blob: 5c98ef91c2c99c475f621c436c64c7dbb01f2995 [file] [log] [blame]
/* IRA allocation based on graph coloring.
Copyright (C) 2006, 2007, 2008, 2009, 2010
Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "tm_p.h"
#include "target.h"
#include "regs.h"
#include "flags.h"
#include "sbitmap.h"
#include "bitmap.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "expr.h"
#include "diagnostic-core.h"
#include "reload.h"
#include "params.h"
#include "df.h"
#include "splay-tree.h"
#include "ira-int.h"
/* This file contains code for regional graph coloring, spill/restore
code placement optimization, and code helping the reload pass to do
a better job. */
/* Bitmap of allocnos which should be colored. */
static bitmap coloring_allocno_bitmap;
/* Bitmap of allocnos which should be taken into account during
coloring. In general case it contains allocnos from
coloring_allocno_bitmap plus other already colored conflicting
allocnos. */
static bitmap consideration_allocno_bitmap;
/* All allocnos sorted according their priorities. */
static ira_allocno_t *sorted_allocnos;
/* Vec representing the stack of allocnos used during coloring. */
static VEC(ira_allocno_t,heap) *allocno_stack_vec;
/* Array used to choose an allocno for spilling. */
static ira_allocno_t *allocnos_for_spilling;
/* Pool for splay tree nodes. */
static alloc_pool splay_tree_node_pool;
/* When an allocno is removed from the splay tree, it is put in the
following vector for subsequent inserting it into the splay tree
after putting all colorable allocnos onto the stack. The allocno
could be removed from and inserted to the splay tree every time
when its spilling priority is changed but such solution would be
more costly although simpler. */
static VEC(ira_allocno_t,heap) *removed_splay_allocno_vec;
/* Helper for qsort comparison callbacks - return a positive integer if
X > Y, or a negative value otherwise. Use a conditional expression
instead of a difference computation to insulate from possible overflow
issues, e.g. X - Y < 0 for some X > 0 and Y < 0. */
#define SORTGT(x,y) (((x) > (y)) ? 1 : -1)
/* This page contains functions used to find conflicts using allocno
live ranges. */
/* Return TRUE if live ranges of allocnos A1 and A2 intersect. It is
used to find a conflict for new allocnos or allocnos with the
different cover classes. */
static bool
allocnos_have_intersected_live_ranges_p (ira_allocno_t a1, ira_allocno_t a2)
{
int i, j;
int n1 = ALLOCNO_NUM_OBJECTS (a1);
int n2 = ALLOCNO_NUM_OBJECTS (a2);
if (a1 == a2)
return false;
if (ALLOCNO_REG (a1) != NULL && ALLOCNO_REG (a2) != NULL
&& (ORIGINAL_REGNO (ALLOCNO_REG (a1))
== ORIGINAL_REGNO (ALLOCNO_REG (a2))))
return false;
for (i = 0; i < n1; i++)
{
ira_object_t c1 = ALLOCNO_OBJECT (a1, i);
for (j = 0; j < n2; j++)
{
ira_object_t c2 = ALLOCNO_OBJECT (a2, j);
if (ira_live_ranges_intersect_p (OBJECT_LIVE_RANGES (c1),
OBJECT_LIVE_RANGES (c2)))
return true;
}
}
return false;
}
#ifdef ENABLE_IRA_CHECKING
/* Return TRUE if live ranges of pseudo-registers REGNO1 and REGNO2
intersect. This should be used when there is only one region.
Currently this is used during reload. */
static bool
pseudos_have_intersected_live_ranges_p (int regno1, int regno2)
{
ira_allocno_t a1, a2;
ira_assert (regno1 >= FIRST_PSEUDO_REGISTER
&& regno2 >= FIRST_PSEUDO_REGISTER);
/* Reg info caclulated by dataflow infrastructure can be different
from one calculated by regclass. */
if ((a1 = ira_loop_tree_root->regno_allocno_map[regno1]) == NULL
|| (a2 = ira_loop_tree_root->regno_allocno_map[regno2]) == NULL)
return false;
return allocnos_have_intersected_live_ranges_p (a1, a2);
}
#endif
/* This page contains functions used to choose hard registers for
allocnos. */
/* Array whose element value is TRUE if the corresponding hard
register was already allocated for an allocno. */
static bool allocated_hardreg_p[FIRST_PSEUDO_REGISTER];
/* Describes one element in a queue of allocnos whose costs need to be
updated. Each allocno in the queue is known to have a cover class. */
struct update_cost_queue_elem
{
/* This element is in the queue iff CHECK == update_cost_check. */
int check;
/* COST_HOP_DIVISOR**N, where N is the length of the shortest path
connecting this allocno to the one being allocated. */
int divisor;
/* The next allocno in the queue, or null if this is the last element. */
ira_allocno_t next;
};
/* The first element in a queue of allocnos whose copy costs need to be
updated. Null if the queue is empty. */
static ira_allocno_t update_cost_queue;
/* The last element in the queue described by update_cost_queue.
Not valid if update_cost_queue is null. */
static struct update_cost_queue_elem *update_cost_queue_tail;
/* A pool of elements in the queue described by update_cost_queue.
Elements are indexed by ALLOCNO_NUM. */
static struct update_cost_queue_elem *update_cost_queue_elems;
/* The current value of update_copy_cost call count. */
static int update_cost_check;
/* Allocate and initialize data necessary for function
update_copy_costs. */
static void
initiate_cost_update (void)
{
size_t size;
size = ira_allocnos_num * sizeof (struct update_cost_queue_elem);
update_cost_queue_elems
= (struct update_cost_queue_elem *) ira_allocate (size);
memset (update_cost_queue_elems, 0, size);
update_cost_check = 0;
}
/* Deallocate data used by function update_copy_costs. */
static void
finish_cost_update (void)
{
ira_free (update_cost_queue_elems);
}
/* When we traverse allocnos to update hard register costs, the cost
divisor will be multiplied by the following macro value for each
hop from given allocno to directly connected allocnos. */
#define COST_HOP_DIVISOR 4
/* Start a new cost-updating pass. */
static void
start_update_cost (void)
{
update_cost_check++;
update_cost_queue = NULL;
}
/* Add (ALLOCNO, DIVISOR) to the end of update_cost_queue,
unless ALLOCNO is already in the queue, or has no cover class. */
static inline void
queue_update_cost (ira_allocno_t allocno, int divisor)
{
struct update_cost_queue_elem *elem;
elem = &update_cost_queue_elems[ALLOCNO_NUM (allocno)];
if (elem->check != update_cost_check
&& ALLOCNO_COVER_CLASS (allocno) != NO_REGS)
{
elem->check = update_cost_check;
elem->divisor = divisor;
elem->next = NULL;
if (update_cost_queue == NULL)
update_cost_queue = allocno;
else
update_cost_queue_tail->next = allocno;
update_cost_queue_tail = elem;
}
}
/* Try to remove the first element from update_cost_queue. Return false
if the queue was empty, otherwise make (*ALLOCNO, *DIVISOR) describe
the removed element. */
static inline bool
get_next_update_cost (ira_allocno_t *allocno, int *divisor)
{
struct update_cost_queue_elem *elem;
if (update_cost_queue == NULL)
return false;
*allocno = update_cost_queue;
elem = &update_cost_queue_elems[ALLOCNO_NUM (*allocno)];
*divisor = elem->divisor;
update_cost_queue = elem->next;
return true;
}
/* Update the cost of allocnos to increase chances to remove some
copies as the result of subsequent assignment. */
static void
update_copy_costs (ira_allocno_t allocno, bool decr_p)
{
int i, cost, update_cost, hard_regno, divisor;
enum machine_mode mode;
enum reg_class rclass, cover_class;
ira_allocno_t another_allocno;
ira_copy_t cp, next_cp;
hard_regno = ALLOCNO_HARD_REGNO (allocno);
ira_assert (hard_regno >= 0);
cover_class = ALLOCNO_COVER_CLASS (allocno);
if (cover_class == NO_REGS)
return;
i = ira_class_hard_reg_index[cover_class][hard_regno];
ira_assert (i >= 0);
rclass = REGNO_REG_CLASS (hard_regno);
start_update_cost ();
divisor = 1;
do
{
mode = ALLOCNO_MODE (allocno);
for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
{
if (cp->first == allocno)
{
next_cp = cp->next_first_allocno_copy;
another_allocno = cp->second;
}
else if (cp->second == allocno)
{
next_cp = cp->next_second_allocno_copy;
another_allocno = cp->first;
}
else
gcc_unreachable ();
cover_class = ALLOCNO_COVER_CLASS (another_allocno);
if (! TEST_HARD_REG_BIT (reg_class_contents[cover_class],
hard_regno)
|| ALLOCNO_ASSIGNED_P (another_allocno))
continue;
cost = (cp->second == allocno
? ira_get_register_move_cost (mode, rclass, cover_class)
: ira_get_register_move_cost (mode, cover_class, rclass));
if (decr_p)
cost = -cost;
update_cost = cp->freq * cost / divisor;
if (update_cost == 0)
continue;
ira_allocate_and_set_or_copy_costs
(&ALLOCNO_UPDATED_HARD_REG_COSTS (another_allocno), cover_class,
ALLOCNO_UPDATED_COVER_CLASS_COST (another_allocno),
ALLOCNO_HARD_REG_COSTS (another_allocno));
ira_allocate_and_set_or_copy_costs
(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno),
cover_class, 0,
ALLOCNO_CONFLICT_HARD_REG_COSTS (another_allocno));
i = ira_class_hard_reg_index[cover_class][hard_regno];
ira_assert (i >= 0);
ALLOCNO_UPDATED_HARD_REG_COSTS (another_allocno)[i] += update_cost;
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno)[i]
+= update_cost;
queue_update_cost (another_allocno, divisor * COST_HOP_DIVISOR);
}
}
while (get_next_update_cost (&allocno, &divisor));
}
/* This function updates COSTS (decrease if DECR_P) for hard_registers
of COVER_CLASS by conflict costs of the unassigned allocnos
connected by copies with allocnos in update_cost_queue. This
update increases chances to remove some copies. */
static void
update_conflict_hard_regno_costs (int *costs, enum reg_class cover_class,
bool decr_p)
{
int i, cost, class_size, freq, mult, div, divisor;
int index, hard_regno;
int *conflict_costs;
bool cont_p;
enum reg_class another_cover_class;
ira_allocno_t allocno, another_allocno;
ira_copy_t cp, next_cp;
while (get_next_update_cost (&allocno, &divisor))
for (cp = ALLOCNO_COPIES (allocno); cp != NULL; cp = next_cp)
{
if (cp->first == allocno)
{
next_cp = cp->next_first_allocno_copy;
another_allocno = cp->second;
}
else if (cp->second == allocno)
{
next_cp = cp->next_second_allocno_copy;
another_allocno = cp->first;
}
else
gcc_unreachable ();
another_cover_class = ALLOCNO_COVER_CLASS (another_allocno);
if (! ira_reg_classes_intersect_p[cover_class][another_cover_class]
|| ALLOCNO_ASSIGNED_P (another_allocno)
|| ALLOCNO_MAY_BE_SPILLED_P (another_allocno))
continue;
class_size = ira_class_hard_regs_num[another_cover_class];
ira_allocate_and_copy_costs
(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno),
another_cover_class,
ALLOCNO_CONFLICT_HARD_REG_COSTS (another_allocno));
conflict_costs
= ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (another_allocno);
if (conflict_costs == NULL)
cont_p = true;
else
{
mult = cp->freq;
freq = ALLOCNO_FREQ (another_allocno);
if (freq == 0)
freq = 1;
div = freq * divisor;
cont_p = false;
for (i = class_size - 1; i >= 0; i--)
{
hard_regno = ira_class_hard_regs[another_cover_class][i];
ira_assert (hard_regno >= 0);
index = ira_class_hard_reg_index[cover_class][hard_regno];
if (index < 0)
continue;
cost = conflict_costs [i] * mult / div;
if (cost == 0)
continue;
cont_p = true;
if (decr_p)
cost = -cost;
costs[index] += cost;
}
}
/* Probably 5 hops will be enough. */
if (cont_p
&& divisor <= (COST_HOP_DIVISOR
* COST_HOP_DIVISOR
* COST_HOP_DIVISOR
* COST_HOP_DIVISOR))
queue_update_cost (another_allocno, divisor * COST_HOP_DIVISOR);
}
}
/* Choose a hard register for allocno A. If RETRY_P is TRUE, it means
that the function called from function
`ira_reassign_conflict_allocnos' and `allocno_reload_assign'. */
static bool
assign_hard_reg (ira_allocno_t a, bool retry_p)
{
HARD_REG_SET conflicting_regs[2];
int i, j, hard_regno, nregs, best_hard_regno, class_size;
int cost, mem_cost, min_cost, full_cost, min_full_cost, nwords, word;
int *a_costs;
enum reg_class cover_class;
enum machine_mode mode;
static int costs[FIRST_PSEUDO_REGISTER], full_costs[FIRST_PSEUDO_REGISTER];
#ifndef HONOR_REG_ALLOC_ORDER
enum reg_class rclass;
int add_cost;
#endif
#ifdef STACK_REGS
bool no_stack_reg_p;
#endif
nwords = ALLOCNO_NUM_OBJECTS (a);
ira_assert (! ALLOCNO_ASSIGNED_P (a));
cover_class = ALLOCNO_COVER_CLASS (a);
class_size = ira_class_hard_regs_num[cover_class];
mode = ALLOCNO_MODE (a);
for (i = 0; i < nwords; i++)
CLEAR_HARD_REG_SET (conflicting_regs[i]);
best_hard_regno = -1;
memset (full_costs, 0, sizeof (int) * class_size);
mem_cost = 0;
memset (costs, 0, sizeof (int) * class_size);
memset (full_costs, 0, sizeof (int) * class_size);
#ifdef STACK_REGS
no_stack_reg_p = false;
#endif
start_update_cost ();
mem_cost += ALLOCNO_UPDATED_MEMORY_COST (a);
ira_allocate_and_copy_costs (&ALLOCNO_UPDATED_HARD_REG_COSTS (a),
cover_class, ALLOCNO_HARD_REG_COSTS (a));
a_costs = ALLOCNO_UPDATED_HARD_REG_COSTS (a);
#ifdef STACK_REGS
no_stack_reg_p = no_stack_reg_p || ALLOCNO_TOTAL_NO_STACK_REG_P (a);
#endif
cost = ALLOCNO_UPDATED_COVER_CLASS_COST (a);
for (i = 0; i < class_size; i++)
if (a_costs != NULL)
{
costs[i] += a_costs[i];
full_costs[i] += a_costs[i];
}
else
{
costs[i] += cost;
full_costs[i] += cost;
}
for (word = 0; word < nwords; word++)
