| ------------------------------------------------------------------------------ |
| -- -- |
| -- GNAT COMPILER COMPONENTS -- |
| -- -- |
| -- E X P _ U T I L -- |
| -- -- |
| -- B o d y -- |
| -- -- |
| -- Copyright (C) 1992-2016, Free Software Foundation, Inc. -- |
| -- -- |
| -- GNAT is free software; you can redistribute it and/or modify it under -- |
| -- terms of the GNU General Public License as published by the Free Soft- -- |
| -- ware Foundation; either version 3, or (at your option) any later ver- -- |
| -- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- |
| -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- |
| -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- |
| -- for more details. You should have received a copy of the GNU General -- |
| -- Public License distributed with GNAT; see file COPYING3. If not, go to -- |
| -- http://www.gnu.org/licenses for a complete copy of the license. -- |
| -- -- |
| -- GNAT was originally developed by the GNAT team at New York University. -- |
| -- Extensive contributions were provided by Ada Core Technologies Inc. -- |
| -- -- |
| ------------------------------------------------------------------------------ |
| |
| with Aspects; use Aspects; |
| with Atree; use Atree; |
| with Casing; use Casing; |
| with Checks; use Checks; |
| with Debug; use Debug; |
| with Einfo; use Einfo; |
| with Elists; use Elists; |
| with Errout; use Errout; |
| with Exp_Aggr; use Exp_Aggr; |
| with Exp_Ch6; use Exp_Ch6; |
| with Exp_Ch7; use Exp_Ch7; |
| with Exp_Ch11; use Exp_Ch11; |
| with Ghost; use Ghost; |
| with Inline; use Inline; |
| with Itypes; use Itypes; |
| with Lib; use Lib; |
| with Nlists; use Nlists; |
| with Nmake; use Nmake; |
| with Opt; use Opt; |
| with Restrict; use Restrict; |
| with Rident; use Rident; |
| with Sem; use Sem; |
| with Sem_Aux; use Sem_Aux; |
| with Sem_Ch3; use Sem_Ch3; |
| with Sem_Ch6; use Sem_Ch6; |
| with Sem_Ch8; use Sem_Ch8; |
| with Sem_Ch12; use Sem_Ch12; |
| with Sem_Ch13; use Sem_Ch13; |
| with Sem_Disp; use Sem_Disp; |
| with Sem_Eval; use Sem_Eval; |
| with Sem_Res; use Sem_Res; |
| with Sem_Type; use Sem_Type; |
| with Sem_Util; use Sem_Util; |
| with Snames; use Snames; |
| with Stand; use Stand; |
| with Stringt; use Stringt; |
| with Targparm; use Targparm; |
| with Tbuild; use Tbuild; |
| with Ttypes; use Ttypes; |
| with Urealp; use Urealp; |
| with Validsw; use Validsw; |
| |
| with GNAT.HTable; use GNAT.HTable; |
| |
| package body Exp_Util is |
| |
| --------------------------------------------------------- |
| -- Handling of inherited class-wide pre/postconditions -- |
| --------------------------------------------------------- |
| |
| -- Following AI12-0113, the expression for a class-wide condition is |
| -- transformed for a subprogram that inherits it, by replacing calls |
| -- to primitive operations of the original controlling type into the |
| -- corresponding overriding operations of the derived type. The following |
| -- hash table manages this mapping, and is expanded on demand whenever |
| -- such inherited expression needs to be constructed. |
| |
| -- The mapping is also used to check whether an inherited operation has |
| -- a condition that depends on overridden operations. For such an |
| -- operation we must create a wrapper that is then treated as a normal |
| -- overriding. In SPARK mode such operations are illegal. |
| |
| -- For a given root type there may be several type extensions with their |
| -- own overriding operations, so at various times a given operation of |
| -- the root will be mapped into different overridings. The root type is |
| -- also mapped into the current type extension to indicate that its |
| -- operations are mapped into the overriding operations of that current |
| -- type extension. |
| |
| Primitives_Mapping_Size : constant := 511; |
| |
| subtype Num_Primitives is Integer range 0 .. Primitives_Mapping_Size - 1; |
| function Entity_Hash (E : Entity_Id) return Num_Primitives; |
| |
| package Primitives_Mapping is new GNAT.HTable.Simple_HTable |
| (Header_Num => Num_Primitives, |
| Key => Entity_Id, |
| Element => Entity_Id, |
| No_element => Empty, |
| Hash => Entity_Hash, |
| Equal => "="); |
| |
| ----------------------- |
| -- Local Subprograms -- |
| ----------------------- |
| |
| function Build_Task_Array_Image |
| (Loc : Source_Ptr; |
| Id_Ref : Node_Id; |
| A_Type : Entity_Id; |
| Dyn : Boolean := False) return Node_Id; |
| -- Build function to generate the image string for a task that is an array |
| -- component, concatenating the images of each index. To avoid storage |
| -- leaks, the string is built with successive slice assignments. The flag |
| -- Dyn indicates whether this is called for the initialization procedure of |
| -- an array of tasks, or for the name of a dynamically created task that is |
| -- assigned to an indexed component. |
| |
| function Build_Task_Image_Function |
| (Loc : Source_Ptr; |
| Decls : List_Id; |
| Stats : List_Id; |
| Res : Entity_Id) return Node_Id; |
| -- Common processing for Task_Array_Image and Task_Record_Image. Build |
| -- function body that computes image. |
| |
| procedure Build_Task_Image_Prefix |
| (Loc : Source_Ptr; |
| Len : out Entity_Id; |
| Res : out Entity_Id; |
| Pos : out Entity_Id; |
| Prefix : Entity_Id; |
| Sum : Node_Id; |
| Decls : List_Id; |
| Stats : List_Id); |
| -- Common processing for Task_Array_Image and Task_Record_Image. Create |
| -- local variables and assign prefix of name to result string. |
| |
| function Build_Task_Record_Image |
| (Loc : Source_Ptr; |
| Id_Ref : Node_Id; |
| Dyn : Boolean := False) return Node_Id; |
| -- Build function to generate the image string for a task that is a record |
| -- component. Concatenate name of variable with that of selector. The flag |
| -- Dyn indicates whether this is called for the initialization procedure of |
| -- record with task components, or for a dynamically created task that is |
| -- assigned to a selected component. |
| |
| procedure Evaluate_Slice_Bounds (Slice : Node_Id); |
| -- Force evaluation of bounds of a slice, which may be given by a range |
| -- or by a subtype indication with or without a constraint. |
| |
| function Find_DIC_Type (Typ : Entity_Id) return Entity_Id; |
| -- Subsidiary to all Build_DIC_Procedure_xxx routines. Find the type which |
| -- defines the Default_Initial_Condition pragma of type Typ. This is either |
| -- Typ itself or a parent type when the pragma is inherited. |
| |
| function Make_CW_Equivalent_Type |
| (T : Entity_Id; |
| E : Node_Id) return Entity_Id; |
| -- T is a class-wide type entity, E is the initial expression node that |
| -- constrains T in case such as: " X: T := E" or "new T'(E)". This function |
| -- returns the entity of the Equivalent type and inserts on the fly the |
| -- necessary declaration such as: |
| -- |
| -- type anon is record |
| -- _parent : Root_Type (T); constrained with E discriminants (if any) |
| -- Extension : String (1 .. expr to match size of E); |
| -- end record; |
| -- |
| -- This record is compatible with any object of the class of T thanks to |
| -- the first field and has the same size as E thanks to the second. |
| |
| function Make_Literal_Range |
| (Loc : Source_Ptr; |
| Literal_Typ : Entity_Id) return Node_Id; |
| -- Produce a Range node whose bounds are: |
| -- Low_Bound (Literal_Type) .. |
| -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1) |
| -- this is used for expanding declarations like X : String := "sdfgdfg"; |
| -- |
| -- If the index type of the target array is not integer, we generate: |
| -- Low_Bound (Literal_Type) .. |
| -- Literal_Type'Val |
| -- (Literal_Type'Pos (Low_Bound (Literal_Type)) |
| -- + (Length (Literal_Typ) -1)) |
| |
| function Make_Non_Empty_Check |
| (Loc : Source_Ptr; |
| N : Node_Id) return Node_Id; |
| -- Produce a boolean expression checking that the unidimensional array |
| -- node N is not empty. |
| |
| function New_Class_Wide_Subtype |
| (CW_Typ : Entity_Id; |
| N : Node_Id) return Entity_Id; |
| -- Create an implicit subtype of CW_Typ attached to node N |
| |
| function Requires_Cleanup_Actions |
| (L : List_Id; |
| Lib_Level : Boolean; |
| Nested_Constructs : Boolean) return Boolean; |
| -- Given a list L, determine whether it contains one of the following: |
| -- |
| -- 1) controlled objects |
| -- 2) library-level tagged types |
| -- |
| -- Lib_Level is True when the list comes from a construct at the library |
| -- level, and False otherwise. Nested_Constructs is True when any nested |
| -- packages declared in L must be processed, and False otherwise. |
| |
| ------------------------------------- |
| -- Activate_Atomic_Synchronization -- |
| ------------------------------------- |
| |
| procedure Activate_Atomic_Synchronization (N : Node_Id) is |
| Msg_Node : Node_Id; |
| |
| begin |
| case Nkind (Parent (N)) is |
| |
| -- Check for cases of appearing in the prefix of a construct where we |
| -- don't need atomic synchronization for this kind of usage. |
| |
| when |
| -- Nothing to do if we are the prefix of an attribute, since we |
| -- do not want an atomic sync operation for things like 'Size. |
| |
| N_Attribute_Reference |
| |
| -- The N_Reference node is like an attribute |
| |
| | N_Reference |
| |
| -- Nothing to do for a reference to a component (or components) |
| -- of a composite object. Only reads and updates of the object |
| -- as a whole require atomic synchronization (RM C.6 (15)). |
| |
| | N_Indexed_Component |
| | N_Selected_Component |
| | N_Slice |
| => |
| -- For all the above cases, nothing to do if we are the prefix |
| |
| if Prefix (Parent (N)) = N then |
| return; |
| end if; |
| |
| when others => |
| null; |
| end case; |
| |
| -- Nothing to do for the identifier in an object renaming declaration, |
| -- the renaming itself does not need atomic synchronization. |
| |
| if Nkind (Parent (N)) = N_Object_Renaming_Declaration then |
| return; |
| end if; |
| |
| -- Go ahead and set the flag |
| |
| Set_Atomic_Sync_Required (N); |
| |
| -- Generate info message if requested |
| |
| if Warn_On_Atomic_Synchronization then |
| case Nkind (N) is |
| when N_Identifier => |
| Msg_Node := N; |
| |
| when N_Expanded_Name |
| | N_Selected_Component |
| => |
| Msg_Node := Selector_Name (N); |
| |
| when N_Explicit_Dereference |
| | N_Indexed_Component |
| => |
| Msg_Node := Empty; |
| |
| when others => |
| pragma Assert (False); |
| return; |
| end case; |
| |
| if Present (Msg_Node) then |
| Error_Msg_N |
| ("info: atomic synchronization set for &?N?", Msg_Node); |
| else |
| Error_Msg_N |
| ("info: atomic synchronization set?N?", N); |
| end if; |
| end if; |
| end Activate_Atomic_Synchronization; |
| |
| ---------------------- |
| -- Adjust_Condition -- |
| ---------------------- |
| |
| procedure Adjust_Condition (N : Node_Id) is |
| begin |
| if No (N) then |
| return; |
| end if; |
| |
| declare |
| Loc : constant Source_Ptr := Sloc (N); |
| T : constant Entity_Id := Etype (N); |
| Ti : Entity_Id; |
| |
| begin |
| -- Defend against a call where the argument has no type, or has a |
| -- type that is not Boolean. This can occur because of prior errors. |
| |
| if No (T) or else not Is_Boolean_Type (T) then |
| return; |
| end if; |
| |
| -- Apply validity checking if needed |
| |
| if Validity_Checks_On and Validity_Check_Tests then |
| Ensure_Valid (N); |
| end if; |
| |
| -- Immediate return if standard boolean, the most common case, |
| -- where nothing needs to be done. |
| |
| if Base_Type (T) = Standard_Boolean then |
| return; |
| end if; |
| |
| -- Case of zero/non-zero semantics or non-standard enumeration |
| -- representation. In each case, we rewrite the node as: |
| |
| -- ityp!(N) /= False'Enum_Rep |
| |
| -- where ityp is an integer type with large enough size to hold any |
| -- value of type T. |
| |
| if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then |
| if Esize (T) <= Esize (Standard_Integer) then |
| Ti := Standard_Integer; |
| else |
| Ti := Standard_Long_Long_Integer; |
| end if; |
| |
| Rewrite (N, |
| Make_Op_Ne (Loc, |
| Left_Opnd => Unchecked_Convert_To (Ti, N), |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Enum_Rep, |
| Prefix => |
| New_Occurrence_Of (First_Literal (T), Loc)))); |
| Analyze_And_Resolve (N, Standard_Boolean); |
| |
| else |
| Rewrite (N, Convert_To (Standard_Boolean, N)); |
| Analyze_And_Resolve (N, Standard_Boolean); |
| end if; |
| end; |
| end Adjust_Condition; |
| |
| ------------------------ |
| -- Adjust_Result_Type -- |
| ------------------------ |
| |
| procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is |
| begin |
| -- Ignore call if current type is not Standard.Boolean |
| |
| if Etype (N) /= Standard_Boolean then |
| return; |
| end if; |
| |
| -- If result is already of correct type, nothing to do. Note that |
| -- this will get the most common case where everything has a type |
| -- of Standard.Boolean. |
| |
| if Base_Type (T) = Standard_Boolean then |
| return; |
| |
| else |
| declare |
| KP : constant Node_Kind := Nkind (Parent (N)); |
| |
| begin |
| -- If result is to be used as a Condition in the syntax, no need |
| -- to convert it back, since if it was changed to Standard.Boolean |
| -- using Adjust_Condition, that is just fine for this usage. |
| |
| if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then |
| return; |
| |
| -- If result is an operand of another logical operation, no need |
| -- to reset its type, since Standard.Boolean is just fine, and |
| -- such operations always do Adjust_Condition on their operands. |
| |
| elsif KP in N_Op_Boolean |
| or else KP in N_Short_Circuit |
| or else KP = N_Op_Not |
| then |
| return; |
| |
| -- Otherwise we perform a conversion from the current type, which |
| -- must be Standard.Boolean, to the desired type. Use the base |
| -- type to prevent spurious constraint checks that are extraneous |
| -- to the transformation. The type and its base have the same |
| -- representation, standard or otherwise. |
| |
| else |
| Set_Analyzed (N); |
| Rewrite (N, Convert_To (Base_Type (T), N)); |
| Analyze_And_Resolve (N, Base_Type (T)); |
| end if; |
| end; |
| end if; |
| end Adjust_Result_Type; |
| |
| -------------------------- |
| -- Append_Freeze_Action -- |
| -------------------------- |
| |
| procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is |
| Fnode : Node_Id; |
| |
| begin |
| Ensure_Freeze_Node (T); |
| Fnode := Freeze_Node (T); |
| |
| if No (Actions (Fnode)) then |
| Set_Actions (Fnode, New_List (N)); |
| else |
| Append (N, Actions (Fnode)); |
| end if; |
| |
| end Append_Freeze_Action; |
| |
| --------------------------- |
| -- Append_Freeze_Actions -- |
| --------------------------- |
| |
| procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is |
| Fnode : Node_Id; |
| |
| begin |
| if No (L) then |
| return; |
| end if; |
| |
| Ensure_Freeze_Node (T); |
| Fnode := Freeze_Node (T); |
| |
| if No (Actions (Fnode)) then |
| Set_Actions (Fnode, L); |
| else |
| Append_List (L, Actions (Fnode)); |
| end if; |
| end Append_Freeze_Actions; |
| |
| ------------------------------------ |
| -- Build_Allocate_Deallocate_Proc -- |
| ------------------------------------ |
| |
| procedure Build_Allocate_Deallocate_Proc |
| (N : Node_Id; |
| Is_Allocate : Boolean) |
| is |
| Desig_Typ : Entity_Id; |
| Expr : Node_Id; |
| Pool_Id : Entity_Id; |
| Proc_To_Call : Node_Id := Empty; |
| Ptr_Typ : Entity_Id; |
| |
| function Find_Object (E : Node_Id) return Node_Id; |
| -- Given an arbitrary expression of an allocator, try to find an object |
| -- reference in it, otherwise return the original expression. |
| |
| function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean; |
| -- Determine whether subprogram Subp denotes a custom allocate or |
| -- deallocate. |
| |
| ----------------- |
| -- Find_Object -- |
| ----------------- |
| |
| function Find_Object (E : Node_Id) return Node_Id is |
| Expr : Node_Id; |
| |
| begin |
| pragma Assert (Is_Allocate); |
| |
| Expr := E; |
| loop |
| if Nkind (Expr) = N_Explicit_Dereference then |
| Expr := Prefix (Expr); |
| |
