) )
attribute-list:
attrib
attribute_list , attrib
attrib:
empty
any-word
any-word ( identifier )
any-word ( identifier , nonempty-expr-list )
any-word ( expr-list )
where the "identifier" must not be declared as a type, and
"any-word" may be any identifier (including one declared as a
type), a reserved word storage class specifier, type specifier or
type qualifier. ??? This still leaves out most reserved keywords
(following the old parser), shouldn't we include them, and why not
allow identifiers declared as types to start the arguments? */
static tree
c_parser_attributes (c_parser *parser)
{
tree attrs = NULL_TREE;
while (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
{
/* ??? Follow the C++ parser rather than using the
lex_untranslated_string kludge. */
parser->lex_untranslated_string = true;
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
parser->lex_untranslated_string = false;
return attrs;
}
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
parser->lex_untranslated_string = false;
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return attrs;
}
/* Parse the attribute list. */
while (c_parser_next_token_is (parser, CPP_COMMA)
|| c_parser_next_token_is (parser, CPP_NAME)
|| c_parser_next_token_is (parser, CPP_KEYWORD))
{
tree attr, attr_name, attr_args;
VEC(tree,gc) *expr_list;
if (c_parser_next_token_is (parser, CPP_COMMA))
{
c_parser_consume_token (parser);
continue;
}
if (c_parser_next_token_is (parser, CPP_KEYWORD))
{
/* ??? See comment above about what keywords are
accepted here. */
bool ok;
switch (c_parser_peek_token (parser)->keyword)
{
case RID_STATIC:
case RID_UNSIGNED:
case RID_LONG:
case RID_INT128:
case RID_CONST:
case RID_EXTERN:
case RID_REGISTER:
case RID_TYPEDEF:
case RID_SHORT:
case RID_INLINE:
case RID_VOLATILE:
case RID_SIGNED:
case RID_AUTO:
case RID_RESTRICT:
case RID_COMPLEX:
case RID_THREAD:
case RID_INT:
case RID_CHAR:
case RID_FLOAT:
case RID_DOUBLE:
case RID_VOID:
case RID_DFLOAT32:
case RID_DFLOAT64:
case RID_DFLOAT128:
case RID_BOOL:
case RID_FRACT:
case RID_ACCUM:
case RID_SAT:
ok = true;
break;
default:
ok = false;
break;
}
if (!ok)
break;
/* Accept __attribute__((__const)) as __attribute__((const))
etc. */
attr_name
= ridpointers[(int) c_parser_peek_token (parser)->keyword];
}
else
attr_name = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_OPEN_PAREN))
{
attr = build_tree_list (attr_name, NULL_TREE);
attrs = chainon (attrs, attr);
continue;
}
c_parser_consume_token (parser);
/* Parse the attribute contents. If they start with an
identifier which is followed by a comma or close
parenthesis, then the arguments start with that
identifier; otherwise they are an expression list.
In objective-c the identifier may be a classname. */
if (c_parser_next_token_is (parser, CPP_NAME)
&& (c_parser_peek_token (parser)->id_kind == C_ID_ID
|| (c_dialect_objc ()
&& c_parser_peek_token (parser)->id_kind == C_ID_CLASSNAME))
&& ((c_parser_peek_2nd_token (parser)->type == CPP_COMMA)
|| (c_parser_peek_2nd_token (parser)->type
== CPP_CLOSE_PAREN)))
{
tree arg1 = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
attr_args = build_tree_list (NULL_TREE, arg1);
else
{
tree tree_list;
c_parser_consume_token (parser);
expr_list = c_parser_expr_list (parser, false, true, NULL);
tree_list = build_tree_list_vec (expr_list);
attr_args = tree_cons (NULL_TREE, arg1, tree_list);
release_tree_vector (expr_list);
}
}
else
{
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
attr_args = NULL_TREE;
else
{
expr_list = c_parser_expr_list (parser, false, true, NULL);
attr_args = build_tree_list_vec (expr_list);
release_tree_vector (expr_list);
}
}
attr = build_tree_list (attr_name, attr_args);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
c_parser_consume_token (parser);
else
{
parser->lex_untranslated_string = false;
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
return attrs;
}
attrs = chainon (attrs, attr);
}
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
c_parser_consume_token (parser);
else
{
parser->lex_untranslated_string = false;
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
return attrs;
}
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
c_parser_consume_token (parser);
else
{
parser->lex_untranslated_string = false;
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
return attrs;
}
parser->lex_untranslated_string = false;
}
return attrs;
}
/* Parse a type name (C90 6.5.5, C99 6.7.6).
type-name:
specifier-qualifier-list abstract-declarator[opt]
*/
static struct c_type_name *
c_parser_type_name (c_parser *parser)
{
struct c_declspecs *specs = build_null_declspecs ();
struct c_declarator *declarator;
struct c_type_name *ret;
bool dummy = false;
c_parser_declspecs (parser, specs, false, true, true, cla_prefer_type);
if (!specs->declspecs_seen_p)
{
c_parser_error (parser, "expected specifier-qualifier-list");
return NULL;
}
if (specs->type != error_mark_node)
{
pending_xref_error ();
finish_declspecs (specs);
}
declarator = c_parser_declarator (parser,
specs->typespec_kind != ctsk_none,
C_DTR_ABSTRACT, &dummy);
if (declarator == NULL)
return NULL;
ret = XOBNEW (&parser_obstack, struct c_type_name);
ret->specs = specs;
ret->declarator = declarator;
return ret;
}
/* Parse an initializer (C90 6.5.7, C99 6.7.8).
initializer:
assignment-expression
{ initializer-list }
{ initializer-list , }
initializer-list:
designation[opt] initializer
initializer-list , designation[opt] initializer
designation:
designator-list =
designator-list:
designator
designator-list designator
designator:
array-designator
. identifier
array-designator:
[ constant-expression ]
GNU extensions:
initializer:
{ }
designation:
array-designator
identifier :
array-designator:
[ constant-expression ... constant-expression ]
Any expression without commas is accepted in the syntax for the
constant-expressions, with non-constant expressions rejected later.
This function is only used for top-level initializers; for nested
ones, see c_parser_initval. */
static struct c_expr
c_parser_initializer (c_parser *parser)
{
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
return c_parser_braced_init (parser, NULL_TREE, false);
else
{
struct c_expr ret;
location_t loc = c_parser_peek_token (parser)->location;
ret = c_parser_expr_no_commas (parser, NULL);
if (TREE_CODE (ret.value) != STRING_CST
&& TREE_CODE (ret.value) != COMPOUND_LITERAL_EXPR)
ret = default_function_array_read_conversion (loc, ret);
return ret;
}
}
/* Parse a braced initializer list. TYPE is the type specified for a
compound literal, and NULL_TREE for other initializers and for
nested braced lists. NESTED_P is true for nested braced lists,
false for the list of a compound literal or the list that is the
top-level initializer in a declaration. */
static struct c_expr
c_parser_braced_init (c_parser *parser, tree type, bool nested_p)
{
struct c_expr ret;
struct obstack braced_init_obstack;
location_t brace_loc = c_parser_peek_token (parser)->location;
gcc_obstack_init (&braced_init_obstack);
gcc_assert (c_parser_next_token_is (parser, CPP_OPEN_BRACE));
c_parser_consume_token (parser);
if (nested_p)
push_init_level (0, &braced_init_obstack);
else
really_start_incremental_init (type);
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
pedwarn (brace_loc, OPT_pedantic, "ISO C forbids empty initializer braces");
}
else
{
/* Parse a non-empty initializer list, possibly with a trailing
comma. */
while (true)
{
c_parser_initelt (parser, &braced_init_obstack);
if (parser->error)
break;
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
break;
}
}
if (c_parser_next_token_is_not (parser, CPP_CLOSE_BRACE))
{
ret.value = error_mark_node;
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
c_parser_skip_until_found (parser, CPP_CLOSE_BRACE, "expected %<}%>");
pop_init_level (0, &braced_init_obstack);
obstack_free (&braced_init_obstack, NULL);
return ret;
}
c_parser_consume_token (parser);
ret = pop_init_level (0, &braced_init_obstack);
obstack_free (&braced_init_obstack, NULL);
return ret;
}
/* Parse a nested initializer, including designators. */
static void
c_parser_initelt (c_parser *parser, struct obstack * braced_init_obstack)
{
/* Parse any designator or designator list. A single array
designator may have the subsequent "=" omitted in GNU C, but a
longer list or a structure member designator may not. */
if (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON)
{
/* Old-style structure member designator. */
set_init_label (c_parser_peek_token (parser)->value,
braced_init_obstack);
/* Use the colon as the error location. */
pedwarn (c_parser_peek_2nd_token (parser)->location, OPT_pedantic,
"obsolete use of designated initializer with %<:%>");
c_parser_consume_token (parser);
c_parser_consume_token (parser);
}
else
{
/* des_seen is 0 if there have been no designators, 1 if there
has been a single array designator and 2 otherwise. */
int des_seen = 0;
/* Location of a designator. */
location_t des_loc = UNKNOWN_LOCATION; /* Quiet warning. */
while (c_parser_next_token_is (parser, CPP_OPEN_SQUARE)
|| c_parser_next_token_is (parser, CPP_DOT))
{
int des_prev = des_seen;
if (!des_seen)
des_loc = c_parser_peek_token (parser)->location;
if (des_seen < 2)
des_seen++;
if (c_parser_next_token_is (parser, CPP_DOT))
{
des_seen = 2;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_NAME))
{
set_init_label (c_parser_peek_token (parser)->value,
braced_init_obstack);
c_parser_consume_token (parser);
}
else
{
struct c_expr init;
init.value = error_mark_node;
init.original_code = ERROR_MARK;
init.original_type = NULL;
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_COMMA, NULL);
process_init_element (init, false, braced_init_obstack);
return;
}
}
else
{
tree first, second;
location_t ellipsis_loc = UNKNOWN_LOCATION; /* Quiet warning. */
/* ??? Following the old parser, [ objc-receiver
objc-message-args ] is accepted as an initializer,
being distinguished from a designator by what follows
the first assignment expression inside the square
brackets, but after a first array designator a
subsequent square bracket is for Objective-C taken to
start an expression, using the obsolete form of
designated initializer without '=', rather than
possibly being a second level of designation: in LALR
terms, the '[' is shifted rather than reducing
designator to designator-list. */
if (des_prev == 1 && c_dialect_objc ())
{
des_seen = des_prev;
break;
}
if (des_prev == 0 && c_dialect_objc ())
{
/* This might be an array designator or an
Objective-C message expression. If the former,
continue parsing here; if the latter, parse the
remainder of the initializer given the starting
primary-expression. ??? It might make sense to
distinguish when des_prev == 1 as well; see
previous comment. */
tree rec, args;
struct c_expr mexpr;
c_parser_consume_token (parser);
if (c_parser_peek_token (parser)->type == CPP_NAME
&& ((c_parser_peek_token (parser)->id_kind
== C_ID_TYPENAME)
|| (c_parser_peek_token (parser)->id_kind
== C_ID_CLASSNAME)))
{
/* Type name receiver. */
tree id = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
rec = objc_get_class_reference (id);
goto parse_message_args;
}
first = c_parser_expr_no_commas (parser, NULL).value;
mark_exp_read (first);
if (c_parser_next_token_is (parser, CPP_ELLIPSIS)
|| c_parser_next_token_is (parser, CPP_CLOSE_SQUARE))
goto array_desig_after_first;
/* Expression receiver. So far only one part
without commas has been parsed; there might be
more of the expression. */
rec = first;
while (c_parser_next_token_is (parser, CPP_COMMA))
{
struct c_expr next;
location_t comma_loc, exp_loc;
comma_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
next = c_parser_expr_no_commas (parser, NULL);
next = default_function_array_read_conversion (exp_loc,
next);
rec = build_compound_expr (comma_loc, rec, next.value);
}
parse_message_args:
/* Now parse the objc-message-args. */
args = c_parser_objc_message_args (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE,
"expected %<]%>");
mexpr.value
= objc_build_message_expr (build_tree_list (rec, args));
mexpr.original_code = ERROR_MARK;
mexpr.original_type = NULL;
/* Now parse and process the remainder of the
initializer, starting with this message
expression as a primary-expression. */
c_parser_initval (parser, &mexpr, braced_init_obstack);
return;
}
c_parser_consume_token (parser);
first = c_parser_expr_no_commas (parser, NULL).value;
mark_exp_read (first);
array_desig_after_first:
if (c_parser_next_token_is (parser, CPP_ELLIPSIS))
{
ellipsis_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
second = c_parser_expr_no_commas (parser, NULL).value;
mark_exp_read (second);
}
else
second = NULL_TREE;
if (c_parser_next_token_is (parser, CPP_CLOSE_SQUARE))
{
c_parser_consume_token (parser);
set_init_index (first, second, braced_init_obstack);
if (second)
pedwarn (ellipsis_loc, OPT_pedantic,
"ISO C forbids specifying range of elements to initialize");
}
else
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE,
"expected %<]%>");
}
}
if (des_seen >= 1)
{
if (c_parser_next_token_is (parser, CPP_EQ))
{
if (!flag_isoc99)
pedwarn (des_loc, OPT_pedantic,
"ISO C90 forbids specifying subobject to initialize");
c_parser_consume_token (parser);
}
else
{
if (des_seen == 1)
pedwarn (c_parser_peek_token (parser)->location, OPT_pedantic,
"obsolete use of designated initializer without %<=%>");
else
{
struct c_expr init;
init.value = error_mark_node;
init.original_code = ERROR_MARK;
init.original_type = NULL;
c_parser_error (parser, "expected %<=%>");
c_parser_skip_until_found (parser, CPP_COMMA, NULL);
process_init_element (init, false, braced_init_obstack);
return;
}
}
}
}
c_parser_initval (parser, NULL, braced_init_obstack);
}
/* Parse a nested initializer; as c_parser_initializer but parses
initializers within braced lists, after any designators have been
applied. If AFTER is not NULL then it is an Objective-C message
expression which is the primary-expression starting the
initializer. */
static void
c_parser_initval (c_parser *parser, struct c_expr *after,
struct obstack * braced_init_obstack)
{
struct c_expr init;
gcc_assert (!after || c_dialect_objc ());
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE) && !after)
init = c_parser_braced_init (parser, NULL_TREE, true);
else
{
location_t loc = c_parser_peek_token (parser)->location;
init = c_parser_expr_no_commas (parser, after);
if (init.value != NULL_TREE
&& TREE_CODE (init.value) != STRING_CST
&& TREE_CODE (init.value) != COMPOUND_LITERAL_EXPR)
init = default_function_array_read_conversion (loc, init);
}
process_init_element (init, false, braced_init_obstack);
}
/* Parse a compound statement (possibly a function body) (C90 6.6.2,
C99 6.8.2).
compound-statement:
{ block-item-list[opt] }
{ label-declarations block-item-list }
block-item-list:
block-item
block-item-list block-item
block-item:
nested-declaration
statement
nested-declaration:
declaration
GNU extensions:
compound-statement:
{ label-declarations block-item-list }
nested-declaration:
__extension__ nested-declaration
nested-function-definition
label-declarations:
label-declaration
label-declarations label-declaration
label-declaration:
__label__ identifier-list ;
Allowing the mixing of declarations and code is new in C99. The
GNU syntax also permits (not shown above) labels at the end of
compound statements, which yield an error. We don't allow labels
on declarations; this might seem like a natural extension, but
there would be a conflict between attributes on the label and
prefix attributes on the declaration. ??? The syntax follows the
old parser in requiring something after label declarations.
Although they are erroneous if the labels declared aren't defined,
is it useful for the syntax to be this way?
OpenMP:
block-item:
openmp-directive
openmp-directive:
barrier-directive
flush-directive */
static tree
c_parser_compound_statement (c_parser *parser)
{
tree stmt;
location_t brace_loc;
brace_loc = c_parser_peek_token (parser)->location;
if (!c_parser_require (parser, CPP_OPEN_BRACE, "expected %<{%>"))
{
/* Ensure a scope is entered and left anyway to avoid confusion
if we have just prepared to enter a function body. */
stmt = c_begin_compound_stmt (true);
c_end_compound_stmt (brace_loc, stmt, true);
return error_mark_node;
}
stmt = c_begin_compound_stmt (true);
c_parser_compound_statement_nostart (parser);
return c_end_compound_stmt (brace_loc, stmt, true);
}
/* Parse a compound statement except for the opening brace. This is
used for parsing both compound statements and statement expressions
(which follow different paths to handling the opening). */
static void
c_parser_compound_statement_nostart (c_parser *parser)
{
bool last_stmt = false;
bool last_label = false;
bool save_valid_for_pragma = valid_location_for_stdc_pragma_p ();
location_t label_loc = UNKNOWN_LOCATION; /* Quiet warning. */
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
c_parser_consume_token (parser);
return;
}
mark_valid_location_for_stdc_pragma (true);
if (c_parser_next_token_is_keyword (parser, RID_LABEL))
{
/* Read zero or more forward-declarations for labels that nested
functions can jump to. */
mark_valid_location_for_stdc_pragma (false);
while (c_parser_next_token_is_keyword (parser, RID_LABEL))
{
label_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
/* Any identifiers, including those declared as type names,
are OK here. */
while (true)
{
tree label;
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
break;
}
label
= declare_label (c_parser_peek_token (parser)->value);
C_DECLARED_LABEL_FLAG (label) = 1;
add_stmt (build_stmt (label_loc, DECL_EXPR, label));
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
pedwarn (label_loc, OPT_pedantic, "ISO C forbids label declarations");
}
/* We must now have at least one statement, label or declaration. */
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
mark_valid_location_for_stdc_pragma (save_valid_for_pragma);
c_parser_error (parser, "expected declaration or statement");
c_parser_consume_token (parser);
return;
}
while (c_parser_next_token_is_not (parser, CPP_CLOSE_BRACE))
{
location_t loc = c_parser_peek_token (parser)->location;
if (c_parser_next_token_is_keyword (parser, RID_CASE)
|| c_parser_next_token_is_keyword (parser, RID_DEFAULT)
|| (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON))
{
if (c_parser_next_token_is_keyword (parser, RID_CASE))
label_loc = c_parser_peek_2nd_token (parser)->location;
else
label_loc = c_parser_peek_token (parser)->location;
last_label = true;
last_stmt = false;
mark_valid_location_for_stdc_pragma (false);
c_parser_label (parser);
}
else if (!last_label
&& c_parser_next_tokens_start_declaration (parser))
{
last_label = false;
mark_valid_location_for_stdc_pragma (false);
c_parser_declaration_or_fndef (parser, true, true, true, true, true, NULL);
if (last_stmt)
pedwarn_c90 (loc,
(pedantic && !flag_isoc99)
? OPT_pedantic
: OPT_Wdeclaration_after_statement,
"ISO C90 forbids mixed declarations and code");
last_stmt = false;
}
else if (!last_label
&& c_parser_next_token_is_keyword (parser, RID_EXTENSION))
{
/* __extension__ can start a declaration, but is also an
unary operator that can start an expression. Consume all
but the last of a possible series of __extension__ to
determine which. */
while (c_parser_peek_2nd_token (parser)->type == CPP_KEYWORD
&& (c_parser_peek_2nd_token (parser)->keyword
== RID_EXTENSION))
c_parser_consume_token (parser);
if (c_token_starts_declaration (c_parser_peek_2nd_token (parser)))
{
int ext;
ext = disable_extension_diagnostics ();
c_parser_consume_token (parser);
last_label = false;
mark_valid_location_for_stdc_pragma (false);
c_parser_declaration_or_fndef (parser, true, true, true, true,
true, NULL);
/* Following the old parser, __extension__ does not
disable this diagnostic. */
restore_extension_diagnostics (ext);
if (last_stmt)
pedwarn_c90 (loc, (pedantic && !flag_isoc99)
? OPT_pedantic
: OPT_Wdeclaration_after_statement,
"ISO C90 forbids mixed declarations and code");
last_stmt = false;
}
else
goto statement;
}
else if (c_parser_next_token_is (parser, CPP_PRAGMA))
{
/* External pragmas, and some omp pragmas, are not associated
with regular c code, and so are not to be considered statements
syntactically. This ensures that the user doesn't put them
places that would turn into syntax errors if the directive
were ignored. */
if (c_parser_pragma (parser, pragma_compound))
last_label = false, last_stmt = true;
}
else if (c_parser_next_token_is (parser, CPP_EOF))
{
mark_valid_location_for_stdc_pragma (save_valid_for_pragma);
c_parser_error (parser, "expected declaration or statement");
return;
}
else if (c_parser_next_token_is_keyword (parser, RID_ELSE))
{
if (parser->in_if_block)
{
mark_valid_location_for_stdc_pragma (save_valid_for_pragma);
error_at (loc, """expected %<}%> before %<else%>");
return;
}
else
{
error_at (loc, "%<else%> without a previous %<if%>");
c_parser_consume_token (parser);
continue;
}
}
else
{
statement:
last_label = false;
last_stmt = true;
mark_valid_location_for_stdc_pragma (false);
c_parser_statement_after_labels (parser);
}
parser->error = false;
}
if (last_label)
error_at (label_loc, "label at end of compound statement");
c_parser_consume_token (parser);
/* Restore the value we started with. */
mark_valid_location_for_stdc_pragma (save_valid_for_pragma);
}
/* Parse a label (C90 6.6.1, C99 6.8.1).