{
ira_object_t conflict_obj;
ira_object_t obj = ALLOCNO_OBJECT (a, word);
ira_object_conflict_iterator oci;
IOR_HARD_REG_SET (conflicting_regs[word],
OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
/* Take preferences of conflicting allocnos into account. */
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
{
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
enum reg_class conflict_cover_class;
/* Reload can give another class so we need to check all
allocnos. */
if (!retry_p && !bitmap_bit_p (consideration_allocno_bitmap,
ALLOCNO_NUM (conflict_a)))
continue;
conflict_cover_class = ALLOCNO_COVER_CLASS (conflict_a);
ira_assert (ira_reg_classes_intersect_p
[cover_class][conflict_cover_class]);
if (ALLOCNO_ASSIGNED_P (conflict_a))
{
hard_regno = ALLOCNO_HARD_REGNO (conflict_a);
if (hard_regno >= 0
&& ira_class_hard_reg_index[cover_class][hard_regno] >= 0)
{
enum machine_mode mode = ALLOCNO_MODE (conflict_a);
int conflict_nregs = hard_regno_nregs[hard_regno][mode];
int n_objects = ALLOCNO_NUM_OBJECTS (conflict_a);
if (conflict_nregs == n_objects && conflict_nregs > 1)
{
int num = OBJECT_SUBWORD (conflict_obj);
if (WORDS_BIG_ENDIAN)
SET_HARD_REG_BIT (conflicting_regs[word],
hard_regno + n_objects - num - 1);
else
SET_HARD_REG_BIT (conflicting_regs[word],
hard_regno + num);
}
else
IOR_HARD_REG_SET
(conflicting_regs[word],
ira_reg_mode_hard_regset[hard_regno][mode]);
if (hard_reg_set_subset_p (reg_class_contents[cover_class],
conflicting_regs[word]))
goto fail;
}
}
else if (! ALLOCNO_MAY_BE_SPILLED_P (conflict_a))
{
int k, *conflict_costs;
ira_allocate_and_copy_costs
(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (conflict_a),
conflict_cover_class,
ALLOCNO_CONFLICT_HARD_REG_COSTS (conflict_a));
conflict_costs
= ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (conflict_a);
if (conflict_costs != NULL)
for (j = class_size - 1; j >= 0; j--)
{
hard_regno = ira_class_hard_regs[cover_class][j];
ira_assert (hard_regno >= 0);
k = (ira_class_hard_reg_index
[conflict_cover_class][hard_regno]);
if (k < 0)
continue;
full_costs[j] -= conflict_costs[k];
}
queue_update_cost (conflict_a, COST_HOP_DIVISOR);
}
}
}
/* Take into account preferences of allocnos connected by copies to
the conflict allocnos. */
update_conflict_hard_regno_costs (full_costs, cover_class, true);
/* Take preferences of allocnos connected by copies into
account. */
start_update_cost ();
queue_update_cost (a, COST_HOP_DIVISOR);
update_conflict_hard_regno_costs (full_costs, cover_class, false);
min_cost = min_full_cost = INT_MAX;
/* We don't care about giving callee saved registers to allocnos no
living through calls because call clobbered registers are
allocated first (it is usual practice to put them first in
REG_ALLOC_ORDER). */
for (i = 0; i < class_size; i++)
{
hard_regno = ira_class_hard_regs[cover_class][i];
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
#ifdef STACK_REGS
if (no_stack_reg_p
&& FIRST_STACK_REG <= hard_regno && hard_regno <= LAST_STACK_REG)
continue;
#endif
if (TEST_HARD_REG_BIT (prohibited_class_mode_regs[cover_class][mode],
hard_regno))
continue;
for (j = 0; j < nregs; j++)
{
int k;
int set_to_test_start = 0, set_to_test_end = nwords;
if (nregs == nwords)
{
if (WORDS_BIG_ENDIAN)
set_to_test_start = nwords - j - 1;
else
set_to_test_start = j;
set_to_test_end = set_to_test_start + 1;
}
for (k = set_to_test_start; k < set_to_test_end; k++)
if (TEST_HARD_REG_BIT (conflicting_regs[k], hard_regno + j))
break;
if (k != set_to_test_end)
break;
}
if (j != nregs)
continue;
cost = costs[i];
full_cost = full_costs[i];
#ifndef HONOR_REG_ALLOC_ORDER
if (! allocated_hardreg_p[hard_regno]
&& ira_hard_reg_not_in_set_p (hard_regno, mode, call_used_reg_set))
/* We need to save/restore the hard register in
epilogue/prologue. Therefore we increase the cost. */
{
/* ??? If only part is call clobbered. */
rclass = REGNO_REG_CLASS (hard_regno);
add_cost = (ira_memory_move_cost[mode][rclass][0]
+ ira_memory_move_cost[mode][rclass][1] - 1);
cost += add_cost;
full_cost += add_cost;
}
#endif
if (min_cost > cost)
min_cost = cost;
if (min_full_cost > full_cost)
{
min_full_cost = full_cost;
best_hard_regno = hard_regno;
ira_assert (hard_regno >= 0);
}
}
if (min_full_cost > mem_cost)
{
if (! retry_p && internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, "(memory is more profitable %d vs %d) ",
mem_cost, min_full_cost);
best_hard_regno = -1;
}
fail:
if (best_hard_regno >= 0)
allocated_hardreg_p[best_hard_regno] = true;
ALLOCNO_HARD_REGNO (a) = best_hard_regno;
ALLOCNO_ASSIGNED_P (a) = true;
if (best_hard_regno >= 0)
update_copy_costs (a, true);
/* We don't need updated costs anymore: */
ira_free_allocno_updated_costs (a);
return best_hard_regno >= 0;
}
/* This page contains the allocator based on the Chaitin-Briggs algorithm. */
/* Bucket of allocnos that can colored currently without spilling. */
static ira_allocno_t colorable_allocno_bucket;
/* Bucket of allocnos that might be not colored currently without
spilling. */
static ira_allocno_t uncolorable_allocno_bucket;
/* Each element of the array contains the current number of allocnos
of given *cover* class in the uncolorable_bucket. */
static int uncolorable_allocnos_num[N_REG_CLASSES];
/* Return the current spill priority of allocno A. The less the
number, the more preferable the allocno for spilling. */
static int
allocno_spill_priority (ira_allocno_t a)
{
return (ALLOCNO_TEMP (a)
/ (ALLOCNO_LEFT_CONFLICTS_SIZE (a)
* ira_reg_class_nregs[ALLOCNO_COVER_CLASS (a)][ALLOCNO_MODE (a)]
+ 1));
}
/* Add ALLOCNO to bucket *BUCKET_PTR. ALLOCNO should be not in a bucket
before the call. */
static void
add_allocno_to_bucket (ira_allocno_t allocno, ira_allocno_t *bucket_ptr)
{
ira_allocno_t first_allocno;
enum reg_class cover_class;
if (bucket_ptr == &uncolorable_allocno_bucket
&& (cover_class = ALLOCNO_COVER_CLASS (allocno)) != NO_REGS)
{
uncolorable_allocnos_num[cover_class]++;
ira_assert (uncolorable_allocnos_num[cover_class] > 0);
}
first_allocno = *bucket_ptr;
ALLOCNO_NEXT_BUCKET_ALLOCNO (allocno) = first_allocno;
ALLOCNO_PREV_BUCKET_ALLOCNO (allocno) = NULL;
if (first_allocno != NULL)
ALLOCNO_PREV_BUCKET_ALLOCNO (first_allocno) = allocno;
*bucket_ptr = allocno;
}
/* Compare two allocnos to define which allocno should be pushed first
into the coloring stack. If the return is a negative number, the
allocno given by the first parameter will be pushed first. In this
case such allocno has less priority than the second one and the
hard register will be assigned to it after assignment to the second
one. As the result of such assignment order, the second allocno
has a better chance to get the best hard register. */
static int
bucket_allocno_compare_func (const void *v1p, const void *v2p)
{
ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
int diff, a1_freq, a2_freq, a1_num, a2_num;
if ((diff = (int) ALLOCNO_COVER_CLASS (a2) - ALLOCNO_COVER_CLASS (a1)) != 0)
return diff;
a1_freq = ALLOCNO_FREQ (a1);
a1_num = ALLOCNO_AVAILABLE_REGS_NUM (a1);
a2_freq = ALLOCNO_FREQ (a2);
a2_num = ALLOCNO_AVAILABLE_REGS_NUM (a2);
if ((diff = a2_num - a1_num) != 0)
return diff;
else if ((diff = a1_freq - a2_freq) != 0)
return diff;
return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1);
}
/* Sort bucket *BUCKET_PTR and return the result through
BUCKET_PTR. */
static void
sort_bucket (ira_allocno_t *bucket_ptr)
{
ira_allocno_t a, head;
int n;
for (n = 0, a = *bucket_ptr; a != NULL; a = ALLOCNO_NEXT_BUCKET_ALLOCNO (a))
sorted_allocnos[n++] = a;
if (n <= 1)
return;
qsort (sorted_allocnos, n, sizeof (ira_allocno_t),
bucket_allocno_compare_func);
head = NULL;
for (n--; n >= 0; n--)
{
a = sorted_allocnos[n];
ALLOCNO_NEXT_BUCKET_ALLOCNO (a) = head;
ALLOCNO_PREV_BUCKET_ALLOCNO (a) = NULL;
if (head != NULL)
ALLOCNO_PREV_BUCKET_ALLOCNO (head) = a;
head = a;
}
*bucket_ptr = head;
}
/* Add ALLOCNO to bucket *BUCKET_PTR maintaining the order according
their priority. ALLOCNO should be not in a bucket before the
call. */
static void
add_allocno_to_ordered_bucket (ira_allocno_t allocno,
ira_allocno_t *bucket_ptr)
{
ira_allocno_t before, after;
enum reg_class cover_class;
if (bucket_ptr == &uncolorable_allocno_bucket
&& (cover_class = ALLOCNO_COVER_CLASS (allocno)) != NO_REGS)
{
uncolorable_allocnos_num[cover_class]++;
ira_assert (uncolorable_allocnos_num[cover_class] > 0);
}
for (before = *bucket_ptr, after = NULL;
before != NULL;
after = before, before = ALLOCNO_NEXT_BUCKET_ALLOCNO (before))
if (bucket_allocno_compare_func (&allocno, &before) < 0)
break;
ALLOCNO_NEXT_BUCKET_ALLOCNO (allocno) = before;
ALLOCNO_PREV_BUCKET_ALLOCNO (allocno) = after;
if (after == NULL)
*bucket_ptr = allocno;
else
ALLOCNO_NEXT_BUCKET_ALLOCNO (after) = allocno;
if (before != NULL)
ALLOCNO_PREV_BUCKET_ALLOCNO (before) = allocno;
}
/* Delete ALLOCNO from bucket *BUCKET_PTR. It should be there before
the call. */
static void
delete_allocno_from_bucket (ira_allocno_t allocno, ira_allocno_t *bucket_ptr)
{
ira_allocno_t prev_allocno, next_allocno;
enum reg_class cover_class;
if (bucket_ptr == &uncolorable_allocno_bucket
&& (cover_class = ALLOCNO_COVER_CLASS (allocno)) != NO_REGS)
{
uncolorable_allocnos_num[cover_class]--;
ira_assert (uncolorable_allocnos_num[cover_class] >= 0);
}
prev_allocno = ALLOCNO_PREV_BUCKET_ALLOCNO (allocno);
next_allocno = ALLOCNO_NEXT_BUCKET_ALLOCNO (allocno);
if (prev_allocno != NULL)
ALLOCNO_NEXT_BUCKET_ALLOCNO (prev_allocno) = next_allocno;
else
{
ira_assert (*bucket_ptr == allocno);
*bucket_ptr = next_allocno;
}
if (next_allocno != NULL)
ALLOCNO_PREV_BUCKET_ALLOCNO (next_allocno) = prev_allocno;
}
/* Splay tree for each cover class. The trees are indexed by the
corresponding cover classes. Splay trees contain uncolorable
allocnos. */
static splay_tree uncolorable_allocnos_splay_tree[N_REG_CLASSES];
/* If the following macro is TRUE, splay tree is used to choose an
allocno of the corresponding cover class for spilling. When the
number uncolorable allocnos of given cover class decreases to some
threshold, linear array search is used to find the best allocno for
spilling. This threshold is actually pretty big because, although
splay trees asymptotically is much faster, each splay tree
operation is sufficiently costly especially taking cache locality
into account. */
#define USE_SPLAY_P(CLASS) (uncolorable_allocnos_num[CLASS] > 4000)
/* Put allocno A onto the coloring stack without removing it from its
bucket. Pushing allocno to the coloring stack can result in moving
conflicting allocnos from the uncolorable bucket to the colorable
one. */
static void
push_allocno_to_stack (ira_allocno_t a)
{
int size;
enum reg_class cover_class;
int i, n = ALLOCNO_NUM_OBJECTS (a);
ALLOCNO_IN_GRAPH_P (a) = false;
VEC_safe_push (ira_allocno_t, heap, allocno_stack_vec, a);
cover_class = ALLOCNO_COVER_CLASS (a);
if (cover_class == NO_REGS)
return;
size = ira_reg_class_nregs[cover_class][ALLOCNO_MODE (a)];
if (ALLOCNO_NUM_OBJECTS (a) > 1)
{
/* We will deal with the subwords individually. */
gcc_assert (size == ALLOCNO_NUM_OBJECTS (a));
size = 1;
}
for (i = 0; i < n; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
int conflict_size;
ira_object_t conflict_obj;
ira_object_conflict_iterator oci;
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
{
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
int left_conflicts_size;
conflict_a = conflict_a;
if (!bitmap_bit_p (coloring_allocno_bitmap,
ALLOCNO_NUM (conflict_a)))
continue;
ira_assert (cover_class
== ALLOCNO_COVER_CLASS (conflict_a));
if (!ALLOCNO_IN_GRAPH_P (conflict_a)
|| ALLOCNO_ASSIGNED_P (conflict_a))
continue;
left_conflicts_size = ALLOCNO_LEFT_CONFLICTS_SIZE (conflict_a);
conflict_size
= (ira_reg_class_nregs
[cover_class][ALLOCNO_MODE (conflict_a)]);
ira_assert (left_conflicts_size >= size);
if (left_conflicts_size + conflict_size
<= ALLOCNO_AVAILABLE_REGS_NUM (conflict_a))
{
ALLOCNO_LEFT_CONFLICTS_SIZE (conflict_a) -= size;
continue;
}
left_conflicts_size -= size;
if (uncolorable_allocnos_splay_tree[cover_class] != NULL
&& !ALLOCNO_SPLAY_REMOVED_P (conflict_a)
&& USE_SPLAY_P (cover_class))
{
ira_assert
(splay_tree_lookup
(uncolorable_allocnos_splay_tree[cover_class],
(splay_tree_key) conflict_a) != NULL);
splay_tree_remove
(uncolorable_allocnos_splay_tree[cover_class],
(splay_tree_key) conflict_a);
ALLOCNO_SPLAY_REMOVED_P (conflict_a) = true;
VEC_safe_push (ira_allocno_t, heap,
removed_splay_allocno_vec,
conflict_a);
}
ALLOCNO_LEFT_CONFLICTS_SIZE (conflict_a)
= left_conflicts_size;
if (left_conflicts_size + conflict_size
<= ALLOCNO_AVAILABLE_REGS_NUM (conflict_a))
{
delete_allocno_from_bucket
(conflict_a, &uncolorable_allocno_bucket);
add_allocno_to_ordered_bucket
(conflict_a, &colorable_allocno_bucket);
}
}
}
}
/* Put ALLOCNO onto the coloring stack and remove it from its bucket.