| elsif Nkind (Expr) = N_Qualified_Expression then |
| Expr := Expression (Expr); |
| |
| elsif Nkind (Expr) = N_Unchecked_Type_Conversion then |
| |
| -- When interface class-wide types are involved in allocation, |
| -- the expander introduces several levels of address arithmetic |
| -- to perform dispatch table displacement. In this scenario the |
| -- object appears as: |
| |
| -- Tag_Ptr (Base_Address (<object>'Address)) |
| |
| -- Detect this case and utilize the whole expression as the |
| -- "object" since it now points to the proper dispatch table. |
| |
| if Is_RTE (Etype (Expr), RE_Tag_Ptr) then |
| exit; |
| |
| -- Continue to strip the object |
| |
| else |
| Expr := Expression (Expr); |
| end if; |
| |
| else |
| exit; |
| end if; |
| end loop; |
| |
| return Expr; |
| end Find_Object; |
| |
| --------------------------------- |
| -- Is_Allocate_Deallocate_Proc -- |
| --------------------------------- |
| |
| function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean is |
| begin |
| -- Look for a subprogram body with only one statement which is a |
| -- call to Allocate_Any_Controlled / Deallocate_Any_Controlled. |
| |
| if Ekind (Subp) = E_Procedure |
| and then Nkind (Parent (Parent (Subp))) = N_Subprogram_Body |
| then |
| declare |
| HSS : constant Node_Id := |
| Handled_Statement_Sequence (Parent (Parent (Subp))); |
| Proc : Entity_Id; |
| |
| begin |
| if Present (Statements (HSS)) |
| and then Nkind (First (Statements (HSS))) = |
| N_Procedure_Call_Statement |
| then |
| Proc := Entity (Name (First (Statements (HSS)))); |
| |
| return |
| Is_RTE (Proc, RE_Allocate_Any_Controlled) |
| or else Is_RTE (Proc, RE_Deallocate_Any_Controlled); |
| end if; |
| end; |
| end if; |
| |
| return False; |
| end Is_Allocate_Deallocate_Proc; |
| |
| -- Start of processing for Build_Allocate_Deallocate_Proc |
| |
| begin |
| -- Obtain the attributes of the allocation / deallocation |
| |
| if Nkind (N) = N_Free_Statement then |
| Expr := Expression (N); |
| Ptr_Typ := Base_Type (Etype (Expr)); |
| Proc_To_Call := Procedure_To_Call (N); |
| |
| else |
| if Nkind (N) = N_Object_Declaration then |
| Expr := Expression (N); |
| else |
| Expr := N; |
| end if; |
| |
| -- In certain cases an allocator with a qualified expression may |
| -- be relocated and used as the initialization expression of a |
| -- temporary: |
| |
| -- before: |
| -- Obj : Ptr_Typ := new Desig_Typ'(...); |
| |
| -- after: |
| -- Tmp : Ptr_Typ := new Desig_Typ'(...); |
| -- Obj : Ptr_Typ := Tmp; |
| |
| -- Since the allocator is always marked as analyzed to avoid infinite |
| -- expansion, it will never be processed by this routine given that |
| -- the designated type needs finalization actions. Detect this case |
| -- and complete the expansion of the allocator. |
| |
| if Nkind (Expr) = N_Identifier |
| and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration |
| and then Nkind (Expression (Parent (Entity (Expr)))) = N_Allocator |
| then |
| Build_Allocate_Deallocate_Proc (Parent (Entity (Expr)), True); |
| return; |
| end if; |
| |
| -- The allocator may have been rewritten into something else in which |
| -- case the expansion performed by this routine does not apply. |
| |
| if Nkind (Expr) /= N_Allocator then |
| return; |
| end if; |
| |
| Ptr_Typ := Base_Type (Etype (Expr)); |
| Proc_To_Call := Procedure_To_Call (Expr); |
| end if; |
| |
| Pool_Id := Associated_Storage_Pool (Ptr_Typ); |
| Desig_Typ := Available_View (Designated_Type (Ptr_Typ)); |
| |
| -- Handle concurrent types |
| |
| if Is_Concurrent_Type (Desig_Typ) |
| and then Present (Corresponding_Record_Type (Desig_Typ)) |
| then |
| Desig_Typ := Corresponding_Record_Type (Desig_Typ); |
| end if; |
| |
| -- Do not process allocations / deallocations without a pool |
| |
| if No (Pool_Id) then |
| return; |
| |
| -- Do not process allocations on / deallocations from the secondary |
| -- stack. |
| |
| elsif Is_RTE (Pool_Id, RE_SS_Pool) then |
| return; |
| |
| -- Optimize the case where we are using the default Global_Pool_Object, |
| -- and we don't need the heavy finalization machinery. |
| |
| elsif Pool_Id = RTE (RE_Global_Pool_Object) |
| and then not Needs_Finalization (Desig_Typ) |
| then |
| return; |
| |
| -- Do not replicate the machinery if the allocator / free has already |
| -- been expanded and has a custom Allocate / Deallocate. |
| |
| elsif Present (Proc_To_Call) |
| and then Is_Allocate_Deallocate_Proc (Proc_To_Call) |
| then |
| return; |
| end if; |
| |
| if Needs_Finalization (Desig_Typ) then |
| |
| -- Certain run-time configurations and targets do not provide support |
| -- for controlled types. |
| |
| if Restriction_Active (No_Finalization) then |
| return; |
| |
| -- Do nothing if the access type may never allocate / deallocate |
| -- objects. |
| |
| elsif No_Pool_Assigned (Ptr_Typ) then |
| return; |
| end if; |
| |
| -- The allocation / deallocation of a controlled object must be |
| -- chained on / detached from a finalization master. |
| |
| pragma Assert (Present (Finalization_Master (Ptr_Typ))); |
| |
| -- The only other kind of allocation / deallocation supported by this |
| -- routine is on / from a subpool. |
| |
| elsif Nkind (Expr) = N_Allocator |
| and then No (Subpool_Handle_Name (Expr)) |
| then |
| return; |
| end if; |
| |
| declare |
| Loc : constant Source_Ptr := Sloc (N); |
| Addr_Id : constant Entity_Id := Make_Temporary (Loc, 'A'); |
| Alig_Id : constant Entity_Id := Make_Temporary (Loc, 'L'); |
| Proc_Id : constant Entity_Id := Make_Temporary (Loc, 'P'); |
| Size_Id : constant Entity_Id := Make_Temporary (Loc, 'S'); |
| |
| Actuals : List_Id; |
| Fin_Addr_Id : Entity_Id; |
| Fin_Mas_Act : Node_Id; |
| Fin_Mas_Id : Entity_Id; |
| Proc_To_Call : Entity_Id; |
| Subpool : Node_Id := Empty; |
| |
| begin |
| -- Step 1: Construct all the actuals for the call to library routine |
| -- Allocate_Any_Controlled / Deallocate_Any_Controlled. |
| |
| -- a) Storage pool |
| |
| Actuals := New_List (New_Occurrence_Of (Pool_Id, Loc)); |
| |
| if Is_Allocate then |
| |
| -- b) Subpool |
| |
| if Nkind (Expr) = N_Allocator then |
| Subpool := Subpool_Handle_Name (Expr); |
| end if; |
| |
| -- If a subpool is present it can be an arbitrary name, so make |
| -- the actual by copying the tree. |
| |
| if Present (Subpool) then |
| Append_To (Actuals, New_Copy_Tree (Subpool, New_Sloc => Loc)); |
| else |
| Append_To (Actuals, Make_Null (Loc)); |
| end if; |
| |
| -- c) Finalization master |
| |
| if Needs_Finalization (Desig_Typ) then |
| Fin_Mas_Id := Finalization_Master (Ptr_Typ); |
| Fin_Mas_Act := New_Occurrence_Of (Fin_Mas_Id, Loc); |
| |
| -- Handle the case where the master is actually a pointer to a |
| -- master. This case arises in build-in-place functions. |
| |
| if Is_Access_Type (Etype (Fin_Mas_Id)) then |
| Append_To (Actuals, Fin_Mas_Act); |
| else |
| Append_To (Actuals, |
| Make_Attribute_Reference (Loc, |
| Prefix => Fin_Mas_Act, |
| Attribute_Name => Name_Unrestricted_Access)); |
| end if; |
| else |
| Append_To (Actuals, Make_Null (Loc)); |
| end if; |
| |
| -- d) Finalize_Address |
| |
| -- Primitive Finalize_Address is never generated in CodePeer mode |
| -- since it contains an Unchecked_Conversion. |
| |
| if Needs_Finalization (Desig_Typ) and then not CodePeer_Mode then |
| Fin_Addr_Id := Finalize_Address (Desig_Typ); |
| pragma Assert (Present (Fin_Addr_Id)); |
| |
| Append_To (Actuals, |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Fin_Addr_Id, Loc), |
| Attribute_Name => Name_Unrestricted_Access)); |
| else |
| Append_To (Actuals, Make_Null (Loc)); |
| end if; |
| end if; |
| |
| -- e) Address |
| -- f) Storage_Size |
| -- g) Alignment |
| |
| Append_To (Actuals, New_Occurrence_Of (Addr_Id, Loc)); |
| Append_To (Actuals, New_Occurrence_Of (Size_Id, Loc)); |
| |
| if Is_Allocate or else not Is_Class_Wide_Type (Desig_Typ) then |
| Append_To (Actuals, New_Occurrence_Of (Alig_Id, Loc)); |
| |
| -- For deallocation of class-wide types we obtain the value of |
| -- alignment from the Type Specific Record of the deallocated object. |
| -- This is needed because the frontend expansion of class-wide types |
| -- into equivalent types confuses the back end. |
| |
| else |
| -- Generate: |
| -- Obj.all'Alignment |
| |
| -- ... because 'Alignment applied to class-wide types is expanded |
| -- into the code that reads the value of alignment from the TSD |
| -- (see Expand_N_Attribute_Reference) |
| |
| Append_To (Actuals, |
| Unchecked_Convert_To (RTE (RE_Storage_Offset), |
| Make_Attribute_Reference (Loc, |
| Prefix => |
| Make_Explicit_Dereference (Loc, Relocate_Node (Expr)), |
| Attribute_Name => Name_Alignment))); |
| end if; |
| |
| -- h) Is_Controlled |
| |
| if Needs_Finalization (Desig_Typ) then |
| declare |
| Flag_Id : constant Entity_Id := Make_Temporary (Loc, 'F'); |
| Flag_Expr : Node_Id; |
| Param : Node_Id; |
| Temp : Node_Id; |
| |
| begin |
| if Is_Allocate then |
| Temp := Find_Object (Expression (Expr)); |
| else |
| Temp := Expr; |
| end if; |
| |
| -- Processing for allocations where the expression is a subtype |
| -- indication. |
| |
| if Is_Allocate |
| and then Is_Entity_Name (Temp) |
| and then Is_Type (Entity (Temp)) |
| then |
| Flag_Expr := |
| New_Occurrence_Of |
| (Boolean_Literals |
| (Needs_Finalization (Entity (Temp))), Loc); |
| |
| -- The allocation / deallocation of a class-wide object relies |
| -- on a runtime check to determine whether the object is truly |
| -- controlled or not. Depending on this check, the finalization |
| -- machinery will request or reclaim extra storage reserved for |
| -- a list header. |
| |
| elsif Is_Class_Wide_Type (Desig_Typ) then |
| |
| -- Detect a special case where interface class-wide types |
| -- are involved as the object appears as: |
| |
| -- Tag_Ptr (Base_Address (<object>'Address)) |
| |
| -- The expression already yields the proper tag, generate: |
| |
| -- Temp.all |
| |
| if Is_RTE (Etype (Temp), RE_Tag_Ptr) then |
| Param := |
| Make_Explicit_Dereference (Loc, |
| Prefix => Relocate_Node (Temp)); |
| |
| -- In the default case, obtain the tag of the object about |
| -- to be allocated / deallocated. Generate: |
| |
| -- Temp'Tag |
| |
| else |
| Param := |
| Make_Attribute_Reference (Loc, |
| Prefix => Relocate_Node (Temp), |
| Attribute_Name => Name_Tag); |
| end if; |
| |
| -- Generate: |
| -- Needs_Finalization (<Param>) |
| |
| Flag_Expr := |
| Make_Function_Call (Loc, |
| Name => |
| New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc), |
| Parameter_Associations => New_List (Param)); |
| |
| -- Processing for generic actuals |
| |
| elsif Is_Generic_Actual_Type (Desig_Typ) then |
| Flag_Expr := |
| New_Occurrence_Of (Boolean_Literals |
| (Needs_Finalization (Base_Type (Desig_Typ))), Loc); |
| |
| -- The object does not require any specialized checks, it is |
| -- known to be controlled. |
| |
| else |
| Flag_Expr := New_Occurrence_Of (Standard_True, Loc); |
| end if; |
| |
| -- Create the temporary which represents the finalization state |
| -- of the expression. Generate: |
| -- |
| -- F : constant Boolean := <Flag_Expr>; |
| |
| Insert_Action (N, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Flag_Id, |
| Constant_Present => True, |
| Object_Definition => |
| New_Occurrence_Of (Standard_Boolean, Loc), |
| Expression => Flag_Expr)); |
| |
| Append_To (Actuals, New_Occurrence_Of (Flag_Id, Loc)); |
| end; |
| |
| -- The object is not controlled |
| |
| else |
| Append_To (Actuals, New_Occurrence_Of (Standard_False, Loc)); |
| end if; |
| |
| -- i) On_Subpool |
| |
| if Is_Allocate then |
| Append_To (Actuals, |
| New_Occurrence_Of (Boolean_Literals (Present (Subpool)), Loc)); |
| end if; |
| |
| -- Step 2: Build a wrapper Allocate / Deallocate which internally |
| -- calls Allocate_Any_Controlled / Deallocate_Any_Controlled. |
| |
| -- Select the proper routine to call |
| |
| if Is_Allocate then |
| Proc_To_Call := RTE (RE_Allocate_Any_Controlled); |
| else |
| Proc_To_Call := RTE (RE_Deallocate_Any_Controlled); |
| end if; |
| |
| -- Create a custom Allocate / Deallocate routine which has identical |
| -- profile to that of System.Storage_Pools. |
| |
| Insert_Action (N, |
| Make_Subprogram_Body (Loc, |
| Specification => |
| |
| -- procedure Pnn |
| |
| Make_Procedure_Specification (Loc, |
| Defining_Unit_Name => Proc_Id, |
| Parameter_Specifications => New_List ( |
| |
| -- P : Root_Storage_Pool |
| |
| Make_Parameter_Specification (Loc, |
| Defining_Identifier => Make_Temporary (Loc, 'P'), |
| Parameter_Type => |
| New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc)), |
| |
| -- A : [out] Address |
| |
| Make_Parameter_Specification (Loc, |
| Defining_Identifier => Addr_Id, |
| Out_Present => Is_Allocate, |
| Parameter_Type => |
| New_Occurrence_Of (RTE (RE_Address), Loc)), |
| |
| -- S : Storage_Count |
| |
| Make_Parameter_Specification (Loc, |
| Defining_Identifier => Size_Id, |
| Parameter_Type => |
| New_Occurrence_Of (RTE (RE_Storage_Count), Loc)), |
| |
| -- L : Storage_Count |
| |
| Make_Parameter_Specification (Loc, |
| Defining_Identifier => Alig_Id, |
| Parameter_Type => |
| New_Occurrence_Of (RTE (RE_Storage_Count), Loc)))), |
| |
| Declarations => No_List, |
| |
| Handled_Statement_Sequence => |
| Make_Handled_Sequence_Of_Statements (Loc, |
| Statements => New_List ( |
| Make_Procedure_Call_Statement (Loc, |
| Name => New_Occurrence_Of (Proc_To_Call, Loc), |
| Parameter_Associations => Actuals))))); |
| |
| -- The newly generated Allocate / Deallocate becomes the default |
| -- procedure to call when the back end processes the allocation / |
| -- deallocation. |
| |
| if Is_Allocate then |
| Set_Procedure_To_Call (Expr, Proc_Id); |
| else |
| Set_Procedure_To_Call (N, Proc_Id); |
| end if; |
| end; |
| end Build_Allocate_Deallocate_Proc; |
| |
| ------------------------------- |
| -- Build_Abort_Undefer_Block -- |
| ------------------------------- |
| |
| function Build_Abort_Undefer_Block |
| (Loc : Source_Ptr; |
| Stmts : List_Id; |
| Context : Node_Id) return Node_Id |
| is |
| Exceptions_OK : constant Boolean := |
| not Restriction_Active (No_Exception_Propagation); |
| |
| AUD : Entity_Id; |
| Blk : Node_Id; |
| Blk_Id : Entity_Id; |
| HSS : Node_Id; |
| |
| begin |
| -- The block should be generated only when undeferring abort in the |
| -- context of a potential exception. |
| |
| pragma Assert (Abort_Allowed and Exceptions_OK); |
| |
| -- Generate: |
| -- begin |
| -- <Stmts> |
| -- at end |
| -- Abort_Undefer_Direct; |
| -- end; |
| |
| AUD := RTE (RE_Abort_Undefer_Direct); |
| |
| HSS := |
| Make_Handled_Sequence_Of_Statements (Loc, |
| Statements => Stmts, |
| At_End_Proc => New_Occurrence_Of (AUD, Loc)); |
| |
| Blk := |
| Make_Block_Statement (Loc, |
| Handled_Statement_Sequence => HSS); |
| Set_Is_Abort_Block (Blk); |
| |
| Add_Block_Identifier (Blk, Blk_Id); |
| Expand_At_End_Handler (HSS, Blk_Id); |
| |
| -- Present the Abort_Undefer_Direct function to the back end to inline |
| -- the call to the routine. |
| |
| Add_Inlined_Body (AUD, Context); |
| |
| return Blk; |
| end Build_Abort_Undefer_Block; |
| |
| --------------------------------- |
| -- Build_Class_Wide_Expression -- |
| --------------------------------- |
| |
| procedure Build_Class_Wide_Expression |
| (Prag : Node_Id; |
| Subp : Entity_Id; |
| Par_Subp : Entity_Id; |
| Adjust_Sloc : Boolean) |
| is |
| function Replace_Entity (N : Node_Id) return Traverse_Result; |
| -- Replace reference to formal of inherited operation or to primitive |
| -- operation of root type, with corresponding entity for derived type, |
| -- when constructing the class-wide condition of an overriding |
| -- subprogram. |
| |
| -------------------- |
| -- Replace_Entity -- |
| -------------------- |
| |
| function Replace_Entity (N : Node_Id) return Traverse_Result is |
| New_E : Entity_Id; |
| |
| begin |
| if Adjust_Sloc then |
| Adjust_Inherited_Pragma_Sloc (N); |
| end if; |
| |
| if Nkind (N) = N_Identifier |
| and then Present (Entity (N)) |
| and then |
| (Is_Formal (Entity (N)) or else Is_Subprogram (Entity (N))) |
| and then |
| (Nkind (Parent (N)) /= N_Attribute_Reference |