label:
identifier : attributes[opt]
case constant-expression :
default :
GNU extensions:
label:
case constant-expression ... constant-expression :
The use of attributes on labels is a GNU extension. The syntax in
GNU C accepts any expressions without commas, non-constant
expressions being rejected later. */
static void
c_parser_label (c_parser *parser)
{
location_t loc1 = c_parser_peek_token (parser)->location;
tree label = NULL_TREE;
if (c_parser_next_token_is_keyword (parser, RID_CASE))
{
tree exp1, exp2;
c_parser_consume_token (parser);
exp1 = c_parser_expr_no_commas (parser, NULL).value;
if (c_parser_next_token_is (parser, CPP_COLON))
{
c_parser_consume_token (parser);
label = do_case (loc1, exp1, NULL_TREE);
}
else if (c_parser_next_token_is (parser, CPP_ELLIPSIS))
{
c_parser_consume_token (parser);
exp2 = c_parser_expr_no_commas (parser, NULL).value;
if (c_parser_require (parser, CPP_COLON, "expected %<:%>"))
label = do_case (loc1, exp1, exp2);
}
else
c_parser_error (parser, "expected %<:%> or %<...%>");
}
else if (c_parser_next_token_is_keyword (parser, RID_DEFAULT))
{
c_parser_consume_token (parser);
if (c_parser_require (parser, CPP_COLON, "expected %<:%>"))
label = do_case (loc1, NULL_TREE, NULL_TREE);
}
else
{
tree name = c_parser_peek_token (parser)->value;
tree tlab;
tree attrs;
location_t loc2 = c_parser_peek_token (parser)->location;
gcc_assert (c_parser_next_token_is (parser, CPP_NAME));
c_parser_consume_token (parser);
gcc_assert (c_parser_next_token_is (parser, CPP_COLON));
c_parser_consume_token (parser);
attrs = c_parser_attributes (parser);
tlab = define_label (loc2, name);
if (tlab)
{
decl_attributes (&tlab, attrs, 0);
label = add_stmt (build_stmt (loc1, LABEL_EXPR, tlab));
}
}
if (label)
{
if (c_parser_next_tokens_start_declaration (parser))
{
error_at (c_parser_peek_token (parser)->location,
"a label can only be part of a statement and "
"a declaration is not a statement");
c_parser_declaration_or_fndef (parser, /*fndef_ok*/ false,
/*static_assert_ok*/ true,
/*nested*/ true, /*empty_ok*/ false,
/*start_attr_ok*/ true, NULL);
}
}
}
/* Parse a statement (C90 6.6, C99 6.8).
statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
labeled-statement:
label statement
expression-statement:
expression[opt] ;
selection-statement:
if-statement
switch-statement
iteration-statement:
while-statement
do-statement
for-statement
jump-statement:
goto identifier ;
continue ;
break ;
return expression[opt] ;
GNU extensions:
statement:
asm-statement
jump-statement:
goto * expression ;
Objective-C:
statement:
objc-throw-statement
objc-try-catch-statement
objc-synchronized-statement
objc-throw-statement:
@throw expression ;
@throw ;
OpenMP:
statement:
openmp-construct
openmp-construct:
parallel-construct
for-construct
sections-construct
single-construct
parallel-for-construct
parallel-sections-construct
master-construct
critical-construct
atomic-construct
ordered-construct
parallel-construct:
parallel-directive structured-block
for-construct:
for-directive iteration-statement
sections-construct:
sections-directive section-scope
single-construct:
single-directive structured-block
parallel-for-construct:
parallel-for-directive iteration-statement
parallel-sections-construct:
parallel-sections-directive section-scope
master-construct:
master-directive structured-block
critical-construct:
critical-directive structured-block
atomic-construct:
atomic-directive expression-statement
ordered-construct:
ordered-directive structured-block */
static void
c_parser_statement (c_parser *parser)
{
while (c_parser_next_token_is_keyword (parser, RID_CASE)
|| c_parser_next_token_is_keyword (parser, RID_DEFAULT)
|| (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON))
c_parser_label (parser);
c_parser_statement_after_labels (parser);
}
/* Parse a statement, other than a labeled statement. */
static void
c_parser_statement_after_labels (c_parser *parser)
{
location_t loc = c_parser_peek_token (parser)->location;
tree stmt = NULL_TREE;
bool in_if_block = parser->in_if_block;
parser->in_if_block = false;
switch (c_parser_peek_token (parser)->type)
{
case CPP_OPEN_BRACE:
add_stmt (c_parser_compound_statement (parser));
break;
case CPP_KEYWORD:
switch (c_parser_peek_token (parser)->keyword)
{
case RID_IF:
c_parser_if_statement (parser);
break;
case RID_SWITCH:
c_parser_switch_statement (parser);
break;
case RID_WHILE:
c_parser_while_statement (parser);
break;
case RID_DO:
c_parser_do_statement (parser);
break;
case RID_FOR:
c_parser_for_statement (parser);
break;
case RID_GOTO:
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_NAME))
{
stmt = c_finish_goto_label (loc,
c_parser_peek_token (parser)->value);
c_parser_consume_token (parser);
}
else if (c_parser_next_token_is (parser, CPP_MULT))
{
tree val;
c_parser_consume_token (parser);
val = c_parser_expression (parser).value;
mark_exp_read (val);
stmt = c_finish_goto_ptr (loc, val);
}
else
c_parser_error (parser, "expected identifier or %<*%>");
goto expect_semicolon;
case RID_CONTINUE:
c_parser_consume_token (parser);
stmt = c_finish_bc_stmt (loc, &c_cont_label, false);
goto expect_semicolon;
case RID_BREAK:
c_parser_consume_token (parser);
stmt = c_finish_bc_stmt (loc, &c_break_label, true);
goto expect_semicolon;
case RID_RETURN:
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
stmt = c_finish_return (loc, NULL_TREE, NULL_TREE);
c_parser_consume_token (parser);
}
else
{
struct c_expr expr = c_parser_expression_conv (parser);
mark_exp_read (expr.value);
stmt = c_finish_return (loc, expr.value, expr.original_type);
goto expect_semicolon;
}
break;
case RID_ASM:
stmt = c_parser_asm_statement (parser);
break;
case RID_AT_THROW:
gcc_assert (c_dialect_objc ());
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
stmt = objc_build_throw_stmt (loc, NULL_TREE);
c_parser_consume_token (parser);
}
else
{
tree expr = c_parser_expression (parser).value;
expr = c_fully_fold (expr, false, NULL);
stmt = objc_build_throw_stmt (loc, expr);
goto expect_semicolon;
}
break;
case RID_AT_TRY:
gcc_assert (c_dialect_objc ());
c_parser_objc_try_catch_finally_statement (parser);
break;
case RID_AT_SYNCHRONIZED:
gcc_assert (c_dialect_objc ());
c_parser_objc_synchronized_statement (parser);
break;
default:
goto expr_stmt;
}
break;
case CPP_SEMICOLON:
c_parser_consume_token (parser);
break;
case CPP_CLOSE_PAREN:
case CPP_CLOSE_SQUARE:
/* Avoid infinite loop in error recovery:
c_parser_skip_until_found stops at a closing nesting
delimiter without consuming it, but here we need to consume
it to proceed further. */
c_parser_error (parser, "expected statement");
c_parser_consume_token (parser);
break;
case CPP_PRAGMA:
c_parser_pragma (parser, pragma_stmt);
break;
default:
expr_stmt:
stmt = c_finish_expr_stmt (loc, c_parser_expression_conv (parser).value);
expect_semicolon:
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
break;
}
/* Two cases cannot and do not have line numbers associated: If stmt
is degenerate, such as "2;", then stmt is an INTEGER_CST, which
cannot hold line numbers. But that's OK because the statement
will either be changed to a MODIFY_EXPR during gimplification of
the statement expr, or discarded. If stmt was compound, but
without new variables, we will have skipped the creation of a
BIND and will have a bare STATEMENT_LIST. But that's OK because
(recursively) all of the component statements should already have
line numbers assigned. ??? Can we discard no-op statements
earlier? */
if (CAN_HAVE_LOCATION_P (stmt)
&& EXPR_LOCATION (stmt) == UNKNOWN_LOCATION)
SET_EXPR_LOCATION (stmt, loc);
parser->in_if_block = in_if_block;
}
/* Parse the condition from an if, do, while or for statements. */
static tree
c_parser_condition (c_parser *parser)
{
location_t loc = c_parser_peek_token (parser)->location;
tree cond;
cond = c_parser_expression_conv (parser).value;
cond = c_objc_common_truthvalue_conversion (loc, cond);
cond = c_fully_fold (cond, false, NULL);
if (warn_sequence_point)
verify_sequence_points (cond);
return cond;
}
/* Parse a parenthesized condition from an if, do or while statement.
condition:
( expression )
*/
static tree
c_parser_paren_condition (c_parser *parser)
{
tree cond;
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
return error_mark_node;
cond = c_parser_condition (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
return cond;
}
/* Parse a statement which is a block in C99. */
static tree
c_parser_c99_block_statement (c_parser *parser)
{
tree block = c_begin_compound_stmt (flag_isoc99);
location_t loc = c_parser_peek_token (parser)->location;
c_parser_statement (parser);
return c_end_compound_stmt (loc, block, flag_isoc99);
}
/* Parse the body of an if statement. This is just parsing a
statement but (a) it is a block in C99, (b) we track whether the
body is an if statement for the sake of -Wparentheses warnings, (c)
we handle an empty body specially for the sake of -Wempty-body
warnings, and (d) we call parser_compound_statement directly
because c_parser_statement_after_labels resets
parser->in_if_block. */
static tree
c_parser_if_body (c_parser *parser, bool *if_p)
{
tree block = c_begin_compound_stmt (flag_isoc99);
location_t body_loc = c_parser_peek_token (parser)->location;
while (c_parser_next_token_is_keyword (parser, RID_CASE)
|| c_parser_next_token_is_keyword (parser, RID_DEFAULT)
|| (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON))
c_parser_label (parser);
*if_p = c_parser_next_token_is_keyword (parser, RID_IF);
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
location_t loc = c_parser_peek_token (parser)->location;
add_stmt (build_empty_stmt (loc));
c_parser_consume_token (parser);
if (!c_parser_next_token_is_keyword (parser, RID_ELSE))
warning_at (loc, OPT_Wempty_body,
"suggest braces around empty body in an %<if%> statement");
}
else if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
add_stmt (c_parser_compound_statement (parser));
else
c_parser_statement_after_labels (parser);
return c_end_compound_stmt (body_loc, block, flag_isoc99);
}
/* Parse the else body of an if statement. This is just parsing a
statement but (a) it is a block in C99, (b) we handle an empty body
specially for the sake of -Wempty-body warnings. */
static tree
c_parser_else_body (c_parser *parser)
{
location_t else_loc = c_parser_peek_token (parser)->location;
tree block = c_begin_compound_stmt (flag_isoc99);
while (c_parser_next_token_is_keyword (parser, RID_CASE)
|| c_parser_next_token_is_keyword (parser, RID_DEFAULT)
|| (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_COLON))
c_parser_label (parser);
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
location_t loc = c_parser_peek_token (parser)->location;
warning_at (loc,
OPT_Wempty_body,
"suggest braces around empty body in an %<else%> statement");
add_stmt (build_empty_stmt (loc));
c_parser_consume_token (parser);
}
else
c_parser_statement_after_labels (parser);
return c_end_compound_stmt (else_loc, block, flag_isoc99);
}
/* Parse an if statement (C90 6.6.4, C99 6.8.4).
if-statement:
if ( expression ) statement
if ( expression ) statement else statement
*/
static void
c_parser_if_statement (c_parser *parser)
{
tree block;
location_t loc;
tree cond;
bool first_if = false;
tree first_body, second_body;
bool in_if_block;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_IF));
c_parser_consume_token (parser);
block = c_begin_compound_stmt (flag_isoc99);
loc = c_parser_peek_token (parser)->location;
cond = c_parser_paren_condition (parser);
in_if_block = parser->in_if_block;
parser->in_if_block = true;
first_body = c_parser_if_body (parser, &first_if);
parser->in_if_block = in_if_block;
if (c_parser_next_token_is_keyword (parser, RID_ELSE))
{
c_parser_consume_token (parser);
second_body = c_parser_else_body (parser);
}
else
second_body = NULL_TREE;
c_finish_if_stmt (loc, cond, first_body, second_body, first_if);
add_stmt (c_end_compound_stmt (loc, block, flag_isoc99));
}
/* Parse a switch statement (C90 6.6.4, C99 6.8.4).
switch-statement:
switch (expression) statement
*/
static void
c_parser_switch_statement (c_parser *parser)
{
tree block, expr, body, save_break;
location_t switch_loc = c_parser_peek_token (parser)->location;
location_t switch_cond_loc;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_SWITCH));
c_parser_consume_token (parser);
block = c_begin_compound_stmt (flag_isoc99);
if (c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
switch_cond_loc = c_parser_peek_token (parser)->location;
expr = c_parser_expression (parser).value;
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
}
else
{
switch_cond_loc = UNKNOWN_LOCATION;
expr = error_mark_node;
}
c_start_case (switch_loc, switch_cond_loc, expr);
save_break = c_break_label;
c_break_label = NULL_TREE;
body = c_parser_c99_block_statement (parser);
c_finish_case (body);
if (c_break_label)
{
location_t here = c_parser_peek_token (parser)->location;
tree t = build1 (LABEL_EXPR, void_type_node, c_break_label);
SET_EXPR_LOCATION (t, here);
add_stmt (t);
}
c_break_label = save_break;
add_stmt (c_end_compound_stmt (switch_loc, block, flag_isoc99));
}
/* Parse a while statement (C90 6.6.5, C99 6.8.5).
while-statement:
while (expression) statement
*/
static void
c_parser_while_statement (c_parser *parser)
{
tree block, cond, body, save_break, save_cont;
location_t loc;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_WHILE));
c_parser_consume_token (parser);
block = c_begin_compound_stmt (flag_isoc99);
loc = c_parser_peek_token (parser)->location;
cond = c_parser_paren_condition (parser);
save_break = c_break_label;
c_break_label = NULL_TREE;
save_cont = c_cont_label;
c_cont_label = NULL_TREE;
body = c_parser_c99_block_statement (parser);
c_finish_loop (loc, cond, NULL, body, c_break_label, c_cont_label, true);
add_stmt (c_end_compound_stmt (loc, block, flag_isoc99));
c_break_label = save_break;
c_cont_label = save_cont;
}
/* Parse a do statement (C90 6.6.5, C99 6.8.5).
do-statement:
do statement while ( expression ) ;
*/
static void
c_parser_do_statement (c_parser *parser)
{
tree block, cond, body, save_break, save_cont, new_break, new_cont;
location_t loc;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_DO));
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
warning_at (c_parser_peek_token (parser)->location,
OPT_Wempty_body,
"suggest braces around empty body in %<do%> statement");
block = c_begin_compound_stmt (flag_isoc99);
loc = c_parser_peek_token (parser)->location;
save_break = c_break_label;
c_break_label = NULL_TREE;
save_cont = c_cont_label;
c_cont_label = NULL_TREE;
body = c_parser_c99_block_statement (parser);
c_parser_require_keyword (parser, RID_WHILE, "expected %<while%>");
new_break = c_break_label;
c_break_label = save_break;
new_cont = c_cont_label;
c_cont_label = save_cont;
cond = c_parser_paren_condition (parser);
if (!c_parser_require (parser, CPP_SEMICOLON, "expected %<;%>"))
c_parser_skip_to_end_of_block_or_statement (parser);
c_finish_loop (loc, cond, NULL, body, new_break, new_cont, false);
add_stmt (c_end_compound_stmt (loc, block, flag_isoc99));
}
/* Parse a for statement (C90 6.6.5, C99 6.8.5).
for-statement:
for ( expression[opt] ; expression[opt] ; expression[opt] ) statement
for ( nested-declaration expression[opt] ; expression[opt] ) statement
The form with a declaration is new in C99.
??? In accordance with the old parser, the declaration may be a
nested function, which is then rejected in check_for_loop_decls,
but does it make any sense for this to be included in the grammar?
Note in particular that the nested function does not include a
trailing ';', whereas the "declaration" production includes one.
Also, can we reject bad declarations earlier and cheaper than
check_for_loop_decls?
In Objective-C, there are two additional variants:
foreach-statement:
for ( expression in expresssion ) statement
for ( declaration in expression ) statement
This is inconsistent with C, because the second variant is allowed
even if c99 is not enabled.
The rest of the comment documents these Objective-C foreach-statement.
Here is the canonical example of the first variant:
for (object in array) { do something with object }
we call the first expression ("object") the "object_expression" and
the second expression ("array") the "collection_expression".
object_expression must be an lvalue of type "id" (a generic Objective-C
object) because the loop works by assigning to object_expression the
various objects from the collection_expression. collection_expression
must evaluate to something of type "id" which responds to the method
countByEnumeratingWithState:objects:count:.
The canonical example of the second variant is:
for (id object in array) { do something with object }
which is completely equivalent to
{
id object;
for (object in array) { do something with object }
}
Note that initizializing 'object' in some way (eg, "for ((object =
xxx) in array) { do something with object }") is possibly
technically valid, but completely pointless as 'object' will be
assigned to something else as soon as the loop starts. We should
most likely reject it (TODO).
The beginning of the Objective-C foreach-statement looks exactly
like the beginning of the for-statement, and we can tell it is a
foreach-statement only because the initial declaration or
expression is terminated by 'in' instead of ';'.
*/
static void
c_parser_for_statement (c_parser *parser)
{
tree block, cond, incr, save_break, save_cont, body;
/* The following are only used when parsing an ObjC foreach statement. */
tree object_expression;
/* Silence the bogus uninitialized warning. */
tree collection_expression = NULL;
location_t loc = c_parser_peek_token (parser)->location;
location_t for_loc = c_parser_peek_token (parser)->location;
bool is_foreach_statement = false;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_FOR));
c_parser_consume_token (parser);
/* Open a compound statement in Objective-C as well, just in case this is
as foreach expression. */
block = c_begin_compound_stmt (flag_isoc99 || c_dialect_objc ());
cond = error_mark_node;
incr = error_mark_node;
if (c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
/* Parse the initialization declaration or expression. */
object_expression = error_mark_node;
parser->objc_could_be_foreach_context = c_dialect_objc ();
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
parser->objc_could_be_foreach_context = false;
c_parser_consume_token (parser);
c_finish_expr_stmt (loc, NULL_TREE);
}
else if (c_parser_next_tokens_start_declaration (parser))
{
c_parser_declaration_or_fndef (parser, true, true, true, true, true,
&object_expression);
parser->objc_could_be_foreach_context = false;
if (c_parser_next_token_is_keyword (parser, RID_IN))
{
c_parser_consume_token (parser);
is_foreach_statement = true;
if (check_for_loop_decls (for_loc, true) == NULL_TREE)
c_parser_error (parser, "multiple iterating variables in fast enumeration");
}
else
check_for_loop_decls (for_loc, flag_isoc99);
}
else if (c_parser_next_token_is_keyword (parser, RID_EXTENSION))
{
/* __extension__ can start a declaration, but is also an
unary operator that can start an expression. Consume all
but the last of a possible series of __extension__ to
determine which. */
while (c_parser_peek_2nd_token (parser)->type == CPP_KEYWORD
&& (c_parser_peek_2nd_token (parser)->keyword
== RID_EXTENSION))
c_parser_consume_token (parser);
if (c_token_starts_declaration (c_parser_peek_2nd_token (parser)))
{
int ext;
ext = disable_extension_diagnostics ();
c_parser_consume_token (parser);
c_parser_declaration_or_fndef (parser, true, true, true, true,
true, &object_expression);
parser->objc_could_be_foreach_context = false;
restore_extension_diagnostics (ext);
if (c_parser_next_token_is_keyword (parser, RID_IN))
{
c_parser_consume_token (parser);
is_foreach_statement = true;
if (check_for_loop_decls (for_loc, true) == NULL_TREE)
c_parser_error (parser, "multiple iterating variables in fast enumeration");
}
else
check_for_loop_decls (for_loc, flag_isoc99);
}
else
goto init_expr;
}
else
{
init_expr:
{
tree init_expression;
init_expression = c_parser_expression (parser).value;
parser->objc_could_be_foreach_context = false;
if (c_parser_next_token_is_keyword (parser, RID_IN))
{
c_parser_consume_token (parser);
is_foreach_statement = true;
if (! lvalue_p (init_expression))
c_parser_error (parser, "invalid iterating variable in fast enumeration");
object_expression = c_fully_fold (init_expression, false, NULL);
}
else
{
c_finish_expr_stmt (loc, init_expression);
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
}
}
/* Parse the loop condition. In the case of a foreach
statement, there is no loop condition. */
gcc_assert (!parser->objc_could_be_foreach_context);
if (!is_foreach_statement)
{
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
c_parser_consume_token (parser);
cond = NULL_TREE;
}
else
{
cond = c_parser_condition (parser);
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
}
/* Parse the increment expression (the third expression in a
for-statement). In the case of a foreach-statement, this is
the expression that follows the 'in'. */
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
if (is_foreach_statement)
{
c_parser_error (parser, "missing collection in fast enumeration");
collection_expression = error_mark_node;
}
else
incr = c_process_expr_stmt (loc, NULL_TREE);
}
else
{
if (is_foreach_statement)
collection_expression = c_fully_fold (c_parser_expression (parser).value,
false, NULL);
else
incr = c_process_expr_stmt (loc, c_parser_expression (parser).value);
}
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
}
save_break = c_break_label;
c_break_label = NULL_TREE;
save_cont = c_cont_label;
c_cont_label = NULL_TREE;
body = c_parser_c99_block_statement (parser);
if (is_foreach_statement)
objc_finish_foreach_loop (loc, object_expression, collection_expression, body, c_break_label, c_cont_label);
else
c_finish_loop (loc, cond, incr, body, c_break_label, c_cont_label, true);
add_stmt (c_end_compound_stmt (loc, block, flag_isoc99 || c_dialect_objc ()));
c_break_label = save_break;
c_cont_label = save_cont;
}
/* Parse an asm statement, a GNU extension. This is a full-blown asm
statement with inputs, outputs, clobbers, and volatile tag
allowed.