The allocno is in the colorable bucket if COLORABLE_P is TRUE. */
static void
remove_allocno_from_bucket_and_push (ira_allocno_t allocno, bool colorable_p)
{
enum reg_class cover_class;
if (colorable_p)
delete_allocno_from_bucket (allocno, &colorable_allocno_bucket);
else
delete_allocno_from_bucket (allocno, &uncolorable_allocno_bucket);
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
{
fprintf (ira_dump_file, " Pushing");
ira_print_expanded_allocno (allocno);
if (colorable_p)
fprintf (ira_dump_file, "\n");
else
fprintf (ira_dump_file, "(potential spill: %spri=%d, cost=%d)\n",
ALLOCNO_BAD_SPILL_P (allocno) ? "bad spill, " : "",
allocno_spill_priority (allocno), ALLOCNO_TEMP (allocno));
}
cover_class = ALLOCNO_COVER_CLASS (allocno);
ira_assert ((colorable_p
&& (ALLOCNO_LEFT_CONFLICTS_SIZE (allocno)
+ ira_reg_class_nregs[cover_class][ALLOCNO_MODE (allocno)]
<= ALLOCNO_AVAILABLE_REGS_NUM (allocno)))
|| (! colorable_p
&& (ALLOCNO_LEFT_CONFLICTS_SIZE (allocno)
+ ira_reg_class_nregs[cover_class][ALLOCNO_MODE
(allocno)]
> ALLOCNO_AVAILABLE_REGS_NUM (allocno))));
if (! colorable_p)
ALLOCNO_MAY_BE_SPILLED_P (allocno) = true;
push_allocno_to_stack (allocno);
}
/* Put all allocnos from colorable bucket onto the coloring stack. */
static void
push_only_colorable (void)
{
sort_bucket (&colorable_allocno_bucket);
for (;colorable_allocno_bucket != NULL;)
remove_allocno_from_bucket_and_push (colorable_allocno_bucket, true);
}
/* Puts ALLOCNO chosen for potential spilling onto the coloring
stack. */
static void
push_allocno_to_spill (ira_allocno_t allocno)
{
delete_allocno_from_bucket (allocno, &uncolorable_allocno_bucket);
ALLOCNO_MAY_BE_SPILLED_P (allocno) = true;
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Pushing p%d(%d) (spill for NO_REGS)\n",
ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno));
push_allocno_to_stack (allocno);
}
/* Return the frequency of exit edges (if EXIT_P) or entry from/to the
loop given by its LOOP_NODE. */
int
ira_loop_edge_freq (ira_loop_tree_node_t loop_node, int regno, bool exit_p)
{
int freq, i;
edge_iterator ei;
edge e;
VEC (edge, heap) *edges;
ira_assert (loop_node->loop != NULL
&& (regno < 0 || regno >= FIRST_PSEUDO_REGISTER));
freq = 0;
if (! exit_p)
{
FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds)
if (e->src != loop_node->loop->latch
&& (regno < 0
|| (bitmap_bit_p (DF_LR_OUT (e->src), regno)
&& bitmap_bit_p (DF_LR_IN (e->dest), regno))))
freq += EDGE_FREQUENCY (e);
}
else
{
edges = get_loop_exit_edges (loop_node->loop);
FOR_EACH_VEC_ELT (edge, edges, i, e)
if (regno < 0
|| (bitmap_bit_p (DF_LR_OUT (e->src), regno)
&& bitmap_bit_p (DF_LR_IN (e->dest), regno)))
freq += EDGE_FREQUENCY (e);
VEC_free (edge, heap, edges);
}
return REG_FREQ_FROM_EDGE_FREQ (freq);
}
/* Calculate and return the cost of putting allocno A into memory. */
static int
calculate_allocno_spill_cost (ira_allocno_t a)
{
int regno, cost;
enum machine_mode mode;
enum reg_class rclass;
ira_allocno_t parent_allocno;
ira_loop_tree_node_t parent_node, loop_node;
regno = ALLOCNO_REGNO (a);
cost = ALLOCNO_UPDATED_MEMORY_COST (a) - ALLOCNO_UPDATED_COVER_CLASS_COST (a);
if (ALLOCNO_CAP (a) != NULL)
return cost;
loop_node = ALLOCNO_LOOP_TREE_NODE (a);
if ((parent_node = loop_node->parent) == NULL)
return cost;
if ((parent_allocno = parent_node->regno_allocno_map[regno]) == NULL)
return cost;
mode = ALLOCNO_MODE (a);
rclass = ALLOCNO_COVER_CLASS (a);
if (ALLOCNO_HARD_REGNO (parent_allocno) < 0)
cost -= (ira_memory_move_cost[mode][rclass][0]
* ira_loop_edge_freq (loop_node, regno, true)
+ ira_memory_move_cost[mode][rclass][1]
* ira_loop_edge_freq (loop_node, regno, false));
else
cost += ((ira_memory_move_cost[mode][rclass][1]
* ira_loop_edge_freq (loop_node, regno, true)
+ ira_memory_move_cost[mode][rclass][0]
* ira_loop_edge_freq (loop_node, regno, false))
- (ira_get_register_move_cost (mode, rclass, rclass)
* (ira_loop_edge_freq (loop_node, regno, false)
+ ira_loop_edge_freq (loop_node, regno, true))));
return cost;
}
/* Compare keys in the splay tree used to choose best allocno for
spilling. The best allocno has the minimal key. */
static int
allocno_spill_priority_compare (splay_tree_key k1, splay_tree_key k2)
{
int pri1, pri2, diff;
ira_allocno_t a1 = (ira_allocno_t) k1, a2 = (ira_allocno_t) k2;
pri1 = (ALLOCNO_TEMP (a1)
/ (ALLOCNO_LEFT_CONFLICTS_SIZE (a1)
* ira_reg_class_nregs[ALLOCNO_COVER_CLASS (a1)][ALLOCNO_MODE (a1)]
+ 1));
pri2 = (ALLOCNO_TEMP (a2)
/ (ALLOCNO_LEFT_CONFLICTS_SIZE (a2)
* ira_reg_class_nregs[ALLOCNO_COVER_CLASS (a2)][ALLOCNO_MODE (a2)]
+ 1));
if ((diff = pri1 - pri2) != 0)
return diff;
if ((diff = ALLOCNO_TEMP (a1) - ALLOCNO_TEMP (a2)) != 0)
return diff;
return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
}
/* Allocate data of SIZE for the splay trees. We allocate only spay
tree roots or splay tree nodes. If you change this, please rewrite
the function. */
static void *
splay_tree_allocate (int size, void *data ATTRIBUTE_UNUSED)
{
if (size != sizeof (struct splay_tree_node_s))
return ira_allocate (size);
return pool_alloc (splay_tree_node_pool);
}
/* Free data NODE for the splay trees. We allocate and free only spay
tree roots or splay tree nodes. If you change this, please rewrite
the function. */
static void
splay_tree_free (void *node, void *data ATTRIBUTE_UNUSED)
{
int i;
enum reg_class cover_class;
for (i = 0; i < ira_reg_class_cover_size; i++)
{
cover_class = ira_reg_class_cover[i];
if (node == uncolorable_allocnos_splay_tree[cover_class])
{
ira_free (node);
return;
}
}
pool_free (splay_tree_node_pool, node);
}
/* Push allocnos to the coloring stack. The order of allocnos in the
stack defines the order for the subsequent coloring. */
static void
push_allocnos_to_stack (void)
{
ira_allocno_t allocno, i_allocno, *allocno_vec;
enum reg_class cover_class, rclass;
int allocno_pri, i_allocno_pri, allocno_cost, i_allocno_cost;
int i, j, num, cover_class_allocnos_num[N_REG_CLASSES];
ira_allocno_t *cover_class_allocnos[N_REG_CLASSES];
int cost;
/* Initialize. */
VEC_truncate(ira_allocno_t, removed_splay_allocno_vec, 0);
for (i = 0; i < ira_reg_class_cover_size; i++)
{
cover_class = ira_reg_class_cover[i];
cover_class_allocnos_num[cover_class] = 0;
cover_class_allocnos[cover_class] = NULL;
uncolorable_allocnos_splay_tree[cover_class] = NULL;
}
/* Calculate uncolorable allocno spill costs. */
for (allocno = uncolorable_allocno_bucket;
allocno != NULL;
allocno = ALLOCNO_NEXT_BUCKET_ALLOCNO (allocno))
if ((cover_class = ALLOCNO_COVER_CLASS (allocno)) != NO_REGS)
{
cover_class_allocnos_num[cover_class]++;
cost = calculate_allocno_spill_cost (allocno);
ALLOCNO_TEMP (allocno) = cost;
}
/* Define place where to put uncolorable allocnos of the same cover
class. */
for (num = i = 0; i < ira_reg_class_cover_size; i++)
{
cover_class = ira_reg_class_cover[i];
ira_assert (cover_class_allocnos_num[cover_class]
== uncolorable_allocnos_num[cover_class]);
if (cover_class_allocnos_num[cover_class] != 0)
{
cover_class_allocnos[cover_class] = allocnos_for_spilling + num;
num += cover_class_allocnos_num[cover_class];
cover_class_allocnos_num[cover_class] = 0;
}
if (USE_SPLAY_P (cover_class))
uncolorable_allocnos_splay_tree[cover_class]
= splay_tree_new_with_allocator (allocno_spill_priority_compare,
NULL, NULL, splay_tree_allocate,
splay_tree_free, NULL);
}
ira_assert (num <= ira_allocnos_num);
/* Collect uncolorable allocnos of each cover class. */
for (allocno = uncolorable_allocno_bucket;
allocno != NULL;
allocno = ALLOCNO_NEXT_BUCKET_ALLOCNO (allocno))
if ((cover_class = ALLOCNO_COVER_CLASS (allocno)) != NO_REGS)
{
cover_class_allocnos
[cover_class][cover_class_allocnos_num[cover_class]++] = allocno;
if (uncolorable_allocnos_splay_tree[cover_class] != NULL)
splay_tree_insert (uncolorable_allocnos_splay_tree[cover_class],
(splay_tree_key) allocno,
(splay_tree_value) allocno);
}
for (;;)
{
push_only_colorable ();
allocno = uncolorable_allocno_bucket;
if (allocno == NULL)
break;
cover_class = ALLOCNO_COVER_CLASS (allocno);
if (cover_class == NO_REGS)
{
push_allocno_to_spill (allocno);
continue;
}
/* Potential spilling. */
ira_assert
(ira_reg_class_nregs[cover_class][ALLOCNO_MODE (allocno)] > 0);
if (USE_SPLAY_P (cover_class))
{
for (;VEC_length (ira_allocno_t, removed_splay_allocno_vec) != 0;)
{
allocno = VEC_pop (ira_allocno_t, removed_splay_allocno_vec);
ALLOCNO_SPLAY_REMOVED_P (allocno) = false;
rclass = ALLOCNO_COVER_CLASS (allocno);
if (ALLOCNO_LEFT_CONFLICTS_SIZE (allocno)
+ ira_reg_class_nregs [rclass][ALLOCNO_MODE (allocno)]
> ALLOCNO_AVAILABLE_REGS_NUM (allocno))
splay_tree_insert
(uncolorable_allocnos_splay_tree[rclass],
(splay_tree_key) allocno, (splay_tree_value) allocno);
}
allocno = ((ira_allocno_t)
splay_tree_min
(uncolorable_allocnos_splay_tree[cover_class])->key);
splay_tree_remove (uncolorable_allocnos_splay_tree[cover_class],
(splay_tree_key) allocno);
}
else
{
num = cover_class_allocnos_num[cover_class];
ira_assert (num > 0);
allocno_vec = cover_class_allocnos[cover_class];
allocno = NULL;
allocno_pri = allocno_cost = 0;
/* Sort uncolorable allocno to find the one with the lowest
spill cost. */
for (i = 0, j = num - 1; i <= j;)
{
i_allocno = allocno_vec[i];
if (! ALLOCNO_IN_GRAPH_P (i_allocno)
&& ALLOCNO_IN_GRAPH_P (allocno_vec[j]))
{
i_allocno = allocno_vec[j];
allocno_vec[j] = allocno_vec[i];
allocno_vec[i] = i_allocno;
}
if (ALLOCNO_IN_GRAPH_P (i_allocno))
{
i++;
ira_assert (ALLOCNO_TEMP (i_allocno) != INT_MAX);
i_allocno_cost = ALLOCNO_TEMP (i_allocno);
i_allocno_pri = allocno_spill_priority (i_allocno);
if (allocno == NULL
|| (! ALLOCNO_BAD_SPILL_P (i_allocno)
&& ALLOCNO_BAD_SPILL_P (allocno))
|| (! (ALLOCNO_BAD_SPILL_P (i_allocno)
&& ! ALLOCNO_BAD_SPILL_P (allocno))
&& (allocno_pri > i_allocno_pri
|| (allocno_pri == i_allocno_pri
&& (allocno_cost > i_allocno_cost
|| (allocno_cost == i_allocno_cost
&& (ALLOCNO_NUM (allocno)
> ALLOCNO_NUM (i_allocno))))))))
{
allocno = i_allocno;
allocno_cost = i_allocno_cost;
allocno_pri = i_allocno_pri;
}
}
if (! ALLOCNO_IN_GRAPH_P (allocno_vec[j]))
j--;
}
ira_assert (allocno != NULL && j >= 0);
cover_class_allocnos_num[cover_class] = j + 1;
}
ira_assert (ALLOCNO_IN_GRAPH_P (allocno)
&& ALLOCNO_COVER_CLASS (allocno) == cover_class
&& (ALLOCNO_LEFT_CONFLICTS_SIZE (allocno)
+ ira_reg_class_nregs[cover_class][ALLOCNO_MODE
(allocno)]
> ALLOCNO_AVAILABLE_REGS_NUM (allocno)));
remove_allocno_from_bucket_and_push (allocno, false);
}
ira_assert (colorable_allocno_bucket == NULL
&& uncolorable_allocno_bucket == NULL);
for (i = 0; i < ira_reg_class_cover_size; i++)
{
cover_class = ira_reg_class_cover[i];
ira_assert (uncolorable_allocnos_num[cover_class] == 0);
if (uncolorable_allocnos_splay_tree[cover_class] != NULL)
splay_tree_delete (uncolorable_allocnos_splay_tree[cover_class]);
}
}
/* Pop the coloring stack and assign hard registers to the popped
allocnos. */
static void
pop_allocnos_from_stack (void)
{
ira_allocno_t allocno;
enum reg_class cover_class;
for (;VEC_length (ira_allocno_t, allocno_stack_vec) != 0;)
{
allocno = VEC_pop (ira_allocno_t, allocno_stack_vec);
cover_class = ALLOCNO_COVER_CLASS (allocno);
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
{
fprintf (ira_dump_file, " Popping");
ira_print_expanded_allocno (allocno);
fprintf (ira_dump_file, " -- ");
}
if (cover_class == NO_REGS)
{
ALLOCNO_HARD_REGNO (allocno) = -1;
ALLOCNO_ASSIGNED_P (allocno) = true;
ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (allocno) == NULL);
ira_assert
(ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (allocno) == NULL);
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, "assign memory\n");
}
else if (assign_hard_reg (allocno, false))
{
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, "assign reg %d\n",
ALLOCNO_HARD_REGNO (allocno));