| or else Attribute_Name (Parent (N)) /= Name_Class) |
| then |
| -- The replacement does not apply to dispatching calls within the |
| -- condition, but only to calls whose static tag is that of the |
| -- parent type. |
| |
| if Is_Subprogram (Entity (N)) |
| and then Nkind (Parent (N)) = N_Function_Call |
| and then Present (Controlling_Argument (Parent (N))) |
| then |
| return OK; |
| end if; |
| |
| -- Determine whether entity has a renaming |
| |
| New_E := Primitives_Mapping.Get (Entity (N)); |
| |
| if Present (New_E) then |
| Rewrite (N, New_Occurrence_Of (New_E, Sloc (N))); |
| end if; |
| |
| -- Check that there are no calls left to abstract operations if |
| -- the current subprogram is not abstract. |
| |
| if Nkind (Parent (N)) = N_Function_Call |
| and then N = Name (Parent (N)) |
| then |
| if not Is_Abstract_Subprogram (Subp) |
| and then Is_Abstract_Subprogram (Entity (N)) |
| then |
| Error_Msg_Sloc := Sloc (Current_Scope); |
| Error_Msg_NE |
| ("cannot call abstract subprogram in inherited condition " |
| & "for&#", N, Current_Scope); |
| |
| -- In SPARK mode, reject an inherited condition for an |
| -- inherited operation if it contains a call to an overriding |
| -- operation, because this implies that the pre/postconditions |
| -- of the inherited operation have changed silently. |
| |
| elsif SPARK_Mode = On |
| and then Warn_On_Suspicious_Contract |
| and then Present (Alias (Subp)) |
| and then Present (New_E) |
| and then Comes_From_Source (New_E) |
| then |
| Error_Msg_N |
| ("cannot modify inherited condition (SPARK RM 6.1.1(1))", |
| Parent (Subp)); |
| Error_Msg_Sloc := Sloc (New_E); |
| Error_Msg_Node_2 := Subp; |
| Error_Msg_NE |
| ("\overriding of&# forces overriding of&", |
| Parent (Subp), New_E); |
| end if; |
| end if; |
| |
| -- Update type of function call node, which should be the same as |
| -- the function's return type. |
| |
| if Is_Subprogram (Entity (N)) |
| and then Nkind (Parent (N)) = N_Function_Call |
| then |
| Set_Etype (Parent (N), Etype (Entity (N))); |
| end if; |
| |
| -- The whole expression will be reanalyzed |
| |
| elsif Nkind (N) in N_Has_Etype then |
| Set_Analyzed (N, False); |
| end if; |
| |
| return OK; |
| end Replace_Entity; |
| |
| procedure Replace_Condition_Entities is |
| new Traverse_Proc (Replace_Entity); |
| |
| -- Local variables |
| |
| Par_Formal : Entity_Id; |
| Subp_Formal : Entity_Id; |
| |
| -- Start of processing for Build_Class_Wide_Expression |
| |
| begin |
| -- Add mapping from old formals to new formals |
| |
| Par_Formal := First_Formal (Par_Subp); |
| Subp_Formal := First_Formal (Subp); |
| |
| while Present (Par_Formal) and then Present (Subp_Formal) loop |
| Primitives_Mapping.Set (Par_Formal, Subp_Formal); |
| Next_Formal (Par_Formal); |
| Next_Formal (Subp_Formal); |
| end loop; |
| |
| Replace_Condition_Entities (Prag); |
| end Build_Class_Wide_Expression; |
| |
| -------------------- |
| -- Build_DIC_Call -- |
| -------------------- |
| |
| function Build_DIC_Call |
| (Loc : Source_Ptr; |
| Obj_Id : Entity_Id; |
| Typ : Entity_Id) return Node_Id |
| is |
| Proc_Id : constant Entity_Id := DIC_Procedure (Typ); |
| Formal_Typ : constant Entity_Id := Etype (First_Formal (Proc_Id)); |
| |
| begin |
| return |
| Make_Procedure_Call_Statement (Loc, |
| Name => New_Occurrence_Of (Proc_Id, Loc), |
| Parameter_Associations => New_List ( |
| Make_Unchecked_Type_Conversion (Loc, |
| Subtype_Mark => New_Occurrence_Of (Formal_Typ, Loc), |
| Expression => New_Occurrence_Of (Obj_Id, Loc)))); |
| end Build_DIC_Call; |
| |
| ------------------------------ |
| -- Build_DIC_Procedure_Body -- |
| ------------------------------ |
| |
| -- WARNING: This routine manages Ghost regions. Return statements must be |
| -- replaced by gotos which jump to the end of the routine and restore the |
| -- Ghost mode. |
| |
| procedure Build_DIC_Procedure_Body (Typ : Entity_Id) is |
| procedure Add_DIC_Check |
| (DIC_Prag : Node_Id; |
| DIC_Expr : Node_Id; |
| Stmts : in out List_Id); |
| -- Subsidiary to all Add_xxx_DIC routines. Add a runtime check to verify |
| -- assertion expression DIC_Expr of pragma DIC_Prag. All generated code |
| -- is added to list Stmts. |
| |
| procedure Add_Inherited_DIC |
| (DIC_Prag : Node_Id; |
| Par_Typ : Entity_Id; |
| Deriv_Typ : Entity_Id; |
| Stmts : in out List_Id); |
| -- Add a runtime check to verify the assertion expression of inherited |
| -- pragma DIC_Prag. Par_Typ is parent type, which is also the owner of |
| -- the DIC pragma. Deriv_Typ is the derived type inheriting the DIC |
| -- pragma. All generated code is added to list Stmts. |
| |
| procedure Add_Inherited_Tagged_DIC |
| (DIC_Prag : Node_Id; |
| Par_Typ : Entity_Id; |
| Deriv_Typ : Entity_Id; |
| Stmts : in out List_Id); |
| -- Add a runtime check to verify assertion expression DIC_Expr of |
| -- inherited pragma DIC_Prag. This routine applies class-wide pre- and |
| -- postcondition-like runtime semantics to the check. Par_Typ is the |
| -- parent type whose DIC pragma is being inherited. Deriv_Typ is the |
| -- derived type inheriting the DIC pragma. All generated code is added |
| -- to list Stmts. |
| |
| procedure Add_Own_DIC |
| (DIC_Prag : Node_Id; |
| DIC_Typ : Entity_Id; |
| Stmts : in out List_Id); |
| -- Add a runtime check to verify the assertion expression of pragma |
| -- DIC_Prag. DIC_Typ is the owner of the DIC pragma. All generated code |
| -- is added to list Stmts. |
| |
| procedure Replace_Object_And_Primitive_References |
| (Expr : Node_Id; |
| Par_Typ : Entity_Id; |
| Deriv_Typ : Entity_Id; |
| Par_Obj : Entity_Id := Empty; |
| Deriv_Obj : Entity_Id := Empty); |
| -- Expr denotes an arbitrary expression. Par_Typ is a parent type in a |
| -- type hierarchy. Deriv_Typ is a type derived from Par_Typ. Par_Obj is |
| -- the formal parameter which emulates the current instance of Par_Typ. |
| -- Deriv_Obj is the formal parameter which emulates the current instance |
| -- of Deriv_Typ. Perform the following substitutions: |
| -- |
| -- * Replace a reference to Par_Obj with a reference to Deriv_Obj if |
| -- applicable. |
| -- |
| -- * Replace a call to an overridden parent primitive with a call to |
| -- the overriding derived type primitive. |
| -- |
| -- * Replace a call to an inherited parent primitive with a call to |
| -- the internally-generated inherited derived type primitive. |
| |
| procedure Replace_Type_References |
| (Expr : Node_Id; |
| Typ : Entity_Id; |
| Obj_Id : Entity_Id); |
| -- Substitute all references of the current instance of type Typ with |
| -- references to formal parameter Obj_Id within expression Expr. |
| |
| ------------------- |
| -- Add_DIC_Check -- |
| ------------------- |
| |
| procedure Add_DIC_Check |
| (DIC_Prag : Node_Id; |
| DIC_Expr : Node_Id; |
| Stmts : in out List_Id) |
| is |
| Loc : constant Source_Ptr := Sloc (DIC_Prag); |
| Nam : constant Name_Id := Original_Aspect_Pragma_Name (DIC_Prag); |
| |
| begin |
| -- The DIC pragma is ignored, nothing left to do |
| |
| if Is_Ignored (DIC_Prag) then |
| null; |
| |
| -- Otherwise the DIC expression must be checked at runtime. Generate: |
| |
| -- pragma Check (<Nam>, <DIC_Expr>); |
| |
| else |
| Append_New_To (Stmts, |
| Make_Pragma (Loc, |
| Pragma_Identifier => |
| Make_Identifier (Loc, Name_Check), |
| |
| Pragma_Argument_Associations => New_List ( |
| Make_Pragma_Argument_Association (Loc, |
| Expression => Make_Identifier (Loc, Nam)), |
| |
| Make_Pragma_Argument_Association (Loc, |
| Expression => DIC_Expr)))); |
| end if; |
| end Add_DIC_Check; |
| |
| ----------------------- |
| -- Add_Inherited_DIC -- |
| ----------------------- |
| |
| procedure Add_Inherited_DIC |
| (DIC_Prag : Node_Id; |
| Par_Typ : Entity_Id; |
| Deriv_Typ : Entity_Id; |
| Stmts : in out List_Id) |
| is |
| Deriv_Proc : constant Entity_Id := DIC_Procedure (Deriv_Typ); |
| Deriv_Obj : constant Entity_Id := First_Entity (Deriv_Proc); |
| Par_Proc : constant Entity_Id := DIC_Procedure (Par_Typ); |
| Par_Obj : constant Entity_Id := First_Entity (Par_Proc); |
| Loc : constant Source_Ptr := Sloc (DIC_Prag); |
| |
| begin |
| pragma Assert (Present (Deriv_Proc) and then Present (Par_Proc)); |
| |
| -- Verify the inherited DIC assertion expression by calling the DIC |
| -- procedure of the parent type. |
| |
| -- Generate: |
| -- <Par_Typ>DIC (Par_Typ (_object)); |
| |
| Append_New_To (Stmts, |
| Make_Procedure_Call_Statement (Loc, |
| Name => New_Occurrence_Of (Par_Proc, Loc), |
| Parameter_Associations => New_List ( |
| Convert_To |
| (Typ => Etype (Par_Obj), |
| Expr => New_Occurrence_Of (Deriv_Obj, Loc))))); |
| end Add_Inherited_DIC; |
| |
| ------------------------------ |
| -- Add_Inherited_Tagged_DIC -- |
| ------------------------------ |
| |
| procedure Add_Inherited_Tagged_DIC |
| (DIC_Prag : Node_Id; |
| Par_Typ : Entity_Id; |
| Deriv_Typ : Entity_Id; |
| Stmts : in out List_Id) |
| is |
| Deriv_Decl : constant Node_Id := Declaration_Node (Deriv_Typ); |
| Deriv_Proc : constant Entity_Id := DIC_Procedure (Deriv_Typ); |
| DIC_Args : constant List_Id := |
| Pragma_Argument_Associations (DIC_Prag); |
| DIC_Arg : constant Node_Id := First (DIC_Args); |
| DIC_Expr : constant Node_Id := Expression_Copy (DIC_Arg); |
| Par_Proc : constant Entity_Id := DIC_Procedure (Par_Typ); |
| |
| Expr : Node_Id; |
| |
| begin |
| -- The processing of an inherited DIC assertion expression starts off |
| -- with a copy of the original parent expression where all references |
| -- to the parent type have already been replaced with references to |
| -- the _object formal parameter of the parent type's DIC procedure. |
| |
| pragma Assert (Present (DIC_Expr)); |
| Expr := New_Copy_Tree (DIC_Expr); |
| |
| -- Perform the following substitutions: |
| |
| -- * Replace a reference to the _object parameter of the parent |
| -- type's DIC procedure with a reference to the _object parameter |
| -- of the derived types' DIC procedure. |
| |
| -- * Replace a call to an overridden parent primitive with a call |
| -- to the overriding derived type primitive. |
| |
| -- * Replace a call to an inherited parent primitive with a call to |
| -- the internally-generated inherited derived type primitive. |
| |
| -- Note that primitives defined in the private part are automatically |
| -- handled by the overriding/inheritance mechanism and do not require |
| -- an extra replacement pass. |
| |
| pragma Assert (Present (Deriv_Proc) and then Present (Par_Proc)); |
| |
| Replace_Object_And_Primitive_References |
| (Expr => Expr, |
| Par_Typ => Par_Typ, |
| Deriv_Typ => Deriv_Typ, |
| Par_Obj => First_Formal (Par_Proc), |
| Deriv_Obj => First_Formal (Deriv_Proc)); |
| |
| -- Preanalyze the DIC expression to detect errors and at the same |
| -- time capture the visibility of the proper package part. |
| |
| Set_Parent (Expr, Deriv_Decl); |
| Preanalyze_Assert_Expression (Expr, Any_Boolean); |
| |
| -- Once the DIC assertion expression is fully processed, add a check |
| -- to the statements of the DIC procedure. |
| |
| Add_DIC_Check |
| (DIC_Prag => DIC_Prag, |
| DIC_Expr => Expr, |
| Stmts => Stmts); |
| end Add_Inherited_Tagged_DIC; |
| |
| ----------------- |
| -- Add_Own_DIC -- |
| ----------------- |
| |
| procedure Add_Own_DIC |
| (DIC_Prag : Node_Id; |
| DIC_Typ : Entity_Id; |
| Stmts : in out List_Id) |
| is |
| DIC_Args : constant List_Id := |
| Pragma_Argument_Associations (DIC_Prag); |
| DIC_Arg : constant Node_Id := First (DIC_Args); |
| DIC_Asp : constant Node_Id := Corresponding_Aspect (DIC_Prag); |
| DIC_Expr : constant Node_Id := Get_Pragma_Arg (DIC_Arg); |
| DIC_Proc : constant Entity_Id := DIC_Procedure (DIC_Typ); |
| Obj_Id : constant Entity_Id := First_Formal (DIC_Proc); |
| |
| procedure Preanalyze_Own_DIC_For_ASIS; |
| -- Preanalyze the original DIC expression of an aspect or a source |
| -- pragma for ASIS. |
| |
| --------------------------------- |
| -- Preanalyze_Own_DIC_For_ASIS -- |
| --------------------------------- |
| |
| procedure Preanalyze_Own_DIC_For_ASIS is |
| Expr : Node_Id := Empty; |
| |
| begin |
| -- The DIC pragma is a source construct, preanalyze the original |
| -- expression of the pragma. |
| |
| if Comes_From_Source (DIC_Prag) then |
| Expr := DIC_Expr; |
| |
| -- Otherwise preanalyze the expression of the corresponding aspect |
| |
| elsif Present (DIC_Asp) then |
| Expr := Expression (DIC_Asp); |
| end if; |
| |
| -- The expression must be subjected to the same substitutions as |
| -- the copy used in the generation of the runtime check. |
| |
| if Present (Expr) then |
| Replace_Type_References |
| (Expr => Expr, |
| Typ => DIC_Typ, |
| Obj_Id => Obj_Id); |
| |
| Preanalyze_Assert_Expression (Expr, Any_Boolean); |
| end if; |
| end Preanalyze_Own_DIC_For_ASIS; |
| |
| -- Local variables |
| |
| Typ_Decl : constant Node_Id := Declaration_Node (DIC_Typ); |
| |
| Expr : Node_Id; |
| |
| -- Start of processing for Add_Own_DIC |
| |
| begin |
| Expr := New_Copy_Tree (DIC_Expr); |
| |
| -- Perform the following substitution: |
| |
| -- * Replace the current instance of DIC_Typ with a reference to |
| -- the _object formal parameter of the DIC procedure. |
| |
| Replace_Type_References |
| (Expr => Expr, |
| Typ => DIC_Typ, |
| Obj_Id => Obj_Id); |
| |
| -- Preanalyze the DIC expression to detect errors and at the same |
| -- time capture the visibility of the proper package part. |
| |
| Set_Parent (Expr, Typ_Decl); |
| Preanalyze_Assert_Expression (Expr, Any_Boolean); |
| |
| -- Save a copy of the expression with all replacements and analysis |
| -- already taken place in case a derived type inherits the pragma. |
| -- The copy will be used as the foundation of the derived type's own |
| -- version of the DIC assertion expression. |
| |
| if Is_Tagged_Type (DIC_Typ) then |
| Set_Expression_Copy (DIC_Arg, New_Copy_Tree (Expr)); |
| end if; |
| |
| -- If the pragma comes from an aspect specification, replace the |
| -- saved expression because all type references must be substituted |
| -- for the call to Preanalyze_Spec_Expression in Check_Aspect_At_xxx |
| -- routines. |
| |
| if Present (DIC_Asp) then |
| Set_Entity (Identifier (DIC_Asp), New_Copy_Tree (Expr)); |
| end if; |
| |
| -- Preanalyze the original DIC expression for ASIS |
| |
| if ASIS_Mode then |
| Preanalyze_Own_DIC_For_ASIS; |
| end if; |
| |
| -- Once the DIC assertion expression is fully processed, add a check |
| -- to the statements of the DIC procedure. |
| |
| Add_DIC_Check |
| (DIC_Prag => DIC_Prag, |
| DIC_Expr => Expr, |
| Stmts => Stmts); |
| end Add_Own_DIC; |
| |
| --------------------------------------------- |
| -- Replace_Object_And_Primitive_References -- |
| --------------------------------------------- |
| |
| procedure Replace_Object_And_Primitive_References |
| (Expr : Node_Id; |
| Par_Typ : Entity_Id; |
| Deriv_Typ : Entity_Id; |
| Par_Obj : Entity_Id := Empty; |
| Deriv_Obj : Entity_Id := Empty) |
| is |
| function Replace_Ref (Ref : Node_Id) return Traverse_Result; |
| -- Substitute a reference to an entity with a reference to the |
| -- corresponding entity stored in in table Primitives_Mapping. |
| |
| ----------------- |
| -- Replace_Ref -- |
| ----------------- |
| |
| function Replace_Ref (Ref : Node_Id) return Traverse_Result is |
| Context : constant Node_Id := Parent (Ref); |
| Loc : constant Source_Ptr := Sloc (Ref); |
| New_Id : Entity_Id; |
| New_Ref : Node_Id; |
| Ref_Id : Entity_Id; |
| Result : Traverse_Result; |
| |
| begin |
| Result := OK; |
| |
| -- The current node denotes a reference |
| |
| if Nkind (Ref) in N_Has_Entity and then Present (Entity (Ref)) then |
| Ref_Id := Entity (Ref); |
| New_Id := Primitives_Mapping.Get (Ref_Id); |
| |
| -- The reference mentions a parent type primitive which has a |
| -- corresponding derived type primitive. |
| |
| if Present (New_Id) then |
| New_Ref := New_Occurrence_Of (New_Id, Loc); |
| |
| -- The reference mentions the _object parameter of the parent |
| -- type's DIC procedure. |
| |
| elsif Present (Par_Obj) |
| and then Present (Deriv_Obj) |
| and then Ref_Id = Par_Obj |
| then |
| New_Ref := New_Occurrence_Of (Deriv_Obj, Loc); |
| |