asm-statement:
asm type-qualifier[opt] ( asm-argument ) ;
asm type-qualifier[opt] goto ( asm-goto-argument ) ;
asm-argument:
asm-string-literal
asm-string-literal : asm-operands[opt]
asm-string-literal : asm-operands[opt] : asm-operands[opt]
asm-string-literal : asm-operands[opt] : asm-operands[opt] : asm-clobbers[opt]
asm-goto-argument:
asm-string-literal : : asm-operands[opt] : asm-clobbers[opt] \
: asm-goto-operands
Qualifiers other than volatile are accepted in the syntax but
warned for. */
static tree
c_parser_asm_statement (c_parser *parser)
{
tree quals, str, outputs, inputs, clobbers, labels, ret;
bool simple, is_goto;
location_t asm_loc = c_parser_peek_token (parser)->location;
int section, nsections;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_ASM));
c_parser_consume_token (parser);
if (c_parser_next_token_is_keyword (parser, RID_VOLATILE))
{
quals = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
}
else if (c_parser_next_token_is_keyword (parser, RID_CONST)
|| c_parser_next_token_is_keyword (parser, RID_RESTRICT))
{
warning_at (c_parser_peek_token (parser)->location,
0,
"%E qualifier ignored on asm",
c_parser_peek_token (parser)->value);
quals = NULL_TREE;
c_parser_consume_token (parser);
}
else
quals = NULL_TREE;
is_goto = false;
if (c_parser_next_token_is_keyword (parser, RID_GOTO))
{
c_parser_consume_token (parser);
is_goto = true;
}
/* ??? Follow the C++ parser rather than using the
lex_untranslated_string kludge. */
parser->lex_untranslated_string = true;
ret = NULL;
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
goto error;
str = c_parser_asm_string_literal (parser);
if (str == NULL_TREE)
goto error_close_paren;
simple = true;
outputs = NULL_TREE;
inputs = NULL_TREE;
clobbers = NULL_TREE;
labels = NULL_TREE;
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN) && !is_goto)
goto done_asm;
/* Parse each colon-delimited section of operands. */
nsections = 3 + is_goto;
for (section = 0; section < nsections; ++section)
{
if (!c_parser_require (parser, CPP_COLON,
is_goto
? "expected %<:%>"
: "expected %<:%> or %<)%>"))
goto error_close_paren;
/* Once past any colon, we're no longer a simple asm. */
simple = false;
if ((!c_parser_next_token_is (parser, CPP_COLON)
&& !c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
|| section == 3)
switch (section)
{
case 0:
/* For asm goto, we don't allow output operands, but reserve
the slot for a future extension that does allow them. */
if (!is_goto)
outputs = c_parser_asm_operands (parser, false);
break;
case 1:
inputs = c_parser_asm_operands (parser, true);
break;
case 2:
clobbers = c_parser_asm_clobbers (parser);
break;
case 3:
labels = c_parser_asm_goto_operands (parser);
break;
default:
gcc_unreachable ();
}
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN) && !is_goto)
goto done_asm;
}
done_asm:
if (!c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
goto error;
}
if (!c_parser_require (parser, CPP_SEMICOLON, "expected %<;%>"))
c_parser_skip_to_end_of_block_or_statement (parser);
ret = build_asm_stmt (quals, build_asm_expr (asm_loc, str, outputs, inputs,
clobbers, labels, simple));
error:
parser->lex_untranslated_string = false;
return ret;
error_close_paren:
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
goto error;
}
/* Parse asm operands, a GNU extension. If CONVERT_P (for inputs but
not outputs), apply the default conversion of functions and arrays
to pointers.
asm-operands:
asm-operand
asm-operands , asm-operand
asm-operand:
asm-string-literal ( expression )
[ identifier ] asm-string-literal ( expression )
*/
static tree
c_parser_asm_operands (c_parser *parser, bool convert_p)
{
tree list = NULL_TREE;
location_t loc;
while (true)
{
tree name, str;
struct c_expr expr;
if (c_parser_next_token_is (parser, CPP_OPEN_SQUARE))
{
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_NAME))
{
tree id = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
name = build_string (IDENTIFIER_LENGTH (id),
IDENTIFIER_POINTER (id));
}
else
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE, NULL);
return NULL_TREE;
}
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE,
"expected %<]%>");
}
else
name = NULL_TREE;
str = c_parser_asm_string_literal (parser);
if (str == NULL_TREE)
return NULL_TREE;
parser->lex_untranslated_string = false;
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
parser->lex_untranslated_string = true;
return NULL_TREE;
}
loc = c_parser_peek_token (parser)->location;
expr = c_parser_expression (parser);
mark_exp_read (expr.value);
if (convert_p)
expr = default_function_array_conversion (loc, expr);
expr.value = c_fully_fold (expr.value, false, NULL);
parser->lex_untranslated_string = true;
if (!c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return NULL_TREE;
}
list = chainon (list, build_tree_list (build_tree_list (name, str),
expr.value));
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
return list;
}
/* Parse asm clobbers, a GNU extension.
asm-clobbers:
asm-string-literal
asm-clobbers , asm-string-literal
*/
static tree
c_parser_asm_clobbers (c_parser *parser)
{
tree list = NULL_TREE;
while (true)
{
tree str = c_parser_asm_string_literal (parser);
if (str)
list = tree_cons (NULL_TREE, str, list);
else
return NULL_TREE;
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
return list;
}
/* Parse asm goto labels, a GNU extension.
asm-goto-operands:
identifier
asm-goto-operands , identifier
*/
static tree
c_parser_asm_goto_operands (c_parser *parser)
{
tree list = NULL_TREE;
while (true)
{
tree name, label;
if (c_parser_next_token_is (parser, CPP_NAME))
{
c_token *tok = c_parser_peek_token (parser);
name = tok->value;
label = lookup_label_for_goto (tok->location, name);
c_parser_consume_token (parser);
TREE_USED (label) = 1;
}
else
{
c_parser_error (parser, "expected identifier");
return NULL_TREE;
}
name = build_string (IDENTIFIER_LENGTH (name),
IDENTIFIER_POINTER (name));
list = tree_cons (name, label, list);
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
return nreverse (list);
}
}
/* Parse an expression other than a compound expression; that is, an
assignment expression (C90 6.3.16, C99 6.5.16). If AFTER is not
NULL then it is an Objective-C message expression which is the
primary-expression starting the expression as an initializer.
assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression
assignment-operator: one of
= *= /= %= += -= <<= >>= &= ^= |=
In GNU C we accept any conditional expression on the LHS and
diagnose the invalid lvalue rather than producing a syntax
error. */
static struct c_expr
c_parser_expr_no_commas (c_parser *parser, struct c_expr *after)
{
struct c_expr lhs, rhs, ret;
enum tree_code code;
location_t op_location, exp_location;
gcc_assert (!after || c_dialect_objc ());
lhs = c_parser_conditional_expression (parser, after);
op_location = c_parser_peek_token (parser)->location;
switch (c_parser_peek_token (parser)->type)
{
case CPP_EQ:
code = NOP_EXPR;
break;
case CPP_MULT_EQ:
code = MULT_EXPR;
break;
case CPP_DIV_EQ:
code = TRUNC_DIV_EXPR;
break;
case CPP_MOD_EQ:
code = TRUNC_MOD_EXPR;
break;
case CPP_PLUS_EQ:
code = PLUS_EXPR;
break;
case CPP_MINUS_EQ:
code = MINUS_EXPR;
break;
case CPP_LSHIFT_EQ:
code = LSHIFT_EXPR;
break;
case CPP_RSHIFT_EQ:
code = RSHIFT_EXPR;
break;
case CPP_AND_EQ:
code = BIT_AND_EXPR;
break;
case CPP_XOR_EQ:
code = BIT_XOR_EXPR;
break;
case CPP_OR_EQ:
code = BIT_IOR_EXPR;
break;
default:
return lhs;
}
c_parser_consume_token (parser);
exp_location = c_parser_peek_token (parser)->location;
rhs = c_parser_expr_no_commas (parser, NULL);
rhs = default_function_array_read_conversion (exp_location, rhs);
ret.value = build_modify_expr (op_location, lhs.value, lhs.original_type,
code, exp_location, rhs.value,
rhs.original_type);
if (code == NOP_EXPR)
ret.original_code = MODIFY_EXPR;
else
{
TREE_NO_WARNING (ret.value) = 1;
ret.original_code = ERROR_MARK;
}
ret.original_type = NULL;
return ret;
}
/* Parse a conditional expression (C90 6.3.15, C99 6.5.15). If AFTER
is not NULL then it is an Objective-C message expression which is
the primary-expression starting the expression as an initializer.
conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression
GNU extensions:
conditional-expression:
logical-OR-expression ? : conditional-expression
*/
static struct c_expr
c_parser_conditional_expression (c_parser *parser, struct c_expr *after)
{
struct c_expr cond, exp1, exp2, ret;
location_t cond_loc, colon_loc, middle_loc;
gcc_assert (!after || c_dialect_objc ());
cond = c_parser_binary_expression (parser, after);
if (c_parser_next_token_is_not (parser, CPP_QUERY))
return cond;
cond_loc = c_parser_peek_token (parser)->location;
cond = default_function_array_read_conversion (cond_loc, cond);
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_COLON))
{
tree eptype = NULL_TREE;
middle_loc = c_parser_peek_token (parser)->location;
pedwarn (middle_loc, OPT_pedantic,
"ISO C forbids omitting the middle term of a ?: expression");
warn_for_omitted_condop (middle_loc, cond.value);
if (TREE_CODE (cond.value) == EXCESS_PRECISION_EXPR)
{
eptype = TREE_TYPE (cond.value);
cond.value = TREE_OPERAND (cond.value, 0);
}
/* Make sure first operand is calculated only once. */
exp1.value = c_save_expr (default_conversion (cond.value));
if (eptype)
exp1.value = build1 (EXCESS_PRECISION_EXPR, eptype, exp1.value);
exp1.original_type = NULL;
cond.value = c_objc_common_truthvalue_conversion (cond_loc, exp1.value);
c_inhibit_evaluation_warnings += cond.value == truthvalue_true_node;
}
else
{
cond.value
= c_objc_common_truthvalue_conversion
(cond_loc, default_conversion (cond.value));
c_inhibit_evaluation_warnings += cond.value == truthvalue_false_node;
exp1 = c_parser_expression_conv (parser);
mark_exp_read (exp1.value);
c_inhibit_evaluation_warnings +=
((cond.value == truthvalue_true_node)
- (cond.value == truthvalue_false_node));
}
colon_loc = c_parser_peek_token (parser)->location;
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
{
c_inhibit_evaluation_warnings -= cond.value == truthvalue_true_node;
ret.value = error_mark_node;
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
return ret;
}
{
location_t exp2_loc = c_parser_peek_token (parser)->location;
exp2 = c_parser_conditional_expression (parser, NULL);
exp2 = default_function_array_read_conversion (exp2_loc, exp2);
}
c_inhibit_evaluation_warnings -= cond.value == truthvalue_true_node;
ret.value = build_conditional_expr (colon_loc, cond.value,
cond.original_code == C_MAYBE_CONST_EXPR,
exp1.value, exp1.original_type,
exp2.value, exp2.original_type);
ret.original_code = ERROR_MARK;
if (exp1.value == error_mark_node || exp2.value == error_mark_node)
ret.original_type = NULL;
else
{
tree t1, t2;
/* If both sides are enum type, the default conversion will have
made the type of the result be an integer type. We want to
remember the enum types we started with. */
t1 = exp1.original_type ? exp1.original_type : TREE_TYPE (exp1.value);
t2 = exp2.original_type ? exp2.original_type : TREE_TYPE (exp2.value);
ret.original_type = ((t1 != error_mark_node
&& t2 != error_mark_node
&& (TYPE_MAIN_VARIANT (t1)
== TYPE_MAIN_VARIANT (t2)))
? t1
: NULL);
}
return ret;
}
/* Parse a binary expression; that is, a logical-OR-expression (C90
6.3.5-6.3.14, C99 6.5.5-6.5.14). If AFTER is not NULL then it is
an Objective-C message expression which is the primary-expression
starting the expression as an initializer.
multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression % cast-expression
additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression
relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression
AND-expression:
equality-expression
AND-expression & equality-expression
exclusive-OR-expression:
AND-expression
exclusive-OR-expression ^ AND-expression
inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression
logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression
logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression
*/
static struct c_expr
c_parser_binary_expression (c_parser *parser, struct c_expr *after)
{
/* A binary expression is parsed using operator-precedence parsing,
with the operands being cast expressions. All the binary
operators are left-associative. Thus a binary expression is of
form:
E0 op1 E1 op2 E2 ...
which we represent on a stack. On the stack, the precedence
levels are strictly increasing. When a new operator is
encountered of higher precedence than that at the top of the
stack, it is pushed; its LHS is the top expression, and its RHS
is everything parsed until it is popped. When a new operator is
encountered with precedence less than or equal to that at the top
of the stack, triples E[i-1] op[i] E[i] are popped and replaced
by the result of the operation until the operator at the top of
the stack has lower precedence than the new operator or there is
only one element on the stack; then the top expression is the LHS
of the new operator. In the case of logical AND and OR
expressions, we also need to adjust c_inhibit_evaluation_warnings
as appropriate when the operators are pushed and popped. */
/* The precedence levels, where 0 is a dummy lowest level used for
the bottom of the stack. */
enum prec {
PREC_NONE,
PREC_LOGOR,
PREC_LOGAND,
PREC_BITOR,
PREC_BITXOR,
PREC_BITAND,
PREC_EQ,
PREC_REL,
PREC_SHIFT,
PREC_ADD,
PREC_MULT,
NUM_PRECS
};
struct {
/* The expression at this stack level. */
struct c_expr expr;
/* The precedence of the operator on its left, PREC_NONE at the
bottom of the stack. */
enum prec prec;
/* The operation on its left. */
enum tree_code op;
/* The source location of this operation. */
location_t loc;
} stack[NUM_PRECS];
int sp;
/* Location of the binary operator. */
location_t binary_loc = UNKNOWN_LOCATION; /* Quiet warning. */
#define POP \
do { \
switch (stack[sp].op) \
{ \
case TRUTH_ANDIF_EXPR: \
c_inhibit_evaluation_warnings -= (stack[sp - 1].expr.value \
== truthvalue_false_node); \
break; \
case TRUTH_ORIF_EXPR: \
c_inhibit_evaluation_warnings -= (stack[sp - 1].expr.value \
== truthvalue_true_node); \
break; \
default: \
break; \
} \
stack[sp - 1].expr \
= default_function_array_read_conversion (stack[sp - 1].loc, \
stack[sp - 1].expr); \
stack[sp].expr \
= default_function_array_read_conversion (stack[sp].loc, \
stack[sp].expr); \
stack[sp - 1].expr = parser_build_binary_op (stack[sp].loc, \
stack[sp].op, \
stack[sp - 1].expr, \
stack[sp].expr); \
sp--; \
} while (0)
gcc_assert (!after || c_dialect_objc ());
stack[0].loc = c_parser_peek_token (parser)->location;
stack[0].expr = c_parser_cast_expression (parser, after);
stack[0].prec = PREC_NONE;
sp = 0;
while (true)
{
enum prec oprec;
enum tree_code ocode;
if (parser->error)
goto out;
switch (c_parser_peek_token (parser)->type)
{
case CPP_MULT:
oprec = PREC_MULT;
ocode = MULT_EXPR;
break;
case CPP_DIV:
oprec = PREC_MULT;
ocode = TRUNC_DIV_EXPR;
break;
case CPP_MOD:
oprec = PREC_MULT;
ocode = TRUNC_MOD_EXPR;
break;
case CPP_PLUS:
oprec = PREC_ADD;
ocode = PLUS_EXPR;
break;
case CPP_MINUS:
oprec = PREC_ADD;
ocode = MINUS_EXPR;
break;
case CPP_LSHIFT:
oprec = PREC_SHIFT;
ocode = LSHIFT_EXPR;
break;
case CPP_RSHIFT:
oprec = PREC_SHIFT;
ocode = RSHIFT_EXPR;
break;
case CPP_LESS:
oprec = PREC_REL;
ocode = LT_EXPR;
break;
case CPP_GREATER:
oprec = PREC_REL;
ocode = GT_EXPR;
break;
case CPP_LESS_EQ:
oprec = PREC_REL;
ocode = LE_EXPR;
break;
case CPP_GREATER_EQ:
oprec = PREC_REL;
ocode = GE_EXPR;
break;
case CPP_EQ_EQ:
oprec = PREC_EQ;
ocode = EQ_EXPR;
break;
case CPP_NOT_EQ:
oprec = PREC_EQ;
ocode = NE_EXPR;
break;
case CPP_AND:
oprec = PREC_BITAND;
ocode = BIT_AND_EXPR;
break;
case CPP_XOR:
oprec = PREC_BITXOR;
ocode = BIT_XOR_EXPR;
break;
case CPP_OR:
oprec = PREC_BITOR;
ocode = BIT_IOR_EXPR;
break;
case CPP_AND_AND:
oprec = PREC_LOGAND;
ocode = TRUTH_ANDIF_EXPR;
break;
case CPP_OR_OR:
oprec = PREC_LOGOR;
ocode = TRUTH_ORIF_EXPR;
break;
default:
/* Not a binary operator, so end of the binary
expression. */
goto out;
}
binary_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
while (oprec <= stack[sp].prec)
POP;
switch (ocode)
{
case TRUTH_ANDIF_EXPR:
stack[sp].expr
= default_function_array_read_conversion (stack[sp].loc,
stack[sp].expr);
stack[sp].expr.value = c_objc_common_truthvalue_conversion
(stack[sp].loc, default_conversion (stack[sp].expr.value));
c_inhibit_evaluation_warnings += (stack[sp].expr.value
== truthvalue_false_node);
break;
case TRUTH_ORIF_EXPR:
stack[sp].expr
= default_function_array_read_conversion (stack[sp].loc,
stack[sp].expr);
stack[sp].expr.value = c_objc_common_truthvalue_conversion
(stack[sp].loc, default_conversion (stack[sp].expr.value));
c_inhibit_evaluation_warnings += (stack[sp].expr.value
== truthvalue_true_node);
break;
default:
break;
}
sp++;
stack[sp].loc = binary_loc;
stack[sp].expr = c_parser_cast_expression (parser, NULL);
stack[sp].prec = oprec;
stack[sp].op = ocode;
stack[sp].loc = binary_loc;
}
out:
while (sp > 0)
POP;
return stack[0].expr;
#undef POP
}
/* Parse a cast expression (C90 6.3.4, C99 6.5.4). If AFTER is not
NULL then it is an Objective-C message expression which is the
primary-expression starting the expression as an initializer.
cast-expression:
unary-expression
( type-name ) unary-expression
*/
static struct c_expr
c_parser_cast_expression (c_parser *parser, struct c_expr *after)
{
location_t cast_loc = c_parser_peek_token (parser)->location;
gcc_assert (!after || c_dialect_objc ());
if (after)
return c_parser_postfix_expression_after_primary (parser,
cast_loc, *after);
/* If the expression begins with a parenthesized type name, it may
be either a cast or a compound literal; we need to see whether
the next character is '{' to tell the difference. If not, it is
an unary expression. Full detection of unknown typenames here
would require a 3-token lookahead. */
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)
&& c_token_starts_typename (c_parser_peek_2nd_token (parser)))
{
struct c_type_name *type_name;
struct c_expr ret;
struct c_expr expr;
c_parser_consume_token (parser);
type_name = c_parser_type_name (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
if (type_name == NULL)
{
ret.value = error_mark_node;
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
return ret;
}
/* Save casted types in the function's used types hash table. */
used_types_insert (type_name->specs->type);
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
return c_parser_postfix_expression_after_paren_type (parser, type_name,
cast_loc);
{
location_t expr_loc = c_parser_peek_token (parser)->location;
expr = c_parser_cast_expression (parser, NULL);
expr = default_function_array_read_conversion (expr_loc, expr);
}
ret.value = c_cast_expr (cast_loc, type_name, expr.value);
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
return ret;
}
else
return c_parser_unary_expression (parser);
}
/* Parse an unary expression (C90 6.3.3, C99 6.5.3).
unary-expression:
postfix-expression
++ unary-expression
-- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-name )
unary-operator: one of
& * + - ~ !