}
else if (ALLOCNO_ASSIGNED_P (allocno))
{
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, "spill\n");
}
ALLOCNO_IN_GRAPH_P (allocno) = true;
}
}
/* Loop over all subobjects of allocno A, collecting total hard
register conflicts in PSET (which the caller must initialize). */
static void
all_conflicting_hard_regs (ira_allocno_t a, HARD_REG_SET *pset)
{
int i;
int n = ALLOCNO_NUM_OBJECTS (a);
for (i = 0; i < n; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
IOR_HARD_REG_SET (*pset, OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
}
}
/* Set up number of available hard registers for allocno A. */
static void
setup_allocno_available_regs_num (ira_allocno_t a)
{
int i, n, hard_regs_num, hard_regno;
enum machine_mode mode;
enum reg_class cover_class;
HARD_REG_SET temp_set;
cover_class = ALLOCNO_COVER_CLASS (a);
ALLOCNO_AVAILABLE_REGS_NUM (a) = ira_available_class_regs[cover_class];
if (cover_class == NO_REGS)
return;
CLEAR_HARD_REG_SET (temp_set);
ira_assert (ALLOCNO_FIRST_COALESCED_ALLOCNO (a) == a);
hard_regs_num = ira_class_hard_regs_num[cover_class];
all_conflicting_hard_regs (a, &temp_set);
mode = ALLOCNO_MODE (a);
for (n = 0, i = hard_regs_num - 1; i >= 0; i--)
{
hard_regno = ira_class_hard_regs[cover_class][i];
if (TEST_HARD_REG_BIT (temp_set, hard_regno)
|| TEST_HARD_REG_BIT (prohibited_class_mode_regs[cover_class][mode],
hard_regno))
n++;
}
if (internal_flag_ira_verbose > 2 && n > 0 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Reg %d of %s has %d regs less\n",
ALLOCNO_REGNO (a), reg_class_names[cover_class], n);
ALLOCNO_AVAILABLE_REGS_NUM (a) -= n;
}
/* Set up ALLOCNO_LEFT_CONFLICTS_SIZE for allocno A. */
static void
setup_allocno_left_conflicts_size (ira_allocno_t a)
{
int i, hard_regs_num, hard_regno, conflict_allocnos_size;
enum reg_class cover_class;
HARD_REG_SET temp_set;
cover_class = ALLOCNO_COVER_CLASS (a);
hard_regs_num = ira_class_hard_regs_num[cover_class];
CLEAR_HARD_REG_SET (temp_set);
ira_assert (ALLOCNO_FIRST_COALESCED_ALLOCNO (a) == a);
all_conflicting_hard_regs (a, &temp_set);
AND_HARD_REG_SET (temp_set, reg_class_contents[cover_class]);
AND_COMPL_HARD_REG_SET (temp_set, ira_no_alloc_regs);
conflict_allocnos_size = 0;
if (! hard_reg_set_empty_p (temp_set))
for (i = 0; i < (int) hard_regs_num; i++)
{
hard_regno = ira_class_hard_regs[cover_class][i];
if (TEST_HARD_REG_BIT (temp_set, hard_regno))
{
conflict_allocnos_size++;
CLEAR_HARD_REG_BIT (temp_set, hard_regno);
if (hard_reg_set_empty_p (temp_set))
break;
}
}
CLEAR_HARD_REG_SET (temp_set);
if (cover_class != NO_REGS)
{
int n = ALLOCNO_NUM_OBJECTS (a);
for (i = 0; i < n; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
ira_object_t conflict_obj;
ira_object_conflict_iterator oci;
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
{
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
ira_assert (cover_class
== ALLOCNO_COVER_CLASS (conflict_a));
if (! ALLOCNO_ASSIGNED_P (conflict_a))
conflict_allocnos_size
+= (ira_reg_class_nregs
[cover_class][ALLOCNO_MODE (conflict_a)]);
else if ((hard_regno = ALLOCNO_HARD_REGNO (conflict_a))
>= 0)
{
int last = (hard_regno
+ hard_regno_nregs
[hard_regno][ALLOCNO_MODE (conflict_a)]);
while (hard_regno < last)
{
if (! TEST_HARD_REG_BIT (temp_set, hard_regno))
{
conflict_allocnos_size++;
SET_HARD_REG_BIT (temp_set, hard_regno);
}
hard_regno++;
}
}
}
}
}
ALLOCNO_LEFT_CONFLICTS_SIZE (a) = conflict_allocnos_size;
}
/* Put ALLOCNO in a bucket corresponding to its number and size of its
conflicting allocnos and hard registers. */
static void
put_allocno_into_bucket (ira_allocno_t allocno)
{
enum reg_class cover_class;
cover_class = ALLOCNO_COVER_CLASS (allocno);
ALLOCNO_IN_GRAPH_P (allocno) = true;
setup_allocno_left_conflicts_size (allocno);
setup_allocno_available_regs_num (allocno);
if (ALLOCNO_LEFT_CONFLICTS_SIZE (allocno)
+ ira_reg_class_nregs[cover_class][ALLOCNO_MODE (allocno)]
<= ALLOCNO_AVAILABLE_REGS_NUM (allocno))
add_allocno_to_bucket (allocno, &colorable_allocno_bucket);
else
add_allocno_to_bucket (allocno, &uncolorable_allocno_bucket);
}
/* Map: allocno number -> allocno priority. */
static int *allocno_priorities;
/* Set up priorities for N allocnos in array
CONSIDERATION_ALLOCNOS. */
static void
setup_allocno_priorities (ira_allocno_t *consideration_allocnos, int n)
{
int i, length, nrefs, priority, max_priority, mult;
ira_allocno_t a;
max_priority = 0;
for (i = 0; i < n; i++)
{
a = consideration_allocnos[i];
nrefs = ALLOCNO_NREFS (a);
ira_assert (nrefs >= 0);
mult = floor_log2 (ALLOCNO_NREFS (a)) + 1;
ira_assert (mult >= 0);
allocno_priorities[ALLOCNO_NUM (a)]
= priority
= (mult
* (ALLOCNO_MEMORY_COST (a) - ALLOCNO_COVER_CLASS_COST (a))
* ira_reg_class_nregs[ALLOCNO_COVER_CLASS (a)][ALLOCNO_MODE (a)]);
if (priority < 0)
priority = -priority;
if (max_priority < priority)
max_priority = priority;
}
mult = max_priority == 0 ? 1 : INT_MAX / max_priority;
for (i = 0; i < n; i++)
{
a = consideration_allocnos[i];
length = ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
if (ALLOCNO_NUM_OBJECTS (a) > 1)
length /= ALLOCNO_NUM_OBJECTS (a);
if (length <= 0)
length = 1;
allocno_priorities[ALLOCNO_NUM (a)]
= allocno_priorities[ALLOCNO_NUM (a)] * mult / length;
}
}
/* Sort allocnos according to their priorities which are calculated
analogous to ones in file `global.c'. */
static int
allocno_priority_compare_func (const void *v1p, const void *v2p)
{
ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
int pri1, pri2;
pri1 = allocno_priorities[ALLOCNO_NUM (a1)];
pri2 = allocno_priorities[ALLOCNO_NUM (a2)];
if (pri2 != pri1)
return SORTGT (pri2, pri1);
/* If regs are equally good, sort by allocnos, so that the results of
qsort leave nothing to chance. */
return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
}
/* Chaitin-Briggs coloring for allocnos in COLORING_ALLOCNO_BITMAP
taking into account allocnos in CONSIDERATION_ALLOCNO_BITMAP. */
static void
color_allocnos (void)
{
unsigned int i, n;
bitmap_iterator bi;
ira_allocno_t a;
if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
{
n = 0;
EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
{
a = ira_allocnos[i];
if (ALLOCNO_COVER_CLASS (a) == NO_REGS)
{
ALLOCNO_HARD_REGNO (a) = -1;
ALLOCNO_ASSIGNED_P (a) = true;
ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
{
fprintf (ira_dump_file, " Spill");
ira_print_expanded_allocno (a);
fprintf (ira_dump_file, "\n");
}
continue;
}
sorted_allocnos[n++] = a;
}
if (n != 0)
{
setup_allocno_priorities (sorted_allocnos, n);
qsort (sorted_allocnos, n, sizeof (ira_allocno_t),
allocno_priority_compare_func);
for (i = 0; i < n; i++)
{
a = sorted_allocnos[i];
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
{
fprintf (ira_dump_file, " ");
ira_print_expanded_allocno (a);
fprintf (ira_dump_file, " -- ");
}
if (assign_hard_reg (a, false))
{
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, "assign hard reg %d\n",
ALLOCNO_HARD_REGNO (a));
}
else
{
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, "assign memory\n");
}
}
}
}
else
{
/* Put the allocnos into the corresponding buckets. */
colorable_allocno_bucket = NULL;
uncolorable_allocno_bucket = NULL;
EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, i, bi)
{
a = ira_allocnos[i];
if (ALLOCNO_COVER_CLASS (a) == NO_REGS)
{
ALLOCNO_HARD_REGNO (a) = -1;
ALLOCNO_ASSIGNED_P (a) = true;
ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
{
fprintf (ira_dump_file, " Spill");
ira_print_expanded_allocno (a);
fprintf (ira_dump_file, "\n");
}
continue;
}
put_allocno_into_bucket (a);
}
push_allocnos_to_stack ();
pop_allocnos_from_stack ();
}
}
/* Output information about the loop given by its LOOP_TREE_NODE. */
static void
print_loop_title (ira_loop_tree_node_t loop_tree_node)
{
unsigned int j;
bitmap_iterator bi;
ira_loop_tree_node_t subloop_node, dest_loop_node;
edge e;
edge_iterator ei;
ira_assert (loop_tree_node->loop != NULL);
fprintf (ira_dump_file,
"\n Loop %d (parent %d, header bb%d, depth %d)\n bbs:",
loop_tree_node->loop->num,
(loop_tree_node->parent == NULL
? -1 : loop_tree_node->parent->loop->num),
loop_tree_node->loop->header->index,
loop_depth (loop_tree_node->loop));
for (subloop_node = loop_tree_node->children;
subloop_node != NULL;
subloop_node = subloop_node->next)
if (subloop_node->bb != NULL)
{
fprintf (ira_dump_file, " %d", subloop_node->bb->index);
FOR_EACH_EDGE (e, ei, subloop_node->bb->succs)
if (e->dest != EXIT_BLOCK_PTR
&& ((dest_loop_node = IRA_BB_NODE (e->dest)->parent)
!= loop_tree_node))
fprintf (ira_dump_file, "(->%d:l%d)",
e->dest->index, dest_loop_node->loop->num);
}
fprintf (ira_dump_file, "\n all:");
EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->all_allocnos, 0, j, bi)
fprintf (ira_dump_file, " %dr%d", j, ALLOCNO_REGNO (ira_allocnos[j]));
fprintf (ira_dump_file, "\n modified regnos:");
EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->modified_regnos, 0, j, bi)
fprintf (ira_dump_file, " %d", j);
fprintf (ira_dump_file, "\n border:");
EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->border_allocnos, 0, j, bi)
fprintf (ira_dump_file, " %dr%d", j, ALLOCNO_REGNO (ira_allocnos[j]));
fprintf (ira_dump_file, "\n Pressure:");
for (j = 0; (int) j < ira_reg_class_cover_size; j++)
{
enum reg_class cover_class;
cover_class = ira_reg_class_cover[j];
if (loop_tree_node->reg_pressure[cover_class] == 0)
continue;
fprintf (ira_dump_file, " %s=%d", reg_class_names[cover_class],
loop_tree_node->reg_pressure[cover_class]);
}
fprintf (ira_dump_file, "\n");
}
/* Color the allocnos inside loop (in the extreme case it can be all
of the function) given the corresponding LOOP_TREE_NODE. The
function is called for each loop during top-down traverse of the
loop tree. */
static void
color_pass (ira_loop_tree_node_t loop_tree_node)
{
int regno, hard_regno, index = -1;
int cost, exit_freq, enter_freq;
unsigned int j;
bitmap_iterator bi;
enum machine_mode mode;
enum reg_class rclass, cover_class;
ira_allocno_t a, subloop_allocno;
ira_loop_tree_node_t subloop_node;
ira_assert (loop_tree_node->bb == NULL);
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
print_loop_title (loop_tree_node);
bitmap_copy (coloring_allocno_bitmap, loop_tree_node->all_allocnos);
bitmap_copy (consideration_allocno_bitmap, coloring_allocno_bitmap);
EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
{
a = ira_allocnos[j];
if (ALLOCNO_ASSIGNED_P (a))
bitmap_clear_bit (coloring_allocno_bitmap, ALLOCNO_NUM (a));
}
/* Color all mentioned allocnos including transparent ones. */
color_allocnos ();
/* Process caps. They are processed just once. */
if (flag_ira_region == IRA_REGION_MIXED
|| flag_ira_region == IRA_REGION_ALL)
EXECUTE_IF_SET_IN_BITMAP (loop_tree_node->all_allocnos, 0, j, bi)
{
a = ira_allocnos[j];
if (ALLOCNO_CAP_MEMBER (a) == NULL)
continue;
/* Remove from processing in the next loop. */
bitmap_clear_bit (consideration_allocno_bitmap, j);
rclass = ALLOCNO_COVER_CLASS (a);
if (flag_ira_region == IRA_REGION_MIXED
&& (loop_tree_node->reg_pressure[rclass]
<= ira_available_class_regs[rclass]))
{
mode = ALLOCNO_MODE (a);
hard_regno = ALLOCNO_HARD_REGNO (a);
if (hard_regno >= 0)
{
index = ira_class_hard_reg_index[rclass][hard_regno];
ira_assert (index >= 0);
}
regno = ALLOCNO_REGNO (a);
subloop_allocno = ALLOCNO_CAP_MEMBER (a);
subloop_node = ALLOCNO_LOOP_TREE_NODE (subloop_allocno);
ira_assert (!ALLOCNO_ASSIGNED_P (subloop_allocno));
ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
if (hard_regno >= 0)
update_copy_costs (subloop_allocno, true);
/* We don't need updated costs anymore: */
ira_free_allocno_updated_costs (subloop_allocno);
}
}
/* Update costs of the corresponding allocnos (not caps) in the
subloops. */
for (subloop_node = loop_tree_node->subloops;
subloop_node != NULL;
subloop_node = subloop_node->subloop_next)