| -- The reference to _object acts as an actual parameter in a |
| -- subprogram call which may be invoking a primitive of the |
| -- parent type: |
| |
| -- Primitive (... _object ...); |
| |
| -- The parent type primitive may not be overridden nor |
| -- inherited when it is declared after the derived type |
| -- definition: |
| |
| -- type Parent is tagged private; |
| -- type Child is new Parent with private; |
| -- procedure Primitive (Obj : Parent); |
| |
| -- In this scenario the _object parameter is converted to |
| -- the parent type. |
| |
| if Nkind_In (Context, N_Function_Call, |
| N_Procedure_Call_Statement) |
| and then |
| No (Primitives_Mapping.Get (Entity (Name (Context)))) |
| then |
| New_Ref := Convert_To (Par_Typ, New_Ref); |
| |
| -- Do not process the generated type conversion because |
| -- both the parent type and the derived type are in the |
| -- Primitives_Mapping table. This will clobber the type |
| -- conversion by resetting its subtype mark. |
| |
| Result := Skip; |
| end if; |
| |
| -- Otherwise there is nothing to replace |
| |
| else |
| New_Ref := Empty; |
| end if; |
| |
| if Present (New_Ref) then |
| Rewrite (Ref, New_Ref); |
| |
| -- Update the return type when the context of the reference |
| -- acts as the name of a function call. Note that the update |
| -- should not be performed when the reference appears as an |
| -- actual in the call. |
| |
| if Nkind (Context) = N_Function_Call |
| and then Name (Context) = Ref |
| then |
| Set_Etype (Context, Etype (New_Id)); |
| end if; |
| end if; |
| end if; |
| |
| -- Reanalyze the reference due to potential replacements |
| |
| if Nkind (Ref) in N_Has_Etype then |
| Set_Analyzed (Ref, False); |
| end if; |
| |
| return Result; |
| end Replace_Ref; |
| |
| procedure Replace_Refs is new Traverse_Proc (Replace_Ref); |
| |
| -- Start of processing for Replace_Object_And_Primitive_References |
| |
| begin |
| -- Map each primitive operation of the parent type to the proper |
| -- primitive of the derived type. |
| |
| Update_Primitives_Mapping_Of_Types |
| (Par_Typ => Par_Typ, |
| Deriv_Typ => Deriv_Typ); |
| |
| -- Inspect the input expression and perform substitutions where |
| -- necessary. |
| |
| Replace_Refs (Expr); |
| end Replace_Object_And_Primitive_References; |
| |
| ----------------------------- |
| -- Replace_Type_References -- |
| ----------------------------- |
| |
| procedure Replace_Type_References |
| (Expr : Node_Id; |
| Typ : Entity_Id; |
| Obj_Id : Entity_Id) |
| is |
| procedure Replace_Type_Ref (N : Node_Id); |
| -- Substitute a single reference of the current instance of type Typ |
| -- with a reference to Obj_Id. |
| |
| ---------------------- |
| -- Replace_Type_Ref -- |
| ---------------------- |
| |
| procedure Replace_Type_Ref (N : Node_Id) is |
| Ref : Node_Id; |
| |
| begin |
| -- Decorate the reference to Typ even though it may be rewritten |
| -- further down. This is done for two reasons: |
| |
| -- 1) ASIS has all necessary semantic information in the |
| -- original tree. |
| |
| -- 2) Routines which examine properties of the Original_Node |
| -- have some semantic information. |
| |
| if Nkind (N) = N_Identifier then |
| Set_Entity (N, Typ); |
| Set_Etype (N, Typ); |
| |
| elsif Nkind (N) = N_Selected_Component then |
| Analyze (Prefix (N)); |
| Set_Entity (Selector_Name (N), Typ); |
| Set_Etype (Selector_Name (N), Typ); |
| end if; |
| |
| -- Perform the following substitution: |
| |
| -- Typ --> _object |
| |
| Ref := Make_Identifier (Sloc (N), Chars (Obj_Id)); |
| Set_Entity (Ref, Obj_Id); |
| Set_Etype (Ref, Typ); |
| |
| Rewrite (N, Ref); |
| |
| Set_Comes_From_Source (N, True); |
| end Replace_Type_Ref; |
| |
| procedure Replace_Type_Refs is |
| new Replace_Type_References_Generic (Replace_Type_Ref); |
| |
| -- Start of processing for Replace_Type_References |
| |
| begin |
| Replace_Type_Refs (Expr, Typ); |
| end Replace_Type_References; |
| |
| -- Local variables |
| |
| Loc : constant Source_Ptr := Sloc (Typ); |
| |
| DIC_Prag : Node_Id; |
| DIC_Typ : Entity_Id; |
| Dummy_1 : Entity_Id; |
| Dummy_2 : Entity_Id; |
| Mode : Ghost_Mode_Type; |
| Proc_Body : Node_Id; |
| Proc_Body_Id : Entity_Id; |
| Proc_Decl : Node_Id; |
| Proc_Id : Entity_Id; |
| Stmts : List_Id := No_List; |
| |
| Work_Typ : Entity_Id; |
| -- The working type |
| |
| -- Start of processing for Build_DIC_Procedure_Body |
| |
| begin |
| Work_Typ := Base_Type (Typ); |
| |
| -- Do not process class-wide types as these are Itypes, but lack a first |
| -- subtype (see below). |
| |
| if Is_Class_Wide_Type (Work_Typ) then |
| return; |
| |
| -- Do not process the underlying full view of a private type. There is |
| -- no way to get back to the partial view, plus the body will be built |
| -- by the full view or the base type. |
| |
| elsif Is_Underlying_Full_View (Work_Typ) then |
| return; |
| |
| -- Use the first subtype when dealing with various base types |
| |
| elsif Is_Itype (Work_Typ) then |
| Work_Typ := First_Subtype (Work_Typ); |
| |
| -- The input denotes the corresponding record type of a protected or a |
| -- task type. Work with the concurrent type because the corresponding |
| -- record type may not be visible to clients of the type. |
| |
| elsif Ekind (Work_Typ) = E_Record_Type |
| and then Is_Concurrent_Record_Type (Work_Typ) |
| then |
| Work_Typ := Corresponding_Concurrent_Type (Work_Typ); |
| end if; |
| |
| -- The working type may be subject to pragma Ghost. Set the mode now to |
| -- ensure that the DIC procedure is properly marked as Ghost. |
| |
| Set_Ghost_Mode (Work_Typ, Mode); |
| |
| -- The working type must be either define a DIC pragma of its own or |
| -- inherit one from a parent type. |
| |
| pragma Assert (Has_DIC (Work_Typ)); |
| |
| -- Recover the type which defines the DIC pragma. This is either the |
| -- working type itself or a parent type when the pragma is inherited. |
| |
| DIC_Typ := Find_DIC_Type (Work_Typ); |
| pragma Assert (Present (DIC_Typ)); |
| |
| DIC_Prag := Get_Pragma (DIC_Typ, Pragma_Default_Initial_Condition); |
| pragma Assert (Present (DIC_Prag)); |
| |
| -- Nothing to do if pragma DIC appears without an argument or its sole |
| -- argument is "null". |
| |
| if not Is_Verifiable_DIC_Pragma (DIC_Prag) then |
| goto Leave; |
| end if; |
| |
| -- The working type may lack a DIC procedure declaration. This may be |
| -- due to several reasons: |
| |
| -- * The working type's own DIC pragma does not contain a verifiable |
| -- assertion expression. In this case there is no need to build a |
| -- DIC procedure because there is nothing to check. |
| |
| -- * The working type derives from a parent type. In this case a DIC |
| -- procedure should be built only when the inherited DIC pragma has |
| -- a verifiable assertion expression. |
| |
| Proc_Id := DIC_Procedure (Work_Typ); |
| |
| -- Build a DIC procedure declaration when the working type derives from |
| -- a parent type. |
| |
| if No (Proc_Id) then |
| Build_DIC_Procedure_Declaration (Work_Typ); |
| Proc_Id := DIC_Procedure (Work_Typ); |
| end if; |
| |
| -- At this point there should be a DIC procedure declaration |
| |
| pragma Assert (Present (Proc_Id)); |
| Proc_Decl := Unit_Declaration_Node (Proc_Id); |
| |
| -- Nothing to do if the DIC procedure already has a body |
| |
| if Present (Corresponding_Body (Proc_Decl)) then |
| goto Leave; |
| end if; |
| |
| -- Emulate the environment of the DIC procedure by installing its scope |
| -- and formal parameters. |
| |
| Push_Scope (Proc_Id); |
| Install_Formals (Proc_Id); |
| |
| -- The working type defines its own DIC pragma. Replace the current |
| -- instance of the working type with the formal of the DIC procedure. |
| -- Note that there is no need to consider inherited DIC pragmas from |
| -- parent types because the working type's DIC pragma "hides" all |
| -- inherited DIC pragmas. |
| |
| if Has_Own_DIC (Work_Typ) then |
| pragma Assert (DIC_Typ = Work_Typ); |
| |
| Add_Own_DIC |
| (DIC_Prag => DIC_Prag, |
| DIC_Typ => DIC_Typ, |
| Stmts => Stmts); |
| |
| -- Otherwise the working type inherits a DIC pragma from a parent type |
| |
| else |
| pragma Assert (Has_Inherited_DIC (Work_Typ)); |
| pragma Assert (DIC_Typ /= Work_Typ); |
| |
| -- The working type is tagged. The verification of the assertion |
| -- expression is subject to the same semantics as class-wide pre- |
| -- and postconditions. |
| |
| if Is_Tagged_Type (Work_Typ) then |
| Add_Inherited_Tagged_DIC |
| (DIC_Prag => DIC_Prag, |
| Par_Typ => DIC_Typ, |
| Deriv_Typ => Work_Typ, |
| Stmts => Stmts); |
| |
| -- Otherwise the working type is not tagged. Verify the assertion |
| -- expression of the inherited DIC pragma by directly calling the |
| -- DIC procedure of the parent type. |
| |
| else |
| Add_Inherited_DIC |
| (DIC_Prag => DIC_Prag, |
| Par_Typ => DIC_Typ, |
| Deriv_Typ => Work_Typ, |
| Stmts => Stmts); |
| end if; |
| end if; |
| |
| End_Scope; |
| |
| -- Produce an empty completing body in the following cases: |
| -- * Assertions are disabled |
| -- * The DIC Assertion_Policy is Ignore |
| -- * Pragma DIC appears without an argument |
| -- * Pragma DIC appears with argument "null" |
| |
| if No (Stmts) then |
| Stmts := New_List (Make_Null_Statement (Loc)); |
| end if; |
| |
| -- Generate: |
| -- procedure <Work_Typ>DIC (_object : <Work_Typ>) is |
| -- begin |
| -- <Stmts> |
| -- end <Work_Typ>DIC; |
| |
| Proc_Body := |
| Make_Subprogram_Body (Loc, |
| Specification => |
| Copy_Subprogram_Spec (Parent (Proc_Id)), |
| Declarations => Empty_List, |
| Handled_Statement_Sequence => |
| Make_Handled_Sequence_Of_Statements (Loc, |
| Statements => Stmts)); |
| Proc_Body_Id := Defining_Entity (Proc_Body); |
| |
| -- Perform minor decoration in case the body is not analyzed |
| |
| Set_Ekind (Proc_Body_Id, E_Subprogram_Body); |
| Set_Etype (Proc_Body_Id, Standard_Void_Type); |
| Set_Scope (Proc_Body_Id, Current_Scope); |
| |
| -- Link both spec and body to avoid generating duplicates |
| |
| Set_Corresponding_Body (Proc_Decl, Proc_Body_Id); |
| Set_Corresponding_Spec (Proc_Body, Proc_Id); |
| |
| -- The body should not be inserted into the tree when the context is |
| -- ASIS or a generic unit because it is not part of the template. Note |
| -- that the body must still be generated in order to resolve the DIC |
| -- assertion expression. |
| |
| if ASIS_Mode or Inside_A_Generic then |
| null; |
| |
| -- Semi-insert the body into the tree for GNATprove by setting its |
| -- Parent field. This allows for proper upstream tree traversals. |
| |
| elsif GNATprove_Mode then |
| Set_Parent (Proc_Body, Parent (Declaration_Node (Work_Typ))); |
| |
| -- Otherwise the body is part of the freezing actions of the working |
| -- type. |
| |
| else |
| Append_Freeze_Action (Work_Typ, Proc_Body); |
| end if; |
| |
| <<Leave>> |
| Restore_Ghost_Mode (Mode); |
| end Build_DIC_Procedure_Body; |
| |
| ------------------------------------- |
| -- Build_DIC_Procedure_Declaration -- |
| ------------------------------------- |
| |
| -- WARNING: This routine manages Ghost regions. Return statements must be |
| -- replaced by gotos which jump to the end of the routine and restore the |
| -- Ghost mode. |
| |
| procedure Build_DIC_Procedure_Declaration (Typ : Entity_Id) is |
| Loc : constant Source_Ptr := Sloc (Typ); |
| |
| DIC_Prag : Node_Id; |
| DIC_Typ : Entity_Id; |
| Mode : Ghost_Mode_Type; |
| Proc_Decl : Node_Id; |
| Proc_Id : Entity_Id; |
| Typ_Decl : Node_Id; |
| |
| CRec_Typ : Entity_Id; |
| -- The corresponding record type of Full_Typ |
| |
| Full_Base : Entity_Id; |
| -- The base type of Full_Typ |
| |
| Full_Typ : Entity_Id; |
| -- The full view of working type |
| |
| Obj_Id : Entity_Id; |
| -- The _object formal parameter of the DIC procedure |
| |
| Priv_Typ : Entity_Id; |
| -- The partial view of working type |
| |
| Work_Typ : Entity_Id; |
| -- The working type |
| |
| begin |
| Work_Typ := Base_Type (Typ); |
| |
| -- Do not process class-wide types as these are Itypes, but lack a first |
| -- subtype (see below). |
| |
| if Is_Class_Wide_Type (Work_Typ) then |
| return; |
| |
| -- Do not process the underlying full view of a private type. There is |
| -- no way to get back to the partial view, plus the body will be built |
| -- by the full view or the base type. |
| |
| elsif Is_Underlying_Full_View (Work_Typ) then |
| return; |
| |
| -- Use the first subtype when dealing with various base types |
| |
| elsif Is_Itype (Work_Typ) then |
| Work_Typ := First_Subtype (Work_Typ); |
| |
| -- The input denotes the corresponding record type of a protected or a |
| -- task type. Work with the concurrent type because the corresponding |
| -- record type may not be visible to clients of the type. |
| |
| elsif Ekind (Work_Typ) = E_Record_Type |
| and then Is_Concurrent_Record_Type (Work_Typ) |
| then |
| Work_Typ := Corresponding_Concurrent_Type (Work_Typ); |
| end if; |
| |
| -- The working type may be subject to pragma Ghost. Set the mode now to |
| -- ensure that the DIC procedure is properly marked as Ghost. |
| |
| Set_Ghost_Mode (Work_Typ, Mode); |
| |
| -- The type must be either subject to a DIC pragma or inherit one from a |
| -- parent type. |
| |
| pragma Assert (Has_DIC (Work_Typ)); |
| |
| -- Recover the type which defines the DIC pragma. This is either the |
| -- working type itself or a parent type when the pragma is inherited. |
| |
| DIC_Typ := Find_DIC_Type (Work_Typ); |
| pragma Assert (Present (DIC_Typ)); |
| |
| DIC_Prag := Get_Pragma (DIC_Typ, Pragma_Default_Initial_Condition); |
| pragma Assert (Present (DIC_Prag)); |
| |
| -- Nothing to do if pragma DIC appears without an argument or its sole |
| -- argument is "null". |
| |
| if not Is_Verifiable_DIC_Pragma (DIC_Prag) then |
| goto Leave; |
| |
| -- Nothing to do if the type already has a DIC procedure |
| |
| elsif Present (DIC_Procedure (Work_Typ)) then |
| goto Leave; |
| end if; |
| |
| Proc_Id := |
| Make_Defining_Identifier (Loc, |
| Chars => |
| New_External_Name (Chars (Work_Typ), "Default_Initial_Condition")); |
| |
| -- Perform minor decoration in case the declaration is not analyzed |
| |
| Set_Ekind (Proc_Id, E_Procedure); |
| Set_Etype (Proc_Id, Standard_Void_Type); |
| Set_Scope (Proc_Id, Current_Scope); |
| |
| Set_Is_DIC_Procedure (Proc_Id); |
| Set_DIC_Procedure (Work_Typ, Proc_Id); |
| |
| -- The DIC procedure requires debug info when the assertion expression |
| -- is subject to Source Coverage Obligations. |
| |
| if Opt.Generate_SCO then |
| Set_Needs_Debug_Info (Proc_Id); |
| end if; |
| |
| -- Obtain all views of the input type |
| |
| Get_Views (Work_Typ, Priv_Typ, Full_Typ, Full_Base, CRec_Typ); |
| |
| -- Associate the DIC procedure and various relevant flags with all views |
| |
| Propagate_DIC_Attributes (Priv_Typ, From_Typ => Work_Typ); |
| Propagate_DIC_Attributes (Full_Typ, From_Typ => Work_Typ); |
| Propagate_DIC_Attributes (Full_Base, From_Typ => Work_Typ); |
| Propagate_DIC_Attributes (CRec_Typ, From_Typ => Work_Typ); |
| |
| -- The declaration of the DIC procedure must be inserted after the |
| -- declaration of the partial view as this allows for proper external |
| -- visibility. |
| |
| if Present (Priv_Typ) then |
| Typ_Decl := Declaration_Node (Priv_Typ); |
| |
| -- Derived types with the full view as parent do not have a partial |
| -- view. Insert the DIC procedure after the derived type. |
| |
| else |
| Typ_Decl := Declaration_Node (Full_Typ); |
| end if; |
| |
| -- The type should have a declarative node |
| |
| pragma Assert (Present (Typ_Decl)); |
| |
| -- Create the formal parameter which emulates the variable-like behavior |
| -- of the type's current instance. |
| |
| Obj_Id := Make_Defining_Identifier (Loc, Chars => Name_uObject); |
| |
| -- Perform minor decoration in case the declaration is not analyzed |
| |
| Set_Ekind (Obj_Id, E_In_Parameter); |
| Set_Etype (Obj_Id, Work_Typ); |
| Set_Scope (Obj_Id, Proc_Id); |
| |
| Set_First_Entity (Proc_Id, Obj_Id); |
| |
| -- Generate: |
| -- procedure <Work_Typ>DIC (_object : <Work_Typ>); |
| |
| Proc_Decl := |
| Make_Subprogram_Declaration (Loc, |
| Specification => |
| Make_Procedure_Specification (Loc, |