GNU extensions:
unary-expression:
__alignof__ unary-expression
__alignof__ ( type-name )
&& identifier
unary-operator: one of
__extension__ __real__ __imag__
In addition, the GNU syntax treats ++ and -- as unary operators, so
they may be applied to cast expressions with errors for non-lvalues
given later. */
static struct c_expr
c_parser_unary_expression (c_parser *parser)
{
int ext;
struct c_expr ret, op;
location_t op_loc = c_parser_peek_token (parser)->location;
location_t exp_loc;
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
switch (c_parser_peek_token (parser)->type)
{
case CPP_PLUS_PLUS:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = default_function_array_read_conversion (exp_loc, op);
return parser_build_unary_op (op_loc, PREINCREMENT_EXPR, op);
case CPP_MINUS_MINUS:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = default_function_array_read_conversion (exp_loc, op);
return parser_build_unary_op (op_loc, PREDECREMENT_EXPR, op);
case CPP_AND:
c_parser_consume_token (parser);
op = c_parser_cast_expression (parser, NULL);
mark_exp_read (op.value);
return parser_build_unary_op (op_loc, ADDR_EXPR, op);
case CPP_MULT:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = default_function_array_read_conversion (exp_loc, op);
ret.value = build_indirect_ref (op_loc, op.value, RO_UNARY_STAR);
return ret;
case CPP_PLUS:
if (!c_dialect_objc () && !in_system_header)
warning_at (op_loc,
OPT_Wtraditional,
"traditional C rejects the unary plus operator");
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = default_function_array_read_conversion (exp_loc, op);
return parser_build_unary_op (op_loc, CONVERT_EXPR, op);
case CPP_MINUS:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = default_function_array_read_conversion (exp_loc, op);
return parser_build_unary_op (op_loc, NEGATE_EXPR, op);
case CPP_COMPL:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = default_function_array_read_conversion (exp_loc, op);
return parser_build_unary_op (op_loc, BIT_NOT_EXPR, op);
case CPP_NOT:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = default_function_array_read_conversion (exp_loc, op);
return parser_build_unary_op (op_loc, TRUTH_NOT_EXPR, op);
case CPP_AND_AND:
/* Refer to the address of a label as a pointer. */
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_NAME))
{
ret.value = finish_label_address_expr
(c_parser_peek_token (parser)->value, op_loc);
c_parser_consume_token (parser);
}
else
{
c_parser_error (parser, "expected identifier");
ret.value = error_mark_node;
}
return ret;
case CPP_KEYWORD:
switch (c_parser_peek_token (parser)->keyword)
{
case RID_SIZEOF:
return c_parser_sizeof_expression (parser);
case RID_ALIGNOF:
return c_parser_alignof_expression (parser);
case RID_EXTENSION:
c_parser_consume_token (parser);
ext = disable_extension_diagnostics ();
ret = c_parser_cast_expression (parser, NULL);
restore_extension_diagnostics (ext);
return ret;
case RID_REALPART:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = default_function_array_conversion (exp_loc, op);
return parser_build_unary_op (op_loc, REALPART_EXPR, op);
case RID_IMAGPART:
c_parser_consume_token (parser);
exp_loc = c_parser_peek_token (parser)->location;
op = c_parser_cast_expression (parser, NULL);
op = default_function_array_conversion (exp_loc, op);
return parser_build_unary_op (op_loc, IMAGPART_EXPR, op);
default:
return c_parser_postfix_expression (parser);
}
default:
return c_parser_postfix_expression (parser);
}
}
/* Parse a sizeof expression. */
static struct c_expr
c_parser_sizeof_expression (c_parser *parser)
{
struct c_expr expr;
location_t expr_loc;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_SIZEOF));
c_parser_consume_token (parser);
c_inhibit_evaluation_warnings++;
in_sizeof++;
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)
&& c_token_starts_typename (c_parser_peek_2nd_token (parser)))
{
/* Either sizeof ( type-name ) or sizeof unary-expression
starting with a compound literal. */
struct c_type_name *type_name;
c_parser_consume_token (parser);
expr_loc = c_parser_peek_token (parser)->location;
type_name = c_parser_type_name (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
if (type_name == NULL)
{
struct c_expr ret;
c_inhibit_evaluation_warnings--;
in_sizeof--;
ret.value = error_mark_node;
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
return ret;
}
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
{
expr = c_parser_postfix_expression_after_paren_type (parser,
type_name,
expr_loc);
goto sizeof_expr;
}
/* sizeof ( type-name ). */
c_inhibit_evaluation_warnings--;
in_sizeof--;
return c_expr_sizeof_type (expr_loc, type_name);
}
else
{
expr_loc = c_parser_peek_token (parser)->location;
expr = c_parser_unary_expression (parser);
sizeof_expr:
c_inhibit_evaluation_warnings--;
in_sizeof--;
mark_exp_read (expr.value);
if (TREE_CODE (expr.value) == COMPONENT_REF
&& DECL_C_BIT_FIELD (TREE_OPERAND (expr.value, 1)))
error_at (expr_loc, "%<sizeof%> applied to a bit-field");
return c_expr_sizeof_expr (expr_loc, expr);
}
}
/* Parse an alignof expression. */
static struct c_expr
c_parser_alignof_expression (c_parser *parser)
{
struct c_expr expr;
location_t loc = c_parser_peek_token (parser)->location;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_ALIGNOF));
c_parser_consume_token (parser);
c_inhibit_evaluation_warnings++;
in_alignof++;
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN)
&& c_token_starts_typename (c_parser_peek_2nd_token (parser)))
{
/* Either __alignof__ ( type-name ) or __alignof__
unary-expression starting with a compound literal. */
location_t loc;
struct c_type_name *type_name;
struct c_expr ret;
c_parser_consume_token (parser);
loc = c_parser_peek_token (parser)->location;
type_name = c_parser_type_name (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
if (type_name == NULL)
{
struct c_expr ret;
c_inhibit_evaluation_warnings--;
in_alignof--;
ret.value = error_mark_node;
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
return ret;
}
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
{
expr = c_parser_postfix_expression_after_paren_type (parser,
type_name,
loc);
goto alignof_expr;
}
/* alignof ( type-name ). */
c_inhibit_evaluation_warnings--;
in_alignof--;
ret.value = c_alignof (loc, groktypename (type_name, NULL, NULL));
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
return ret;
}
else
{
struct c_expr ret;
expr = c_parser_unary_expression (parser);
alignof_expr:
mark_exp_read (expr.value);
c_inhibit_evaluation_warnings--;
in_alignof--;
ret.value = c_alignof_expr (loc, expr.value);
ret.original_code = ERROR_MARK;
ret.original_type = NULL;
return ret;
}
}
/* Parse a postfix expression (C90 6.3.1-6.3.2, C99 6.5.1-6.5.2).
postfix-expression:
primary-expression
postfix-expression [ expression ]
postfix-expression ( argument-expression-list[opt] )
postfix-expression . identifier
postfix-expression -> identifier
postfix-expression ++
postfix-expression --
( type-name ) { initializer-list }
( type-name ) { initializer-list , }
argument-expression-list:
argument-expression
argument-expression-list , argument-expression
primary-expression:
identifier
constant
string-literal
( expression )
GNU extensions:
primary-expression:
__func__
(treated as a keyword in GNU C)
__FUNCTION__
__PRETTY_FUNCTION__
( compound-statement )
__builtin_va_arg ( assignment-expression , type-name )
__builtin_offsetof ( type-name , offsetof-member-designator )
__builtin_choose_expr ( assignment-expression ,
assignment-expression ,
assignment-expression )
__builtin_types_compatible_p ( type-name , type-name )
offsetof-member-designator:
identifier
offsetof-member-designator . identifier
offsetof-member-designator [ expression ]
Objective-C:
primary-expression:
[ objc-receiver objc-message-args ]
@selector ( objc-selector-arg )
@protocol ( identifier )
@encode ( type-name )
objc-string-literal
Classname . identifier
*/
static struct c_expr
c_parser_postfix_expression (c_parser *parser)
{
struct c_expr expr, e1, e2, e3;
struct c_type_name *t1, *t2;
location_t loc = c_parser_peek_token (parser)->location;;
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
switch (c_parser_peek_token (parser)->type)
{
case CPP_NUMBER:
expr.value = c_parser_peek_token (parser)->value;
loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
if (TREE_CODE (expr.value) == FIXED_CST
&& !targetm.fixed_point_supported_p ())
{
error_at (loc, "fixed-point types not supported for this target");
expr.value = error_mark_node;
}
break;
case CPP_CHAR:
case CPP_CHAR16:
case CPP_CHAR32:
case CPP_WCHAR:
expr.value = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
break;
case CPP_STRING:
case CPP_STRING16:
case CPP_STRING32:
case CPP_WSTRING:
case CPP_UTF8STRING:
expr.value = c_parser_peek_token (parser)->value;
expr.original_code = STRING_CST;
c_parser_consume_token (parser);
break;
case CPP_OBJC_STRING:
gcc_assert (c_dialect_objc ());
expr.value
= objc_build_string_object (c_parser_peek_token (parser)->value);
c_parser_consume_token (parser);
break;
case CPP_NAME:
switch (c_parser_peek_token (parser)->id_kind)
{
case C_ID_ID:
{
tree id = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
expr.value = build_external_ref (loc, id,
(c_parser_peek_token (parser)->type
== CPP_OPEN_PAREN),
&expr.original_type);
break;
}
case C_ID_CLASSNAME:
{
/* Here we parse the Objective-C 2.0 Class.name dot
syntax. */
tree class_name = c_parser_peek_token (parser)->value;
tree component;
c_parser_consume_token (parser);
gcc_assert (c_dialect_objc ());
if (!c_parser_require (parser, CPP_DOT, "expected %<.%>"))
{
expr.value = error_mark_node;
break;
}
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
expr.value = error_mark_node;
break;
}
component = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
expr.value = objc_build_class_component_ref (class_name,
component);
break;
}
default:
c_parser_error (parser, "expected expression");
expr.value = error_mark_node;
break;
}
break;
case CPP_OPEN_PAREN:
/* A parenthesized expression, statement expression or compound
literal. */
if (c_parser_peek_2nd_token (parser)->type == CPP_OPEN_BRACE)
{
/* A statement expression. */
tree stmt;
location_t brace_loc;
c_parser_consume_token (parser);
brace_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
if (cur_stmt_list == NULL)
{
error_at (loc, "braced-group within expression allowed "
"only inside a function");
parser->error = true;
c_parser_skip_until_found (parser, CPP_CLOSE_BRACE, NULL);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
expr.value = error_mark_node;
break;
}
stmt = c_begin_stmt_expr ();
c_parser_compound_statement_nostart (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
pedwarn (loc, OPT_pedantic,
"ISO C forbids braced-groups within expressions");
expr.value = c_finish_stmt_expr (brace_loc, stmt);
mark_exp_read (expr.value);
}
else if (c_token_starts_typename (c_parser_peek_2nd_token (parser)))
{
/* A compound literal. ??? Can we actually get here rather
than going directly to
c_parser_postfix_expression_after_paren_type from
elsewhere? */
location_t loc;
struct c_type_name *type_name;
c_parser_consume_token (parser);
loc = c_parser_peek_token (parser)->location;
type_name = c_parser_type_name (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
if (type_name == NULL)
{
expr.value = error_mark_node;
}
else
expr = c_parser_postfix_expression_after_paren_type (parser,
type_name,
loc);
}
else
{
/* A parenthesized expression. */
c_parser_consume_token (parser);
expr = c_parser_expression (parser);
if (TREE_CODE (expr.value) == MODIFY_EXPR)
TREE_NO_WARNING (expr.value) = 1;
if (expr.original_code != C_MAYBE_CONST_EXPR)
expr.original_code = ERROR_MARK;
/* Don't change EXPR.ORIGINAL_TYPE. */
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
}
break;
case CPP_KEYWORD:
switch (c_parser_peek_token (parser)->keyword)
{
case RID_FUNCTION_NAME:
case RID_PRETTY_FUNCTION_NAME:
case RID_C99_FUNCTION_NAME:
expr.value = fname_decl (loc,
c_parser_peek_token (parser)->keyword,
c_parser_peek_token (parser)->value);
c_parser_consume_token (parser);
break;
case RID_VA_ARG:
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
expr.value = error_mark_node;
break;
}
e1 = c_parser_expr_no_commas (parser, NULL);
mark_exp_read (e1.value);
e1.value = c_fully_fold (e1.value, false, NULL);
if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
expr.value = error_mark_node;
break;
}
loc = c_parser_peek_token (parser)->location;
t1 = c_parser_type_name (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
if (t1 == NULL)
{
expr.value = error_mark_node;
}
else
{
tree type_expr = NULL_TREE;
expr.value = c_build_va_arg (loc, e1.value,
groktypename (t1, &type_expr, NULL));
if (type_expr)
{
expr.value = build2 (C_MAYBE_CONST_EXPR,
TREE_TYPE (expr.value), type_expr,
expr.value);
C_MAYBE_CONST_EXPR_NON_CONST (expr.value) = true;
}
}
break;
case RID_OFFSETOF:
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
expr.value = error_mark_node;
break;
}
t1 = c_parser_type_name (parser);
if (t1 == NULL)
parser->error = true;
if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>"))
gcc_assert (parser->error);
if (parser->error)
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
expr.value = error_mark_node;
break;
}
{
tree type = groktypename (t1, NULL, NULL);
tree offsetof_ref;
if (type == error_mark_node)
offsetof_ref = error_mark_node;
else
{
offsetof_ref = build1 (INDIRECT_REF, type, null_pointer_node);
SET_EXPR_LOCATION (offsetof_ref, loc);
}
/* Parse the second argument to __builtin_offsetof. We
must have one identifier, and beyond that we want to
accept sub structure and sub array references. */
if (c_parser_next_token_is (parser, CPP_NAME))
{
offsetof_ref = build_component_ref
(loc, offsetof_ref, c_parser_peek_token (parser)->value);
c_parser_consume_token (parser);
while (c_parser_next_token_is (parser, CPP_DOT)
|| c_parser_next_token_is (parser,
CPP_OPEN_SQUARE)
|| c_parser_next_token_is (parser,
CPP_DEREF))
{
if (c_parser_next_token_is (parser, CPP_DEREF))
{
loc = c_parser_peek_token (parser)->location;
offsetof_ref = build_array_ref (loc,
offsetof_ref,
integer_zero_node);
goto do_dot;
}
else if (c_parser_next_token_is (parser, CPP_DOT))
{
do_dot:
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser,
CPP_NAME))
{
c_parser_error (parser, "expected identifier");
break;
}
offsetof_ref = build_component_ref
(loc, offsetof_ref,
c_parser_peek_token (parser)->value);
c_parser_consume_token (parser);
}
else
{
tree idx;
loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
idx = c_parser_expression (parser).value;
idx = c_fully_fold (idx, false, NULL);
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE,
"expected %<]%>");
offsetof_ref = build_array_ref (loc, offsetof_ref, idx);
}
}
}
else
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
expr.value = fold_offsetof (offsetof_ref, NULL_TREE);
}
break;
case RID_CHOOSE_EXPR:
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
expr.value = error_mark_node;
break;
}
loc = c_parser_peek_token (parser)->location;
e1 = c_parser_expr_no_commas (parser, NULL);
if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
expr.value = error_mark_node;
break;
}
e2 = c_parser_expr_no_commas (parser, NULL);
if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
expr.value = error_mark_node;
break;
}
e3 = c_parser_expr_no_commas (parser, NULL);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
{
tree c;
c = e1.value;
mark_exp_read (e2.value);
mark_exp_read (e3.value);
if (TREE_CODE (c) != INTEGER_CST
|| !INTEGRAL_TYPE_P (TREE_TYPE (c)))
error_at (loc,
"first argument to %<__builtin_choose_expr%> not"
" a constant");
constant_expression_warning (c);
expr = integer_zerop (c) ? e3 : e2;
}
break;
case RID_TYPES_COMPATIBLE_P:
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
expr.value = error_mark_node;
break;
}
t1 = c_parser_type_name (parser);
if (t1 == NULL)
{
expr.value = error_mark_node;
break;
}
if (!c_parser_require (parser, CPP_COMMA, "expected %<,%>"))
{
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
expr.value = error_mark_node;
break;
}
t2 = c_parser_type_name (parser);
if (t2 == NULL)
{
expr.value = error_mark_node;
break;
}
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
{
tree e1, e2;
e1 = TYPE_MAIN_VARIANT (groktypename (t1, NULL, NULL));
e2 = TYPE_MAIN_VARIANT (groktypename (t2, NULL, NULL));
expr.value
= comptypes (e1, e2) ? integer_one_node : integer_zero_node;
}
break;
case RID_AT_SELECTOR:
gcc_assert (c_dialect_objc ());
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
expr.value = error_mark_node;
break;
}
{
tree sel = c_parser_objc_selector_arg (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
expr.value = objc_build_selector_expr (loc, sel);
}
break;
case RID_AT_PROTOCOL:
gcc_assert (c_dialect_objc ());
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
expr.value = error_mark_node;
break;
}
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
expr.value = error_mark_node;
break;
}
{
tree id = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
expr.value = objc_build_protocol_expr (id);
}
break;
case RID_AT_ENCODE:
/* Extension to support C-structures in the archiver. */
gcc_assert (c_dialect_objc ());
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
expr.value = error_mark_node;
break;
}
t1 = c_parser_type_name (parser);
if (t1 == NULL)
{
expr.value = error_mark_node;
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
break;
}
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
{
tree type = groktypename (t1, NULL, NULL);
expr.value = objc_build_encode_expr (type);
}
break;
default:
c_parser_error (parser, "expected expression");
expr.value = error_mark_node;
break;
}
break;
case CPP_OPEN_SQUARE:
if (c_dialect_objc ())
{
tree receiver, args;
c_parser_consume_token (parser);
receiver = c_parser_objc_receiver (parser);
args = c_parser_objc_message_args (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE,
"expected %<]%>");
expr.value = objc_build_message_expr (build_tree_list (receiver,
args));
break;
}
/* Else fall through to report error. */
default:
c_parser_error (parser, "expected expression");
expr.value = error_mark_node;
break;
}
return c_parser_postfix_expression_after_primary (parser, loc, expr);
}
/* Parse a postfix expression after a parenthesized type name: the
brace-enclosed initializer of a compound literal, possibly followed
by some postfix operators. This is separate because it is not
possible to tell until after the type name whether a cast
expression has a cast or a compound literal, or whether the operand
of sizeof is a parenthesized type name or starts with a compound
literal. TYPE_LOC is the location where TYPE_NAME starts--the
location of the first token after the parentheses around the type
name. */
static struct c_expr
c_parser_postfix_expression_after_paren_type (c_parser *parser,
struct c_type_name *type_name,
location_t type_loc)
{
tree type;
struct c_expr init;
bool non_const;
struct c_expr expr;
location_t start_loc;
tree type_expr = NULL_TREE;
bool type_expr_const = true;
check_compound_literal_type (type_loc, type_name);
start_init (NULL_TREE, NULL, 0);
type = groktypename (type_name, &type_expr, &type_expr_const);
start_loc = c_parser_peek_token (parser)->location;
if (type != error_mark_node && C_TYPE_VARIABLE_SIZE (type))
{
error_at (type_loc, "compound literal has variable size");
type = error_mark_node;
}
init = c_parser_braced_init (parser, type, false);
finish_init ();
maybe_warn_string_init (type, init);
if (type != error_mark_node
&& !ADDR_SPACE_GENERIC_P (TYPE_ADDR_SPACE (type))
&& current_function_decl)
{
error ("compound literal qualified by address-space qualifier");
type = error_mark_node;
}
if (!flag_isoc99)
pedwarn (start_loc, OPT_pedantic, "ISO C90 forbids compound literals");
non_const = ((init.value && TREE_CODE (init.value) == CONSTRUCTOR)
? CONSTRUCTOR_NON_CONST (init.value)
: init.original_code == C_MAYBE_CONST_EXPR);
non_const |= !type_expr_const;
expr.value = build_compound_literal (start_loc, type, init.value, non_const);
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
if (type_expr)
{
if (TREE_CODE (expr.value) == C_MAYBE_CONST_EXPR)
{
gcc_assert (C_MAYBE_CONST_EXPR_PRE (expr.value) == NULL_TREE);
C_MAYBE_CONST_EXPR_PRE (expr.value) = type_expr;
}
else
{
gcc_assert (!non_const);
expr.value = build2 (C_MAYBE_CONST_EXPR, type,
type_expr, expr.value);
}
}
return c_parser_postfix_expression_after_primary (parser, start_loc, expr);
}
/* Parse a postfix expression after the initial primary or compound
literal; that is, parse a series of postfix operators.
EXPR_LOC is the location of the primary expression. */
static struct c_expr
c_parser_postfix_expression_after_primary (c_parser *parser,
location_t expr_loc,
struct c_expr expr)
{
struct c_expr orig_expr;
tree ident, idx;
VEC(tree,gc) *exprlist;
VEC(tree,gc) *origtypes;
while (true)
{
location_t op_loc = c_parser_peek_token (parser)->location;
switch (c_parser_peek_token (parser)->type)
{
case CPP_OPEN_SQUARE:
/* Array reference. */
c_parser_consume_token (parser);
idx = c_parser_expression (parser).value;
c_parser_skip_until_found (parser, CPP_CLOSE_SQUARE,
"expected %<]%>");
expr.value = build_array_ref (op_loc, expr.value, idx);
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
break;
case CPP_OPEN_PAREN:
/* Function call. */
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
exprlist = NULL;
else
exprlist = c_parser_expr_list (parser, true, false, &origtypes);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
orig_expr = expr;
mark_exp_read (expr.value);
/* FIXME diagnostics: Ideally we want the FUNCNAME, not the
"(" after the FUNCNAME, which is what we have now. */
expr.value = build_function_call_vec (op_loc, expr.value, exprlist,
origtypes);
expr.original_code = ERROR_MARK;
if (TREE_CODE (expr.value) == INTEGER_CST
&& TREE_CODE (orig_expr.value) == FUNCTION_DECL
&& DECL_BUILT_IN_CLASS (orig_expr.value) == BUILT_IN_NORMAL
&& DECL_FUNCTION_CODE (orig_expr.value) == BUILT_IN_CONSTANT_P)
expr.original_code = C_MAYBE_CONST_EXPR;
expr.original_type = NULL;
if (exprlist != NULL)
{
release_tree_vector (exprlist);
release_tree_vector (origtypes);
}
break;
case CPP_DOT:
/* Structure element reference. */
c_parser_consume_token (parser);
expr = default_function_array_conversion (expr_loc, expr);
if (c_parser_next_token_is (parser, CPP_NAME))
ident = c_parser_peek_token (parser)->value;
else
{
c_parser_error (parser, "expected identifier");
expr.value = error_mark_node;
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
return expr;
}
c_parser_consume_token (parser);
expr.value = build_component_ref (op_loc, expr.value, ident);
expr.original_code = ERROR_MARK;
if (TREE_CODE (expr.value) != COMPONENT_REF)
expr.original_type = NULL;
else
{
/* Remember the original type of a bitfield. */
tree field = TREE_OPERAND (expr.value, 1);
if (TREE_CODE (field) != FIELD_DECL)
expr.original_type = NULL;
else
expr.original_type = DECL_BIT_FIELD_TYPE (field);
}
break;
case CPP_DEREF:
/* Structure element reference. */
c_parser_consume_token (parser);
expr = default_function_array_conversion (expr_loc, expr);
if (c_parser_next_token_is (parser, CPP_NAME))
ident = c_parser_peek_token (parser)->value;
else
{
c_parser_error (parser, "expected identifier");
expr.value = error_mark_node;
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
return expr;
}
c_parser_consume_token (parser);
expr.value = build_component_ref (op_loc,
build_indirect_ref (op_loc,
expr.value,
RO_ARROW),
ident);
expr.original_code = ERROR_MARK;
if (TREE_CODE (expr.value) != COMPONENT_REF)
expr.original_type = NULL;
else
{
/* Remember the original type of a bitfield. */
tree field = TREE_OPERAND (expr.value, 1);
if (TREE_CODE (field) != FIELD_DECL)
expr.original_type = NULL;
else
expr.original_type = DECL_BIT_FIELD_TYPE (field);
}
break;
case CPP_PLUS_PLUS:
/* Postincrement. */
c_parser_consume_token (parser);
expr = default_function_array_read_conversion (expr_loc, expr);
expr.value = build_unary_op (op_loc,
POSTINCREMENT_EXPR, expr.value, 0);
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
break;
case CPP_MINUS_MINUS:
/* Postdecrement. */
c_parser_consume_token (parser);
expr = default_function_array_read_conversion (expr_loc, expr);
expr.value = build_unary_op (op_loc,
POSTDECREMENT_EXPR, expr.value, 0);
expr.original_code = ERROR_MARK;
expr.original_type = NULL;
break;
default:
return expr;
}
}
}
/* Parse an expression (C90 6.3.17, C99 6.5.17).