{
ira_assert (subloop_node->bb == NULL);
EXECUTE_IF_SET_IN_BITMAP (consideration_allocno_bitmap, 0, j, bi)
{
a = ira_allocnos[j];
ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
mode = ALLOCNO_MODE (a);
rclass = ALLOCNO_COVER_CLASS (a);
hard_regno = ALLOCNO_HARD_REGNO (a);
/* Use hard register class here. ??? */
if (hard_regno >= 0)
{
index = ira_class_hard_reg_index[rclass][hard_regno];
ira_assert (index >= 0);
}
regno = ALLOCNO_REGNO (a);
/* ??? conflict costs */
subloop_allocno = subloop_node->regno_allocno_map[regno];
if (subloop_allocno == NULL
|| ALLOCNO_CAP (subloop_allocno) != NULL)
continue;
ira_assert (ALLOCNO_COVER_CLASS (subloop_allocno) == rclass);
ira_assert (bitmap_bit_p (subloop_node->all_allocnos,
ALLOCNO_NUM (subloop_allocno)));
if ((flag_ira_region == IRA_REGION_MIXED)
&& (loop_tree_node->reg_pressure[rclass]
<= ira_available_class_regs[rclass]))
{
if (! ALLOCNO_ASSIGNED_P (subloop_allocno))
{
ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
if (hard_regno >= 0)
update_copy_costs (subloop_allocno, true);
/* We don't need updated costs anymore: */
ira_free_allocno_updated_costs (subloop_allocno);
}
continue;
}
exit_freq = ira_loop_edge_freq (subloop_node, regno, true);
enter_freq = ira_loop_edge_freq (subloop_node, regno, false);
ira_assert (regno < ira_reg_equiv_len);
if (ira_reg_equiv_invariant_p[regno]
|| ira_reg_equiv_const[regno] != NULL_RTX)
{
if (! ALLOCNO_ASSIGNED_P (subloop_allocno))
{
ALLOCNO_HARD_REGNO (subloop_allocno) = hard_regno;
ALLOCNO_ASSIGNED_P (subloop_allocno) = true;
if (hard_regno >= 0)
update_copy_costs (subloop_allocno, true);
/* We don't need updated costs anymore: */
ira_free_allocno_updated_costs (subloop_allocno);
}
}
else if (hard_regno < 0)
{
ALLOCNO_UPDATED_MEMORY_COST (subloop_allocno)
-= ((ira_memory_move_cost[mode][rclass][1] * enter_freq)
+ (ira_memory_move_cost[mode][rclass][0] * exit_freq));
}
else
{
cover_class = ALLOCNO_COVER_CLASS (subloop_allocno);
cost = (ira_get_register_move_cost (mode, rclass, rclass)
* (exit_freq + enter_freq));
ira_allocate_and_set_or_copy_costs
(&ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno), cover_class,
ALLOCNO_UPDATED_COVER_CLASS_COST (subloop_allocno),
ALLOCNO_HARD_REG_COSTS (subloop_allocno));
ira_allocate_and_set_or_copy_costs
(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (subloop_allocno),
cover_class, 0,
ALLOCNO_CONFLICT_HARD_REG_COSTS (subloop_allocno));
ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index] -= cost;
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (subloop_allocno)[index]
-= cost;
if (ALLOCNO_UPDATED_COVER_CLASS_COST (subloop_allocno)
> ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index])
ALLOCNO_UPDATED_COVER_CLASS_COST (subloop_allocno)
= ALLOCNO_UPDATED_HARD_REG_COSTS (subloop_allocno)[index];
ALLOCNO_UPDATED_MEMORY_COST (subloop_allocno)
+= (ira_memory_move_cost[mode][rclass][0] * enter_freq
+ ira_memory_move_cost[mode][rclass][1] * exit_freq);
}
}
}
}
/* Initialize the common data for coloring and calls functions to do
Chaitin-Briggs and regional coloring. */
static void
do_coloring (void)
{
coloring_allocno_bitmap = ira_allocate_bitmap ();
allocnos_for_spilling
= (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
* ira_allocnos_num);
splay_tree_node_pool = create_alloc_pool ("splay tree nodes",
sizeof (struct splay_tree_node_s),
100);
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
fprintf (ira_dump_file, "\n**** Allocnos coloring:\n\n");
ira_traverse_loop_tree (false, ira_loop_tree_root, color_pass, NULL);
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
ira_print_disposition (ira_dump_file);
free_alloc_pool (splay_tree_node_pool);
ira_free_bitmap (coloring_allocno_bitmap);
ira_free (allocnos_for_spilling);
}
/* Move spill/restore code, which are to be generated in ira-emit.c,
to less frequent points (if it is profitable) by reassigning some
allocnos (in loop with subloops containing in another loop) to
memory which results in longer live-range where the corresponding
pseudo-registers will be in memory. */
static void
move_spill_restore (void)
{
int cost, regno, hard_regno, hard_regno2, index;
bool changed_p;
int enter_freq, exit_freq;
enum machine_mode mode;
enum reg_class rclass;
ira_allocno_t a, parent_allocno, subloop_allocno;
ira_loop_tree_node_t parent, loop_node, subloop_node;
ira_allocno_iterator ai;
for (;;)
{
changed_p = false;
if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
fprintf (ira_dump_file, "New iteration of spill/restore move\n");
FOR_EACH_ALLOCNO (a, ai)
{
regno = ALLOCNO_REGNO (a);
loop_node = ALLOCNO_LOOP_TREE_NODE (a);
if (ALLOCNO_CAP_MEMBER (a) != NULL
|| ALLOCNO_CAP (a) != NULL
|| (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0
|| loop_node->children == NULL
/* don't do the optimization because it can create
copies and the reload pass can spill the allocno set
by copy although the allocno will not get memory
slot. */
|| ira_reg_equiv_invariant_p[regno]
|| ira_reg_equiv_const[regno] != NULL_RTX
|| !bitmap_bit_p (loop_node->border_allocnos, ALLOCNO_NUM (a)))
continue;
mode = ALLOCNO_MODE (a);
rclass = ALLOCNO_COVER_CLASS (a);
index = ira_class_hard_reg_index[rclass][hard_regno];
ira_assert (index >= 0);
cost = (ALLOCNO_MEMORY_COST (a)
- (ALLOCNO_HARD_REG_COSTS (a) == NULL
? ALLOCNO_COVER_CLASS_COST (a)
: ALLOCNO_HARD_REG_COSTS (a)[index]));
for (subloop_node = loop_node->subloops;
subloop_node != NULL;
subloop_node = subloop_node->subloop_next)
{
ira_assert (subloop_node->bb == NULL);
subloop_allocno = subloop_node->regno_allocno_map[regno];
if (subloop_allocno == NULL)
continue;
ira_assert (rclass == ALLOCNO_COVER_CLASS (subloop_allocno));
/* We have accumulated cost. To get the real cost of
allocno usage in the loop we should subtract costs of
the subloop allocnos. */
cost -= (ALLOCNO_MEMORY_COST (subloop_allocno)
- (ALLOCNO_HARD_REG_COSTS (subloop_allocno) == NULL
? ALLOCNO_COVER_CLASS_COST (subloop_allocno)
: ALLOCNO_HARD_REG_COSTS (subloop_allocno)[index]));
exit_freq = ira_loop_edge_freq (subloop_node, regno, true);
enter_freq = ira_loop_edge_freq (subloop_node, regno, false);
if ((hard_regno2 = ALLOCNO_HARD_REGNO (subloop_allocno)) < 0)
cost -= (ira_memory_move_cost[mode][rclass][0] * exit_freq
+ ira_memory_move_cost[mode][rclass][1] * enter_freq);
else
{
cost
+= (ira_memory_move_cost[mode][rclass][0] * exit_freq
+ ira_memory_move_cost[mode][rclass][1] * enter_freq);
if (hard_regno2 != hard_regno)
cost -= (ira_get_register_move_cost (mode, rclass, rclass)
* (exit_freq + enter_freq));
}
}
if ((parent = loop_node->parent) != NULL
&& (parent_allocno = parent->regno_allocno_map[regno]) != NULL)
{
ira_assert (rclass == ALLOCNO_COVER_CLASS (parent_allocno));
exit_freq = ira_loop_edge_freq (loop_node, regno, true);
enter_freq = ira_loop_edge_freq (loop_node, regno, false);
if ((hard_regno2 = ALLOCNO_HARD_REGNO (parent_allocno)) < 0)
cost -= (ira_memory_move_cost[mode][rclass][0] * exit_freq
+ ira_memory_move_cost[mode][rclass][1] * enter_freq);
else
{
cost
+= (ira_memory_move_cost[mode][rclass][1] * exit_freq
+ ira_memory_move_cost[mode][rclass][0] * enter_freq);
if (hard_regno2 != hard_regno)
cost -= (ira_get_register_move_cost (mode, rclass, rclass)
* (exit_freq + enter_freq));
}
}
if (cost < 0)
{
ALLOCNO_HARD_REGNO (a) = -1;
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
{
fprintf
(ira_dump_file,
" Moving spill/restore for a%dr%d up from loop %d",
ALLOCNO_NUM (a), regno, loop_node->loop->num);
fprintf (ira_dump_file, " - profit %d\n", -cost);
}
changed_p = true;
}
}
if (! changed_p)
break;
}
}
/* Update current hard reg costs and current conflict hard reg costs
for allocno A. It is done by processing its copies containing
other allocnos already assigned. */
static void
update_curr_costs (ira_allocno_t a)
{
int i, hard_regno, cost;
enum machine_mode mode;
enum reg_class cover_class, rclass;
ira_allocno_t another_a;
ira_copy_t cp, next_cp;
ira_free_allocno_updated_costs (a);
ira_assert (! ALLOCNO_ASSIGNED_P (a));
cover_class = ALLOCNO_COVER_CLASS (a);
if (cover_class == NO_REGS)
return;
mode = ALLOCNO_MODE (a);
for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
{
if (cp->first == a)
{
next_cp = cp->next_first_allocno_copy;
another_a = cp->second;
}
else if (cp->second == a)
{
next_cp = cp->next_second_allocno_copy;
another_a = cp->first;
}
else
gcc_unreachable ();
if (! ira_reg_classes_intersect_p[cover_class][ALLOCNO_COVER_CLASS
(another_a)]
|| ! ALLOCNO_ASSIGNED_P (another_a)
|| (hard_regno = ALLOCNO_HARD_REGNO (another_a)) < 0)
continue;
rclass = REGNO_REG_CLASS (hard_regno);
i = ira_class_hard_reg_index[cover_class][hard_regno];
if (i < 0)
continue;
cost = (cp->first == a
? ira_get_register_move_cost (mode, rclass, cover_class)
: ira_get_register_move_cost (mode, cover_class, rclass));
ira_allocate_and_set_or_copy_costs
(&ALLOCNO_UPDATED_HARD_REG_COSTS (a),
cover_class, ALLOCNO_COVER_CLASS_COST (a),
ALLOCNO_HARD_REG_COSTS (a));
ira_allocate_and_set_or_copy_costs
(&ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
cover_class, 0, ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
ALLOCNO_UPDATED_HARD_REG_COSTS (a)[i] -= cp->freq * cost;
ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a)[i] -= cp->freq * cost;
}
}
/* Try to assign hard registers to the unassigned allocnos and
allocnos conflicting with them or conflicting with allocnos whose
regno >= START_REGNO. The function is called after ira_flattening,
so more allocnos (including ones created in ira-emit.c) will have a
chance to get a hard register. We use simple assignment algorithm
based on priorities. */
void
ira_reassign_conflict_allocnos (int start_regno)
{
int i, allocnos_to_color_num;
ira_allocno_t a;
enum reg_class cover_class;
bitmap allocnos_to_color;
ira_allocno_iterator ai;
allocnos_to_color = ira_allocate_bitmap ();
allocnos_to_color_num = 0;
FOR_EACH_ALLOCNO (a, ai)
{
int n = ALLOCNO_NUM_OBJECTS (a);
if (! ALLOCNO_ASSIGNED_P (a)
&& ! bitmap_bit_p (allocnos_to_color, ALLOCNO_NUM (a)))
{
if (ALLOCNO_COVER_CLASS (a) != NO_REGS)
sorted_allocnos[allocnos_to_color_num++] = a;
else
{
ALLOCNO_ASSIGNED_P (a) = true;
ALLOCNO_HARD_REGNO (a) = -1;
ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
}
bitmap_set_bit (allocnos_to_color, ALLOCNO_NUM (a));
}
if (ALLOCNO_REGNO (a) < start_regno
|| (cover_class = ALLOCNO_COVER_CLASS (a)) == NO_REGS)
continue;
for (i = 0; i < n; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
ira_object_t conflict_obj;
ira_object_conflict_iterator oci;
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
{
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
ira_assert (ira_reg_classes_intersect_p
[cover_class][ALLOCNO_COVER_CLASS (conflict_a)]);
if (!bitmap_set_bit (allocnos_to_color, ALLOCNO_NUM (conflict_a)))
continue;
sorted_allocnos[allocnos_to_color_num++] = conflict_a;
}
}
}
ira_free_bitmap (allocnos_to_color);
if (allocnos_to_color_num > 1)
{
setup_allocno_priorities (sorted_allocnos, allocnos_to_color_num);
qsort (sorted_allocnos, allocnos_to_color_num, sizeof (ira_allocno_t),
allocno_priority_compare_func);
}
for (i = 0; i < allocnos_to_color_num; i++)
{
a = sorted_allocnos[i];
ALLOCNO_ASSIGNED_P (a) = false;
update_curr_costs (a);
}
for (i = 0; i < allocnos_to_color_num; i++)
{
a = sorted_allocnos[i];
if (assign_hard_reg (a, true))
{
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf
(ira_dump_file,
" Secondary allocation: assign hard reg %d to reg %d\n",
ALLOCNO_HARD_REGNO (a), ALLOCNO_REGNO (a));
}
}
}
/* This page contains code to coalesce memory stack slots used by
spilled allocnos. This results in smaller stack frame, better data
locality, and in smaller code for some architectures like
x86/x86_64 where insn size depends on address displacement value.