| Defining_Unit_Name => Proc_Id, |
| Parameter_Specifications => New_List ( |
| Make_Parameter_Specification (Loc, |
| Defining_Identifier => Obj_Id, |
| Parameter_Type => |
| New_Occurrence_Of (Work_Typ, Loc))))); |
| |
| -- The declaration should not be inserted into the tree when the context |
| -- is ASIS or a generic unit because it is not part of the template. |
| |
| if ASIS_Mode or Inside_A_Generic then |
| null; |
| |
| -- Semi-insert the declaration into the tree for GNATprove by setting |
| -- its Parent field. This allows for proper upstream tree traversals. |
| |
| elsif GNATprove_Mode then |
| Set_Parent (Proc_Decl, Parent (Typ_Decl)); |
| |
| -- Otherwise insert the declaration |
| |
| else |
| Insert_After_And_Analyze (Typ_Decl, Proc_Decl); |
| end if; |
| |
| <<Leave>> |
| Restore_Ghost_Mode (Mode); |
| end Build_DIC_Procedure_Declaration; |
| |
| -------------------------- |
| -- Build_Procedure_Form -- |
| -------------------------- |
| |
| procedure Build_Procedure_Form (N : Node_Id) is |
| Loc : constant Source_Ptr := Sloc (N); |
| Subp : constant Entity_Id := Defining_Entity (N); |
| |
| Func_Formal : Entity_Id; |
| Proc_Formals : List_Id; |
| Proc_Decl : Node_Id; |
| |
| begin |
| -- No action needed if this transformation was already done, or in case |
| -- of subprogram renaming declarations. |
| |
| if Nkind (Specification (N)) = N_Procedure_Specification |
| or else Nkind (N) = N_Subprogram_Renaming_Declaration |
| then |
| return; |
| end if; |
| |
| -- Ditto when dealing with an expression function, where both the |
| -- original expression and the generated declaration end up being |
| -- expanded here. |
| |
| if Rewritten_For_C (Subp) then |
| return; |
| end if; |
| |
| Proc_Formals := New_List; |
| |
| -- Create a list of formal parameters with the same types as the |
| -- function. |
| |
| Func_Formal := First_Formal (Subp); |
| while Present (Func_Formal) loop |
| Append_To (Proc_Formals, |
| Make_Parameter_Specification (Loc, |
| Defining_Identifier => |
| Make_Defining_Identifier (Loc, Chars (Func_Formal)), |
| Parameter_Type => |
| New_Occurrence_Of (Etype (Func_Formal), Loc))); |
| |
| Next_Formal (Func_Formal); |
| end loop; |
| |
| -- Add an extra out parameter to carry the function result |
| |
| Name_Len := 6; |
| Name_Buffer (1 .. Name_Len) := "RESULT"; |
| Append_To (Proc_Formals, |
| Make_Parameter_Specification (Loc, |
| Defining_Identifier => |
| Make_Defining_Identifier (Loc, Chars => Name_Find), |
| Out_Present => True, |
| Parameter_Type => New_Occurrence_Of (Etype (Subp), Loc))); |
| |
| -- The new procedure declaration is inserted immediately after the |
| -- function declaration. The processing in Build_Procedure_Body_Form |
| -- relies on this order. |
| |
| Proc_Decl := |
| Make_Subprogram_Declaration (Loc, |
| Specification => |
| Make_Procedure_Specification (Loc, |
| Defining_Unit_Name => |
| Make_Defining_Identifier (Loc, Chars (Subp)), |
| Parameter_Specifications => Proc_Formals)); |
| |
| Insert_After_And_Analyze (Unit_Declaration_Node (Subp), Proc_Decl); |
| |
| -- Entity of procedure must remain invisible so that it does not |
| -- overload subsequent references to the original function. |
| |
| Set_Is_Immediately_Visible (Defining_Entity (Proc_Decl), False); |
| |
| -- Mark the function as having a procedure form and link the function |
| -- and its internally built procedure. |
| |
| Set_Rewritten_For_C (Subp); |
| Set_Corresponding_Procedure (Subp, Defining_Entity (Proc_Decl)); |
| Set_Corresponding_Function (Defining_Entity (Proc_Decl), Subp); |
| end Build_Procedure_Form; |
| |
| ------------------------ |
| -- Build_Runtime_Call -- |
| ------------------------ |
| |
| function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is |
| begin |
| -- If entity is not available, we can skip making the call (this avoids |
| -- junk duplicated error messages in a number of cases). |
| |
| if not RTE_Available (RE) then |
| return Make_Null_Statement (Loc); |
| else |
| return |
| Make_Procedure_Call_Statement (Loc, |
| Name => New_Occurrence_Of (RTE (RE), Loc)); |
| end if; |
| end Build_Runtime_Call; |
| |
| ------------------------ |
| -- Build_SS_Mark_Call -- |
| ------------------------ |
| |
| function Build_SS_Mark_Call |
| (Loc : Source_Ptr; |
| Mark : Entity_Id) return Node_Id |
| is |
| begin |
| -- Generate: |
| -- Mark : constant Mark_Id := SS_Mark; |
| |
| return |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Mark, |
| Constant_Present => True, |
| Object_Definition => |
| New_Occurrence_Of (RTE (RE_Mark_Id), Loc), |
| Expression => |
| Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (RTE (RE_SS_Mark), Loc))); |
| end Build_SS_Mark_Call; |
| |
| --------------------------- |
| -- Build_SS_Release_Call -- |
| --------------------------- |
| |
| function Build_SS_Release_Call |
| (Loc : Source_Ptr; |
| Mark : Entity_Id) return Node_Id |
| is |
| begin |
| -- Generate: |
| -- SS_Release (Mark); |
| |
| return |
| Make_Procedure_Call_Statement (Loc, |
| Name => |
| New_Occurrence_Of (RTE (RE_SS_Release), Loc), |
| Parameter_Associations => New_List ( |
| New_Occurrence_Of (Mark, Loc))); |
| end Build_SS_Release_Call; |
| |
| ---------------------------- |
| -- Build_Task_Array_Image -- |
| ---------------------------- |
| |
| -- This function generates the body for a function that constructs the |
| -- image string for a task that is an array component. The function is |
| -- local to the init proc for the array type, and is called for each one |
| -- of the components. The constructed image has the form of an indexed |
| -- component, whose prefix is the outer variable of the array type. |
| -- The n-dimensional array type has known indexes Index, Index2... |
| |
| -- Id_Ref is an indexed component form created by the enclosing init proc. |
| -- Its successive indexes are Val1, Val2, ... which are the loop variables |
| -- in the loops that call the individual task init proc on each component. |
| |
| -- The generated function has the following structure: |
| |
| -- function F return String is |
| -- Pref : string renames Task_Name; |
| -- T1 : String := Index1'Image (Val1); |
| -- ... |
| -- Tn : String := indexn'image (Valn); |
| -- Len : Integer := T1'Length + ... + Tn'Length + n + 1; |
| -- -- Len includes commas and the end parentheses. |
| -- Res : String (1..Len); |
| -- Pos : Integer := Pref'Length; |
| -- |
| -- begin |
| -- Res (1 .. Pos) := Pref; |
| -- Pos := Pos + 1; |
| -- Res (Pos) := '('; |
| -- Pos := Pos + 1; |
| -- Res (Pos .. Pos + T1'Length - 1) := T1; |
| -- Pos := Pos + T1'Length; |
| -- Res (Pos) := '.'; |
| -- Pos := Pos + 1; |
| -- ... |
| -- Res (Pos .. Pos + Tn'Length - 1) := Tn; |
| -- Res (Len) := ')'; |
| -- |
| -- return Res; |
| -- end F; |
| -- |
| -- Needless to say, multidimensional arrays of tasks are rare enough that |
| -- the bulkiness of this code is not really a concern. |
| |
| function Build_Task_Array_Image |
| (Loc : Source_Ptr; |
| Id_Ref : Node_Id; |
| A_Type : Entity_Id; |
| Dyn : Boolean := False) return Node_Id |
| is |
| Dims : constant Nat := Number_Dimensions (A_Type); |
| -- Number of dimensions for array of tasks |
| |
| Temps : array (1 .. Dims) of Entity_Id; |
| -- Array of temporaries to hold string for each index |
| |
| Indx : Node_Id; |
| -- Index expression |
| |
| Len : Entity_Id; |
| -- Total length of generated name |
| |
| Pos : Entity_Id; |
| -- Running index for substring assignments |
| |
| Pref : constant Entity_Id := Make_Temporary (Loc, 'P'); |
| -- Name of enclosing variable, prefix of resulting name |
| |
| Res : Entity_Id; |
| -- String to hold result |
| |
| Val : Node_Id; |
| -- Value of successive indexes |
| |
| Sum : Node_Id; |
| -- Expression to compute total size of string |
| |
| T : Entity_Id; |
| -- Entity for name at one index position |
| |
| Decls : constant List_Id := New_List; |
| Stats : constant List_Id := New_List; |
| |
| begin |
| -- For a dynamic task, the name comes from the target variable. For a |
| -- static one it is a formal of the enclosing init proc. |
| |
| if Dyn then |
| Get_Name_String (Chars (Entity (Prefix (Id_Ref)))); |
| Append_To (Decls, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Pref, |
| Object_Definition => New_Occurrence_Of (Standard_String, Loc), |
| Expression => |
| Make_String_Literal (Loc, |
| Strval => String_From_Name_Buffer))); |
| |
| else |
| Append_To (Decls, |
| Make_Object_Renaming_Declaration (Loc, |
| Defining_Identifier => Pref, |
| Subtype_Mark => New_Occurrence_Of (Standard_String, Loc), |
| Name => Make_Identifier (Loc, Name_uTask_Name))); |
| end if; |
| |
| Indx := First_Index (A_Type); |
| Val := First (Expressions (Id_Ref)); |
| |
| for J in 1 .. Dims loop |
| T := Make_Temporary (Loc, 'T'); |
| Temps (J) := T; |
| |
| Append_To (Decls, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => T, |
| Object_Definition => New_Occurrence_Of (Standard_String, Loc), |
| Expression => |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Image, |
| Prefix => New_Occurrence_Of (Etype (Indx), Loc), |
| Expressions => New_List (New_Copy_Tree (Val))))); |
| |
| Next_Index (Indx); |
| Next (Val); |
| end loop; |
| |
| Sum := Make_Integer_Literal (Loc, Dims + 1); |
| |
| Sum := |
| Make_Op_Add (Loc, |
| Left_Opnd => Sum, |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Length, |
| Prefix => New_Occurrence_Of (Pref, Loc), |
| Expressions => New_List (Make_Integer_Literal (Loc, 1)))); |
| |
| for J in 1 .. Dims loop |
| Sum := |
| Make_Op_Add (Loc, |
| Left_Opnd => Sum, |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Length, |
| Prefix => |
| New_Occurrence_Of (Temps (J), Loc), |
| Expressions => New_List (Make_Integer_Literal (Loc, 1)))); |
| end loop; |
| |
| Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats); |
| |
| Set_Character_Literal_Name (Char_Code (Character'Pos ('('))); |
| |
| Append_To (Stats, |
| Make_Assignment_Statement (Loc, |
| Name => |
| Make_Indexed_Component (Loc, |
| Prefix => New_Occurrence_Of (Res, Loc), |
| Expressions => New_List (New_Occurrence_Of (Pos, Loc))), |
| Expression => |
| Make_Character_Literal (Loc, |
| Chars => Name_Find, |
| Char_Literal_Value => UI_From_Int (Character'Pos ('('))))); |
| |
| Append_To (Stats, |
| Make_Assignment_Statement (Loc, |
| Name => New_Occurrence_Of (Pos, Loc), |
| Expression => |
| Make_Op_Add (Loc, |
| Left_Opnd => New_Occurrence_Of (Pos, Loc), |
| Right_Opnd => Make_Integer_Literal (Loc, 1)))); |
| |
| for J in 1 .. Dims loop |
| |
| Append_To (Stats, |
| Make_Assignment_Statement (Loc, |
| Name => |
| Make_Slice (Loc, |
| Prefix => New_Occurrence_Of (Res, Loc), |
| Discrete_Range => |
| Make_Range (Loc, |
| Low_Bound => New_Occurrence_Of (Pos, Loc), |
| High_Bound => |
| Make_Op_Subtract (Loc, |
| Left_Opnd => |
| Make_Op_Add (Loc, |
| Left_Opnd => New_Occurrence_Of (Pos, Loc), |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Length, |
| Prefix => |
| New_Occurrence_Of (Temps (J), Loc), |
| Expressions => |
| New_List (Make_Integer_Literal (Loc, 1)))), |
| Right_Opnd => Make_Integer_Literal (Loc, 1)))), |
| |
| Expression => New_Occurrence_Of (Temps (J), Loc))); |
| |
| if J < Dims then |
| Append_To (Stats, |
| Make_Assignment_Statement (Loc, |
| Name => New_Occurrence_Of (Pos, Loc), |
| Expression => |
| Make_Op_Add (Loc, |
| Left_Opnd => New_Occurrence_Of (Pos, Loc), |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Length, |
| Prefix => New_Occurrence_Of (Temps (J), Loc), |
| Expressions => |
| New_List (Make_Integer_Literal (Loc, 1)))))); |
| |
| Set_Character_Literal_Name (Char_Code (Character'Pos (','))); |
| |
| Append_To (Stats, |
| Make_Assignment_Statement (Loc, |
| Name => Make_Indexed_Component (Loc, |
| Prefix => New_Occurrence_Of (Res, Loc), |
| Expressions => New_List (New_Occurrence_Of (Pos, Loc))), |
| Expression => |
| Make_Character_Literal (Loc, |
| Chars => Name_Find, |
| Char_Literal_Value => UI_From_Int (Character'Pos (','))))); |
| |
| Append_To (Stats, |
| Make_Assignment_Statement (Loc, |
| Name => New_Occurrence_Of (Pos, Loc), |
| Expression => |
| Make_Op_Add (Loc, |
| Left_Opnd => New_Occurrence_Of (Pos, Loc), |
| Right_Opnd => Make_Integer_Literal (Loc, 1)))); |
| end if; |
| end loop; |
| |
| Set_Character_Literal_Name (Char_Code (Character'Pos (')'))); |
| |
| Append_To (Stats, |
| Make_Assignment_Statement (Loc, |
| Name => |
| Make_Indexed_Component (Loc, |
| Prefix => New_Occurrence_Of (Res, Loc), |
| Expressions => New_List (New_Occurrence_Of (Len, Loc))), |
| Expression => |
| Make_Character_Literal (Loc, |
| Chars => Name_Find, |
| Char_Literal_Value => UI_From_Int (Character'Pos (')'))))); |
| return Build_Task_Image_Function (Loc, Decls, Stats, Res); |
| end Build_Task_Array_Image; |
| |
| ---------------------------- |
| -- Build_Task_Image_Decls -- |
| ---------------------------- |
| |
| function Build_Task_Image_Decls |
| (Loc : Source_Ptr; |
| Id_Ref : Node_Id; |
| A_Type : Entity_Id; |
| In_Init_Proc : Boolean := False) return List_Id |
| is |
| Decls : constant List_Id := New_List; |
| T_Id : Entity_Id := Empty; |
| Decl : Node_Id; |
| Expr : Node_Id := Empty; |
| Fun : Node_Id := Empty; |
| Is_Dyn : constant Boolean := |
| Nkind (Parent (Id_Ref)) = N_Assignment_Statement |
| and then |
| Nkind (Expression (Parent (Id_Ref))) = N_Allocator; |
| |
| begin |
| -- If Discard_Names or No_Implicit_Heap_Allocations are in effect, |
| -- generate a dummy declaration only. |
| |
| if Restriction_Active (No_Implicit_Heap_Allocations) |
| or else Global_Discard_Names |
| then |
| T_Id := Make_Temporary (Loc, 'J'); |
| Name_Len := 0; |
| |
| return |
| New_List ( |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => T_Id, |
| Object_Definition => New_Occurrence_Of (Standard_String, Loc), |
| Expression => |
| Make_String_Literal (Loc, |
| Strval => String_From_Name_Buffer))); |
| |
| else |
| if Nkind (Id_Ref) = N_Identifier |
| or else Nkind (Id_Ref) = N_Defining_Identifier |
| then |
| -- For a simple variable, the image of the task is built from |
| -- the name of the variable. To avoid possible conflict with the |
| -- anonymous type created for a single protected object, add a |
| -- numeric suffix. |
| |
| T_Id := |
| Make_Defining_Identifier (Loc, |
| New_External_Name (Chars (Id_Ref), 'T', 1)); |
| |
| Get_Name_String (Chars (Id_Ref)); |
| |
| Expr := |
| Make_String_Literal (Loc, |
| Strval => String_From_Name_Buffer); |
| |
| elsif Nkind (Id_Ref) = N_Selected_Component then |
| T_Id := |
| Make_Defining_Identifier (Loc, |
| New_External_Name (Chars (Selector_Name (Id_Ref)), 'T')); |
| Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn); |
| |
| elsif Nkind (Id_Ref) = N_Indexed_Component then |
| T_Id := |
| Make_Defining_Identifier (Loc, |
| New_External_Name (Chars (A_Type), 'N')); |
| |
| Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn); |
| end if; |
| end if; |
| |
| if Present (Fun) then |
| Append (Fun, Decls); |
| Expr := Make_Function_Call (Loc, |
| Name => New_Occurrence_Of (Defining_Entity (Fun), Loc)); |
| |
| if not In_Init_Proc then |
| Set_Uses_Sec_Stack (Defining_Entity (Fun)); |
| end if; |
| end if; |
| |
| Decl := Make_Object_Declaration (Loc, |
| Defining_Identifier => T_Id, |
| Object_Definition => New_Occurrence_Of (Standard_String, Loc), |
| Constant_Present => True, |
| Expression => Expr); |
| |
| Append (Decl, Decls); |
| return Decls; |
| end Build_Task_Image_Decls; |
| |
| ------------------------------- |
| -- Build_Task_Image_Function -- |
| ------------------------------- |
| |
| function Build_Task_Image_Function |
| (Loc : Source_Ptr; |
| Decls : List_Id; |
| Stats : List_Id; |
| Res : Entity_Id) return Node_Id |
| is |
| Spec : Node_Id; |
| |
| begin |
| Append_To (Stats, |
| Make_Simple_Return_Statement (Loc, |
| Expression => New_Occurrence_Of (Res, Loc))); |
| |
| Spec := Make_Function_Specification (Loc, |
| Defining_Unit_Name => Make_Temporary (Loc, 'F'), |
| Result_Definition => New_Occurrence_Of (Standard_String, Loc)); |
| |
| -- Calls to 'Image use the secondary stack, which must be cleaned up |
| -- after the task name is built. |
| |
| return Make_Subprogram_Body (Loc, |