expression:
assignment-expression
expression , assignment-expression
*/
static struct c_expr
c_parser_expression (c_parser *parser)
{
struct c_expr expr;
expr = c_parser_expr_no_commas (parser, NULL);
while (c_parser_next_token_is (parser, CPP_COMMA))
{
struct c_expr next;
tree lhsval;
location_t loc = c_parser_peek_token (parser)->location;
location_t expr_loc;
c_parser_consume_token (parser);
expr_loc = c_parser_peek_token (parser)->location;
lhsval = expr.value;
while (TREE_CODE (lhsval) == COMPOUND_EXPR)
lhsval = TREE_OPERAND (lhsval, 1);
if (DECL_P (lhsval) || handled_component_p (lhsval))
mark_exp_read (lhsval);
next = c_parser_expr_no_commas (parser, NULL);
next = default_function_array_conversion (expr_loc, next);
expr.value = build_compound_expr (loc, expr.value, next.value);
expr.original_code = COMPOUND_EXPR;
expr.original_type = next.original_type;
}
return expr;
}
/* Parse an expression and convert functions or arrays to
pointers. */
static struct c_expr
c_parser_expression_conv (c_parser *parser)
{
struct c_expr expr;
location_t loc = c_parser_peek_token (parser)->location;
expr = c_parser_expression (parser);
expr = default_function_array_conversion (loc, expr);
return expr;
}
/* Parse a non-empty list of expressions. If CONVERT_P, convert
functions and arrays to pointers. If FOLD_P, fold the expressions.
nonempty-expr-list:
assignment-expression
nonempty-expr-list , assignment-expression
*/
static VEC(tree,gc) *
c_parser_expr_list (c_parser *parser, bool convert_p, bool fold_p,
VEC(tree,gc) **p_orig_types)
{
VEC(tree,gc) *ret;
VEC(tree,gc) *orig_types;
struct c_expr expr;
location_t loc = c_parser_peek_token (parser)->location;
ret = make_tree_vector ();
if (p_orig_types == NULL)
orig_types = NULL;
else
orig_types = make_tree_vector ();
expr = c_parser_expr_no_commas (parser, NULL);
if (convert_p)
expr = default_function_array_read_conversion (loc, expr);
if (fold_p)
expr.value = c_fully_fold (expr.value, false, NULL);
VEC_quick_push (tree, ret, expr.value);
if (orig_types != NULL)
VEC_quick_push (tree, orig_types, expr.original_type);
while (c_parser_next_token_is (parser, CPP_COMMA))
{
c_parser_consume_token (parser);
loc = c_parser_peek_token (parser)->location;
expr = c_parser_expr_no_commas (parser, NULL);
if (convert_p)
expr = default_function_array_read_conversion (loc, expr);
if (fold_p)
expr.value = c_fully_fold (expr.value, false, NULL);
VEC_safe_push (tree, gc, ret, expr.value);
if (orig_types != NULL)
VEC_safe_push (tree, gc, orig_types, expr.original_type);
}
if (orig_types != NULL)
*p_orig_types = orig_types;
return ret;
}
/* Parse Objective-C-specific constructs. */
/* Parse an objc-class-definition.
objc-class-definition:
@interface identifier objc-superclass[opt] objc-protocol-refs[opt]
objc-class-instance-variables[opt] objc-methodprotolist @end
@implementation identifier objc-superclass[opt]
objc-class-instance-variables[opt]
@interface identifier ( identifier ) objc-protocol-refs[opt]
objc-methodprotolist @end
@interface identifier ( ) objc-protocol-refs[opt]
objc-methodprotolist @end
@implementation identifier ( identifier )
objc-superclass:
: identifier
"@interface identifier (" must start "@interface identifier (
identifier ) ...": objc-methodprotolist in the first production may
not start with a parenthesized identifier as a declarator of a data
definition with no declaration specifiers if the objc-superclass,
objc-protocol-refs and objc-class-instance-variables are omitted. */
static void
c_parser_objc_class_definition (c_parser *parser, tree attributes)
{
bool iface_p;
tree id1;
tree superclass;
if (c_parser_next_token_is_keyword (parser, RID_AT_INTERFACE))
iface_p = true;
else if (c_parser_next_token_is_keyword (parser, RID_AT_IMPLEMENTATION))
iface_p = false;
else
gcc_unreachable ();
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
return;
}
id1 = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
/* We have a category or class extension. */
tree id2;
tree proto = NULL_TREE;
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
if (iface_p && c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
{
/* We have a class extension. */
id2 = NULL_TREE;
}
else
{
c_parser_error (parser, "expected identifier or %<)%>");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, NULL);
return;
}
}
else
{
id2 = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
}
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
if (!iface_p)
{
objc_start_category_implementation (id1, id2);
return;
}
if (c_parser_next_token_is (parser, CPP_LESS))
proto = c_parser_objc_protocol_refs (parser);
objc_start_category_interface (id1, id2, proto, attributes);
c_parser_objc_methodprotolist (parser);
c_parser_require_keyword (parser, RID_AT_END, "expected %<@end%>");
objc_finish_interface ();
return;
}
if (c_parser_next_token_is (parser, CPP_COLON))
{
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
return;
}
superclass = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
}
else
superclass = NULL_TREE;
if (iface_p)
{
tree proto = NULL_TREE;
if (c_parser_next_token_is (parser, CPP_LESS))
proto = c_parser_objc_protocol_refs (parser);
objc_start_class_interface (id1, superclass, proto, attributes);
}
else
objc_start_class_implementation (id1, superclass);
if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
c_parser_objc_class_instance_variables (parser);
if (iface_p)
{
objc_continue_interface ();
c_parser_objc_methodprotolist (parser);
c_parser_require_keyword (parser, RID_AT_END, "expected %<@end%>");
objc_finish_interface ();
}
else
{
objc_continue_implementation ();
return;
}
}
/* Parse objc-class-instance-variables.
objc-class-instance-variables:
{ objc-instance-variable-decl-list[opt] }
objc-instance-variable-decl-list:
objc-visibility-spec
objc-instance-variable-decl ;
;
objc-instance-variable-decl-list objc-visibility-spec
objc-instance-variable-decl-list objc-instance-variable-decl ;
objc-instance-variable-decl-list ;
objc-visibility-spec:
@private
@protected
@public
objc-instance-variable-decl:
struct-declaration
*/
static void
c_parser_objc_class_instance_variables (c_parser *parser)
{
gcc_assert (c_parser_next_token_is (parser, CPP_OPEN_BRACE));
c_parser_consume_token (parser);
while (c_parser_next_token_is_not (parser, CPP_EOF))
{
tree decls;
/* Parse any stray semicolon. */
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
pedwarn (c_parser_peek_token (parser)->location, OPT_pedantic,
"extra semicolon in struct or union specified");
c_parser_consume_token (parser);
continue;
}
/* Stop if at the end of the instance variables. */
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
c_parser_consume_token (parser);
break;
}
/* Parse any objc-visibility-spec. */
if (c_parser_next_token_is_keyword (parser, RID_AT_PRIVATE))
{
c_parser_consume_token (parser);
objc_set_visibility (OBJC_IVAR_VIS_PRIVATE);
continue;
}
else if (c_parser_next_token_is_keyword (parser, RID_AT_PROTECTED))
{
c_parser_consume_token (parser);
objc_set_visibility (OBJC_IVAR_VIS_PROTECTED);
continue;
}
else if (c_parser_next_token_is_keyword (parser, RID_AT_PUBLIC))
{
c_parser_consume_token (parser);
objc_set_visibility (OBJC_IVAR_VIS_PUBLIC);
continue;
}
else if (c_parser_next_token_is_keyword (parser, RID_AT_PACKAGE))
{
c_parser_consume_token (parser);
objc_set_visibility (OBJC_IVAR_VIS_PACKAGE);
continue;
}
else if (c_parser_next_token_is (parser, CPP_PRAGMA))
{
c_parser_pragma (parser, pragma_external);
continue;
}
/* Parse some comma-separated declarations. */
decls = c_parser_struct_declaration (parser);
{
/* Comma-separated instance variables are chained together in
reverse order; add them one by one. */
tree ivar = nreverse (decls);
for (; ivar; ivar = DECL_CHAIN (ivar))
objc_add_instance_variable (copy_node (ivar));
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
}
/* Parse an objc-class-declaration.
objc-class-declaration:
@class identifier-list ;
*/
static void
c_parser_objc_class_declaration (c_parser *parser)
{
tree list = NULL_TREE;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_CLASS));
c_parser_consume_token (parser);
/* Any identifiers, including those declared as type names, are OK
here. */
while (true)
{
tree id;
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
parser->error = false;
return;
}
id = c_parser_peek_token (parser)->value;
list = chainon (list, build_tree_list (NULL_TREE, id));
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
objc_declare_class (list);
}
/* Parse an objc-alias-declaration.
objc-alias-declaration:
@compatibility_alias identifier identifier ;
*/
static void
c_parser_objc_alias_declaration (c_parser *parser)
{
tree id1, id2;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_ALIAS));
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
return;
}
id1 = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
return;
}
id2 = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
objc_declare_alias (id1, id2);
}
/* Parse an objc-protocol-definition.
objc-protocol-definition:
@protocol identifier objc-protocol-refs[opt] objc-methodprotolist @end
@protocol identifier-list ;
"@protocol identifier ;" should be resolved as "@protocol
identifier-list ;": objc-methodprotolist may not start with a
semicolon in the first alternative if objc-protocol-refs are
omitted. */
static void
c_parser_objc_protocol_definition (c_parser *parser, tree attributes)
{
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_PROTOCOL));
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
return;
}
if (c_parser_peek_2nd_token (parser)->type == CPP_COMMA
|| c_parser_peek_2nd_token (parser)->type == CPP_SEMICOLON)
{
tree list = NULL_TREE;
/* Any identifiers, including those declared as type names, are
OK here. */
while (true)
{
tree id;
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
break;
}
id = c_parser_peek_token (parser)->value;
list = chainon (list, build_tree_list (NULL_TREE, id));
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
objc_declare_protocols (list, attributes);
}
else
{
tree id = c_parser_peek_token (parser)->value;
tree proto = NULL_TREE;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_LESS))
proto = c_parser_objc_protocol_refs (parser);
parser->objc_pq_context = true;
objc_start_protocol (id, proto, attributes);
c_parser_objc_methodprotolist (parser);
c_parser_require_keyword (parser, RID_AT_END, "expected %<@end%>");
parser->objc_pq_context = false;
objc_finish_interface ();
}
}
/* Parse an objc-method-type.
objc-method-type:
+
-
Return true if it is a class method (+) and false if it is
an instance method (-).
*/
static inline bool
c_parser_objc_method_type (c_parser *parser)
{
switch (c_parser_peek_token (parser)->type)
{
case CPP_PLUS:
c_parser_consume_token (parser);
return true;
case CPP_MINUS:
c_parser_consume_token (parser);
return false;
default:
gcc_unreachable ();
}
}
/* Parse an objc-method-definition.
objc-method-definition:
objc-method-type objc-method-decl ;[opt] compound-statement
*/
static void
c_parser_objc_method_definition (c_parser *parser)
{
bool is_class_method = c_parser_objc_method_type (parser);
tree decl, attributes = NULL_TREE;
parser->objc_pq_context = true;
decl = c_parser_objc_method_decl (parser, is_class_method, &attributes);
if (decl == error_mark_node)
return; /* Bail here. */
if (c_parser_next_token_is (parser, CPP_SEMICOLON))
{
c_parser_consume_token (parser);
pedwarn (c_parser_peek_token (parser)->location, OPT_pedantic,
"extra semicolon in method definition specified");
}
if (!c_parser_next_token_is (parser, CPP_OPEN_BRACE))
{
c_parser_error (parser, "expected %<{%>");
return;
}
parser->objc_pq_context = false;
if (objc_start_method_definition (is_class_method, decl, attributes))
{
add_stmt (c_parser_compound_statement (parser));
objc_finish_method_definition (current_function_decl);
}
else
{
/* This code is executed when we find a method definition
outside of an @implementation context (or invalid for other
reasons). Parse the method (to keep going) but do not emit
any code.
*/
c_parser_compound_statement (parser);
}
}
/* Parse an objc-methodprotolist.
objc-methodprotolist:
empty
objc-methodprotolist objc-methodproto
objc-methodprotolist declaration
objc-methodprotolist ;
@optional
@required
The declaration is a data definition, which may be missing
declaration specifiers under the same rules and diagnostics as
other data definitions outside functions, and the stray semicolon
is diagnosed the same way as a stray semicolon outside a
function. */
static void
c_parser_objc_methodprotolist (c_parser *parser)
{
while (true)
{
/* The list is terminated by @end. */
switch (c_parser_peek_token (parser)->type)
{
case CPP_SEMICOLON:
pedwarn (c_parser_peek_token (parser)->location, OPT_pedantic,
"ISO C does not allow extra %<;%> outside of a function");
c_parser_consume_token (parser);
break;
case CPP_PLUS:
case CPP_MINUS:
c_parser_objc_methodproto (parser);
break;
case CPP_PRAGMA:
c_parser_pragma (parser, pragma_external);
break;
case CPP_EOF:
return;
default:
if (c_parser_next_token_is_keyword (parser, RID_AT_END))
return;
else if (c_parser_next_token_is_keyword (parser, RID_AT_PROPERTY))
c_parser_objc_at_property_declaration (parser);
else if (c_parser_next_token_is_keyword (parser, RID_AT_OPTIONAL))
{
objc_set_method_opt (true);
c_parser_consume_token (parser);
}
else if (c_parser_next_token_is_keyword (parser, RID_AT_REQUIRED))
{
objc_set_method_opt (false);
c_parser_consume_token (parser);
}
else
c_parser_declaration_or_fndef (parser, false, false, true,
false, true, NULL);
break;
}
}
}
/* Parse an objc-methodproto.
objc-methodproto:
objc-method-type objc-method-decl ;
*/
static void
c_parser_objc_methodproto (c_parser *parser)
{
bool is_class_method = c_parser_objc_method_type (parser);
tree decl, attributes = NULL_TREE;
/* Remember protocol qualifiers in prototypes. */
parser->objc_pq_context = true;
decl = c_parser_objc_method_decl (parser, is_class_method, &attributes);
/* Forget protocol qualifiers now. */
parser->objc_pq_context = false;
/* Do not allow the presence of attributes to hide an erroneous
method implementation in the interface section. */
if (!c_parser_next_token_is (parser, CPP_SEMICOLON))
{
c_parser_error (parser, "expected %<;%>");
return;
}
if (decl != error_mark_node)
objc_add_method_declaration (is_class_method, decl, attributes);
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
/* If we are at a position that method attributes may be present, check that
there are not any parsed already (a syntax error) and then collect any
specified at the current location. Finally, if new attributes were present,
check that the next token is legal ( ';' for decls and '{' for defs). */
static bool
c_parser_objc_maybe_method_attributes (c_parser* parser, tree* attributes)
{
bool bad = false;
if (*attributes)
{
c_parser_error (parser,
"method attributes must be specified at the end only");
*attributes = NULL_TREE;
bad = true;
}
if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
*attributes = c_parser_attributes (parser);
/* If there were no attributes here, just report any earlier error. */
if (*attributes == NULL_TREE || bad)
return bad;
/* If the attributes are followed by a ; or {, then just report any earlier
error. */
if (c_parser_next_token_is (parser, CPP_SEMICOLON)
|| c_parser_next_token_is (parser, CPP_OPEN_BRACE))
return bad;
/* We've got attributes, but not at the end. */
c_parser_error (parser,
"expected %<;%> or %<{%> after method attribute definition");
return true;
}
/* Parse an objc-method-decl.
objc-method-decl:
( objc-type-name ) objc-selector
objc-selector
( objc-type-name ) objc-keyword-selector objc-optparmlist
objc-keyword-selector objc-optparmlist
attributes
objc-keyword-selector:
objc-keyword-decl
objc-keyword-selector objc-keyword-decl
objc-keyword-decl:
objc-selector : ( objc-type-name ) identifier
objc-selector : identifier
: ( objc-type-name ) identifier
: identifier
objc-optparmlist:
objc-optparms objc-optellipsis
objc-optparms:
empty
objc-opt-parms , parameter-declaration
objc-optellipsis:
empty
, ...
*/
static tree
c_parser_objc_method_decl (c_parser *parser, bool is_class_method, tree *attributes)
{
tree type = NULL_TREE;
tree sel;
tree parms = NULL_TREE;
bool ellipsis = false;
bool attr_err = false;
*attributes = NULL_TREE;
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
c_parser_consume_token (parser);
type = c_parser_objc_type_name (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
}
sel = c_parser_objc_selector (parser);
/* If there is no selector, or a colon follows, we have an
objc-keyword-selector. If there is a selector, and a colon does
not follow, that selector ends the objc-method-decl. */
if (!sel || c_parser_next_token_is (parser, CPP_COLON))
{
tree tsel = sel;
tree list = NULL_TREE;
while (true)
{
tree atype = NULL_TREE, id, keyworddecl;
tree param_attr = NULL_TREE;
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
break;
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
c_parser_consume_token (parser);
atype = c_parser_objc_type_name (parser);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
}
/* New ObjC allows attributes on method parameters. */
if (c_parser_next_token_is_keyword (parser, RID_ATTRIBUTE))
param_attr = c_parser_attributes (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
return error_mark_node;
}
id = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
keyworddecl = objc_build_keyword_decl (tsel, atype, id, param_attr);
list = chainon (list, keyworddecl);
tsel = c_parser_objc_selector (parser);
if (!tsel && c_parser_next_token_is_not (parser, CPP_COLON))
break;
}
attr_err |= c_parser_objc_maybe_method_attributes (parser, attributes) ;
/* Parse the optional parameter list. Optional Objective-C
method parameters follow the C syntax, and may include '...'
to denote a variable number of arguments. */
parms = make_node (TREE_LIST);
while (c_parser_next_token_is (parser, CPP_COMMA))
{
struct c_parm *parm;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_ELLIPSIS))
{
ellipsis = true;
c_parser_consume_token (parser);
attr_err |= c_parser_objc_maybe_method_attributes
(parser, attributes) ;
break;
}
parm = c_parser_parameter_declaration (parser, NULL_TREE);
if (parm == NULL)
break;
parms = chainon (parms,
build_tree_list (NULL_TREE, grokparm (parm)));
}
sel = list;
}
else
attr_err |= c_parser_objc_maybe_method_attributes (parser, attributes) ;
if (sel == NULL)
{
c_parser_error (parser, "objective-c method declaration is expected");
return error_mark_node;
}
if (attr_err)
return error_mark_node;
return objc_build_method_signature (is_class_method, type, sel, parms, ellipsis);
}
/* Parse an objc-type-name.
objc-type-name:
objc-type-qualifiers[opt] type-name
objc-type-qualifiers[opt]
objc-type-qualifiers:
objc-type-qualifier
objc-type-qualifiers objc-type-qualifier
objc-type-qualifier: one of
in out inout bycopy byref oneway
*/
static tree
c_parser_objc_type_name (c_parser *parser)
{
tree quals = NULL_TREE;
struct c_type_name *type_name = NULL;
tree type = NULL_TREE;
while (true)
{
c_token *token = c_parser_peek_token (parser);
if (token->type == CPP_KEYWORD
&& (token->keyword == RID_IN
|| token->keyword == RID_OUT
|| token->keyword == RID_INOUT
|| token->keyword == RID_BYCOPY
|| token->keyword == RID_BYREF
|| token->keyword == RID_ONEWAY))
{
quals = chainon (build_tree_list (NULL_TREE, token->value), quals);
c_parser_consume_token (parser);
}
else
break;
}
if (c_parser_next_tokens_start_typename (parser, cla_prefer_type))
type_name = c_parser_type_name (parser);
if (type_name)
type = groktypename (type_name, NULL, NULL);
/* If the type is unknown, and error has already been produced and
we need to recover from the error. In that case, use NULL_TREE
for the type, as if no type had been specified; this will use the
default type ('id') which is good for error recovery. */
if (type == error_mark_node)
type = NULL_TREE;
return build_tree_list (quals, type);
}
/* Parse objc-protocol-refs.
objc-protocol-refs:
< identifier-list >
*/
static tree
c_parser_objc_protocol_refs (c_parser *parser)
{
tree list = NULL_TREE;
gcc_assert (c_parser_next_token_is (parser, CPP_LESS));
c_parser_consume_token (parser);
/* Any identifiers, including those declared as type names, are OK
here. */
while (true)
{
tree id;
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
break;
}
id = c_parser_peek_token (parser)->value;
list = chainon (list, build_tree_list (NULL_TREE, id));
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
c_parser_require (parser, CPP_GREATER, "expected %<>%>");
return list;
}
/* Parse an objc-try-catch-finally-statement.
objc-try-catch-finally-statement:
@try compound-statement objc-catch-list[opt]
@try compound-statement objc-catch-list[opt] @finally compound-statement
objc-catch-list:
@catch ( objc-catch-parameter-declaration ) compound-statement
objc-catch-list @catch ( objc-catch-parameter-declaration ) compound-statement
objc-catch-parameter-declaration:
parameter-declaration
'...'
where '...' is to be interpreted literally, that is, it means CPP_ELLIPSIS.
