| @c Copyright (C) 1988-2017 Free Software Foundation, Inc. |
| @c This is part of the GCC manual. |
| @c For copying conditions, see the file gcc.texi. |
| |
| @node Target Macros |
| @chapter Target Description Macros and Functions |
| @cindex machine description macros |
| @cindex target description macros |
| @cindex macros, target description |
| @cindex @file{tm.h} macros |
| |
| In addition to the file @file{@var{machine}.md}, a machine description |
| includes a C header file conventionally given the name |
| @file{@var{machine}.h} and a C source file named @file{@var{machine}.c}. |
| The header file defines numerous macros that convey the information |
| about the target machine that does not fit into the scheme of the |
| @file{.md} file. The file @file{tm.h} should be a link to |
| @file{@var{machine}.h}. The header file @file{config.h} includes |
| @file{tm.h} and most compiler source files include @file{config.h}. The |
| source file defines a variable @code{targetm}, which is a structure |
| containing pointers to functions and data relating to the target |
| machine. @file{@var{machine}.c} should also contain their definitions, |
| if they are not defined elsewhere in GCC, and other functions called |
| through the macros defined in the @file{.h} file. |
| |
| @menu |
| * Target Structure:: The @code{targetm} variable. |
| * Driver:: Controlling how the driver runs the compilation passes. |
| * Run-time Target:: Defining @samp{-m} options like @option{-m68000} and @option{-m68020}. |
| * Per-Function Data:: Defining data structures for per-function information. |
| * Storage Layout:: Defining sizes and alignments of data. |
| * Type Layout:: Defining sizes and properties of basic user data types. |
| * Registers:: Naming and describing the hardware registers. |
| * Register Classes:: Defining the classes of hardware registers. |
| * Stack and Calling:: Defining which way the stack grows and by how much. |
| * Varargs:: Defining the varargs macros. |
| * Trampolines:: Code set up at run time to enter a nested function. |
| * Library Calls:: Controlling how library routines are implicitly called. |
| * Addressing Modes:: Defining addressing modes valid for memory operands. |
| * Anchored Addresses:: Defining how @option{-fsection-anchors} should work. |
| * Condition Code:: Defining how insns update the condition code. |
| * Costs:: Defining relative costs of different operations. |
| * Scheduling:: Adjusting the behavior of the instruction scheduler. |
| * Sections:: Dividing storage into text, data, and other sections. |
| * PIC:: Macros for position independent code. |
| * Assembler Format:: Defining how to write insns and pseudo-ops to output. |
| * Debugging Info:: Defining the format of debugging output. |
| * Floating Point:: Handling floating point for cross-compilers. |
| * Mode Switching:: Insertion of mode-switching instructions. |
| * Target Attributes:: Defining target-specific uses of @code{__attribute__}. |
| * Emulated TLS:: Emulated TLS support. |
| * MIPS Coprocessors:: MIPS coprocessor support and how to customize it. |
| * PCH Target:: Validity checking for precompiled headers. |
| * C++ ABI:: Controlling C++ ABI changes. |
| * Named Address Spaces:: Adding support for named address spaces |
| * Misc:: Everything else. |
| @end menu |
| |
| @node Target Structure |
| @section The Global @code{targetm} Variable |
| @cindex target hooks |
| @cindex target functions |
| |
| @deftypevar {struct gcc_target} targetm |
| The target @file{.c} file must define the global @code{targetm} variable |
| which contains pointers to functions and data relating to the target |
| machine. The variable is declared in @file{target.h}; |
| @file{target-def.h} defines the macro @code{TARGET_INITIALIZER} which is |
| used to initialize the variable, and macros for the default initializers |
| for elements of the structure. The @file{.c} file should override those |
| macros for which the default definition is inappropriate. For example: |
| @smallexample |
| #include "target.h" |
| #include "target-def.h" |
| |
| /* @r{Initialize the GCC target structure.} */ |
| |
| #undef TARGET_COMP_TYPE_ATTRIBUTES |
| #define TARGET_COMP_TYPE_ATTRIBUTES @var{machine}_comp_type_attributes |
| |
| struct gcc_target targetm = TARGET_INITIALIZER; |
| @end smallexample |
| @end deftypevar |
| |
| Where a macro should be defined in the @file{.c} file in this manner to |
| form part of the @code{targetm} structure, it is documented below as a |
| ``Target Hook'' with a prototype. Many macros will change in future |
| from being defined in the @file{.h} file to being part of the |
| @code{targetm} structure. |
| |
| Similarly, there is a @code{targetcm} variable for hooks that are |
| specific to front ends for C-family languages, documented as ``C |
| Target Hook''. This is declared in @file{c-family/c-target.h}, the |
| initializer @code{TARGETCM_INITIALIZER} in |
| @file{c-family/c-target-def.h}. If targets initialize @code{targetcm} |
| themselves, they should set @code{target_has_targetcm=yes} in |
| @file{config.gcc}; otherwise a default definition is used. |