| Specification => Spec, |
| Declarations => Decls, |
| Handled_Statement_Sequence => |
| Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats)); |
| end Build_Task_Image_Function; |
| |
| ----------------------------- |
| -- Build_Task_Image_Prefix -- |
| ----------------------------- |
| |
| procedure Build_Task_Image_Prefix |
| (Loc : Source_Ptr; |
| Len : out Entity_Id; |
| Res : out Entity_Id; |
| Pos : out Entity_Id; |
| Prefix : Entity_Id; |
| Sum : Node_Id; |
| Decls : List_Id; |
| Stats : List_Id) |
| is |
| begin |
| Len := Make_Temporary (Loc, 'L', Sum); |
| |
| Append_To (Decls, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Len, |
| Object_Definition => New_Occurrence_Of (Standard_Integer, Loc), |
| Expression => Sum)); |
| |
| Res := Make_Temporary (Loc, 'R'); |
| |
| Append_To (Decls, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Res, |
| Object_Definition => |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => New_Occurrence_Of (Standard_String, Loc), |
| Constraint => |
| Make_Index_Or_Discriminant_Constraint (Loc, |
| Constraints => |
| New_List ( |
| Make_Range (Loc, |
| Low_Bound => Make_Integer_Literal (Loc, 1), |
| High_Bound => New_Occurrence_Of (Len, Loc))))))); |
| |
| -- Indicate that the result is an internal temporary, so it does not |
| -- receive a bogus initialization when declaration is expanded. This |
| -- is both efficient, and prevents anomalies in the handling of |
| -- dynamic objects on the secondary stack. |
| |
| Set_Is_Internal (Res); |
| Pos := Make_Temporary (Loc, 'P'); |
| |
| Append_To (Decls, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Pos, |
| Object_Definition => New_Occurrence_Of (Standard_Integer, Loc))); |
| |
| -- Pos := Prefix'Length; |
| |
| Append_To (Stats, |
| Make_Assignment_Statement (Loc, |
| Name => New_Occurrence_Of (Pos, Loc), |
| Expression => |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Length, |
| Prefix => New_Occurrence_Of (Prefix, Loc), |
| Expressions => New_List (Make_Integer_Literal (Loc, 1))))); |
| |
| -- Res (1 .. Pos) := Prefix; |
| |
| Append_To (Stats, |
| Make_Assignment_Statement (Loc, |
| Name => |
| Make_Slice (Loc, |
| Prefix => New_Occurrence_Of (Res, Loc), |
| Discrete_Range => |
| Make_Range (Loc, |
| Low_Bound => Make_Integer_Literal (Loc, 1), |
| High_Bound => New_Occurrence_Of (Pos, Loc))), |
| |
| Expression => New_Occurrence_Of (Prefix, Loc))); |
| |
| Append_To (Stats, |
| Make_Assignment_Statement (Loc, |
| Name => New_Occurrence_Of (Pos, Loc), |
| Expression => |
| Make_Op_Add (Loc, |
| Left_Opnd => New_Occurrence_Of (Pos, Loc), |
| Right_Opnd => Make_Integer_Literal (Loc, 1)))); |
| end Build_Task_Image_Prefix; |
| |
| ----------------------------- |
| -- Build_Task_Record_Image -- |
| ----------------------------- |
| |
| function Build_Task_Record_Image |
| (Loc : Source_Ptr; |
| Id_Ref : Node_Id; |
| Dyn : Boolean := False) return Node_Id |
| is |
| Len : Entity_Id; |
| -- Total length of generated name |
| |
| Pos : Entity_Id; |
| -- Index into result |
| |
| Res : Entity_Id; |
| -- String to hold result |
| |
| Pref : constant Entity_Id := Make_Temporary (Loc, 'P'); |
| -- Name of enclosing variable, prefix of resulting name |
| |
| Sum : Node_Id; |
| -- Expression to compute total size of string |
| |
| Sel : Entity_Id; |
| -- Entity for selector name |
| |
| Decls : constant List_Id := New_List; |
| Stats : constant List_Id := New_List; |
| |
| begin |
| -- For a dynamic task, the name comes from the target variable. For a |
| -- static one it is a formal of the enclosing init proc. |
| |
| if Dyn then |
| Get_Name_String (Chars (Entity (Prefix (Id_Ref)))); |
| Append_To (Decls, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Pref, |
| Object_Definition => New_Occurrence_Of (Standard_String, Loc), |
| Expression => |
| Make_String_Literal (Loc, |
| Strval => String_From_Name_Buffer))); |
| |
| else |
| Append_To (Decls, |
| Make_Object_Renaming_Declaration (Loc, |
| Defining_Identifier => Pref, |
| Subtype_Mark => New_Occurrence_Of (Standard_String, Loc), |
| Name => Make_Identifier (Loc, Name_uTask_Name))); |
| end if; |
| |
| Sel := Make_Temporary (Loc, 'S'); |
| |
| Get_Name_String (Chars (Selector_Name (Id_Ref))); |
| |
| Append_To (Decls, |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Sel, |
| Object_Definition => New_Occurrence_Of (Standard_String, Loc), |
| Expression => |
| Make_String_Literal (Loc, |
| Strval => String_From_Name_Buffer))); |
| |
| Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1)); |
| |
| Sum := |
| Make_Op_Add (Loc, |
| Left_Opnd => Sum, |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Attribute_Name => Name_Length, |
| Prefix => |
| New_Occurrence_Of (Pref, Loc), |
| Expressions => New_List (Make_Integer_Literal (Loc, 1)))); |
| |
| Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats); |
| |
| Set_Character_Literal_Name (Char_Code (Character'Pos ('.'))); |
| |
| -- Res (Pos) := '.'; |
| |
| Append_To (Stats, |
| Make_Assignment_Statement (Loc, |
| Name => Make_Indexed_Component (Loc, |
| Prefix => New_Occurrence_Of (Res, Loc), |
| Expressions => New_List (New_Occurrence_Of (Pos, Loc))), |
| Expression => |
| Make_Character_Literal (Loc, |
| Chars => Name_Find, |
| Char_Literal_Value => |
| UI_From_Int (Character'Pos ('.'))))); |
| |
| Append_To (Stats, |
| Make_Assignment_Statement (Loc, |
| Name => New_Occurrence_Of (Pos, Loc), |
| Expression => |
| Make_Op_Add (Loc, |
| Left_Opnd => New_Occurrence_Of (Pos, Loc), |
| Right_Opnd => Make_Integer_Literal (Loc, 1)))); |
| |
| -- Res (Pos .. Len) := Selector; |
| |
| Append_To (Stats, |
| Make_Assignment_Statement (Loc, |
| Name => Make_Slice (Loc, |
| Prefix => New_Occurrence_Of (Res, Loc), |
| Discrete_Range => |
| Make_Range (Loc, |
| Low_Bound => New_Occurrence_Of (Pos, Loc), |
| High_Bound => New_Occurrence_Of (Len, Loc))), |
| Expression => New_Occurrence_Of (Sel, Loc))); |
| |
| return Build_Task_Image_Function (Loc, Decls, Stats, Res); |
| end Build_Task_Record_Image; |
| |
| --------------------------------------- |
| -- Build_Transient_Object_Statements -- |
| --------------------------------------- |
| |
| procedure Build_Transient_Object_Statements |
| (Obj_Decl : Node_Id; |
| Fin_Call : out Node_Id; |
| Hook_Assign : out Node_Id; |
| Hook_Clear : out Node_Id; |
| Hook_Decl : out Node_Id; |
| Ptr_Decl : out Node_Id; |
| Finalize_Obj : Boolean := True) |
| is |
| Loc : constant Source_Ptr := Sloc (Obj_Decl); |
| Obj_Id : constant Entity_Id := Defining_Entity (Obj_Decl); |
| Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id)); |
| |
| Desig_Typ : Entity_Id; |
| Hook_Expr : Node_Id; |
| Hook_Id : Entity_Id; |
| Obj_Ref : Node_Id; |
| Ptr_Typ : Entity_Id; |
| |
| begin |
| -- Recover the type of the object |
| |
| Desig_Typ := Obj_Typ; |
| |
| if Is_Access_Type (Desig_Typ) then |
| Desig_Typ := Available_View (Designated_Type (Desig_Typ)); |
| end if; |
| |
| -- Create an access type which provides a reference to the transient |
| -- object. Generate: |
| |
| -- type Ptr_Typ is access all Desig_Typ; |
| |
| Ptr_Typ := Make_Temporary (Loc, 'A'); |
| Set_Ekind (Ptr_Typ, E_General_Access_Type); |
| Set_Directly_Designated_Type (Ptr_Typ, Desig_Typ); |
| |
| Ptr_Decl := |
| Make_Full_Type_Declaration (Loc, |
| Defining_Identifier => Ptr_Typ, |
| Type_Definition => |
| Make_Access_To_Object_Definition (Loc, |
| All_Present => True, |
| Subtype_Indication => New_Occurrence_Of (Desig_Typ, Loc))); |
| |
| -- Create a temporary check which acts as a hook to the transient |
| -- object. Generate: |
| |
| -- Hook : Ptr_Typ := null; |
| |
| Hook_Id := Make_Temporary (Loc, 'T'); |
| Set_Ekind (Hook_Id, E_Variable); |
| Set_Etype (Hook_Id, Ptr_Typ); |
| |
| Hook_Decl := |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Hook_Id, |
| Object_Definition => New_Occurrence_Of (Ptr_Typ, Loc), |
| Expression => Make_Null (Loc)); |
| |
| -- Mark the temporary as a hook. This signals the machinery in |
| -- Build_Finalizer to recognize this special case. |
| |
| Set_Status_Flag_Or_Transient_Decl (Hook_Id, Obj_Decl); |
| |
| -- Hook the transient object to the temporary. Generate: |
| |
| -- Hook := Ptr_Typ (Obj_Id); |
| -- <or> |
| -- Hool := Obj_Id'Unrestricted_Access; |
| |
| if Is_Access_Type (Obj_Typ) then |
| Hook_Expr := |
| Unchecked_Convert_To (Ptr_Typ, New_Occurrence_Of (Obj_Id, Loc)); |
| else |
| Hook_Expr := |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Obj_Id, Loc), |
| Attribute_Name => Name_Unrestricted_Access); |
| end if; |
| |
| Hook_Assign := |
| Make_Assignment_Statement (Loc, |
| Name => New_Occurrence_Of (Hook_Id, Loc), |
| Expression => Hook_Expr); |
| |
| -- Crear the hook prior to finalizing the object. Generate: |
| |
| -- Hook := null; |
| |
| Hook_Clear := |
| Make_Assignment_Statement (Loc, |
| Name => New_Occurrence_Of (Hook_Id, Loc), |
| Expression => Make_Null (Loc)); |
| |
| -- Finalize the object. Generate: |
| |
| -- [Deep_]Finalize (Obj_Ref[.all]); |
| |
| if Finalize_Obj then |
| Obj_Ref := New_Occurrence_Of (Obj_Id, Loc); |
| |
| if Is_Access_Type (Obj_Typ) then |
| Obj_Ref := Make_Explicit_Dereference (Loc, Obj_Ref); |
| Set_Etype (Obj_Ref, Desig_Typ); |
| end if; |
| |
| Fin_Call := |
| Make_Final_Call |
| (Obj_Ref => Obj_Ref, |
| Typ => Desig_Typ); |
| |
| -- Otherwise finalize the hook. Generate: |
| |
| -- [Deep_]Finalize (Hook.all); |
| |
| else |
| Fin_Call := |
| Make_Final_Call ( |
| Obj_Ref => |
| Make_Explicit_Dereference (Loc, |
| Prefix => New_Occurrence_Of (Hook_Id, Loc)), |
| Typ => Desig_Typ); |
| end if; |
| end Build_Transient_Object_Statements; |
| |
| ----------------------------- |
| -- Check_Float_Op_Overflow -- |
| ----------------------------- |
| |
| procedure Check_Float_Op_Overflow (N : Node_Id) is |
| begin |
| -- Return if no check needed |
| |
| if not Is_Floating_Point_Type (Etype (N)) |
| or else not (Do_Overflow_Check (N) and then Check_Float_Overflow) |
| |
| -- In CodePeer_Mode, rely on the overflow check flag being set instead |
| -- and do not expand the code for float overflow checking. |
| |
| or else CodePeer_Mode |
| then |
| return; |
| end if; |
| |
| -- Otherwise we replace the expression by |
| |
| -- do Tnn : constant ftype := expression; |
| -- constraint_error when not Tnn'Valid; |
| -- in Tnn; |
| |
| declare |
| Loc : constant Source_Ptr := Sloc (N); |
| Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N); |
| Typ : constant Entity_Id := Etype (N); |
| |
| begin |
| -- Turn off the Do_Overflow_Check flag, since we are doing that work |
| -- right here. We also set the node as analyzed to prevent infinite |
| -- recursion from repeating the operation in the expansion. |
| |
| Set_Do_Overflow_Check (N, False); |
| Set_Analyzed (N, True); |
| |
| -- Do the rewrite to include the check |
| |
| Rewrite (N, |
| Make_Expression_With_Actions (Loc, |
| Actions => New_List ( |
| Make_Object_Declaration (Loc, |
| Defining_Identifier => Tnn, |
| Object_Definition => New_Occurrence_Of (Typ, Loc), |
| Constant_Present => True, |
| Expression => Relocate_Node (N)), |
| Make_Raise_Constraint_Error (Loc, |
| Condition => |
| Make_Op_Not (Loc, |
| Right_Opnd => |
| Make_Attribute_Reference (Loc, |
| Prefix => New_Occurrence_Of (Tnn, Loc), |
| Attribute_Name => Name_Valid)), |
| Reason => CE_Overflow_Check_Failed)), |
| Expression => New_Occurrence_Of (Tnn, Loc))); |
| |
| Analyze_And_Resolve (N, Typ); |
| end; |
| end Check_Float_Op_Overflow; |
| |
| ---------------------------------- |
| -- Component_May_Be_Bit_Aligned -- |
| ---------------------------------- |
| |
| function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is |
| UT : Entity_Id; |
| |
| begin |
| -- If no component clause, then everything is fine, since the back end |
| -- never bit-misaligns by default, even if there is a pragma Packed for |
| -- the record. |
| |
| if No (Comp) or else No (Component_Clause (Comp)) then |
| return False; |
| end if; |
| |
| UT := Underlying_Type (Etype (Comp)); |
| |
| -- It is only array and record types that cause trouble |
| |
| if not Is_Record_Type (UT) and then not Is_Array_Type (UT) then |
| return False; |
| |
| -- If we know that we have a small (64 bits or less) record or small |
| -- bit-packed array, then everything is fine, since the back end can |
| -- handle these cases correctly. |
| |
| elsif Esize (Comp) <= 64 |
| and then (Is_Record_Type (UT) or else Is_Bit_Packed_Array (UT)) |
| then |
| return False; |
| |
| -- Otherwise if the component is not byte aligned, we know we have the |
| -- nasty unaligned case. |
| |
| elsif Normalized_First_Bit (Comp) /= Uint_0 |
| or else Esize (Comp) mod System_Storage_Unit /= Uint_0 |
| then |
| return True; |
| |
| -- If we are large and byte aligned, then OK at this level |
| |
| else |
| return False; |
| end if; |
| end Component_May_Be_Bit_Aligned; |
| |
| ---------------------------------------- |
| -- Containing_Package_With_Ext_Axioms -- |
| ---------------------------------------- |
| |
| function Containing_Package_With_Ext_Axioms |
| (E : Entity_Id) return Entity_Id |
| is |
| begin |
| -- E is the package or generic package which is externally axiomatized |
| |
| if Ekind_In (E, E_Generic_Package, E_Package) |
| and then Has_Annotate_Pragma_For_External_Axiomatization (E) |
| then |
| return E; |
| end if; |
| |
| -- If E's scope is axiomatized, E is axiomatized |
| |
| if Present (Scope (E)) then |
| declare |
| First_Ax_Parent_Scope : constant Entity_Id := |
| Containing_Package_With_Ext_Axioms (Scope (E)); |
| begin |
| if Present (First_Ax_Parent_Scope) then |
| return First_Ax_Parent_Scope; |
| end if; |
| end; |
| end if; |
| |
| -- Otherwise, if E is a package instance, it is axiomatized if the |
| -- corresponding generic package is axiomatized. |
| |
| if Ekind (E) = E_Package then |
| declare |
| Par : constant Node_Id := Parent (E); |
| Decl : Node_Id; |
| |
| begin |
| if Nkind (Par) = N_Defining_Program_Unit_Name then |
| Decl := Parent (Par); |
| else |
| Decl := Par; |
| end if; |
| |
| if Present (Generic_Parent (Decl)) then |
| return |
| Containing_Package_With_Ext_Axioms (Generic_Parent (Decl)); |
| end if; |
| end; |
| end if; |
| |
| return Empty; |
| end Containing_Package_With_Ext_Axioms; |
| |
| ------------------------------- |
| -- Convert_To_Actual_Subtype -- |
| ------------------------------- |
| |
| procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is |
| Act_ST : Entity_Id; |
| |
| begin |
| Act_ST := Get_Actual_Subtype (Exp); |
| |
| if Act_ST = Etype (Exp) then |
| return; |
| else |
| Rewrite (Exp, Convert_To (Act_ST, Relocate_Node (Exp))); |
| Analyze_And_Resolve (Exp, Act_ST); |
| end if; |
| end Convert_To_Actual_Subtype; |
| |
| ----------------------------------- |
| -- Corresponding_Runtime_Package -- |
| ----------------------------------- |
| |
| function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is |
| function Has_One_Entry_And_No_Queue (T : Entity_Id) return Boolean; |
| -- Return True if protected type T has one entry and the maximum queue |
| -- length is one. |
| |
| -------------------------------- |
| -- Has_One_Entry_And_No_Queue -- |
| -------------------------------- |
| |
| function Has_One_Entry_And_No_Queue (T : Entity_Id) return Boolean is |
| Item : Entity_Id; |
| Is_First : Boolean := True; |
| |
| begin |
| Item := First_Entity (T); |
| while Present (Item) loop |
| if Is_Entry (Item) then |
| |
| -- The protected type has more than one entry |
| |
| if not Is_First then |
| return False; |
| end if; |
| |
| -- The queue length is not one |
| |
| if not Restriction_Active (No_Entry_Queue) |
| and then Get_Max_Queue_Length (Item) /= Uint_1 |
| then |
| return False; |
| end if; |
| |
| Is_First := False; |
| end if; |
| |
| Next_Entity (Item); |
| end loop; |
| |
| return True; |
| end Has_One_Entry_And_No_Queue; |
| |
| -- Local variables |
| |
| Pkg_Id : RTU_Id := RTU_Null; |
| |
| -- Start of processing for Corresponding_Runtime_Package |
| |
| begin |
| pragma Assert (Is_Concurrent_Type (Typ)); |
| |
| if Ekind (Typ) in Protected_Kind then |
| if Has_Entries (Typ) |
| |