PS: This function is identical to cp_parser_objc_try_catch_finally_statement
for C++. Keep them in sync. */
static void
c_parser_objc_try_catch_finally_statement (c_parser *parser)
{
location_t location;
tree stmt;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_TRY));
c_parser_consume_token (parser);
location = c_parser_peek_token (parser)->location;
objc_maybe_warn_exceptions (location);
stmt = c_parser_compound_statement (parser);
objc_begin_try_stmt (location, stmt);
while (c_parser_next_token_is_keyword (parser, RID_AT_CATCH))
{
struct c_parm *parm;
tree parameter_declaration = error_mark_node;
bool seen_open_paren = false;
c_parser_consume_token (parser);
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
seen_open_paren = true;
if (c_parser_next_token_is (parser, CPP_ELLIPSIS))
{
/* We have "@catch (...)" (where the '...' are literally
what is in the code). Skip the '...'.
parameter_declaration is set to NULL_TREE, and
objc_being_catch_clauses() knows that that means
'...'. */
c_parser_consume_token (parser);
parameter_declaration = NULL_TREE;
}
else
{
/* We have "@catch (NSException *exception)" or something
like that. Parse the parameter declaration. */
parm = c_parser_parameter_declaration (parser, NULL_TREE);
if (parm == NULL)
parameter_declaration = error_mark_node;
else
parameter_declaration = grokparm (parm);
}
if (seen_open_paren)
c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>");
else
{
/* If there was no open parenthesis, we are recovering from
an error, and we are trying to figure out what mistake
the user has made. */
/* If there is an immediate closing parenthesis, the user
probably forgot the opening one (ie, they typed "@catch
NSException *e)". Parse the closing parenthesis and keep
going. */
if (c_parser_next_token_is (parser, CPP_CLOSE_PAREN))
c_parser_consume_token (parser);
/* If these is no immediate closing parenthesis, the user
probably doesn't know that parenthesis are required at
all (ie, they typed "@catch NSException *e"). So, just
forget about the closing parenthesis and keep going. */
}
objc_begin_catch_clause (parameter_declaration);
if (c_parser_require (parser, CPP_OPEN_BRACE, "expected %<{%>"))
c_parser_compound_statement_nostart (parser);
objc_finish_catch_clause ();
}
if (c_parser_next_token_is_keyword (parser, RID_AT_FINALLY))
{
c_parser_consume_token (parser);
location = c_parser_peek_token (parser)->location;
stmt = c_parser_compound_statement (parser);
objc_build_finally_clause (location, stmt);
}
objc_finish_try_stmt ();
}
/* Parse an objc-synchronized-statement.
objc-synchronized-statement:
@synchronized ( expression ) compound-statement
*/
static void
c_parser_objc_synchronized_statement (c_parser *parser)
{
location_t loc;
tree expr, stmt;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_SYNCHRONIZED));
c_parser_consume_token (parser);
loc = c_parser_peek_token (parser)->location;
objc_maybe_warn_exceptions (loc);
if (c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
expr = c_parser_expression (parser).value;
expr = c_fully_fold (expr, false, NULL);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
}
else
expr = error_mark_node;
stmt = c_parser_compound_statement (parser);
objc_build_synchronized (loc, expr, stmt);
}
/* Parse an objc-selector; return NULL_TREE without an error if the
next token is not an objc-selector.
objc-selector:
identifier
one of
enum struct union if else while do for switch case default
break continue return goto asm sizeof typeof __alignof
unsigned long const short volatile signed restrict _Complex
in out inout bycopy byref oneway int char float double void _Bool
??? Why this selection of keywords but not, for example, storage
class specifiers? */
static tree
c_parser_objc_selector (c_parser *parser)
{
c_token *token = c_parser_peek_token (parser);
tree value = token->value;
if (token->type == CPP_NAME)
{
c_parser_consume_token (parser);
return value;
}
if (token->type != CPP_KEYWORD)
return NULL_TREE;
switch (token->keyword)
{
case RID_ENUM:
case RID_STRUCT:
case RID_UNION:
case RID_IF:
case RID_ELSE:
case RID_WHILE:
case RID_DO:
case RID_FOR:
case RID_SWITCH:
case RID_CASE:
case RID_DEFAULT:
case RID_BREAK:
case RID_CONTINUE:
case RID_RETURN:
case RID_GOTO:
case RID_ASM:
case RID_SIZEOF:
case RID_TYPEOF:
case RID_ALIGNOF:
case RID_UNSIGNED:
case RID_LONG:
case RID_INT128:
case RID_CONST:
case RID_SHORT:
case RID_VOLATILE:
case RID_SIGNED:
case RID_RESTRICT:
case RID_COMPLEX:
case RID_IN:
case RID_OUT:
case RID_INOUT:
case RID_BYCOPY:
case RID_BYREF:
case RID_ONEWAY:
case RID_INT:
case RID_CHAR:
case RID_FLOAT:
case RID_DOUBLE:
case RID_VOID:
case RID_BOOL:
c_parser_consume_token (parser);
return value;
default:
return NULL_TREE;
}
}
/* Parse an objc-selector-arg.
objc-selector-arg:
objc-selector
objc-keywordname-list
objc-keywordname-list:
objc-keywordname
objc-keywordname-list objc-keywordname
objc-keywordname:
objc-selector :
:
*/
static tree
c_parser_objc_selector_arg (c_parser *parser)
{
tree sel = c_parser_objc_selector (parser);
tree list = NULL_TREE;
if (sel && c_parser_next_token_is_not (parser, CPP_COLON))
return sel;
while (true)
{
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
return list;
list = chainon (list, build_tree_list (sel, NULL_TREE));
sel = c_parser_objc_selector (parser);
if (!sel && c_parser_next_token_is_not (parser, CPP_COLON))
break;
}
return list;
}
/* Parse an objc-receiver.
objc-receiver:
expression
class-name
type-name
*/
static tree
c_parser_objc_receiver (c_parser *parser)
{
if (c_parser_peek_token (parser)->type == CPP_NAME
&& (c_parser_peek_token (parser)->id_kind == C_ID_TYPENAME
|| c_parser_peek_token (parser)->id_kind == C_ID_CLASSNAME))
{
tree id = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
return objc_get_class_reference (id);
}
return c_fully_fold (c_parser_expression (parser).value, false, NULL);
}
/* Parse objc-message-args.
objc-message-args:
objc-selector
objc-keywordarg-list
objc-keywordarg-list:
objc-keywordarg
objc-keywordarg-list objc-keywordarg
objc-keywordarg:
objc-selector : objc-keywordexpr
: objc-keywordexpr
*/
static tree
c_parser_objc_message_args (c_parser *parser)
{
tree sel = c_parser_objc_selector (parser);
tree list = NULL_TREE;
if (sel && c_parser_next_token_is_not (parser, CPP_COLON))
return sel;
while (true)
{
tree keywordexpr;
if (!c_parser_require (parser, CPP_COLON, "expected %<:%>"))
return error_mark_node;
keywordexpr = c_parser_objc_keywordexpr (parser);
list = chainon (list, build_tree_list (sel, keywordexpr));
sel = c_parser_objc_selector (parser);
if (!sel && c_parser_next_token_is_not (parser, CPP_COLON))
break;
}
return list;
}
/* Parse an objc-keywordexpr.
objc-keywordexpr:
nonempty-expr-list
*/
static tree
c_parser_objc_keywordexpr (c_parser *parser)
{
tree ret;
VEC(tree,gc) *expr_list = c_parser_expr_list (parser, true, true, NULL);
if (VEC_length (tree, expr_list) == 1)
{
/* Just return the expression, remove a level of
indirection. */
ret = VEC_index (tree, expr_list, 0);
}
else
{
/* We have a comma expression, we will collapse later. */
ret = build_tree_list_vec (expr_list);
}
release_tree_vector (expr_list);
return ret;
}
/* A check, needed in several places, that ObjC interface, implementation or
method definitions are not prefixed by incorrect items. */
static bool
c_parser_objc_diagnose_bad_element_prefix (c_parser *parser,
struct c_declspecs *specs)
{
if (!specs->declspecs_seen_p || specs->non_sc_seen_p
|| specs->typespec_kind != ctsk_none)
{
c_parser_error (parser,
"no type or storage class may be specified here,");
c_parser_skip_to_end_of_block_or_statement (parser);
return true;
}
return false;
}
/* Parse an Objective-C @property declaration. The syntax is:
objc-property-declaration:
'@property' objc-property-attributes[opt] struct-declaration ;
objc-property-attributes:
'(' objc-property-attribute-list ')'
objc-property-attribute-list:
objc-property-attribute
objc-property-attribute-list, objc-property-attribute
objc-property-attribute
'getter' = identifier
'setter' = identifier
'readonly'
'readwrite'
'assign'
'retain'
'copy'
'nonatomic'
For example:
@property NSString *name;
@property (readonly) id object;
@property (retain, nonatomic, getter=getTheName) id name;
@property int a, b, c;
PS: This function is identical to cp_parser_objc_at_propery_declaration
for C++. Keep them in sync. */
static void
c_parser_objc_at_property_declaration (c_parser *parser)
{
/* The following variables hold the attributes of the properties as
parsed. They are 'false' or 'NULL_TREE' if the attribute was not
seen. When we see an attribute, we set them to 'true' (if they
are boolean properties) or to the identifier (if they have an
argument, ie, for getter and setter). Note that here we only
parse the list of attributes, check the syntax and accumulate the
attributes that we find. objc_add_property_declaration() will
then process the information. */
bool property_assign = false;
bool property_copy = false;
tree property_getter_ident = NULL_TREE;
bool property_nonatomic = false;
bool property_readonly = false;
bool property_readwrite = false;
bool property_retain = false;
tree property_setter_ident = NULL_TREE;
/* 'properties' is the list of properties that we read. Usually a
single one, but maybe more (eg, in "@property int a, b, c;" there
are three). */
tree properties;
location_t loc;
loc = c_parser_peek_token (parser)->location;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_PROPERTY));
c_parser_consume_token (parser); /* Eat '@property'. */
/* Parse the optional attribute list... */
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
/* Eat the '(' */
c_parser_consume_token (parser);
/* Property attribute keywords are valid now. */
parser->objc_property_attr_context = true;
while (true)
{
bool syntax_error = false;
c_token *token = c_parser_peek_token (parser);
enum rid keyword;
if (token->type != CPP_KEYWORD)
{
if (token->type == CPP_CLOSE_PAREN)
c_parser_error (parser, "expected identifier");
else
{
c_parser_consume_token (parser);
c_parser_error (parser, "unknown property attribute");
}
break;
}
keyword = token->keyword;
c_parser_consume_token (parser);
switch (keyword)
{
case RID_ASSIGN: property_assign = true; break;
case RID_COPY: property_copy = true; break;
case RID_NONATOMIC: property_nonatomic = true; break;
case RID_READONLY: property_readonly = true; break;
case RID_READWRITE: property_readwrite = true; break;
case RID_RETAIN: property_retain = true; break;
case RID_GETTER:
case RID_SETTER:
if (c_parser_next_token_is_not (parser, CPP_EQ))
{
if (keyword == RID_GETTER)
c_parser_error (parser,
"missing %<=%> (after %<getter%> attribute)");
else
c_parser_error (parser,
"missing %<=%> (after %<setter%> attribute)");
syntax_error = true;
break;
}
c_parser_consume_token (parser); /* eat the = */
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
syntax_error = true;
break;
}
if (keyword == RID_SETTER)
{
if (property_setter_ident != NULL_TREE)
c_parser_error (parser, "the %<setter%> attribute may only be specified once");
else
property_setter_ident = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_COLON))
c_parser_error (parser, "setter name must terminate with %<:%>");
else
c_parser_consume_token (parser);
}
else
{
if (property_getter_ident != NULL_TREE)
c_parser_error (parser, "the %<getter%> attribute may only be specified once");
else
property_getter_ident = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
}
break;
default:
c_parser_error (parser, "unknown property attribute");
syntax_error = true;
break;
}
if (syntax_error)
break;
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
parser->objc_property_attr_context = false;
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
}
/* ... and the property declaration(s). */
properties = c_parser_struct_declaration (parser);
if (properties == error_mark_node)
{
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
parser->error = false;
return;
}
if (properties == NULL_TREE)
c_parser_error (parser, "expected identifier");
else
{
/* Comma-separated properties are chained together in
reverse order; add them one by one. */
properties = nreverse (properties);
for (; properties; properties = TREE_CHAIN (properties))
objc_add_property_declaration (loc, copy_node (properties),
property_readonly, property_readwrite,
property_assign, property_retain,
property_copy, property_nonatomic,
property_getter_ident, property_setter_ident);
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
parser->error = false;
}
/* Parse an Objective-C @synthesize declaration. The syntax is:
objc-synthesize-declaration:
@synthesize objc-synthesize-identifier-list ;
objc-synthesize-identifier-list:
objc-synthesize-identifier
objc-synthesize-identifier-list, objc-synthesize-identifier
objc-synthesize-identifier
identifier
identifier = identifier
For example:
@synthesize MyProperty;
@synthesize OneProperty, AnotherProperty=MyIvar, YetAnotherProperty;
PS: This function is identical to cp_parser_objc_at_synthesize_declaration
for C++. Keep them in sync.
*/
static void
c_parser_objc_at_synthesize_declaration (c_parser *parser)
{
tree list = NULL_TREE;
location_t loc;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_SYNTHESIZE));
loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
while (true)
{
tree property, ivar;
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
/* Once we find the semicolon, we can resume normal parsing.
We have to reset parser->error manually because
c_parser_skip_until_found() won't reset it for us if the
next token is precisely a semicolon. */
parser->error = false;
return;
}
property = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_EQ))
{
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
parser->error = false;
return;
}
ivar = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
}
else
ivar = NULL_TREE;
list = chainon (list, build_tree_list (ivar, property));
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
objc_add_synthesize_declaration (loc, list);
}
/* Parse an Objective-C @dynamic declaration. The syntax is:
objc-dynamic-declaration:
@dynamic identifier-list ;
For example:
@dynamic MyProperty;
@dynamic MyProperty, AnotherProperty;
PS: This function is identical to cp_parser_objc_at_dynamic_declaration
for C++. Keep them in sync.
*/
static void
c_parser_objc_at_dynamic_declaration (c_parser *parser)
{
tree list = NULL_TREE;
location_t loc;
gcc_assert (c_parser_next_token_is_keyword (parser, RID_AT_DYNAMIC));
loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
while (true)
{
tree property;
if (c_parser_next_token_is_not (parser, CPP_NAME))
{
c_parser_error (parser, "expected identifier");
c_parser_skip_until_found (parser, CPP_SEMICOLON, NULL);
parser->error = false;
return;
}
property = c_parser_peek_token (parser)->value;
list = chainon (list, build_tree_list (NULL_TREE, property));
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
else
break;
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
objc_add_dynamic_declaration (loc, list);
}
/* Handle pragmas. Some OpenMP pragmas are associated with, and therefore
should be considered, statements. ALLOW_STMT is true if we're within
the context of a function and such pragmas are to be allowed. Returns
true if we actually parsed such a pragma. */
static bool
c_parser_pragma (c_parser *parser, enum pragma_context context)
{
unsigned int id;
id = c_parser_peek_token (parser)->pragma_kind;
gcc_assert (id != PRAGMA_NONE);
switch (id)
{
case PRAGMA_OMP_BARRIER:
if (context != pragma_compound)
{
if (context == pragma_stmt)
c_parser_error (parser, "%<#pragma omp barrier%> may only be "
"used in compound statements");
goto bad_stmt;
}
c_parser_omp_barrier (parser);
return false;
case PRAGMA_OMP_FLUSH:
if (context != pragma_compound)
{
if (context == pragma_stmt)
c_parser_error (parser, "%<#pragma omp flush%> may only be "
"used in compound statements");
goto bad_stmt;
}
c_parser_omp_flush (parser);
return false;
case PRAGMA_OMP_TASKWAIT:
if (context != pragma_compound)
{
if (context == pragma_stmt)
c_parser_error (parser, "%<#pragma omp taskwait%> may only be "
"used in compound statements");
goto bad_stmt;
}
c_parser_omp_taskwait (parser);
return false;
case PRAGMA_OMP_THREADPRIVATE:
c_parser_omp_threadprivate (parser);
return false;
case PRAGMA_OMP_SECTION:
error_at (c_parser_peek_token (parser)->location,
"%<#pragma omp section%> may only be used in "
"%<#pragma omp sections%> construct");
c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL);
return false;
case PRAGMA_GCC_PCH_PREPROCESS:
c_parser_error (parser, "%<#pragma GCC pch_preprocess%> must be first");
c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL);
return false;
default:
if (id < PRAGMA_FIRST_EXTERNAL)
{
if (context == pragma_external)
{
bad_stmt:
c_parser_error (parser, "expected declaration specifiers");
c_parser_skip_until_found (parser, CPP_PRAGMA_EOL, NULL);
return false;
}
c_parser_omp_construct (parser);
return true;
}
break;
}
c_parser_consume_pragma (parser);
c_invoke_pragma_handler (id);
/* Skip to EOL, but suppress any error message. Those will have been
generated by the handler routine through calling error, as opposed
to calling c_parser_error. */
parser->error = true;
c_parser_skip_to_pragma_eol (parser);
return false;
}
/* The interface the pragma parsers have to the lexer. */
enum cpp_ttype
pragma_lex (tree *value)
{
c_token *tok = c_parser_peek_token (the_parser);
enum cpp_ttype ret = tok->type;
*value = tok->value;
if (ret == CPP_PRAGMA_EOL || ret == CPP_EOF)
ret = CPP_EOF;
else
{
if (ret == CPP_KEYWORD)
ret = CPP_NAME;
c_parser_consume_token (the_parser);
}
return ret;
}
static void
c_parser_pragma_pch_preprocess (c_parser *parser)
{
tree name = NULL;
c_parser_consume_pragma (parser);
if (c_parser_next_token_is (parser, CPP_STRING))
{
name = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
}
else
c_parser_error (parser, "expected string literal");
c_parser_skip_to_pragma_eol (parser);
if (name)
c_common_pch_pragma (parse_in, TREE_STRING_POINTER (name));
}
/* OpenMP 2.5 parsing routines. */
/* Returns name of the next clause.
If the clause is not recognized PRAGMA_OMP_CLAUSE_NONE is returned and
the token is not consumed. Otherwise appropriate pragma_omp_clause is
returned and the token is consumed. */
static pragma_omp_clause
c_parser_omp_clause_name (c_parser *parser)
{
pragma_omp_clause result = PRAGMA_OMP_CLAUSE_NONE;
if (c_parser_next_token_is_keyword (parser, RID_IF))
result = PRAGMA_OMP_CLAUSE_IF;
else if (c_parser_next_token_is_keyword (parser, RID_DEFAULT))
result = PRAGMA_OMP_CLAUSE_DEFAULT;
else if (c_parser_next_token_is (parser, CPP_NAME))
{
const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
switch (p[0])
{
case 'c':
if (!strcmp ("collapse", p))
result = PRAGMA_OMP_CLAUSE_COLLAPSE;
else if (!strcmp ("copyin", p))
result = PRAGMA_OMP_CLAUSE_COPYIN;
else if (!strcmp ("copyprivate", p))
result = PRAGMA_OMP_CLAUSE_COPYPRIVATE;
break;
case 'f':
if (!strcmp ("firstprivate", p))
result = PRAGMA_OMP_CLAUSE_FIRSTPRIVATE;
break;
case 'l':
if (!strcmp ("lastprivate", p))
result = PRAGMA_OMP_CLAUSE_LASTPRIVATE;
break;
case 'n':
if (!strcmp ("nowait", p))
result = PRAGMA_OMP_CLAUSE_NOWAIT;
else if (!strcmp ("num_threads", p))
result = PRAGMA_OMP_CLAUSE_NUM_THREADS;
break;
case 'o':
if (!strcmp ("ordered", p))
result = PRAGMA_OMP_CLAUSE_ORDERED;
break;
case 'p':
if (!strcmp ("private", p))
result = PRAGMA_OMP_CLAUSE_PRIVATE;
break;
case 'r':
if (!strcmp ("reduction", p))
result = PRAGMA_OMP_CLAUSE_REDUCTION;
break;
case 's':
if (!strcmp ("schedule", p))
result = PRAGMA_OMP_CLAUSE_SCHEDULE;
else if (!strcmp ("shared", p))
result = PRAGMA_OMP_CLAUSE_SHARED;
break;
case 'u':
if (!strcmp ("untied", p))
result = PRAGMA_OMP_CLAUSE_UNTIED;
break;
}
}
if (result != PRAGMA_OMP_CLAUSE_NONE)
c_parser_consume_token (parser);
return result;
}
/* Validate that a clause of the given type does not already exist. */
static void
check_no_duplicate_clause (tree clauses, enum omp_clause_code code,
const char *name)
{
tree c;
for (c = clauses; c ; c = OMP_CLAUSE_CHAIN (c))
if (OMP_CLAUSE_CODE (c) == code)
{
location_t loc = OMP_CLAUSE_LOCATION (c);
error_at (loc, "too many %qs clauses", name);
break;
}
}
/* OpenMP 2.5:
variable-list:
identifier
variable-list , identifier
If KIND is nonzero, create the appropriate node and install the
decl in OMP_CLAUSE_DECL and add the node to the head of the list.
If KIND is nonzero, CLAUSE_LOC is the location of the clause.