On the other hand, it can worsen insn scheduling after the RA but
in practice it is less important than smaller stack frames. */
/* TRUE if we coalesced some allocnos. In other words, if we got
loops formed by members first_coalesced_allocno and
next_coalesced_allocno containing more one allocno. */
static bool allocno_coalesced_p;
/* Bitmap used to prevent a repeated allocno processing because of
coalescing. */
static bitmap processed_coalesced_allocno_bitmap;
/* The function is used to sort allocnos according to their execution
frequencies. */
static int
copy_freq_compare_func (const void *v1p, const void *v2p)
{
ira_copy_t cp1 = *(const ira_copy_t *) v1p, cp2 = *(const ira_copy_t *) v2p;
int pri1, pri2;
pri1 = cp1->freq;
pri2 = cp2->freq;
if (pri2 - pri1)
return pri2 - pri1;
/* If freqencies are equal, sort by copies, so that the results of
qsort leave nothing to chance. */
return cp1->num - cp2->num;
}
/* Merge two sets of coalesced allocnos given correspondingly by
allocnos A1 and A2 (more accurately merging A2 set into A1
set). */
static void
merge_allocnos (ira_allocno_t a1, ira_allocno_t a2)
{
ira_allocno_t a, first, last, next;
first = ALLOCNO_FIRST_COALESCED_ALLOCNO (a1);
if (first == ALLOCNO_FIRST_COALESCED_ALLOCNO (a2))
return;
for (last = a2, a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a2);;
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
{
ALLOCNO_FIRST_COALESCED_ALLOCNO (a) = first;
if (a == a2)
break;
last = a;
}
next = ALLOCNO_NEXT_COALESCED_ALLOCNO (first);
ALLOCNO_NEXT_COALESCED_ALLOCNO (first) = a2;
ALLOCNO_NEXT_COALESCED_ALLOCNO (last) = next;
}
/* Given two sets of coalesced sets of allocnos, A1 and A2, this
function determines if any conflicts exist between the two sets.
We use live ranges to find conflicts because conflicts are
represented only for allocnos of the same cover class and during
the reload pass we coalesce allocnos for sharing stack memory
slots. */
static bool
coalesced_allocno_conflict_p (ira_allocno_t a1, ira_allocno_t a2)
{
ira_allocno_t a, conflict_allocno;
bitmap_clear (processed_coalesced_allocno_bitmap);
if (allocno_coalesced_p)
{
for (a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a1);;
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
{
bitmap_set_bit (processed_coalesced_allocno_bitmap,
OBJECT_CONFLICT_ID (ALLOCNO_OBJECT (a, 0)));
if (a == a1)
break;
}
}
for (a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a2);;
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
{
for (conflict_allocno = ALLOCNO_NEXT_COALESCED_ALLOCNO (a1);;
conflict_allocno
= ALLOCNO_NEXT_COALESCED_ALLOCNO (conflict_allocno))
{
if (allocnos_have_intersected_live_ranges_p (a, conflict_allocno))
return true;
if (conflict_allocno == a1)
break;
}
if (a == a2)
break;
}
return false;
}
/* The major function for aggressive allocno coalescing. We coalesce
only spilled allocnos. If some allocnos have been coalesced, we
set up flag allocno_coalesced_p. */
static void
coalesce_allocnos (void)
{
ira_allocno_t a;
ira_copy_t cp, next_cp, *sorted_copies;
unsigned int j;
int i, n, cp_num, regno;
bitmap_iterator bi;
sorted_copies = (ira_copy_t *) ira_allocate (ira_copies_num
* sizeof (ira_copy_t));
cp_num = 0;
/* Collect copies. */
EXECUTE_IF_SET_IN_BITMAP (coloring_allocno_bitmap, 0, j, bi)
{
a = ira_allocnos[j];
regno = ALLOCNO_REGNO (a);
if (! ALLOCNO_ASSIGNED_P (a) || ALLOCNO_HARD_REGNO (a) >= 0
|| (regno < ira_reg_equiv_len
&& (ira_reg_equiv_const[regno] != NULL_RTX
|| ira_reg_equiv_invariant_p[regno])))
continue;
for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
{
if (cp->first == a)
{
next_cp = cp->next_first_allocno_copy;
regno = ALLOCNO_REGNO (cp->second);
/* For priority coloring we coalesce allocnos only with
the same cover class not with intersected cover
classes as it were possible. It is done for
simplicity. */
if ((cp->insn != NULL || cp->constraint_p)
&& ALLOCNO_ASSIGNED_P (cp->second)
&& ALLOCNO_HARD_REGNO (cp->second) < 0
&& (regno >= ira_reg_equiv_len
|| (! ira_reg_equiv_invariant_p[regno]
&& ira_reg_equiv_const[regno] == NULL_RTX)))
sorted_copies[cp_num++] = cp;
}
else if (cp->second == a)
next_cp = cp->next_second_allocno_copy;
else
gcc_unreachable ();
}
}
qsort (sorted_copies, cp_num, sizeof (ira_copy_t), copy_freq_compare_func);
/* Coalesced copies, most frequently executed first. */
for (; cp_num != 0;)
{
for (i = 0; i < cp_num; i++)
{
cp = sorted_copies[i];
if (! coalesced_allocno_conflict_p (cp->first, cp->second))
{
allocno_coalesced_p = true;
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf
(ira_dump_file,
" Coalescing copy %d:a%dr%d-a%dr%d (freq=%d)\n",
cp->num, ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second),
cp->freq);
merge_allocnos (cp->first, cp->second);
i++;
break;
}
}
/* Collect the rest of copies. */
for (n = 0; i < cp_num; i++)
{
cp = sorted_copies[i];
if (ALLOCNO_FIRST_COALESCED_ALLOCNO (cp->first)
!= ALLOCNO_FIRST_COALESCED_ALLOCNO (cp->second))
sorted_copies[n++] = cp;
}
cp_num = n;
}
ira_free (sorted_copies);
}
/* Usage cost and order number of coalesced allocno set to which
given pseudo register belongs to. */
static int *regno_coalesced_allocno_cost;
static int *regno_coalesced_allocno_num;
/* Sort pseudos according frequencies of coalesced allocno sets they
belong to (putting most frequently ones first), and according to
coalesced allocno set order numbers. */
static int
coalesced_pseudo_reg_freq_compare (const void *v1p, const void *v2p)
{
const int regno1 = *(const int *) v1p;
const int regno2 = *(const int *) v2p;
int diff;
if ((diff = (regno_coalesced_allocno_cost[regno2]
- regno_coalesced_allocno_cost[regno1])) != 0)
return diff;
if ((diff = (regno_coalesced_allocno_num[regno1]
- regno_coalesced_allocno_num[regno2])) != 0)
return diff;
return regno1 - regno2;
}
/* Widest width in which each pseudo reg is referred to (via subreg).
It is used for sorting pseudo registers. */
static unsigned int *regno_max_ref_width;
/* Redefine STACK_GROWS_DOWNWARD in terms of 0 or 1. */
#ifdef STACK_GROWS_DOWNWARD
# undef STACK_GROWS_DOWNWARD
# define STACK_GROWS_DOWNWARD 1
#else
# define STACK_GROWS_DOWNWARD 0
#endif
/* Sort pseudos according their slot numbers (putting ones with
smaller numbers first, or last when the frame pointer is not
needed). */
static int
coalesced_pseudo_reg_slot_compare (const void *v1p, const void *v2p)
{
const int regno1 = *(const int *) v1p;
const int regno2 = *(const int *) v2p;
ira_allocno_t a1 = ira_regno_allocno_map[regno1];
ira_allocno_t a2 = ira_regno_allocno_map[regno2];
int diff, slot_num1, slot_num2;
int total_size1, total_size2;
if (a1 == NULL || ALLOCNO_HARD_REGNO (a1) >= 0)
{
if (a2 == NULL || ALLOCNO_HARD_REGNO (a2) >= 0)
return regno1 - regno2;
return 1;
}
else if (a2 == NULL || ALLOCNO_HARD_REGNO (a2) >= 0)
return -1;
slot_num1 = -ALLOCNO_HARD_REGNO (a1);
slot_num2 = -ALLOCNO_HARD_REGNO (a2);
if ((diff = slot_num1 - slot_num2) != 0)
return (frame_pointer_needed
|| !FRAME_GROWS_DOWNWARD == STACK_GROWS_DOWNWARD ? diff : -diff);
total_size1 = MAX (PSEUDO_REGNO_BYTES (regno1), regno_max_ref_width[regno1]);
total_size2 = MAX (PSEUDO_REGNO_BYTES (regno2), regno_max_ref_width[regno2]);
if ((diff = total_size2 - total_size1) != 0)
return diff;
return regno1 - regno2;
}
/* Setup REGNO_COALESCED_ALLOCNO_COST and REGNO_COALESCED_ALLOCNO_NUM
for coalesced allocno sets containing allocnos with their regnos
given in array PSEUDO_REGNOS of length N. */
static void
setup_coalesced_allocno_costs_and_nums (int *pseudo_regnos, int n)
{
int i, num, regno, cost;
ira_allocno_t allocno, a;
for (num = i = 0; i < n; i++)
{
regno = pseudo_regnos[i];
allocno = ira_regno_allocno_map[regno];
if (allocno == NULL)
{
regno_coalesced_allocno_cost[regno] = 0;
regno_coalesced_allocno_num[regno] = ++num;
continue;
}
if (ALLOCNO_FIRST_COALESCED_ALLOCNO (allocno) != allocno)
continue;
num++;
for (cost = 0, a = ALLOCNO_NEXT_COALESCED_ALLOCNO (allocno);;
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
{
cost += ALLOCNO_FREQ (a);
if (a == allocno)
break;
}
for (a = ALLOCNO_NEXT_COALESCED_ALLOCNO (allocno);;
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
{
regno_coalesced_allocno_num[ALLOCNO_REGNO (a)] = num;
regno_coalesced_allocno_cost[ALLOCNO_REGNO (a)] = cost;
if (a == allocno)
break;
}
}
}
/* Collect spilled allocnos representing coalesced allocno sets (the
first coalesced allocno). The collected allocnos are returned
through array SPILLED_COALESCED_ALLOCNOS. The function returns the
number of the collected allocnos. The allocnos are given by their
regnos in array PSEUDO_REGNOS of length N. */
static int
collect_spilled_coalesced_allocnos (int *pseudo_regnos, int n,
ira_allocno_t *spilled_coalesced_allocnos)
{
int i, num, regno;
ira_allocno_t allocno;
for (num = i = 0; i < n; i++)
{
regno = pseudo_regnos[i];
allocno = ira_regno_allocno_map[regno];
if (allocno == NULL || ALLOCNO_HARD_REGNO (allocno) >= 0
|| ALLOCNO_FIRST_COALESCED_ALLOCNO (allocno) != allocno)
continue;
spilled_coalesced_allocnos[num++] = allocno;
}
return num;
}
/* Array of live ranges of size IRA_ALLOCNOS_NUM. Live range for
given slot contains live ranges of coalesced allocnos assigned to
given slot. */
static live_range_t *slot_coalesced_allocnos_live_ranges;
/* Return TRUE if coalesced allocnos represented by ALLOCNO has live
ranges intersected with live ranges of coalesced allocnos assigned
to slot with number N. */
static bool
slot_coalesced_allocno_live_ranges_intersect_p (ira_allocno_t allocno, int n)
{
ira_allocno_t a;
for (a = ALLOCNO_NEXT_COALESCED_ALLOCNO (allocno);;
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
{
int i;
int nr = ALLOCNO_NUM_OBJECTS (a);
for (i = 0; i < nr; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
if (ira_live_ranges_intersect_p (slot_coalesced_allocnos_live_ranges[n],
OBJECT_LIVE_RANGES (obj)))
return true;
}
if (a == allocno)
break;
}
return false;
}
/* Update live ranges of slot to which coalesced allocnos represented
by ALLOCNO were assigned. */
static void
setup_slot_coalesced_allocno_live_ranges (ira_allocno_t allocno)
{
int i, n;
ira_allocno_t a;
live_range_t r;
n = ALLOCNO_TEMP (allocno);
for (a = ALLOCNO_NEXT_COALESCED_ALLOCNO (allocno);;
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
{
int nr = ALLOCNO_NUM_OBJECTS (a);
for (i = 0; i < nr; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
r = ira_copy_live_range_list (OBJECT_LIVE_RANGES (obj));
slot_coalesced_allocnos_live_ranges[n]
= ira_merge_live_ranges
(slot_coalesced_allocnos_live_ranges[n], r);
}
if (a == allocno)
break;
}
}
/* We have coalesced allocnos involving in copies. Coalesce allocnos
further in order to share the same memory stack slot. Allocnos
representing sets of allocnos coalesced before the call are given
in array SPILLED_COALESCED_ALLOCNOS of length NUM. Return TRUE if
some allocnos were coalesced in the function. */
static bool
coalesce_spill_slots (ira_allocno_t *spilled_coalesced_allocnos, int num)
{
int i, j, n, last_coalesced_allocno_num;
ira_allocno_t allocno, a;
bool merged_p = false;
bitmap set_jump_crosses = regstat_get_setjmp_crosses ();
slot_coalesced_allocnos_live_ranges
= (live_range_t *) ira_allocate (sizeof (live_range_t) * ira_allocnos_num);
memset (slot_coalesced_allocnos_live_ranges, 0,
sizeof (live_range_t) * ira_allocnos_num);
last_coalesced_allocno_num = 0;
/* Coalesce non-conflicting spilled allocnos preferring most
frequently used. */
for (i = 0; i < num; i++)
{
allocno = spilled_coalesced_allocnos[i];
if (ALLOCNO_FIRST_COALESCED_ALLOCNO (allocno) != allocno
|| bitmap_bit_p (set_jump_crosses, ALLOCNO_REGNO (allocno))