| |
| Similarly, there is a @code{targetm_common} variable for hooks that |
| are shared between the compiler driver and the compilers proper, |
| documented as ``Common Target Hook''. This is declared in |
| @file{common/common-target.h}, the initializer |
| @code{TARGETM_COMMON_INITIALIZER} in |
| @file{common/common-target-def.h}. If targets initialize |
| @code{targetm_common} themselves, they should set |
| @code{target_has_targetm_common=yes} in @file{config.gcc}; otherwise a |
| default definition is used. |
| |
| @node Driver |
| @section Controlling the Compilation Driver, @file{gcc} |
| @cindex driver |
| @cindex controlling the compilation driver |
| |
| @c prevent bad page break with this line |
| You can control the compilation driver. |
| |
| @defmac DRIVER_SELF_SPECS |
| A list of specs for the driver itself. It should be a suitable |
| initializer for an array of strings, with no surrounding braces. |
| |
| The driver applies these specs to its own command line between loading |
| default @file{specs} files (but not command-line specified ones) and |
| choosing the multilib directory or running any subcommands. It |
| applies them in the order given, so each spec can depend on the |
| options added by earlier ones. It is also possible to remove options |
| using @samp{%<@var{option}} in the usual way. |
| |
| This macro can be useful when a port has several interdependent target |
| options. It provides a way of standardizing the command line so |
| that the other specs are easier to write. |
| |
| Do not define this macro if it does not need to do anything. |
| @end defmac |
| |
| @defmac OPTION_DEFAULT_SPECS |
| A list of specs used to support configure-time default options (i.e.@: |
| @option{--with} options) in the driver. It should be a suitable initializer |
| for an array of structures, each containing two strings, without the |
| outermost pair of surrounding braces. |
| |
| The first item in the pair is the name of the default. This must match |
| the code in @file{config.gcc} for the target. The second item is a spec |
| to apply if a default with this name was specified. The string |
| @samp{%(VALUE)} in the spec will be replaced by the value of the default |
| everywhere it occurs. |
| |
| The driver will apply these specs to its own command line between loading |
| default @file{specs} files and processing @code{DRIVER_SELF_SPECS}, using |
| the same mechanism as @code{DRIVER_SELF_SPECS}. |
| |
| Do not define this macro if it does not need to do anything. |
| @end defmac |
| |
| @defmac CPP_SPEC |
| A C string constant that tells the GCC driver program options to |
| pass to CPP@. It can also specify how to translate options you |
| give to GCC into options for GCC to pass to the CPP@. |
| |
| Do not define this macro if it does not need to do anything. |
| @end defmac |
| |
| @defmac CPLUSPLUS_CPP_SPEC |
| This macro is just like @code{CPP_SPEC}, but is used for C++, rather |
| than C@. If you do not define this macro, then the value of |
| @code{CPP_SPEC} (if any) will be used instead. |
| @end defmac |
| |
| @defmac CC1_SPEC |
| A C string constant that tells the GCC driver program options to |
| pass to @code{cc1}, @code{cc1plus}, @code{f771}, and the other language |
| front ends. |
| It can also specify how to translate options you give to GCC into options |
| for GCC to pass to front ends. |
| |
| Do not define this macro if it does not need to do anything. |
| @end defmac |
| |
| @defmac CC1PLUS_SPEC |
| A C string constant that tells the GCC driver program options to |
| pass to @code{cc1plus}. It can also specify how to translate options you |
| give to GCC into options for GCC to pass to the @code{cc1plus}. |
| |
| Do not define this macro if it does not need to do anything. |
| Note that everything defined in CC1_SPEC is already passed to |
| @code{cc1plus} so there is no need to duplicate the contents of |
| CC1_SPEC in CC1PLUS_SPEC@. |
| @end defmac |
| |
| @defmac ASM_SPEC |
| A C string constant that tells the GCC driver program options to |
| pass to the assembler. It can also specify how to translate options |
| you give to GCC into options for GCC to pass to the assembler. |
| See the file @file{sun3.h} for an example of this. |
| |
| Do not define this macro if it does not need to do anything. |
| @end defmac |
| |
| @defmac ASM_FINAL_SPEC |
| A C string constant that tells the GCC driver program how to |
| run any programs which cleanup after the normal assembler. |
| Normally, this is not needed. See the file @file{mips.h} for |
| an example of this. |
| |
| Do not define this macro if it does not need to do anything. |
| @end defmac |
| |
| @defmac AS_NEEDS_DASH_FOR_PIPED_INPUT |
| Define this macro, with no value, if the driver should give the assembler |
| an argument consisting of a single dash, @option{-}, to instruct it to |
| read from its standard input (which will be a pipe connected to the |
| output of the compiler proper). This argument is given after any |
| @option{-o} option specifying the name of the output file. |
| |