If KIND is zero, create a TREE_LIST with the decl in TREE_PURPOSE;
return the list created. */
static tree
c_parser_omp_variable_list (c_parser *parser,
location_t clause_loc,
enum omp_clause_code kind,
tree list)
{
if (c_parser_next_token_is_not (parser, CPP_NAME)
|| c_parser_peek_token (parser)->id_kind != C_ID_ID)
c_parser_error (parser, "expected identifier");
while (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_token (parser)->id_kind == C_ID_ID)
{
tree t = lookup_name (c_parser_peek_token (parser)->value);
if (t == NULL_TREE)
undeclared_variable (c_parser_peek_token (parser)->location,
c_parser_peek_token (parser)->value);
else if (t == error_mark_node)
;
else if (kind != 0)
{
tree u = build_omp_clause (clause_loc, kind);
OMP_CLAUSE_DECL (u) = t;
OMP_CLAUSE_CHAIN (u) = list;
list = u;
}
else
list = tree_cons (t, NULL_TREE, list);
c_parser_consume_token (parser);
if (c_parser_next_token_is_not (parser, CPP_COMMA))
break;
c_parser_consume_token (parser);
}
return list;
}
/* Similarly, but expect leading and trailing parenthesis. This is a very
common case for omp clauses. */
static tree
c_parser_omp_var_list_parens (c_parser *parser, enum omp_clause_code kind,
tree list)
{
/* The clauses location. */
location_t loc = c_parser_peek_token (parser)->location;
if (c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
list = c_parser_omp_variable_list (parser, loc, kind, list);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
}
return list;
}
/* OpenMP 3.0:
collapse ( constant-expression ) */
static tree
c_parser_omp_clause_collapse (c_parser *parser, tree list)
{
tree c, num = error_mark_node;
HOST_WIDE_INT n;
location_t loc;
check_no_duplicate_clause (list, OMP_CLAUSE_COLLAPSE, "collapse");
loc = c_parser_peek_token (parser)->location;
if (c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
num = c_parser_expr_no_commas (parser, NULL).value;
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
}
if (num == error_mark_node)
return list;
if (!INTEGRAL_TYPE_P (TREE_TYPE (num))
|| !host_integerp (num, 0)
|| (n = tree_low_cst (num, 0)) <= 0
|| (int) n != n)
{
error_at (loc,
"collapse argument needs positive constant integer expression");
return list;
}
c = build_omp_clause (loc, OMP_CLAUSE_COLLAPSE);
OMP_CLAUSE_COLLAPSE_EXPR (c) = num;
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 2.5:
copyin ( variable-list ) */
static tree
c_parser_omp_clause_copyin (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_COPYIN, list);
}
/* OpenMP 2.5:
copyprivate ( variable-list ) */
static tree
c_parser_omp_clause_copyprivate (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_COPYPRIVATE, list);
}
/* OpenMP 2.5:
default ( shared | none ) */
static tree
c_parser_omp_clause_default (c_parser *parser, tree list)
{
enum omp_clause_default_kind kind = OMP_CLAUSE_DEFAULT_UNSPECIFIED;
location_t loc = c_parser_peek_token (parser)->location;
tree c;
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
return list;
if (c_parser_next_token_is (parser, CPP_NAME))
{
const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
switch (p[0])
{
case 'n':
if (strcmp ("none", p) != 0)
goto invalid_kind;
kind = OMP_CLAUSE_DEFAULT_NONE;
break;
case 's':
if (strcmp ("shared", p) != 0)
goto invalid_kind;
kind = OMP_CLAUSE_DEFAULT_SHARED;
break;
default:
goto invalid_kind;
}
c_parser_consume_token (parser);
}
else
{
invalid_kind:
c_parser_error (parser, "expected %<none%> or %<shared%>");
}
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
if (kind == OMP_CLAUSE_DEFAULT_UNSPECIFIED)
return list;
check_no_duplicate_clause (list, OMP_CLAUSE_DEFAULT, "default");
c = build_omp_clause (loc, OMP_CLAUSE_DEFAULT);
OMP_CLAUSE_CHAIN (c) = list;
OMP_CLAUSE_DEFAULT_KIND (c) = kind;
return c;
}
/* OpenMP 2.5:
firstprivate ( variable-list ) */
static tree
c_parser_omp_clause_firstprivate (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_FIRSTPRIVATE, list);
}
/* OpenMP 2.5:
if ( expression ) */
static tree
c_parser_omp_clause_if (c_parser *parser, tree list)
{
location_t loc = c_parser_peek_token (parser)->location;
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
tree t = c_parser_paren_condition (parser);
tree c;
check_no_duplicate_clause (list, OMP_CLAUSE_IF, "if");
c = build_omp_clause (loc, OMP_CLAUSE_IF);
OMP_CLAUSE_IF_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
list = c;
}
else
c_parser_error (parser, "expected %<(%>");
return list;
}
/* OpenMP 2.5:
lastprivate ( variable-list ) */
static tree
c_parser_omp_clause_lastprivate (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_LASTPRIVATE, list);
}
/* OpenMP 2.5:
nowait */
static tree
c_parser_omp_clause_nowait (c_parser *parser ATTRIBUTE_UNUSED, tree list)
{
tree c;
location_t loc = c_parser_peek_token (parser)->location;
check_no_duplicate_clause (list, OMP_CLAUSE_NOWAIT, "nowait");
c = build_omp_clause (loc, OMP_CLAUSE_NOWAIT);
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 2.5:
num_threads ( expression ) */
static tree
c_parser_omp_clause_num_threads (c_parser *parser, tree list)
{
location_t num_threads_loc = c_parser_peek_token (parser)->location;
if (c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
location_t expr_loc = c_parser_peek_token (parser)->location;
tree c, t = c_parser_expression (parser).value;
t = c_fully_fold (t, false, NULL);
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
{
c_parser_error (parser, "expected integer expression");
return list;
}
/* Attempt to statically determine when the number isn't positive. */
c = fold_build2_loc (expr_loc, LE_EXPR, boolean_type_node, t,
build_int_cst (TREE_TYPE (t), 0));
if (CAN_HAVE_LOCATION_P (c))
SET_EXPR_LOCATION (c, expr_loc);
if (c == boolean_true_node)
{
warning_at (expr_loc, 0,
"%<num_threads%> value must be positive");
t = integer_one_node;
}
check_no_duplicate_clause (list, OMP_CLAUSE_NUM_THREADS, "num_threads");
c = build_omp_clause (num_threads_loc, OMP_CLAUSE_NUM_THREADS);
OMP_CLAUSE_NUM_THREADS_EXPR (c) = t;
OMP_CLAUSE_CHAIN (c) = list;
list = c;
}
return list;
}
/* OpenMP 2.5:
ordered */
static tree
c_parser_omp_clause_ordered (c_parser *parser, tree list)
{
tree c;
check_no_duplicate_clause (list, OMP_CLAUSE_ORDERED, "ordered");
c = build_omp_clause (c_parser_peek_token (parser)->location,
OMP_CLAUSE_ORDERED);
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* OpenMP 2.5:
private ( variable-list ) */
static tree
c_parser_omp_clause_private (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_PRIVATE, list);
}
/* OpenMP 2.5:
reduction ( reduction-operator : variable-list )
reduction-operator:
One of: + * - & ^ | && || */
static tree
c_parser_omp_clause_reduction (c_parser *parser, tree list)
{
location_t clause_loc = c_parser_peek_token (parser)->location;
if (c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
{
enum tree_code code;
switch (c_parser_peek_token (parser)->type)
{
case CPP_PLUS:
code = PLUS_EXPR;
break;
case CPP_MULT:
code = MULT_EXPR;
break;
case CPP_MINUS:
code = MINUS_EXPR;
break;
case CPP_AND:
code = BIT_AND_EXPR;
break;
case CPP_XOR:
code = BIT_XOR_EXPR;
break;
case CPP_OR:
code = BIT_IOR_EXPR;
break;
case CPP_AND_AND:
code = TRUTH_ANDIF_EXPR;
break;
case CPP_OR_OR:
code = TRUTH_ORIF_EXPR;
break;
default:
c_parser_error (parser,
"expected %<+%>, %<*%>, %<-%>, %<&%>, "
"%<^%>, %<|%>, %<&&%>, or %<||%>");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, 0);
return list;
}
c_parser_consume_token (parser);
if (c_parser_require (parser, CPP_COLON, "expected %<:%>"))
{
tree nl, c;
nl = c_parser_omp_variable_list (parser, clause_loc,
OMP_CLAUSE_REDUCTION, list);
for (c = nl; c != list; c = OMP_CLAUSE_CHAIN (c))
OMP_CLAUSE_REDUCTION_CODE (c) = code;
list = nl;
}
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
}
return list;
}
/* OpenMP 2.5:
schedule ( schedule-kind )
schedule ( schedule-kind , expression )
schedule-kind:
static | dynamic | guided | runtime | auto
*/
static tree
c_parser_omp_clause_schedule (c_parser *parser, tree list)
{
tree c, t;
location_t loc = c_parser_peek_token (parser)->location;
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
return list;
c = build_omp_clause (loc, OMP_CLAUSE_SCHEDULE);
if (c_parser_next_token_is (parser, CPP_NAME))
{
tree kind = c_parser_peek_token (parser)->value;
const char *p = IDENTIFIER_POINTER (kind);
switch (p[0])
{
case 'd':
if (strcmp ("dynamic", p) != 0)
goto invalid_kind;
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_DYNAMIC;
break;
case 'g':
if (strcmp ("guided", p) != 0)
goto invalid_kind;
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_GUIDED;
break;
case 'r':
if (strcmp ("runtime", p) != 0)
goto invalid_kind;
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_RUNTIME;
break;
default:
goto invalid_kind;
}
}
else if (c_parser_next_token_is_keyword (parser, RID_STATIC))
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_STATIC;
else if (c_parser_next_token_is_keyword (parser, RID_AUTO))
OMP_CLAUSE_SCHEDULE_KIND (c) = OMP_CLAUSE_SCHEDULE_AUTO;
else
goto invalid_kind;
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_COMMA))
{
location_t here;
c_parser_consume_token (parser);
here = c_parser_peek_token (parser)->location;
t = c_parser_expr_no_commas (parser, NULL).value;
t = c_fully_fold (t, false, NULL);
if (OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_RUNTIME)
error_at (here, "schedule %<runtime%> does not take "
"a %<chunk_size%> parameter");
else if (OMP_CLAUSE_SCHEDULE_KIND (c) == OMP_CLAUSE_SCHEDULE_AUTO)
error_at (here,
"schedule %<auto%> does not take "
"a %<chunk_size%> parameter");
else if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE)
OMP_CLAUSE_SCHEDULE_CHUNK_EXPR (c) = t;
else
c_parser_error (parser, "expected integer expression");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
}
else
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<,%> or %<)%>");
check_no_duplicate_clause (list, OMP_CLAUSE_SCHEDULE, "schedule");
OMP_CLAUSE_CHAIN (c) = list;
return c;
invalid_kind:
c_parser_error (parser, "invalid schedule kind");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, 0);
return list;
}
/* OpenMP 2.5:
shared ( variable-list ) */
static tree
c_parser_omp_clause_shared (c_parser *parser, tree list)
{
return c_parser_omp_var_list_parens (parser, OMP_CLAUSE_SHARED, list);
}
/* OpenMP 3.0:
untied */
static tree
c_parser_omp_clause_untied (c_parser *parser ATTRIBUTE_UNUSED, tree list)
{
tree c;
/* FIXME: Should we allow duplicates? */
check_no_duplicate_clause (list, OMP_CLAUSE_UNTIED, "untied");
c = build_omp_clause (c_parser_peek_token (parser)->location,
OMP_CLAUSE_UNTIED);
OMP_CLAUSE_CHAIN (c) = list;
return c;
}
/* Parse all OpenMP clauses. The set clauses allowed by the directive
is a bitmask in MASK. Return the list of clauses found; the result
of clause default goes in *pdefault. */
static tree
c_parser_omp_all_clauses (c_parser *parser, unsigned int mask,
const char *where)
{
tree clauses = NULL;
bool first = true;
while (c_parser_next_token_is_not (parser, CPP_PRAGMA_EOL))
{
location_t here;
pragma_omp_clause c_kind;
const char *c_name;
tree prev = clauses;
if (!first && c_parser_next_token_is (parser, CPP_COMMA))
c_parser_consume_token (parser);
first = false;
here = c_parser_peek_token (parser)->location;
c_kind = c_parser_omp_clause_name (parser);
switch (c_kind)
{
case PRAGMA_OMP_CLAUSE_COLLAPSE:
clauses = c_parser_omp_clause_collapse (parser, clauses);
c_name = "collapse";
break;
case PRAGMA_OMP_CLAUSE_COPYIN:
clauses = c_parser_omp_clause_copyin (parser, clauses);
c_name = "copyin";
break;
case PRAGMA_OMP_CLAUSE_COPYPRIVATE:
clauses = c_parser_omp_clause_copyprivate (parser, clauses);
c_name = "copyprivate";
break;
case PRAGMA_OMP_CLAUSE_DEFAULT:
clauses = c_parser_omp_clause_default (parser, clauses);
c_name = "default";
break;
case PRAGMA_OMP_CLAUSE_FIRSTPRIVATE:
clauses = c_parser_omp_clause_firstprivate (parser, clauses);
c_name = "firstprivate";
break;
case PRAGMA_OMP_CLAUSE_IF:
clauses = c_parser_omp_clause_if (parser, clauses);
c_name = "if";
break;
case PRAGMA_OMP_CLAUSE_LASTPRIVATE:
clauses = c_parser_omp_clause_lastprivate (parser, clauses);
c_name = "lastprivate";
break;
case PRAGMA_OMP_CLAUSE_NOWAIT:
clauses = c_parser_omp_clause_nowait (parser, clauses);
c_name = "nowait";
break;
case PRAGMA_OMP_CLAUSE_NUM_THREADS:
clauses = c_parser_omp_clause_num_threads (parser, clauses);
c_name = "num_threads";
break;
case PRAGMA_OMP_CLAUSE_ORDERED:
clauses = c_parser_omp_clause_ordered (parser, clauses);
c_name = "ordered";
break;
case PRAGMA_OMP_CLAUSE_PRIVATE:
clauses = c_parser_omp_clause_private (parser, clauses);
c_name = "private";
break;
case PRAGMA_OMP_CLAUSE_REDUCTION:
clauses = c_parser_omp_clause_reduction (parser, clauses);
c_name = "reduction";
break;
case PRAGMA_OMP_CLAUSE_SCHEDULE:
clauses = c_parser_omp_clause_schedule (parser, clauses);
c_name = "schedule";
break;
case PRAGMA_OMP_CLAUSE_SHARED:
clauses = c_parser_omp_clause_shared (parser, clauses);
c_name = "shared";
break;
case PRAGMA_OMP_CLAUSE_UNTIED:
clauses = c_parser_omp_clause_untied (parser, clauses);
c_name = "untied";
break;
default:
c_parser_error (parser, "expected %<#pragma omp%> clause");
goto saw_error;
}
if (((mask >> c_kind) & 1) == 0 && !parser->error)
{
/* Remove the invalid clause(s) from the list to avoid
confusing the rest of the compiler. */
clauses = prev;
error_at (here, "%qs is not valid for %qs", c_name, where);
}
}
saw_error:
c_parser_skip_to_pragma_eol (parser);
return c_finish_omp_clauses (clauses);
}
/* OpenMP 2.5:
structured-block:
statement
In practice, we're also interested in adding the statement to an
outer node. So it is convenient if we work around the fact that
c_parser_statement calls add_stmt. */
static tree
c_parser_omp_structured_block (c_parser *parser)
{
tree stmt = push_stmt_list ();
c_parser_statement (parser);
return pop_stmt_list (stmt);
}
/* OpenMP 2.5:
# pragma omp atomic new-line
expression-stmt
expression-stmt:
x binop= expr | x++ | ++x | x-- | --x
binop:
+, *, -, /, &, ^, |, <<, >>
where x is an lvalue expression with scalar type.
LOC is the location of the #pragma token. */
static void
c_parser_omp_atomic (location_t loc, c_parser *parser)
{
tree lhs, rhs;
tree stmt;
enum tree_code code;
struct c_expr rhs_expr;
c_parser_skip_to_pragma_eol (parser);
lhs = c_parser_unary_expression (parser).value;
lhs = c_fully_fold (lhs, false, NULL);
switch (TREE_CODE (lhs))
{
case ERROR_MARK:
saw_error:
c_parser_skip_to_end_of_block_or_statement (parser);
return;
case PREINCREMENT_EXPR:
case POSTINCREMENT_EXPR:
lhs = TREE_OPERAND (lhs, 0);
code = PLUS_EXPR;
rhs = integer_one_node;
break;
case PREDECREMENT_EXPR:
case POSTDECREMENT_EXPR:
lhs = TREE_OPERAND (lhs, 0);
code = MINUS_EXPR;
rhs = integer_one_node;
break;
case COMPOUND_EXPR:
if (TREE_CODE (TREE_OPERAND (lhs, 0)) == SAVE_EXPR
&& TREE_CODE (TREE_OPERAND (lhs, 1)) == COMPOUND_EXPR
&& TREE_CODE (TREE_OPERAND (TREE_OPERAND (lhs, 1), 0)) == MODIFY_EXPR
&& TREE_OPERAND (TREE_OPERAND (lhs, 1), 1) == TREE_OPERAND (lhs, 0)
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (TREE_OPERAND
(TREE_OPERAND (lhs, 1), 0), 0)))
== BOOLEAN_TYPE)
/* Undo effects of boolean_increment for post {in,de}crement. */
lhs = TREE_OPERAND (TREE_OPERAND (lhs, 1), 0);
/* FALLTHRU */
case MODIFY_EXPR:
if (TREE_CODE (lhs) == MODIFY_EXPR
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (lhs, 0))) == BOOLEAN_TYPE)
{
/* Undo effects of boolean_increment. */
if (integer_onep (TREE_OPERAND (lhs, 1)))
{
/* This is pre or post increment. */
rhs = TREE_OPERAND (lhs, 1);
lhs = TREE_OPERAND (lhs, 0);
code = NOP_EXPR;
break;
}
if (TREE_CODE (TREE_OPERAND (lhs, 1)) == TRUTH_NOT_EXPR
&& TREE_OPERAND (lhs, 0)
== TREE_OPERAND (TREE_OPERAND (lhs, 1), 0))
{
/* This is pre or post decrement. */
rhs = TREE_OPERAND (lhs, 1);
lhs = TREE_OPERAND (lhs, 0);
code = NOP_EXPR;
break;
}
}
/* FALLTHRU */
default:
switch (c_parser_peek_token (parser)->type)
{
case CPP_MULT_EQ:
code = MULT_EXPR;
break;
case CPP_DIV_EQ:
code = TRUNC_DIV_EXPR;
break;
case CPP_PLUS_EQ:
code = PLUS_EXPR;
break;
case CPP_MINUS_EQ:
code = MINUS_EXPR;
break;
case CPP_LSHIFT_EQ:
code = LSHIFT_EXPR;
break;
case CPP_RSHIFT_EQ:
code = RSHIFT_EXPR;
break;
case CPP_AND_EQ:
code = BIT_AND_EXPR;
break;
case CPP_OR_EQ:
code = BIT_IOR_EXPR;
break;
case CPP_XOR_EQ:
code = BIT_XOR_EXPR;
break;
default:
c_parser_error (parser,
"invalid operator for %<#pragma omp atomic%>");
goto saw_error;
}
/* Arrange to pass the location of the assignment operator to
c_finish_omp_atomic. */
loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
{
location_t rhs_loc = c_parser_peek_token (parser)->location;
rhs_expr = c_parser_expression (parser);
rhs_expr = default_function_array_read_conversion (rhs_loc, rhs_expr);
}
rhs = rhs_expr.value;
rhs = c_fully_fold (rhs, false, NULL);
break;
}
stmt = c_finish_omp_atomic (loc, code, lhs, rhs);
if (stmt != error_mark_node)
add_stmt (stmt);
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
/* OpenMP 2.5:
# pragma omp barrier new-line
*/
static void
c_parser_omp_barrier (c_parser *parser)
{
location_t loc = c_parser_peek_token (parser)->location;
c_parser_consume_pragma (parser);
c_parser_skip_to_pragma_eol (parser);
c_finish_omp_barrier (loc);
}
/* OpenMP 2.5:
# pragma omp critical [(name)] new-line
structured-block
LOC is the location of the #pragma itself. */
static tree
c_parser_omp_critical (location_t loc, c_parser *parser)
{
tree stmt, name = NULL;
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
{
c_parser_consume_token (parser);
if (c_parser_next_token_is (parser, CPP_NAME))
{
name = c_parser_peek_token (parser)->value;
c_parser_consume_token (parser);
c_parser_require (parser, CPP_CLOSE_PAREN, "expected %<)%>");
}
else
c_parser_error (parser, "expected identifier");
}
else if (c_parser_next_token_is_not (parser, CPP_PRAGMA_EOL))
c_parser_error (parser, "expected %<(%> or end of line");
c_parser_skip_to_pragma_eol (parser);
stmt = c_parser_omp_structured_block (parser);
return c_finish_omp_critical (loc, stmt, name);
}
/* OpenMP 2.5:
# pragma omp flush flush-vars[opt] new-line
flush-vars:
( variable-list ) */
static void
c_parser_omp_flush (c_parser *parser)
{
location_t loc = c_parser_peek_token (parser)->location;
c_parser_consume_pragma (parser);
if (c_parser_next_token_is (parser, CPP_OPEN_PAREN))
c_parser_omp_var_list_parens (parser, OMP_CLAUSE_ERROR, NULL);
else if (c_parser_next_token_is_not (parser, CPP_PRAGMA_EOL))
c_parser_error (parser, "expected %<(%> or end of line");
c_parser_skip_to_pragma_eol (parser);
c_finish_omp_flush (loc);
}
/* Parse the restricted form of the for statement allowed by OpenMP.
The real trick here is to determine the loop control variable early
so that we can push a new decl if necessary to make it private.