|| (ALLOCNO_REGNO (allocno) < ira_reg_equiv_len
&& (ira_reg_equiv_const[ALLOCNO_REGNO (allocno)] != NULL_RTX
|| ira_reg_equiv_invariant_p[ALLOCNO_REGNO (allocno)])))
continue;
for (j = 0; j < i; j++)
{
a = spilled_coalesced_allocnos[j];
n = ALLOCNO_TEMP (a);
if (ALLOCNO_FIRST_COALESCED_ALLOCNO (a) == a
&& ! bitmap_bit_p (set_jump_crosses, ALLOCNO_REGNO (a))
&& (ALLOCNO_REGNO (a) >= ira_reg_equiv_len
|| (! ira_reg_equiv_invariant_p[ALLOCNO_REGNO (a)]
&& ira_reg_equiv_const[ALLOCNO_REGNO (a)] == NULL_RTX))
&& ! slot_coalesced_allocno_live_ranges_intersect_p (allocno, n))
break;
}
if (j >= i)
{
/* No coalescing: set up number for coalesced allocnos
represented by ALLOCNO. */
ALLOCNO_TEMP (allocno) = last_coalesced_allocno_num++;
setup_slot_coalesced_allocno_live_ranges (allocno);
}
else
{
allocno_coalesced_p = true;
merged_p = true;
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file,
" Coalescing spilled allocnos a%dr%d->a%dr%d\n",
ALLOCNO_NUM (allocno), ALLOCNO_REGNO (allocno),
ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
ALLOCNO_TEMP (allocno) = ALLOCNO_TEMP (a);
setup_slot_coalesced_allocno_live_ranges (allocno);
merge_allocnos (a, allocno);
ira_assert (ALLOCNO_FIRST_COALESCED_ALLOCNO (a) == a);
}
}
for (i = 0; i < ira_allocnos_num; i++)
ira_finish_live_range_list (slot_coalesced_allocnos_live_ranges[i]);
ira_free (slot_coalesced_allocnos_live_ranges);
return merged_p;
}
/* Sort pseudo-register numbers in array PSEUDO_REGNOS of length N for
subsequent assigning stack slots to them in the reload pass. To do
this we coalesce spilled allocnos first to decrease the number of
memory-memory move insns. This function is called by the
reload. */
void
ira_sort_regnos_for_alter_reg (int *pseudo_regnos, int n,
unsigned int *reg_max_ref_width)
{
int max_regno = max_reg_num ();
int i, regno, num, slot_num;
ira_allocno_t allocno, a;
ira_allocno_iterator ai;
ira_allocno_t *spilled_coalesced_allocnos;
/* Set up allocnos can be coalesced. */
coloring_allocno_bitmap = ira_allocate_bitmap ();
for (i = 0; i < n; i++)
{
regno = pseudo_regnos[i];
allocno = ira_regno_allocno_map[regno];
if (allocno != NULL)
bitmap_set_bit (coloring_allocno_bitmap,
ALLOCNO_NUM (allocno));
}
allocno_coalesced_p = false;
processed_coalesced_allocno_bitmap = ira_allocate_bitmap ();
coalesce_allocnos ();
ira_free_bitmap (coloring_allocno_bitmap);
regno_coalesced_allocno_cost
= (int *) ira_allocate (max_regno * sizeof (int));
regno_coalesced_allocno_num
= (int *) ira_allocate (max_regno * sizeof (int));
memset (regno_coalesced_allocno_num, 0, max_regno * sizeof (int));
setup_coalesced_allocno_costs_and_nums (pseudo_regnos, n);
/* Sort regnos according frequencies of the corresponding coalesced
allocno sets. */
qsort (pseudo_regnos, n, sizeof (int), coalesced_pseudo_reg_freq_compare);
spilled_coalesced_allocnos
= (ira_allocno_t *) ira_allocate (ira_allocnos_num
* sizeof (ira_allocno_t));
/* Collect allocnos representing the spilled coalesced allocno
sets. */
num = collect_spilled_coalesced_allocnos (pseudo_regnos, n,
spilled_coalesced_allocnos);
if (flag_ira_share_spill_slots
&& coalesce_spill_slots (spilled_coalesced_allocnos, num))
{
setup_coalesced_allocno_costs_and_nums (pseudo_regnos, n);
qsort (pseudo_regnos, n, sizeof (int),
coalesced_pseudo_reg_freq_compare);
num = collect_spilled_coalesced_allocnos (pseudo_regnos, n,
spilled_coalesced_allocnos);
}
ira_free_bitmap (processed_coalesced_allocno_bitmap);
allocno_coalesced_p = false;
/* Assign stack slot numbers to spilled allocno sets, use smaller
numbers for most frequently used coalesced allocnos. -1 is
reserved for dynamic search of stack slots for pseudos spilled by
the reload. */
slot_num = 1;
for (i = 0; i < num; i++)
{
allocno = spilled_coalesced_allocnos[i];
if (ALLOCNO_FIRST_COALESCED_ALLOCNO (allocno) != allocno
|| ALLOCNO_HARD_REGNO (allocno) >= 0
|| (ALLOCNO_REGNO (allocno) < ira_reg_equiv_len
&& (ira_reg_equiv_const[ALLOCNO_REGNO (allocno)] != NULL_RTX
|| ira_reg_equiv_invariant_p[ALLOCNO_REGNO (allocno)])))
continue;
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, " Slot %d (freq,size):", slot_num);
slot_num++;
for (a = ALLOCNO_NEXT_COALESCED_ALLOCNO (allocno);;
a = ALLOCNO_NEXT_COALESCED_ALLOCNO (a))
{
ira_assert (ALLOCNO_HARD_REGNO (a) < 0);
ALLOCNO_HARD_REGNO (a) = -slot_num;
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, " a%dr%d(%d,%d)",
ALLOCNO_NUM (a), ALLOCNO_REGNO (a), ALLOCNO_FREQ (a),
MAX (PSEUDO_REGNO_BYTES (ALLOCNO_REGNO (a)),
reg_max_ref_width[ALLOCNO_REGNO (a)]));
if (a == allocno)
break;
}
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, "\n");
}
ira_spilled_reg_stack_slots_num = slot_num - 1;
ira_free (spilled_coalesced_allocnos);
/* Sort regnos according the slot numbers. */
regno_max_ref_width = reg_max_ref_width;
qsort (pseudo_regnos, n, sizeof (int), coalesced_pseudo_reg_slot_compare);
/* Uncoalesce allocnos which is necessary for (re)assigning during
the reload pass. */
FOR_EACH_ALLOCNO (a, ai)
{
ALLOCNO_FIRST_COALESCED_ALLOCNO (a) = a;
ALLOCNO_NEXT_COALESCED_ALLOCNO (a) = a;
}
ira_free (regno_coalesced_allocno_num);
ira_free (regno_coalesced_allocno_cost);
}
/* This page contains code used by the reload pass to improve the
final code. */
/* The function is called from reload to mark changes in the
allocation of REGNO made by the reload. Remember that reg_renumber
reflects the change result. */
void
ira_mark_allocation_change (int regno)
{
ira_allocno_t a = ira_regno_allocno_map[regno];
int old_hard_regno, hard_regno, cost;
enum reg_class cover_class = ALLOCNO_COVER_CLASS (a);
ira_assert (a != NULL);
hard_regno = reg_renumber[regno];
if ((old_hard_regno = ALLOCNO_HARD_REGNO (a)) == hard_regno)
return;
if (old_hard_regno < 0)
cost = -ALLOCNO_MEMORY_COST (a);
else
{
ira_assert (ira_class_hard_reg_index[cover_class][old_hard_regno] >= 0);
cost = -(ALLOCNO_HARD_REG_COSTS (a) == NULL
? ALLOCNO_COVER_CLASS_COST (a)
: ALLOCNO_HARD_REG_COSTS (a)
[ira_class_hard_reg_index[cover_class][old_hard_regno]]);
update_copy_costs (a, false);
}
ira_overall_cost -= cost;
ALLOCNO_HARD_REGNO (a) = hard_regno;
if (hard_regno < 0)
{
ALLOCNO_HARD_REGNO (a) = -1;
cost += ALLOCNO_MEMORY_COST (a);
}
else if (ira_class_hard_reg_index[cover_class][hard_regno] >= 0)
{
cost += (ALLOCNO_HARD_REG_COSTS (a) == NULL
? ALLOCNO_COVER_CLASS_COST (a)
: ALLOCNO_HARD_REG_COSTS (a)
[ira_class_hard_reg_index[cover_class][hard_regno]]);
update_copy_costs (a, true);
}
else
/* Reload changed class of the allocno. */
cost = 0;
ira_overall_cost += cost;
}
/* This function is called when reload deletes memory-memory move. In
this case we marks that the allocation of the corresponding
allocnos should be not changed in future. Otherwise we risk to get
a wrong code. */
void
ira_mark_memory_move_deletion (int dst_regno, int src_regno)
{
ira_allocno_t dst = ira_regno_allocno_map[dst_regno];
ira_allocno_t src = ira_regno_allocno_map[src_regno];
ira_assert (dst != NULL && src != NULL
&& ALLOCNO_HARD_REGNO (dst) < 0
&& ALLOCNO_HARD_REGNO (src) < 0);
ALLOCNO_DONT_REASSIGN_P (dst) = true;
ALLOCNO_DONT_REASSIGN_P (src) = true;
}
/* Try to assign a hard register (except for FORBIDDEN_REGS) to
allocno A and return TRUE in the case of success. */
static bool
allocno_reload_assign (ira_allocno_t a, HARD_REG_SET forbidden_regs)
{
int hard_regno;
enum reg_class cover_class;
int regno = ALLOCNO_REGNO (a);
HARD_REG_SET saved[2];
int i, n;
n = ALLOCNO_NUM_OBJECTS (a);
for (i = 0; i < n; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
COPY_HARD_REG_SET (saved[i], OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), forbidden_regs);
if (! flag_caller_saves && ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
call_used_reg_set);
}
ALLOCNO_ASSIGNED_P (a) = false;
cover_class = ALLOCNO_COVER_CLASS (a);
update_curr_costs (a);
assign_hard_reg (a, true);
hard_regno = ALLOCNO_HARD_REGNO (a);
reg_renumber[regno] = hard_regno;
if (hard_regno < 0)
ALLOCNO_HARD_REGNO (a) = -1;
else
{
ira_assert (ira_class_hard_reg_index[cover_class][hard_regno] >= 0);
ira_overall_cost -= (ALLOCNO_MEMORY_COST (a)
- (ALLOCNO_HARD_REG_COSTS (a) == NULL
? ALLOCNO_COVER_CLASS_COST (a)
: ALLOCNO_HARD_REG_COSTS (a)
[ira_class_hard_reg_index
[cover_class][hard_regno]]));
if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0
&& ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
call_used_reg_set))
{
ira_assert (flag_caller_saves);
caller_save_needed = 1;
}
}
/* If we found a hard register, modify the RTL for the pseudo
register to show the hard register, and mark the pseudo register
live. */
if (reg_renumber[regno] >= 0)
{
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, ": reassign to %d\n", reg_renumber[regno]);
SET_REGNO (regno_reg_rtx[regno], reg_renumber[regno]);
mark_home_live (regno);
}
else if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file, "\n");
for (i = 0; i < n; i++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, i);
COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), saved[i]);
}
return reg_renumber[regno] >= 0;
}
/* Sort pseudos according their usage frequencies (putting most
frequently ones first). */
static int
pseudo_reg_compare (const void *v1p, const void *v2p)
{
int regno1 = *(const int *) v1p;
int regno2 = *(const int *) v2p;
int diff;
if ((diff = REG_FREQ (regno2) - REG_FREQ (regno1)) != 0)
return diff;
return regno1 - regno2;
}
/* Try to allocate hard registers to SPILLED_PSEUDO_REGS (there are
NUM of them) or spilled pseudos conflicting with pseudos in
SPILLED_PSEUDO_REGS. Return TRUE and update SPILLED, if the
allocation has been changed. The function doesn't use
BAD_SPILL_REGS and hard registers in PSEUDO_FORBIDDEN_REGS and
PSEUDO_PREVIOUS_REGS for the corresponding pseudos. The function
is called by the reload pass at the end of each reload
iteration. */
bool
ira_reassign_pseudos (int *spilled_pseudo_regs, int num,
HARD_REG_SET bad_spill_regs,
HARD_REG_SET *pseudo_forbidden_regs,
HARD_REG_SET *pseudo_previous_regs,
bitmap spilled)
{
int i, n, regno;
bool changed_p;
ira_allocno_t a;
HARD_REG_SET forbidden_regs;
bitmap temp = BITMAP_ALLOC (NULL);
/* Add pseudos which conflict with pseudos already in
SPILLED_PSEUDO_REGS to SPILLED_PSEUDO_REGS. This is preferable
to allocating in two steps as some of the conflicts might have
a higher priority than the pseudos passed in SPILLED_PSEUDO_REGS. */
for (i = 0; i < num; i++)
bitmap_set_bit (temp, spilled_pseudo_regs[i]);
for (i = 0, n = num; i < n; i++)
{
int nr, j;
int regno = spilled_pseudo_regs[i];
bitmap_set_bit (temp, regno);
a = ira_regno_allocno_map[regno];
nr = ALLOCNO_NUM_OBJECTS (a);
for (j = 0; j < nr; j++)
{
ira_object_t conflict_obj;
ira_object_t obj = ALLOCNO_OBJECT (a, j);
ira_object_conflict_iterator oci;
FOR_EACH_OBJECT_CONFLICT (obj, conflict_obj, oci)
{
ira_allocno_t conflict_a = OBJECT_ALLOCNO (conflict_obj);
if (ALLOCNO_HARD_REGNO (conflict_a) < 0
&& ! ALLOCNO_DONT_REASSIGN_P (conflict_a)
&& bitmap_set_bit (temp, ALLOCNO_REGNO (conflict_a)))
{
spilled_pseudo_regs[num++] = ALLOCNO_REGNO (conflict_a);
/* ?!? This seems wrong. */
bitmap_set_bit (consideration_allocno_bitmap,
ALLOCNO_NUM (conflict_a));
}
}
}
}
if (num > 1)
qsort (spilled_pseudo_regs, num, sizeof (int), pseudo_reg_compare);
changed_p = false;
/* Try to assign hard registers to pseudos from
SPILLED_PSEUDO_REGS. */
for (i = 0; i < num; i++)
{
regno = spilled_pseudo_regs[i];
COPY_HARD_REG_SET (forbidden_regs, bad_spill_regs);
IOR_HARD_REG_SET (forbidden_regs, pseudo_forbidden_regs[regno]);
IOR_HARD_REG_SET (forbidden_regs, pseudo_previous_regs[regno]);
gcc_assert (reg_renumber[regno] < 0);
a = ira_regno_allocno_map[regno];