| -- A protected type without entries that covers an interface and |
| -- overrides the abstract routines with protected procedures is |
| -- considered equivalent to a protected type with entries in the |
| -- context of dispatching select statements. It is sufficient to |
| -- check for the presence of an interface list in the declaration |
| -- node to recognize this case. |
| |
| or else Present (Interface_List (Parent (Typ))) |
| |
| -- Protected types with interrupt handlers (when not using a |
| -- restricted profile) are also considered equivalent to |
| -- protected types with entries. The types which are used |
| -- (Static_Interrupt_Protection and Dynamic_Interrupt_Protection) |
| -- are derived from Protection_Entries. |
| |
| or else (Has_Attach_Handler (Typ) and then not Restricted_Profile) |
| or else Has_Interrupt_Handler (Typ) |
| then |
| if Abort_Allowed |
| or else Restriction_Active (No_Select_Statements) = False |
| or else not Has_One_Entry_And_No_Queue (Typ) |
| or else (Has_Attach_Handler (Typ) |
| and then not Restricted_Profile) |
| then |
| Pkg_Id := System_Tasking_Protected_Objects_Entries; |
| else |
| Pkg_Id := System_Tasking_Protected_Objects_Single_Entry; |
| end if; |
| |
| else |
| Pkg_Id := System_Tasking_Protected_Objects; |
| end if; |
| end if; |
| |
| return Pkg_Id; |
| end Corresponding_Runtime_Package; |
| |
| ----------------------------------- |
| -- Current_Sem_Unit_Declarations -- |
| ----------------------------------- |
| |
| function Current_Sem_Unit_Declarations return List_Id is |
| U : Node_Id := Unit (Cunit (Current_Sem_Unit)); |
| Decls : List_Id; |
| |
| begin |
| -- If the current unit is a package body, locate the visible |
| -- declarations of the package spec. |
| |
| if Nkind (U) = N_Package_Body then |
| U := Unit (Library_Unit (Cunit (Current_Sem_Unit))); |
| end if; |
| |
| if Nkind (U) = N_Package_Declaration then |
| U := Specification (U); |
| Decls := Visible_Declarations (U); |
| |
| if No (Decls) then |
| Decls := New_List; |
| Set_Visible_Declarations (U, Decls); |
| end if; |
| |
| else |
| Decls := Declarations (U); |
| |
| if No (Decls) then |
| Decls := New_List; |
| Set_Declarations (U, Decls); |
| end if; |
| end if; |
| |
| return Decls; |
| end Current_Sem_Unit_Declarations; |
| |
| ----------------------- |
| -- Duplicate_Subexpr -- |
| ----------------------- |
| |
| function Duplicate_Subexpr |
| (Exp : Node_Id; |
| Name_Req : Boolean := False; |
| Renaming_Req : Boolean := False) return Node_Id |
| is |
| begin |
| Remove_Side_Effects (Exp, Name_Req, Renaming_Req); |
| return New_Copy_Tree (Exp); |
| end Duplicate_Subexpr; |
| |
| --------------------------------- |
| -- Duplicate_Subexpr_No_Checks -- |
| --------------------------------- |
| |
| function Duplicate_Subexpr_No_Checks |
| (Exp : Node_Id; |
| Name_Req : Boolean := False; |
| Renaming_Req : Boolean := False; |
| Related_Id : Entity_Id := Empty; |
| Is_Low_Bound : Boolean := False; |
| Is_High_Bound : Boolean := False) return Node_Id |
| is |
| New_Exp : Node_Id; |
| |
| begin |
| Remove_Side_Effects |
| (Exp => Exp, |
| Name_Req => Name_Req, |
| Renaming_Req => Renaming_Req, |
| Related_Id => Related_Id, |
| Is_Low_Bound => Is_Low_Bound, |
| Is_High_Bound => Is_High_Bound); |
| |
| New_Exp := New_Copy_Tree (Exp); |
| Remove_Checks (New_Exp); |
| return New_Exp; |
| end Duplicate_Subexpr_No_Checks; |
| |
| ----------------------------------- |
| -- Duplicate_Subexpr_Move_Checks -- |
| ----------------------------------- |
| |
| function Duplicate_Subexpr_Move_Checks |
| (Exp : Node_Id; |
| Name_Req : Boolean := False; |
| Renaming_Req : Boolean := False) return Node_Id |
| is |
| New_Exp : Node_Id; |
| |
| begin |
| Remove_Side_Effects (Exp, Name_Req, Renaming_Req); |
| New_Exp := New_Copy_Tree (Exp); |
| Remove_Checks (Exp); |
| return New_Exp; |
| end Duplicate_Subexpr_Move_Checks; |
| |
| -------------------- |
| -- Ensure_Defined -- |
| -------------------- |
| |
| procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is |
| IR : Node_Id; |
| |
| begin |
| -- An itype reference must only be created if this is a local itype, so |
| -- that gigi can elaborate it on the proper objstack. |
| |
| if Is_Itype (Typ) and then Scope (Typ) = Current_Scope then |
| IR := Make_Itype_Reference (Sloc (N)); |
| Set_Itype (IR, Typ); |
| Insert_Action (N, IR); |
| end if; |
| end Ensure_Defined; |
| |
| ----------------- |
| -- Entity_Hash -- |
| ----------------- |
| |
| function Entity_Hash (E : Entity_Id) return Num_Primitives is |
| begin |
| return Num_Primitives (E mod Primitives_Mapping_Size); |
| end Entity_Hash; |
| |
| -------------------- |
| -- Entry_Names_OK -- |
| -------------------- |
| |
| function Entry_Names_OK return Boolean is |
| begin |
| return |
| not Restricted_Profile |
| and then not Global_Discard_Names |
| and then not Restriction_Active (No_Implicit_Heap_Allocations) |
| and then not Restriction_Active (No_Local_Allocators); |
| end Entry_Names_OK; |
| |
| ------------------- |
| -- Evaluate_Name -- |
| ------------------- |
| |
| procedure Evaluate_Name (Nam : Node_Id) is |
| K : constant Node_Kind := Nkind (Nam); |
| |
| begin |
| -- For an explicit dereference, we simply force the evaluation of the |
| -- name expression. The dereference provides a value that is the address |
| -- for the renamed object, and it is precisely this value that we want |
| -- to preserve. |
| |
| if K = N_Explicit_Dereference then |
| Force_Evaluation (Prefix (Nam)); |
| |
| -- For a selected component, we simply evaluate the prefix |
| |
| elsif K = N_Selected_Component then |
| Evaluate_Name (Prefix (Nam)); |
| |
| -- For an indexed component, or an attribute reference, we evaluate the |
| -- prefix, which is itself a name, recursively, and then force the |
| -- evaluation of all the subscripts (or attribute expressions). |
| |
| elsif Nkind_In (K, N_Indexed_Component, N_Attribute_Reference) then |
| Evaluate_Name (Prefix (Nam)); |
| |
| declare |
| E : Node_Id; |
| |
| begin |
| E := First (Expressions (Nam)); |
| while Present (E) loop |
| Force_Evaluation (E); |
| |
| if Original_Node (E) /= E then |
| Set_Do_Range_Check (E, Do_Range_Check (Original_Node (E))); |
| end if; |
| |
| Next (E); |
| end loop; |
| end; |
| |
| -- For a slice, we evaluate the prefix, as for the indexed component |
| -- case and then, if there is a range present, either directly or as the |
| -- constraint of a discrete subtype indication, we evaluate the two |
| -- bounds of this range. |
| |
| elsif K = N_Slice then |
| Evaluate_Name (Prefix (Nam)); |
| Evaluate_Slice_Bounds (Nam); |
| |
| -- For a type conversion, the expression of the conversion must be the |
| -- name of an object, and we simply need to evaluate this name. |
| |
| elsif K = N_Type_Conversion then |
| Evaluate_Name (Expression (Nam)); |
| |
| -- For a function call, we evaluate the call |
| |
| elsif K = N_Function_Call then |
| Force_Evaluation (Nam); |
| |
| -- The remaining cases are direct name, operator symbol and character |
| -- literal. In all these cases, we do nothing, since we want to |
| -- reevaluate each time the renamed object is used. |
| |
| else |
| return; |
| end if; |
| end Evaluate_Name; |
| |
| --------------------------- |
| -- Evaluate_Slice_Bounds -- |
| --------------------------- |
| |
| procedure Evaluate_Slice_Bounds (Slice : Node_Id) is |
| DR : constant Node_Id := Discrete_Range (Slice); |
| Constr : Node_Id; |
| Rexpr : Node_Id; |
| |
| begin |
| if Nkind (DR) = N_Range then |
| Force_Evaluation (Low_Bound (DR)); |
| Force_Evaluation (High_Bound (DR)); |
| |
| elsif Nkind (DR) = N_Subtype_Indication then |
| Constr := Constraint (DR); |
| |
| if Nkind (Constr) = N_Range_Constraint then |
| Rexpr := Range_Expression (Constr); |
| |
| Force_Evaluation (Low_Bound (Rexpr)); |
| Force_Evaluation (High_Bound (Rexpr)); |
| end if; |
| end if; |
| end Evaluate_Slice_Bounds; |
| |
| --------------------- |
| -- Evolve_And_Then -- |
| --------------------- |
| |
| procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is |
| begin |
| if No (Cond) then |
| Cond := Cond1; |
| else |
| Cond := |
| Make_And_Then (Sloc (Cond1), |
| Left_Opnd => Cond, |
| Right_Opnd => Cond1); |
| end if; |
| end Evolve_And_Then; |
| |
| -------------------- |
| -- Evolve_Or_Else -- |
| -------------------- |
| |
| procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is |
| begin |
| if No (Cond) then |
| Cond := Cond1; |
| else |
| Cond := |
| Make_Or_Else (Sloc (Cond1), |
| Left_Opnd => Cond, |
| Right_Opnd => Cond1); |
| end if; |
| end Evolve_Or_Else; |
| |
| ----------------------------------------- |
| -- Expand_Static_Predicates_In_Choices -- |
| ----------------------------------------- |
| |
| procedure Expand_Static_Predicates_In_Choices (N : Node_Id) is |
| pragma Assert (Nkind_In (N, N_Case_Statement_Alternative, N_Variant)); |
| |
| Choices : constant List_Id := Discrete_Choices (N); |
| |
| Choice : Node_Id; |
| Next_C : Node_Id; |
| P : Node_Id; |
| C : Node_Id; |
| |
| begin |
| Choice := First (Choices); |
| while Present (Choice) loop |
| Next_C := Next (Choice); |
| |
| -- Check for name of subtype with static predicate |
| |
| if Is_Entity_Name (Choice) |
| and then Is_Type (Entity (Choice)) |
| and then Has_Predicates (Entity (Choice)) |
| then |
| -- Loop through entries in predicate list, converting to choices |
| -- and inserting in the list before the current choice. Note that |
| -- if the list is empty, corresponding to a False predicate, then |
| -- no choices are inserted. |
| |
| P := First (Static_Discrete_Predicate (Entity (Choice))); |
| while Present (P) loop |
| |
| -- If low bound and high bounds are equal, copy simple choice |
| |
| if Expr_Value (Low_Bound (P)) = Expr_Value (High_Bound (P)) then |
| C := New_Copy (Low_Bound (P)); |
| |
| -- Otherwise copy a range |
| |
| else |
| C := New_Copy (P); |
| end if; |
| |
| -- Change Sloc to referencing choice (rather than the Sloc of |
| -- the predicate declaration element itself). |
| |
| Set_Sloc (C, Sloc (Choice)); |
| Insert_Before (Choice, C); |
| Next (P); |
| end loop; |
| |
| -- Delete the predicated entry |
| |
| Remove (Choice); |
| end if; |
| |
| -- Move to next choice to check |
| |
| Choice := Next_C; |
| end loop; |
| end Expand_Static_Predicates_In_Choices; |
| |
| ------------------------------ |
| -- Expand_Subtype_From_Expr -- |
| ------------------------------ |
| |
| -- This function is applicable for both static and dynamic allocation of |
| -- objects which are constrained by an initial expression. Basically it |
| -- transforms an unconstrained subtype indication into a constrained one. |
| |
| -- The expression may also be transformed in certain cases in order to |
| -- avoid multiple evaluation. In the static allocation case, the general |
| -- scheme is: |
| |
| -- Val : T := Expr; |
| |
| -- is transformed into |
| |
| -- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr; |
| -- |
| -- Here are the main cases : |
| -- |
| -- <if Expr is a Slice> |
| -- Val : T ([Index_Subtype (Expr)]) := Expr; |
| -- |
| -- <elsif Expr is a String Literal> |
| -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr; |
| -- |
| -- <elsif Expr is Constrained> |
| -- subtype T is Type_Of_Expr |
| -- Val : T := Expr; |
| -- |
| -- <elsif Expr is an entity_name> |
| -- Val : T (constraints taken from Expr) := Expr; |
| -- |
| -- <else> |
| -- type Axxx is access all T; |
| -- Rval : Axxx := Expr'ref; |
| -- Val : T (constraints taken from Rval) := Rval.all; |
| |
| -- ??? note: when the Expression is allocated in the secondary stack |
| -- we could use it directly instead of copying it by declaring |
| -- Val : T (...) renames Rval.all |
| |
| procedure Expand_Subtype_From_Expr |
| (N : Node_Id; |
| Unc_Type : Entity_Id; |
| Subtype_Indic : Node_Id; |
| Exp : Node_Id; |
| Related_Id : Entity_Id := Empty) |
| is |
| Loc : constant Source_Ptr := Sloc (N); |
| Exp_Typ : constant Entity_Id := Etype (Exp); |
| T : Entity_Id; |
| |
| begin |
| -- In general we cannot build the subtype if expansion is disabled, |
| -- because internal entities may not have been defined. However, to |
| -- avoid some cascaded errors, we try to continue when the expression is |
| -- an array (or string), because it is safe to compute the bounds. It is |
| -- in fact required to do so even in a generic context, because there |
| -- may be constants that depend on the bounds of a string literal, both |
| -- standard string types and more generally arrays of characters. |
| |
| -- In GNATprove mode, these extra subtypes are not needed |
| |
| if GNATprove_Mode then |
| return; |
| end if; |
| |
| if not Expander_Active |
| and then (No (Etype (Exp)) or else not Is_String_Type (Etype (Exp))) |
| then |
| return; |
| end if; |
| |
| if Nkind (Exp) = N_Slice then |
| declare |
| Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ)); |
| |
| begin |
| Rewrite (Subtype_Indic, |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc), |
| Constraint => |
| Make_Index_Or_Discriminant_Constraint (Loc, |
| Constraints => New_List |
| (New_Occurrence_Of (Slice_Type, Loc))))); |
| |
| -- This subtype indication may be used later for constraint checks |
| -- we better make sure that if a variable was used as a bound of |
| -- of the original slice, its value is frozen. |
| |
| Evaluate_Slice_Bounds (Exp); |
| end; |
| |
| elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then |
| Rewrite (Subtype_Indic, |
| Make_Subtype_Indication (Loc, |
| Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc), |
| Constraint => |
| Make_Index_Or_Discriminant_Constraint (Loc, |
| Constraints => New_List ( |
| Make_Literal_Range (Loc, |
| Literal_Typ => Exp_Typ))))); |
| |
| -- If the type of the expression is an internally generated type it |
| -- may not be necessary to create a new subtype. However there are two |
| -- exceptions: references to the current instances, and aliased array |
| -- object declarations for which the back end has to create a template. |
| |
| elsif Is_Constrained (Exp_Typ) |
| and then not Is_Class_Wide_Type (Unc_Type) |
| and then |
| (Nkind (N) /= N_Object_Declaration |
| or else not Is_Entity_Name (Expression (N)) |
| or else not Comes_From_Source (Entity (Expression (N))) |
| or else not Is_Array_Type (Exp_Typ) |
| or else not Aliased_Present (N)) |
| then |
| if Is_Itype (Exp_Typ) then |
| |
| -- Within an initialization procedure, a selected component |
| -- denotes a component of the enclosing record, and it appears as |
| -- an actual in a call to its own initialization procedure. If |
| -- this component depends on the outer discriminant, we must |
| -- generate the proper actual subtype for it. |
| |
| if Nkind (Exp) = N_Selected_Component |
| and then Within_Init_Proc |
| then |
| declare |
| Decl : constant Node_Id := |
| Build_Actual_Subtype_Of_Component (Exp_Typ, Exp); |
| begin |
| if Present (Decl) then |
| Insert_Action (N, Decl); |
| T := Defining_Identifier (Decl); |
| else |
| T := Exp_Typ; |
| end if; |
| end; |
| |
| -- No need to generate a new subtype |
| |
| else |
| T := Exp_Typ; |
| end if; |
| |
| else |
| T := Make_Temporary (Loc, 'T'); |
| |
| Insert_Action (N, |
| Make_Subtype_Declaration (Loc, |
| Defining_Identifier => T, |
| Subtype_Indication => New_Occurrence_Of (Exp_Typ, Loc))); |
| |
| -- This type is marked as an itype even though it has an explicit |
| -- declaration since otherwise Is_Generic_Actual_Type can get |
| -- set, resulting in the generation of spurious errors. (See |
| -- sem_ch8.Analyze_Package_Renaming and sem_type.covers) |
| |
| Set_Is_Itype (T); |
| Set_Associated_Node_For_Itype (T, Exp); |
| end if; |
| |
| Rewrite (Subtype_Indic, New_Occurrence_Of (T, Loc)); |
| |
| -- Nothing needs to be done for private types with unknown discriminants |
| -- if the underlying type is not an unconstrained composite type or it |
| -- is an unchecked union. |
| |
| elsif Is_Private_Type (Unc_Type) |
| and then Has_Unknown_Discriminants (Unc_Type) |
| and then (not Is_Composite_Type (Underlying_Type (Unc_Type)) |
| or else Is_Constrained (Underlying_Type (Unc_Type)) |