LOC is the location of the OMP in "#pragma omp". */
static tree
c_parser_omp_for_loop (location_t loc,
c_parser *parser, tree clauses, tree *par_clauses)
{
tree decl, cond, incr, save_break, save_cont, body, init, stmt, cl;
tree declv, condv, incrv, initv, ret = NULL;
bool fail = false, open_brace_parsed = false;
int i, collapse = 1, nbraces = 0;
location_t for_loc;
VEC(tree,gc) *for_block = make_tree_vector ();
for (cl = clauses; cl; cl = OMP_CLAUSE_CHAIN (cl))
if (OMP_CLAUSE_CODE (cl) == OMP_CLAUSE_COLLAPSE)
collapse = tree_low_cst (OMP_CLAUSE_COLLAPSE_EXPR (cl), 0);
gcc_assert (collapse >= 1);
declv = make_tree_vec (collapse);
initv = make_tree_vec (collapse);
condv = make_tree_vec (collapse);
incrv = make_tree_vec (collapse);
if (!c_parser_next_token_is_keyword (parser, RID_FOR))
{
c_parser_error (parser, "for statement expected");
return NULL;
}
for_loc = c_parser_peek_token (parser)->location;
c_parser_consume_token (parser);
for (i = 0; i < collapse; i++)
{
int bracecount = 0;
if (!c_parser_require (parser, CPP_OPEN_PAREN, "expected %<(%>"))
goto pop_scopes;
/* Parse the initialization declaration or expression. */
if (c_parser_next_tokens_start_declaration (parser))
{
if (i > 0)
VEC_safe_push (tree, gc, for_block, c_begin_compound_stmt (true));
c_parser_declaration_or_fndef (parser, true, true, true, true, true, NULL);
decl = check_for_loop_decls (for_loc, flag_isoc99);
if (decl == NULL)
goto error_init;
if (DECL_INITIAL (decl) == error_mark_node)
decl = error_mark_node;
init = decl;
}
else if (c_parser_next_token_is (parser, CPP_NAME)
&& c_parser_peek_2nd_token (parser)->type == CPP_EQ)
{
struct c_expr decl_exp;
struct c_expr init_exp;
location_t init_loc;
decl_exp = c_parser_postfix_expression (parser);
decl = decl_exp.value;
c_parser_require (parser, CPP_EQ, "expected %<=%>");
init_loc = c_parser_peek_token (parser)->location;
init_exp = c_parser_expr_no_commas (parser, NULL);
init_exp = default_function_array_read_conversion (init_loc,
init_exp);
init = build_modify_expr (init_loc, decl, decl_exp.original_type,
NOP_EXPR, init_loc, init_exp.value,
init_exp.original_type);
init = c_process_expr_stmt (init_loc, init);
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
}
else
{
error_init:
c_parser_error (parser,
"expected iteration declaration or initialization");
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN,
"expected %<)%>");
fail = true;
goto parse_next;
}
/* Parse the loop condition. */
cond = NULL_TREE;
if (c_parser_next_token_is_not (parser, CPP_SEMICOLON))
{
location_t cond_loc = c_parser_peek_token (parser)->location;
struct c_expr cond_expr = c_parser_binary_expression (parser, NULL);
cond = cond_expr.value;
cond = c_objc_common_truthvalue_conversion (cond_loc, cond);
cond = c_fully_fold (cond, false, NULL);
switch (cond_expr.original_code)
{
case GT_EXPR:
case GE_EXPR:
case LT_EXPR:
case LE_EXPR:
break;
default:
/* Can't be cond = error_mark_node, because we want to preserve
the location until c_finish_omp_for. */
cond = build1 (NOP_EXPR, boolean_type_node, error_mark_node);
break;
}
protected_set_expr_location (cond, cond_loc);
}
c_parser_skip_until_found (parser, CPP_SEMICOLON, "expected %<;%>");
/* Parse the increment expression. */
incr = NULL_TREE;
if (c_parser_next_token_is_not (parser, CPP_CLOSE_PAREN))
{
location_t incr_loc = c_parser_peek_token (parser)->location;
incr = c_process_expr_stmt (incr_loc,
c_parser_expression (parser).value);
}
c_parser_skip_until_found (parser, CPP_CLOSE_PAREN, "expected %<)%>");
if (decl == NULL || decl == error_mark_node || init == error_mark_node)
fail = true;
else
{
TREE_VEC_ELT (declv, i) = decl;
TREE_VEC_ELT (initv, i) = init;
TREE_VEC_ELT (condv, i) = cond;
TREE_VEC_ELT (incrv, i) = incr;
}
parse_next:
if (i == collapse - 1)
break;
/* FIXME: OpenMP 3.0 draft isn't very clear on what exactly is allowed
in between the collapsed for loops to be still considered perfectly
nested. Hopefully the final version clarifies this.
For now handle (multiple) {'s and empty statements. */
do
{
if (c_parser_next_token_is_keyword (parser, RID_FOR))
{
c_parser_consume_token (parser);
break;
}
else if (c_parser_next_token_is (parser, CPP_OPEN_BRACE))
{
c_parser_consume_token (parser);
bracecount++;
}
else if (bracecount
&& c_parser_next_token_is (parser, CPP_SEMICOLON))
c_parser_consume_token (parser);
else
{
c_parser_error (parser, "not enough perfectly nested loops");
if (bracecount)
{
open_brace_parsed = true;
bracecount--;
}
fail = true;
collapse = 0;
break;
}
}
while (1);
nbraces += bracecount;
}
save_break = c_break_label;
c_break_label = size_one_node;
save_cont = c_cont_label;
c_cont_label = NULL_TREE;
body = push_stmt_list ();
if (open_brace_parsed)
{
location_t here = c_parser_peek_token (parser)->location;
stmt = c_begin_compound_stmt (true);
c_parser_compound_statement_nostart (parser);
add_stmt (c_end_compound_stmt (here, stmt, true));
}
else
add_stmt (c_parser_c99_block_statement (parser));
if (c_cont_label)
{
tree t = build1 (LABEL_EXPR, void_type_node, c_cont_label);
SET_EXPR_LOCATION (t, loc);
add_stmt (t);
}
body = pop_stmt_list (body);
c_break_label = save_break;
c_cont_label = save_cont;
while (nbraces)
{
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
{
c_parser_consume_token (parser);
nbraces--;
}
else if (c_parser_next_token_is (parser, CPP_SEMICOLON))
c_parser_consume_token (parser);
else
{
c_parser_error (parser, "collapsed loops not perfectly nested");
while (nbraces)
{
location_t here = c_parser_peek_token (parser)->location;
stmt = c_begin_compound_stmt (true);
add_stmt (body);
c_parser_compound_statement_nostart (parser);
body = c_end_compound_stmt (here, stmt, true);
nbraces--;
}
goto pop_scopes;
}
}
/* Only bother calling c_finish_omp_for if we haven't already generated
an error from the initialization parsing. */
if (!fail)
{
stmt = c_finish_omp_for (loc, declv, initv, condv, incrv, body, NULL);
if (stmt)
{
if (par_clauses != NULL)
{
tree *c;
for (c = par_clauses; *c ; )
if (OMP_CLAUSE_CODE (*c) != OMP_CLAUSE_FIRSTPRIVATE
&& OMP_CLAUSE_CODE (*c) != OMP_CLAUSE_LASTPRIVATE)
c = &OMP_CLAUSE_CHAIN (*c);
else
{
for (i = 0; i < collapse; i++)
if (TREE_VEC_ELT (declv, i) == OMP_CLAUSE_DECL (*c))
break;
if (i == collapse)
c = &OMP_CLAUSE_CHAIN (*c);
else if (OMP_CLAUSE_CODE (*c) == OMP_CLAUSE_FIRSTPRIVATE)
{
error_at (loc,
"iteration variable %qD should not be firstprivate",
OMP_CLAUSE_DECL (*c));
*c = OMP_CLAUSE_CHAIN (*c);
}
else
{
/* Copy lastprivate (decl) clause to OMP_FOR_CLAUSES,
change it to shared (decl) in
OMP_PARALLEL_CLAUSES. */
tree l = build_omp_clause (OMP_CLAUSE_LOCATION (*c),
OMP_CLAUSE_LASTPRIVATE);
OMP_CLAUSE_DECL (l) = OMP_CLAUSE_DECL (*c);
OMP_CLAUSE_CHAIN (l) = clauses;
clauses = l;
OMP_CLAUSE_SET_CODE (*c, OMP_CLAUSE_SHARED);
}
}
}
OMP_FOR_CLAUSES (stmt) = clauses;
}
ret = stmt;
}
pop_scopes:
while (!VEC_empty (tree, for_block))
{
/* FIXME diagnostics: LOC below should be the actual location of
this particular for block. We need to build a list of
locations to go along with FOR_BLOCK. */
stmt = c_end_compound_stmt (loc, VEC_pop (tree, for_block), true);
add_stmt (stmt);
}
release_tree_vector (for_block);
return ret;
}
/* OpenMP 2.5:
#pragma omp for for-clause[optseq] new-line
for-loop
LOC is the location of the #pragma token.
*/
#define OMP_FOR_CLAUSE_MASK \
( (1u << PRAGMA_OMP_CLAUSE_PRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_LASTPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_REDUCTION) \
| (1u << PRAGMA_OMP_CLAUSE_ORDERED) \
| (1u << PRAGMA_OMP_CLAUSE_SCHEDULE) \
| (1u << PRAGMA_OMP_CLAUSE_COLLAPSE) \
| (1u << PRAGMA_OMP_CLAUSE_NOWAIT))
static tree
c_parser_omp_for (location_t loc, c_parser *parser)
{
tree block, clauses, ret;
clauses = c_parser_omp_all_clauses (parser, OMP_FOR_CLAUSE_MASK,
"#pragma omp for");
block = c_begin_compound_stmt (true);
ret = c_parser_omp_for_loop (loc, parser, clauses, NULL);
block = c_end_compound_stmt (loc, block, true);
add_stmt (block);
return ret;
}
/* OpenMP 2.5:
# pragma omp master new-line
structured-block
LOC is the location of the #pragma token.
*/
static tree
c_parser_omp_master (location_t loc, c_parser *parser)
{
c_parser_skip_to_pragma_eol (parser);
return c_finish_omp_master (loc, c_parser_omp_structured_block (parser));
}
/* OpenMP 2.5:
# pragma omp ordered new-line
structured-block
LOC is the location of the #pragma itself.
*/
static tree
c_parser_omp_ordered (location_t loc, c_parser *parser)
{
c_parser_skip_to_pragma_eol (parser);
return c_finish_omp_ordered (loc, c_parser_omp_structured_block (parser));
}
/* OpenMP 2.5:
section-scope:
{ section-sequence }
section-sequence:
section-directive[opt] structured-block
section-sequence section-directive structured-block
SECTIONS_LOC is the location of the #pragma omp sections. */
static tree
c_parser_omp_sections_scope (location_t sections_loc, c_parser *parser)
{
tree stmt, substmt;
bool error_suppress = false;
location_t loc;
loc = c_parser_peek_token (parser)->location;
if (!c_parser_require (parser, CPP_OPEN_BRACE, "expected %<{%>"))
{
/* Avoid skipping until the end of the block. */
parser->error = false;
return NULL_TREE;
}
stmt = push_stmt_list ();
if (c_parser_peek_token (parser)->pragma_kind != PRAGMA_OMP_SECTION)
{
substmt = push_stmt_list ();
while (1)
{
c_parser_statement (parser);
if (c_parser_peek_token (parser)->pragma_kind == PRAGMA_OMP_SECTION)
break;
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
break;
if (c_parser_next_token_is (parser, CPP_EOF))
break;
}
substmt = pop_stmt_list (substmt);
substmt = build1 (OMP_SECTION, void_type_node, substmt);
SET_EXPR_LOCATION (substmt, loc);
add_stmt (substmt);
}
while (1)
{
if (c_parser_next_token_is (parser, CPP_CLOSE_BRACE))
break;
if (c_parser_next_token_is (parser, CPP_EOF))
break;
loc = c_parser_peek_token (parser)->location;
if (c_parser_peek_token (parser)->pragma_kind == PRAGMA_OMP_SECTION)
{
c_parser_consume_pragma (parser);
c_parser_skip_to_pragma_eol (parser);
error_suppress = false;
}
else if (!error_suppress)
{
error_at (loc, "expected %<#pragma omp section%> or %<}%>");
error_suppress = true;
}
substmt = c_parser_omp_structured_block (parser);
substmt = build1 (OMP_SECTION, void_type_node, substmt);
SET_EXPR_LOCATION (substmt, loc);
add_stmt (substmt);
}
c_parser_skip_until_found (parser, CPP_CLOSE_BRACE,
"expected %<#pragma omp section%> or %<}%>");
substmt = pop_stmt_list (stmt);
stmt = make_node (OMP_SECTIONS);
SET_EXPR_LOCATION (stmt, sections_loc);
TREE_TYPE (stmt) = void_type_node;
OMP_SECTIONS_BODY (stmt) = substmt;
return add_stmt (stmt);
}
/* OpenMP 2.5:
# pragma omp sections sections-clause[optseq] newline
sections-scope
LOC is the location of the #pragma token.
*/
#define OMP_SECTIONS_CLAUSE_MASK \
( (1u << PRAGMA_OMP_CLAUSE_PRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_LASTPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_REDUCTION) \
| (1u << PRAGMA_OMP_CLAUSE_NOWAIT))
static tree
c_parser_omp_sections (location_t loc, c_parser *parser)
{
tree block, clauses, ret;
clauses = c_parser_omp_all_clauses (parser, OMP_SECTIONS_CLAUSE_MASK,
"#pragma omp sections");
block = c_begin_compound_stmt (true);
ret = c_parser_omp_sections_scope (loc, parser);
if (ret)
OMP_SECTIONS_CLAUSES (ret) = clauses;
block = c_end_compound_stmt (loc, block, true);
add_stmt (block);
return ret;
}
/* OpenMP 2.5:
# pragma parallel parallel-clause new-line
# pragma parallel for parallel-for-clause new-line
# pragma parallel sections parallel-sections-clause new-line
LOC is the location of the #pragma token.
*/
#define OMP_PARALLEL_CLAUSE_MASK \
( (1u << PRAGMA_OMP_CLAUSE_IF) \
| (1u << PRAGMA_OMP_CLAUSE_PRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_DEFAULT) \
| (1u << PRAGMA_OMP_CLAUSE_SHARED) \
| (1u << PRAGMA_OMP_CLAUSE_COPYIN) \
| (1u << PRAGMA_OMP_CLAUSE_REDUCTION) \
| (1u << PRAGMA_OMP_CLAUSE_NUM_THREADS))
static tree
c_parser_omp_parallel (location_t loc, c_parser *parser)
{
enum pragma_kind p_kind = PRAGMA_OMP_PARALLEL;
const char *p_name = "#pragma omp parallel";
tree stmt, clauses, par_clause, ws_clause, block;
unsigned int mask = OMP_PARALLEL_CLAUSE_MASK;
if (c_parser_next_token_is_keyword (parser, RID_FOR))
{
c_parser_consume_token (parser);
p_kind = PRAGMA_OMP_PARALLEL_FOR;
p_name = "#pragma omp parallel for";
mask |= OMP_FOR_CLAUSE_MASK;
mask &= ~(1u << PRAGMA_OMP_CLAUSE_NOWAIT);
}
else if (c_parser_next_token_is (parser, CPP_NAME))
{
const char *p = IDENTIFIER_POINTER (c_parser_peek_token (parser)->value);
if (strcmp (p, "sections") == 0)
{
c_parser_consume_token (parser);
p_kind = PRAGMA_OMP_PARALLEL_SECTIONS;
p_name = "#pragma omp parallel sections";
mask |= OMP_SECTIONS_CLAUSE_MASK;
mask &= ~(1u << PRAGMA_OMP_CLAUSE_NOWAIT);
}
}
clauses = c_parser_omp_all_clauses (parser, mask, p_name);
switch (p_kind)
{
case PRAGMA_OMP_PARALLEL:
block = c_begin_omp_parallel ();
c_parser_statement (parser);
stmt = c_finish_omp_parallel (loc, clauses, block);
break;
case PRAGMA_OMP_PARALLEL_FOR:
block = c_begin_omp_parallel ();
c_split_parallel_clauses (loc, clauses, &par_clause, &ws_clause);
c_parser_omp_for_loop (loc, parser, ws_clause, &par_clause);
stmt = c_finish_omp_parallel (loc, par_clause, block);
OMP_PARALLEL_COMBINED (stmt) = 1;
break;
case PRAGMA_OMP_PARALLEL_SECTIONS:
block = c_begin_omp_parallel ();
c_split_parallel_clauses (loc, clauses, &par_clause, &ws_clause);
stmt = c_parser_omp_sections_scope (loc, parser);
if (stmt)
OMP_SECTIONS_CLAUSES (stmt) = ws_clause;
stmt = c_finish_omp_parallel (loc, par_clause, block);
OMP_PARALLEL_COMBINED (stmt) = 1;
break;
default:
gcc_unreachable ();
}
return stmt;
}
/* OpenMP 2.5:
# pragma omp single single-clause[optseq] new-line
structured-block
LOC is the location of the #pragma.
*/
#define OMP_SINGLE_CLAUSE_MASK \
( (1u << PRAGMA_OMP_CLAUSE_PRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_COPYPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_NOWAIT))
static tree
c_parser_omp_single (location_t loc, c_parser *parser)
{
tree stmt = make_node (OMP_SINGLE);
SET_EXPR_LOCATION (stmt, loc);
TREE_TYPE (stmt) = void_type_node;
OMP_SINGLE_CLAUSES (stmt)
= c_parser_omp_all_clauses (parser, OMP_SINGLE_CLAUSE_MASK,
"#pragma omp single");
OMP_SINGLE_BODY (stmt) = c_parser_omp_structured_block (parser);
return add_stmt (stmt);
}
/* OpenMP 3.0:
# pragma omp task task-clause[optseq] new-line
LOC is the location of the #pragma.
*/
#define OMP_TASK_CLAUSE_MASK \
( (1u << PRAGMA_OMP_CLAUSE_IF) \
| (1u << PRAGMA_OMP_CLAUSE_UNTIED) \
| (1u << PRAGMA_OMP_CLAUSE_DEFAULT) \
| (1u << PRAGMA_OMP_CLAUSE_PRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_FIRSTPRIVATE) \
| (1u << PRAGMA_OMP_CLAUSE_SHARED))
static tree
c_parser_omp_task (location_t loc, c_parser *parser)
{
tree clauses, block;
clauses = c_parser_omp_all_clauses (parser, OMP_TASK_CLAUSE_MASK,
"#pragma omp task");
block = c_begin_omp_task ();
c_parser_statement (parser);
return c_finish_omp_task (loc, clauses, block);
}
/* OpenMP 3.0:
# pragma omp taskwait new-line
*/
static void
c_parser_omp_taskwait (c_parser *parser)
{
location_t loc = c_parser_peek_token (parser)->location;
c_parser_consume_pragma (parser);
c_parser_skip_to_pragma_eol (parser);
c_finish_omp_taskwait (loc);
}
/* Main entry point to parsing most OpenMP pragmas. */
static void
c_parser_omp_construct (c_parser *parser)
{
enum pragma_kind p_kind;
location_t loc;
tree stmt;
loc = c_parser_peek_token (parser)->location;
p_kind = c_parser_peek_token (parser)->pragma_kind;
c_parser_consume_pragma (parser);
switch (p_kind)
{
case PRAGMA_OMP_ATOMIC:
c_parser_omp_atomic (loc, parser);
return;
case PRAGMA_OMP_CRITICAL:
stmt = c_parser_omp_critical (loc, parser);
break;
case PRAGMA_OMP_FOR:
stmt = c_parser_omp_for (loc, parser);
break;
case PRAGMA_OMP_MASTER:
stmt = c_parser_omp_master (loc, parser);
break;
case PRAGMA_OMP_ORDERED:
stmt = c_parser_omp_ordered (loc, parser);
break;
case PRAGMA_OMP_PARALLEL:
stmt = c_parser_omp_parallel (loc, parser);
break;
case PRAGMA_OMP_SECTIONS:
stmt = c_parser_omp_sections (loc, parser);
break;
case PRAGMA_OMP_SINGLE:
stmt = c_parser_omp_single (loc, parser);
break;
case PRAGMA_OMP_TASK:
stmt = c_parser_omp_task (loc, parser);
break;
default:
gcc_unreachable ();
}
if (stmt)
gcc_assert (EXPR_LOCATION (stmt) != UNKNOWN_LOCATION);
}
/* OpenMP 2.5:
# pragma omp threadprivate (variable-list) */
static void
c_parser_omp_threadprivate (c_parser *parser)
{
tree vars, t;
location_t loc;
c_parser_consume_pragma (parser);
loc = c_parser_peek_token (parser)->location;
vars = c_parser_omp_var_list_parens (parser, OMP_CLAUSE_ERROR, NULL);
/* Mark every variable in VARS to be assigned thread local storage. */
for (t = vars; t; t = TREE_CHAIN (t))
{
tree v = TREE_PURPOSE (t);
/* FIXME diagnostics: Ideally we should keep individual
locations for all the variables in the var list to make the
following errors more precise. Perhaps
c_parser_omp_var_list_parens() should construct a list of
locations to go along with the var list. */
/* If V had already been marked threadprivate, it doesn't matter
whether it had been used prior to this point. */
if (TREE_CODE (v) != VAR_DECL)
error_at (loc, "%qD is not a variable", v);
else if (TREE_USED (v) && !C_DECL_THREADPRIVATE_P (v))
error_at (loc, "%qE declared %<threadprivate%> after first use", v);
else if (! TREE_STATIC (v) && ! DECL_EXTERNAL (v))
error_at (loc, "automatic variable %qE cannot be %<threadprivate%>", v);
else if (TREE_TYPE (v) == error_mark_node)
;
else if (! COMPLETE_TYPE_P (TREE_TYPE (v)))
error_at (loc, "%<threadprivate%> %qE has incomplete type", v);
else
{
if (! DECL_THREAD_LOCAL_P (v))
{
DECL_TLS_MODEL (v) = decl_default_tls_model (v);
/* If rtl has been already set for this var, call
make_decl_rtl once again, so that encode_section_info
has a chance to look at the new decl flags. */
if (DECL_RTL_SET_P (v))
make_decl_rtl (v);
}
C_DECL_THREADPRIVATE_P (v) = 1;
}
}
c_parser_skip_to_pragma_eol (parser);
}
/* Parse a single source file. */
void
c_parse_file (void)
{
/* Use local storage to begin. If the first token is a pragma, parse it.
If it is #pragma GCC pch_preprocess, then this will load a PCH file
which will cause garbage collection. */
c_parser tparser;
memset (&tparser, 0, sizeof tparser);
the_parser = &tparser;
if (c_parser_peek_token (&tparser)->pragma_kind == PRAGMA_GCC_PCH_PREPROCESS)
c_parser_pragma_pch_preprocess (&tparser);
the_parser = ggc_alloc_c_parser ();
*the_parser = tparser;
/* Initialize EH, if we've been told to do so. */
if (flag_exceptions)
using_eh_for_cleanups ();
c_parser_translation_unit (the_parser);
the_parser = NULL;
}
#include "gt-c-parser.h"