ira_mark_allocation_change (regno);
ira_assert (reg_renumber[regno] < 0);
if (internal_flag_ira_verbose > 3 && ira_dump_file != NULL)
fprintf (ira_dump_file,
" Try Assign %d(a%d), cost=%d", regno, ALLOCNO_NUM (a),
ALLOCNO_MEMORY_COST (a)
- ALLOCNO_COVER_CLASS_COST (a));
allocno_reload_assign (a, forbidden_regs);
if (reg_renumber[regno] >= 0)
{
CLEAR_REGNO_REG_SET (spilled, regno);
changed_p = true;
}
}
BITMAP_FREE (temp);
return changed_p;
}
/* The function is called by reload and returns already allocated
stack slot (if any) for REGNO with given INHERENT_SIZE and
TOTAL_SIZE. In the case of failure to find a slot which can be
used for REGNO, the function returns NULL. */
rtx
ira_reuse_stack_slot (int regno, unsigned int inherent_size,
unsigned int total_size)
{
unsigned int i;
int slot_num, best_slot_num;
int cost, best_cost;
ira_copy_t cp, next_cp;
ira_allocno_t another_allocno, allocno = ira_regno_allocno_map[regno];
rtx x;
bitmap_iterator bi;
struct ira_spilled_reg_stack_slot *slot = NULL;
ira_assert (inherent_size == PSEUDO_REGNO_BYTES (regno)
&& inherent_size <= total_size
&& ALLOCNO_HARD_REGNO (allocno) < 0);
if (! flag_ira_share_spill_slots)
return NULL_RTX;
slot_num = -ALLOCNO_HARD_REGNO (allocno) - 2;
if (slot_num != -1)
{
slot = &ira_spilled_reg_stack_slots[slot_num];
x = slot->mem;
}
else
{
best_cost = best_slot_num = -1;
x = NULL_RTX;
/* It means that the pseudo was spilled in the reload pass, try
to reuse a slot. */
for (slot_num = 0;
slot_num < ira_spilled_reg_stack_slots_num;
slot_num++)
{
slot = &ira_spilled_reg_stack_slots[slot_num];
if (slot->mem == NULL_RTX)
continue;
if (slot->width < total_size
|| GET_MODE_SIZE (GET_MODE (slot->mem)) < inherent_size)
continue;
EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
FIRST_PSEUDO_REGISTER, i, bi)
{
another_allocno = ira_regno_allocno_map[i];
if (allocnos_have_intersected_live_ranges_p (allocno,
another_allocno))
goto cont;
}
for (cost = 0, cp = ALLOCNO_COPIES (allocno);
cp != NULL;
cp = next_cp)
{
if (cp->first == allocno)
{
next_cp = cp->next_first_allocno_copy;
another_allocno = cp->second;
}
else if (cp->second == allocno)
{
next_cp = cp->next_second_allocno_copy;
another_allocno = cp->first;
}
else
gcc_unreachable ();
if (cp->insn == NULL_RTX)
continue;
if (bitmap_bit_p (&slot->spilled_regs,
ALLOCNO_REGNO (another_allocno)))
cost += cp->freq;
}
if (cost > best_cost)
{
best_cost = cost;
best_slot_num = slot_num;
}
cont:
;
}
if (best_cost >= 0)
{
slot_num = best_slot_num;
slot = &ira_spilled_reg_stack_slots[slot_num];
SET_REGNO_REG_SET (&slot->spilled_regs, regno);
x = slot->mem;
ALLOCNO_HARD_REGNO (allocno) = -slot_num - 2;
}
}
if (x != NULL_RTX)
{
ira_assert (slot->width >= total_size);
#ifdef ENABLE_IRA_CHECKING
EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
FIRST_PSEUDO_REGISTER, i, bi)
{
ira_assert (! pseudos_have_intersected_live_ranges_p (regno, i));
}
#endif
SET_REGNO_REG_SET (&slot->spilled_regs, regno);
if (internal_flag_ira_verbose > 3 && ira_dump_file)
{
fprintf (ira_dump_file, " Assigning %d(freq=%d) slot %d of",
regno, REG_FREQ (regno), slot_num);
EXECUTE_IF_SET_IN_BITMAP (&slot->spilled_regs,
FIRST_PSEUDO_REGISTER, i, bi)
{
if ((unsigned) regno != i)
fprintf (ira_dump_file, " %d", i);
}
fprintf (ira_dump_file, "\n");
}
}
return x;
}
/* This is called by reload every time a new stack slot X with
TOTAL_SIZE was allocated for REGNO. We store this info for
subsequent ira_reuse_stack_slot calls. */
void
ira_mark_new_stack_slot (rtx x, int regno, unsigned int total_size)
{
struct ira_spilled_reg_stack_slot *slot;
int slot_num;
ira_allocno_t allocno;
ira_assert (PSEUDO_REGNO_BYTES (regno) <= total_size);
allocno = ira_regno_allocno_map[regno];
slot_num = -ALLOCNO_HARD_REGNO (allocno) - 2;
if (slot_num == -1)
{
slot_num = ira_spilled_reg_stack_slots_num++;
ALLOCNO_HARD_REGNO (allocno) = -slot_num - 2;
}
slot = &ira_spilled_reg_stack_slots[slot_num];
INIT_REG_SET (&slot->spilled_regs);
SET_REGNO_REG_SET (&slot->spilled_regs, regno);
slot->mem = x;
slot->width = total_size;
if (internal_flag_ira_verbose > 3 && ira_dump_file)
fprintf (ira_dump_file, " Assigning %d(freq=%d) a new slot %d\n",
regno, REG_FREQ (regno), slot_num);
}
/* Return spill cost for pseudo-registers whose numbers are in array
REGNOS (with a negative number as an end marker) for reload with
given IN and OUT for INSN. Return also number points (through
EXCESS_PRESSURE_LIVE_LENGTH) where the pseudo-register lives and
the register pressure is high, number of references of the
pseudo-registers (through NREFS), number of callee-clobbered
hard-registers occupied by the pseudo-registers (through
CALL_USED_COUNT), and the first hard regno occupied by the
pseudo-registers (through FIRST_HARD_REGNO). */
static int
calculate_spill_cost (int *regnos, rtx in, rtx out, rtx insn,
int *excess_pressure_live_length,
int *nrefs, int *call_used_count, int *first_hard_regno)
{
int i, cost, regno, hard_regno, j, count, saved_cost, nregs;
bool in_p, out_p;
int length;
ira_allocno_t a;
*nrefs = 0;
for (length = count = cost = i = 0;; i++)
{
regno = regnos[i];
if (regno < 0)
break;
*nrefs += REG_N_REFS (regno);
hard_regno = reg_renumber[regno];
ira_assert (hard_regno >= 0);
a = ira_regno_allocno_map[regno];
length += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) / ALLOCNO_NUM_OBJECTS (a);
cost += ALLOCNO_MEMORY_COST (a) - ALLOCNO_COVER_CLASS_COST (a);
nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
for (j = 0; j < nregs; j++)
if (! TEST_HARD_REG_BIT (call_used_reg_set, hard_regno + j))
break;
if (j == nregs)
count++;
in_p = in && REG_P (in) && (int) REGNO (in) == hard_regno;
out_p = out && REG_P (out) && (int) REGNO (out) == hard_regno;
if ((in_p || out_p)
&& find_regno_note (insn, REG_DEAD, hard_regno) != NULL_RTX)
{
saved_cost = 0;
if (in_p)
saved_cost += ira_memory_move_cost
[ALLOCNO_MODE (a)][ALLOCNO_COVER_CLASS (a)][1];
if (out_p)
saved_cost
+= ira_memory_move_cost
[ALLOCNO_MODE (a)][ALLOCNO_COVER_CLASS (a)][0];
cost -= REG_FREQ_FROM_BB (BLOCK_FOR_INSN (insn)) * saved_cost;
}
}
*excess_pressure_live_length = length;
*call_used_count = count;
hard_regno = -1;
if (regnos[0] >= 0)
{
hard_regno = reg_renumber[regnos[0]];
}
*first_hard_regno = hard_regno;
return cost;
}
/* Return TRUE if spilling pseudo-registers whose numbers are in array
REGNOS is better than spilling pseudo-registers with numbers in
OTHER_REGNOS for reload with given IN and OUT for INSN. The
function used by the reload pass to make better register spilling
decisions. */
bool
ira_better_spill_reload_regno_p (int *regnos, int *other_regnos,
rtx in, rtx out, rtx insn)
{
int cost, other_cost;
int length, other_length;
int nrefs, other_nrefs;
int call_used_count, other_call_used_count;
int hard_regno, other_hard_regno;
cost = calculate_spill_cost (regnos, in, out, insn,
&length, &nrefs, &call_used_count, &hard_regno);
other_cost = calculate_spill_cost (other_regnos, in, out, insn,
&other_length, &other_nrefs,
&other_call_used_count,
&other_hard_regno);
if (nrefs == 0 && other_nrefs != 0)
return true;
if (nrefs != 0 && other_nrefs == 0)
return false;
if (cost != other_cost)
return cost < other_cost;
if (length != other_length)
return length > other_length;
#ifdef REG_ALLOC_ORDER
if (hard_regno >= 0 && other_hard_regno >= 0)
return (inv_reg_alloc_order[hard_regno]
< inv_reg_alloc_order[other_hard_regno]);
#else
if (call_used_count != other_call_used_count)
return call_used_count > other_call_used_count;
#endif
return false;
}
/* Allocate and initialize data necessary for assign_hard_reg. */
void
ira_initiate_assign (void)
{
sorted_allocnos
= (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
* ira_allocnos_num);
consideration_allocno_bitmap = ira_allocate_bitmap ();
initiate_cost_update ();
allocno_priorities = (int *) ira_allocate (sizeof (int) * ira_allocnos_num);
}
/* Deallocate data used by assign_hard_reg. */
void
ira_finish_assign (void)
{
ira_free (sorted_allocnos);
ira_free_bitmap (consideration_allocno_bitmap);
finish_cost_update ();
ira_free (allocno_priorities);
}
/* Entry function doing color-based register allocation. */
static void
color (void)
{
allocno_stack_vec = VEC_alloc (ira_allocno_t, heap, ira_allocnos_num);
removed_splay_allocno_vec
= VEC_alloc (ira_allocno_t, heap, ira_allocnos_num);
memset (allocated_hardreg_p, 0, sizeof (allocated_hardreg_p));
ira_initiate_assign ();
do_coloring ();
ira_finish_assign ();
VEC_free (ira_allocno_t, heap, removed_splay_allocno_vec);
VEC_free (ira_allocno_t, heap, allocno_stack_vec);
move_spill_restore ();
}
/* This page contains a simple register allocator without usage of
allocno conflicts. This is used for fast allocation for -O0. */
/* Do register allocation by not using allocno conflicts. It uses
only allocno live ranges. The algorithm is close to Chow's
priority coloring. */
static void
fast_allocation (void)
{
int i, j, k, num, class_size, hard_regno;
#ifdef STACK_REGS
bool no_stack_reg_p;
#endif
enum reg_class cover_class;
enum machine_mode mode;
ira_allocno_t a;
ira_allocno_iterator ai;
live_range_t r;
HARD_REG_SET conflict_hard_regs, *used_hard_regs;
sorted_allocnos = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
* ira_allocnos_num);
num = 0;
FOR_EACH_ALLOCNO (a, ai)
sorted_allocnos[num++] = a;
allocno_priorities = (int *) ira_allocate (sizeof (int) * ira_allocnos_num);
setup_allocno_priorities (sorted_allocnos, num);
used_hard_regs = (HARD_REG_SET *) ira_allocate (sizeof (HARD_REG_SET)
* ira_max_point);
for (i = 0; i < ira_max_point; i++)
CLEAR_HARD_REG_SET (used_hard_regs[i]);
qsort (sorted_allocnos, num, sizeof (ira_allocno_t),
allocno_priority_compare_func);
for (i = 0; i < num; i++)
{
int nr, l;
a = sorted_allocnos[i];
nr = ALLOCNO_NUM_OBJECTS (a);
CLEAR_HARD_REG_SET (conflict_hard_regs);
for (l = 0; l < nr; l++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, l);
IOR_HARD_REG_SET (conflict_hard_regs,
OBJECT_CONFLICT_HARD_REGS (obj));
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
for (j = r->start; j <= r->finish; j++)
IOR_HARD_REG_SET (conflict_hard_regs, used_hard_regs[j]);
}
cover_class = ALLOCNO_COVER_CLASS (a);
ALLOCNO_ASSIGNED_P (a) = true;
ALLOCNO_HARD_REGNO (a) = -1;
if (hard_reg_set_subset_p (reg_class_contents[cover_class],
conflict_hard_regs))
continue;
mode = ALLOCNO_MODE (a);
#ifdef STACK_REGS
no_stack_reg_p = ALLOCNO_NO_STACK_REG_P (a);
#endif
class_size = ira_class_hard_regs_num[cover_class];
for (j = 0; j < class_size; j++)
{
hard_regno = ira_class_hard_regs[cover_class][j];
#ifdef STACK_REGS
if (no_stack_reg_p && FIRST_STACK_REG <= hard_regno
&& hard_regno <= LAST_STACK_REG)
continue;
#endif
if (!ira_hard_reg_not_in_set_p (hard_regno, mode, conflict_hard_regs)
|| (TEST_HARD_REG_BIT
(prohibited_class_mode_regs[cover_class][mode], hard_regno)))
continue;
ALLOCNO_HARD_REGNO (a) = hard_regno;
for (l = 0; l < nr; l++)
{
ira_object_t obj = ALLOCNO_OBJECT (a, l);
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
for (k = r->start; k <= r->finish; k++)
IOR_HARD_REG_SET (used_hard_regs[k],
ira_reg_mode_hard_regset[hard_regno][mode]);
}
break;
}
}
ira_free (sorted_allocnos);
ira_free (used_hard_regs);
ira_free (allocno_priorities);
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
ira_print_disposition (ira_dump_file);
}
/* Entry function doing coloring. */
void
ira_color (void)
{
ira_allocno_t a;
ira_allocno_iterator ai;
/* Setup updated costs. */
FOR_EACH_ALLOCNO (a, ai)
{
ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a);
ALLOCNO_UPDATED_COVER_CLASS_COST (a) = ALLOCNO_COVER_CLASS_COST (a);
}
if (ira_conflicts_p)
color ();
else
fast_allocation ();
}