| or else Is_Unchecked_Union (Underlying_Type (Unc_Type))) |
| then |
| null; |
| |
| -- Case of derived type with unknown discriminants where the parent type |
| -- also has unknown discriminants. |
| |
| elsif Is_Record_Type (Unc_Type) |
| and then not Is_Class_Wide_Type (Unc_Type) |
| and then Has_Unknown_Discriminants (Unc_Type) |
| and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type)) |
| then |
| -- Nothing to be done if no underlying record view available |
| |
| -- If this is a limited type derived from a type with unknown |
| -- discriminants, do not expand either, so that subsequent expansion |
| -- of the call can add build-in-place parameters to call. |
| |
| if No (Underlying_Record_View (Unc_Type)) |
| or else Is_Limited_Type (Unc_Type) |
| then |
| null; |
| |
| -- Otherwise use the Underlying_Record_View to create the proper |
| -- constrained subtype for an object of a derived type with unknown |
| -- discriminants. |
| |
| else |
| Remove_Side_Effects (Exp); |
| Rewrite (Subtype_Indic, |
| Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type))); |
| end if; |
| |
| -- Renamings of class-wide interface types require no equivalent |
| -- constrained type declarations because we only need to reference |
| -- the tag component associated with the interface. The same is |
| -- presumably true for class-wide types in general, so this test |
| -- is broadened to include all class-wide renamings, which also |
| -- avoids cases of unbounded recursion in Remove_Side_Effects. |
| -- (Is this really correct, or are there some cases of class-wide |
| -- renamings that require action in this procedure???) |
| |
| elsif Present (N) |
| and then Nkind (N) = N_Object_Renaming_Declaration |
| and then Is_Class_Wide_Type (Unc_Type) |
| then |
| null; |
| |
| -- In Ada 95 nothing to be done if the type of the expression is limited |
| -- because in this case the expression cannot be copied, and its use can |
| -- only be by reference. |
| |
| -- In Ada 2005 the context can be an object declaration whose expression |
| -- is a function that returns in place. If the nominal subtype has |
| -- unknown discriminants, the call still provides constraints on the |
| -- object, and we have to create an actual subtype from it. |
| |
| -- If the type is class-wide, the expression is dynamically tagged and |
| -- we do not create an actual subtype either. Ditto for an interface. |
| -- For now this applies only if the type is immutably limited, and the |
| -- function being called is build-in-place. This will have to be revised |
| -- when build-in-place functions are generalized to other types. |
| |
| elsif Is_Limited_View (Exp_Typ) |
| and then |
| (Is_Class_Wide_Type (Exp_Typ) |
| or else Is_Interface (Exp_Typ) |
| or else not Has_Unknown_Discriminants (Exp_Typ) |
| or else not Is_Composite_Type (Unc_Type)) |
| then |
| null; |
| |
| -- For limited objects initialized with build in place function calls, |
| -- nothing to be done; otherwise we prematurely introduce an N_Reference |
| -- node in the expression initializing the object, which breaks the |
| -- circuitry that detects and adds the additional arguments to the |
| -- called function. |
| |
| elsif Is_Build_In_Place_Function_Call (Exp) then |
| null; |
| |
| else |
| Remove_Side_Effects (Exp); |
| Rewrite (Subtype_Indic, |
| Make_Subtype_From_Expr (Exp, Unc_Type, Related_Id)); |
| end if; |
| end Expand_Subtype_From_Expr; |
| |
| ---------------------- |
| -- Finalize_Address -- |
| ---------------------- |
| |
| function Finalize_Address (Typ : Entity_Id) return Entity_Id is |
| Utyp : Entity_Id := Typ; |
| |
| begin |
| -- Handle protected class-wide or task class-wide types |
| |
| if Is_Class_Wide_Type (Utyp) then |
| if Is_Concurrent_Type (Root_Type (Utyp)) then |
| Utyp := Root_Type (Utyp); |
| |
| elsif Is_Private_Type (Root_Type (Utyp)) |
| and then Present (Full_View (Root_Type (Utyp))) |
| and then Is_Concurrent_Type (Full_View (Root_Type (Utyp))) |
| then |
| Utyp := Full_View (Root_Type (Utyp)); |
| end if; |
| end if; |
| |
| -- Handle private types |
| |
| if Is_Private_Type (Utyp) and then Present (Full_View (Utyp)) then |
| Utyp := Full_View (Utyp); |
| end if; |
| |
| -- Handle protected and task types |
| |
| if Is_Concurrent_Type (Utyp) |
| and then Present (Corresponding_Record_Type (Utyp)) |
| then |
| Utyp := Corresponding_Record_Type (Utyp); |
| end if; |
| |
| Utyp := Underlying_Type (Base_Type (Utyp)); |
| |
| -- Deal with untagged derivation of private views. If the parent is |
| -- now known to be protected, the finalization routine is the one |
| -- defined on the corresponding record of the ancestor (corresponding |
| -- records do not automatically inherit operations, but maybe they |
| -- should???) |
| |
| if Is_Untagged_Derivation (Typ) then |
| if Is_Protected_Type (Typ) then |
| Utyp := Corresponding_Record_Type (Root_Type (Base_Type (Typ))); |
| |
| else |
| Utyp := Underlying_Type (Root_Type (Base_Type (Typ))); |
| |
| if Is_Protected_Type (Utyp) then |
| Utyp := Corresponding_Record_Type (Utyp); |
| end if; |
| end if; |
| end if; |
| |
| -- If the underlying_type is a subtype, we are dealing with the |
| -- completion of a private type. We need to access the base type and |
| -- generate a conversion to it. |
| |
| if Utyp /= Base_Type (Utyp) then |
| pragma Assert (Is_Private_Type (Typ)); |
| |
| Utyp := Base_Type (Utyp); |
| end if; |
| |
| -- When dealing with an internally built full view for a type with |
| -- unknown discriminants, use the original record type. |
| |
| if Is_Underlying_Record_View (Utyp) then |
| Utyp := Etype (Utyp); |
| end if; |
| |
| return TSS (Utyp, TSS_Finalize_Address); |
| end Finalize_Address; |
| |
| ------------------- |
| -- Find_DIC_Type -- |
| ------------------- |
| |
| function Find_DIC_Type (Typ : Entity_Id) return Entity_Id is |
| Curr_Typ : Entity_Id; |
| -- The current type being examined in the parent hierarchy traversal |
| |
| DIC_Typ : Entity_Id; |
| -- The type which carries the DIC pragma. This variable denotes the |
| -- partial view when private types are involved. |
| |
| Par_Typ : Entity_Id; |
| -- The parent type of the current type. This variable denotes the full |
| -- view when private types are involved. |
| |
| begin |
| -- The input type defines its own DIC pragma, therefore it is the owner |
| |
| if Has_Own_DIC (Typ) then |
| DIC_Typ := Typ; |
| |
| -- Otherwise the DIC pragma is inherited from a parent type |
| |
| else |
| pragma Assert (Has_Inherited_DIC (Typ)); |
| |
| -- Climb the parent chain |
| |
| Curr_Typ := Typ; |
| loop |
| -- Inspect the parent type. Do not consider subtypes as they |
| -- inherit the DIC attributes from their base types. |
| |
| DIC_Typ := Base_Type (Etype (Curr_Typ)); |
| |
| -- Look at the full view of a private type because the type may |
| -- have a hidden parent introduced in the full view. |
| |
| Par_Typ := DIC_Typ; |
| |
| if Is_Private_Type (Par_Typ) |
| and then Present (Full_View (Par_Typ)) |
| then |
| Par_Typ := Full_View (Par_Typ); |
| end if; |
| |
| -- Stop the climb once the nearest parent type which defines a DIC |
| -- pragma of its own is encountered or when the root of the parent |
| -- chain is reached. |
| |
| exit when Has_Own_DIC (DIC_Typ) or else Curr_Typ = Par_Typ; |
| |
| Curr_Typ := Par_Typ; |
| end loop; |
| end if; |
| |
| return DIC_Typ; |
| end Find_DIC_Type; |
| |
| ------------------------ |
| -- Find_Interface_ADT -- |
| ------------------------ |
| |
| function Find_Interface_ADT |
| (T : Entity_Id; |
| Iface : Entity_Id) return Elmt_Id |
| is |
| ADT : Elmt_Id; |
| Typ : Entity_Id := T; |
| |
| begin |
| pragma Assert (Is_Interface (Iface)); |
| |
| -- Handle private types |
| |
| if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then |
| Typ := Full_View (Typ); |
| end if; |
| |
| -- Handle access types |
| |
| if Is_Access_Type (Typ) then |
| Typ := Designated_Type (Typ); |
| end if; |
| |
| -- Handle task and protected types implementing interfaces |
| |
| if Is_Concurrent_Type (Typ) then |
| Typ := Corresponding_Record_Type (Typ); |
| end if; |
| |
| pragma Assert |
| (not Is_Class_Wide_Type (Typ) |
| and then Ekind (Typ) /= E_Incomplete_Type); |
| |
| if Is_Ancestor (Iface, Typ, Use_Full_View => True) then |
| return First_Elmt (Access_Disp_Table (Typ)); |
| |
| else |
| ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ)))); |
| while Present (ADT) |
| and then Present (Related_Type (Node (ADT))) |
| and then Related_Type (Node (ADT)) /= Iface |
| and then not Is_Ancestor (Iface, Related_Type (Node (ADT)), |
| Use_Full_View => True) |
| loop |
| Next_Elmt (ADT); |
| end loop; |
| |
| pragma Assert (Present (Related_Type (Node (ADT)))); |
| return ADT; |
| end if; |
| end Find_Interface_ADT; |
| |
| ------------------------ |
| -- Find_Interface_Tag -- |
| ------------------------ |
| |
| function Find_Interface_Tag |
| (T : Entity_Id; |
| Iface : Entity_Id) return Entity_Id |
| is |
| AI_Tag : Entity_Id; |
| Found : Boolean := False; |
| Typ : Entity_Id := T; |
| |
| procedure Find_Tag (Typ : Entity_Id); |
| -- Internal subprogram used to recursively climb to the ancestors |
| |
| -------------- |
| -- Find_Tag -- |
| -------------- |
| |
| procedure Find_Tag (Typ : Entity_Id) is |
| AI_Elmt : Elmt_Id; |
| AI : Node_Id; |
| |
| begin |
| -- This routine does not handle the case in which the interface is an |
| -- ancestor of Typ. That case is handled by the enclosing subprogram. |
| |
| pragma Assert (Typ /= Iface); |
| |
| -- Climb to the root type handling private types |
| |
| if Present (Full_View (Etype (Typ))) then |
| if Full_View (Etype (Typ)) /= Typ then |
| Find_Tag (Full_View (Etype (Typ))); |
| end if; |
| |
| elsif Etype (Typ) /= Typ then |
| Find_Tag (Etype (Typ)); |
| end if; |
| |
| -- Traverse the list of interfaces implemented by the type |
| |
| if not Found |
| and then Present (Interfaces (Typ)) |
| and then not (Is_Empty_Elmt_List (Interfaces (Typ))) |
| then |
| -- Skip the tag associated with the primary table |
| |
| pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag)); |
| AI_Tag := Next_Tag_Component (First_Tag_Component (Typ)); |
| pragma Assert (Present (AI_Tag)); |
| |
| AI_Elmt := First_Elmt (Interfaces (Typ)); |
| while Present (AI_Elmt) loop |
| AI := Node (AI_Elmt); |
| |
| if AI = Iface |
| or else Is_Ancestor (Iface, AI, Use_Full_View => True) |
| then |
| Found := True; |
| return; |
| end if; |
| |
| AI_Tag := Next_Tag_Component (AI_Tag); |
| Next_Elmt (AI_Elmt); |
| end loop; |
| end if; |
| end Find_Tag; |
| |
| -- Start of processing for Find_Interface_Tag |
| |
| begin |
| pragma Assert (Is_Interface (Iface)); |
| |
| -- Handle access types |
| |
| if Is_Access_Type (Typ) then |
| Typ := Designated_Type (Typ); |
| end if; |
| |
| -- Handle class-wide types |
| |
| if Is_Class_Wide_Type (Typ) then |
| Typ := Root_Type (Typ); |
| end if; |
| |
| -- Handle private types |
| |
| if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then |
| Typ := Full_View (Typ); |
| end if; |
| |
| -- Handle entities from the limited view |
| |
| if Ekind (Typ) = E_Incomplete_Type then |
| pragma Assert (Present (Non_Limited_View (Typ))); |
| Typ := Non_Limited_View (Typ); |
| end if; |
| |
| -- Handle task and protected types implementing interfaces |
| |
| if Is_Concurrent_Type (Typ) then |
| Typ := Corresponding_Record_Type (Typ); |
| end if; |
| |
| -- If the interface is an ancestor of the type, then it shared the |
| -- primary dispatch table. |
| |
| if Is_Ancestor (Iface, Typ, Use_Full_View => True) then |
| pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag)); |
| return First_Tag_Component (Typ); |
| |
| -- Otherwise we need to search for its associated tag component |
| |
| else |
| Find_Tag (Typ); |
| pragma Assert (Found); |
| return AI_Tag; |
| end if; |
| end Find_Interface_Tag; |
| |
| --------------------------- |
| -- Find_Optional_Prim_Op -- |
| --------------------------- |
| |
| function Find_Optional_Prim_Op |
| (T : Entity_Id; Name : Name_Id) return Entity_Id |
| is |
| Prim : Elmt_Id; |
| Typ : Entity_Id := T; |
| Op : Entity_Id; |
| |
| begin |
| if Is_Class_Wide_Type (Typ) then |
| Typ := Root_Type (Typ); |
| end if; |
| |
| Typ := Underlying_Type (Typ); |
| |
| -- Loop through primitive operations |
| |
| Prim := First_Elmt (Primitive_Operations (Typ)); |
| while Present (Prim) loop |
| Op := Node (Prim); |
| |
| -- We can retrieve primitive operations by name if it is an internal |
| -- name. For equality we must check that both of its operands have |
| -- the same type, to avoid confusion with user-defined equalities |
| -- than may have a non-symmetric signature. |
| |
| exit when Chars (Op) = Name |
| and then |
| (Name /= Name_Op_Eq |
| or else Etype (First_Formal (Op)) = Etype (Last_Formal (Op))); |
| |
| Next_Elmt (Prim); |
| end loop; |
| |
| return Node (Prim); -- Empty if not found |
| end Find_Optional_Prim_Op; |
| |
| --------------------------- |
| -- Find_Optional_Prim_Op -- |
| --------------------------- |
| |
| function Find_Optional_Prim_Op |
| (T : Entity_Id; |
| Name : TSS_Name_Type) return Entity_Id |
| is |
| Inher_Op : Entity_Id := Empty; |
| Own_Op : Entity_Id := Empty; |
| Prim_Elmt : Elmt_Id; |
| Prim_Id : Entity_Id; |
| Typ : Entity_Id := T; |
| |
| begin |
| if Is_Class_Wide_Type (Typ) then |
| Typ := Root_Type (Typ); |
| end if; |
| |
| Typ := Underlying_Type (Typ); |
| |
| -- This search is based on the assertion that the dispatching version |
| -- of the TSS routine always precedes the real primitive. |
| |
| Prim_Elmt := First_Elmt (Primitive_Operations (Typ)); |
| while Present (Prim_Elmt) loop |
| Prim_Id := Node (Prim_Elmt); |
| |
| if Is_TSS (Prim_Id, Name) then |
| if Present (Alias (Prim_Id)) then |
| Inher_Op := Prim_Id; |
| else |
| Own_Op := Prim_Id; |
| end if; |
| end if; |
| |
| Next_Elmt (Prim_Elmt); |
| end loop; |
| |
| if Present (Own_Op) then |
| return Own_Op; |
| elsif Present (Inher_Op) then |
| return Inher_Op; |
| else |
| return Empty; |
| end if; |
| end Find_Optional_Prim_Op; |
| |
| ------------------ |
| -- Find_Prim_Op -- |
| ------------------ |
| |
| function Find_Prim_Op |
| (T : Entity_Id; Name : Name_Id) return Entity_Id |
| is |
| Result : constant Entity_Id := Find_Optional_Prim_Op (T, Name); |
| begin |
| if No (Result) then |
| raise Program_Error; |
| end if; |
| |
| return Result; |
| end Find_Prim_Op; |
| |
| ------------------ |
| -- Find_Prim_Op -- |
| ------------------ |
| |
| function Find_Prim_Op |
| (T : Entity_Id; |
| Name : TSS_Name_Type) return Entity_Id |
| is |
| Result : constant Entity_Id := Find_Optional_Prim_Op (T, Name); |
| begin |
| if No (Result) then |
| raise Program_Error; |
| end if; |
| |
| return Result; |
| end Find_Prim_Op; |
| |
| ---------------------------- |
| -- Find_Protection_Object -- |
| ---------------------------- |
| |
| function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is |
| S : Entity_Id; |
| |
| begin |
| S := Scop; |
| while Present (S) loop |
| if Ekind_In (S, E_Entry, E_Entry_Family, E_Function, E_Procedure) |
| and then Present (Protection_Object (S)) |
| then |
| return Protection_Object (S); |
| end if; |
| |
| S := Scope (S); |
| end loop; |
| |
| -- If we do not find a Protection object in the scope chain, then |
| -- something has gone wrong, most likely the object was never created. |
| |
| raise Program_Error; |
| end Find_Protection_Object; |
| |
| -------------------------- |
| -- Find_Protection_Type -- |
| -------------------------- |
| |
| function Find_Protection_Type (Conc_Typ : Entity_Id) return Entity_Id is |
| Comp : Entity_Id; |
| Typ : Entity_Id := Conc_Typ; |
| |
| begin |
| if Is_Concurrent_Type (Typ) then |
| Typ := Corresponding_Record_Type (Typ); |
| end if; |
| |
| -- Since restriction violations are not considered serious errors, the |
| -- expander remains active, but may leave the corresponding record type |
| -- malformed. In such cases, component _object is not available so do |
| -- not look for it. |
| |
| if not Analyzed (Typ) then |
| return Empty; |
| end if; |
| |
| Comp := First_Component (Typ); |
|
|