| If you do not define this macro, the assembler is assumed to read its |
| standard input if given no non-option arguments. If your assembler |
| cannot read standard input at all, use a @samp{%@{pipe:%e@}} construct; |
| see @file{mips.h} for instance. |
| @end defmac |
| |
| @defmac LINK_SPEC |
| A C string constant that tells the GCC driver program options to |
| pass to the linker. It can also specify how to translate options you |
| give to GCC into options for GCC to pass to the linker. |
| |
| Do not define this macro if it does not need to do anything. |
| @end defmac |
| |
| @defmac LIB_SPEC |
| Another C string constant used much like @code{LINK_SPEC}. The difference |
| between the two is that @code{LIB_SPEC} is used at the end of the |
| command given to the linker. |
| |
| If this macro is not defined, a default is provided that |
| loads the standard C library from the usual place. See @file{gcc.c}. |
| @end defmac |
| |
| @defmac LIBGCC_SPEC |
| Another C string constant that tells the GCC driver program |
| how and when to place a reference to @file{libgcc.a} into the |
| linker command line. This constant is placed both before and after |
| the value of @code{LIB_SPEC}. |
| |
| If this macro is not defined, the GCC driver provides a default that |
| passes the string @option{-lgcc} to the linker. |
| @end defmac |
| |
| @defmac REAL_LIBGCC_SPEC |
| By default, if @code{ENABLE_SHARED_LIBGCC} is defined, the |
| @code{LIBGCC_SPEC} is not directly used by the driver program but is |
| instead modified to refer to different versions of @file{libgcc.a} |
| depending on the values of the command line flags @option{-static}, |
| @option{-shared}, @option{-static-libgcc}, and @option{-shared-libgcc}. On |
| targets where these modifications are inappropriate, define |
| @code{REAL_LIBGCC_SPEC} instead. @code{REAL_LIBGCC_SPEC} tells the |
| driver how to place a reference to @file{libgcc} on the link command |
| line, but, unlike @code{LIBGCC_SPEC}, it is used unmodified. |
| @end defmac |
| |
| @defmac USE_LD_AS_NEEDED |
| A macro that controls the modifications to @code{LIBGCC_SPEC} |
| mentioned in @code{REAL_LIBGCC_SPEC}. If nonzero, a spec will be |
| generated that uses @option{--as-needed} or equivalent options and the |
| shared @file{libgcc} in place of the |
| static exception handler library, when linking without any of |
| @code{-static}, @code{-static-libgcc}, or @code{-shared-libgcc}. |
| @end defmac |
| |
| @defmac LINK_EH_SPEC |
| If defined, this C string constant is added to @code{LINK_SPEC}. |
| When @code{USE_LD_AS_NEEDED} is zero or undefined, it also affects |
| the modifications to @code{LIBGCC_SPEC} mentioned in |
| @code{REAL_LIBGCC_SPEC}. |
| @end defmac |
| |
| @defmac STARTFILE_SPEC |
| Another C string constant used much like @code{LINK_SPEC}. The |
| difference between the two is that @code{STARTFILE_SPEC} is used at |
| the very beginning of the command given to the linker. |
| |
| If this macro is not defined, a default is provided that loads the |
| standard C startup file from the usual place. See @file{gcc.c}. |
| @end defmac |
| |
| @defmac ENDFILE_SPEC |
| Another C string constant used much like @code{LINK_SPEC}. The |
| difference between the two is that @code{ENDFILE_SPEC} is used at |
| the very end of the command given to the linker. |
| |
| Do not define this macro if it does not need to do anything. |
| @end defmac |
| |
| @defmac THREAD_MODEL_SPEC |
| GCC @code{-v} will print the thread model GCC was configured to use. |
| However, this doesn't work on platforms that are multilibbed on thread |
| models, such as AIX 4.3. On such platforms, define |
| @code{THREAD_MODEL_SPEC} such that it evaluates to a string without |
| blanks that names one of the recognized thread models. @code{%*}, the |
| default value of this macro, will expand to the value of |
| @code{thread_file} set in @file{config.gcc}. |
| @end defmac |
| |
| @defmac SYSROOT_SUFFIX_SPEC |
| Define this macro to add a suffix to the target sysroot when GCC is |
| configured with a sysroot. This will cause GCC to search for usr/lib, |
| et al, within sysroot+suffix. |
| @end defmac |
| |
| @defmac SYSROOT_HEADERS_SUFFIX_SPEC |
| Define this macro to add a headers_suffix to the target sysroot when |
| GCC is configured with a sysroot. This will cause GCC to pass the |
| updated sysroot+headers_suffix to CPP, causing it to search for |
| usr/include, et al, within sysroot+headers_suffix. |
| @end defmac |
| |
| @defmac EXTRA_SPECS |
| Define this macro to provide additional specifications to put in the |
| @file{specs} file that can be used in various specifications like |
| @code{CC1_SPEC}. |
| |
| The definition should be an initializer for an array of structures, |
| containing a string constant, that defines the specification name, and a |
| string constant that provides the specification. |
| |
| Do not define this macro if it does not need to do anything. |
| |
| @code{EXTRA_SPECS} is useful when an architecture contains several |
| related targets, which have various @code{@dots{}_SPECS} which are similar |
| to each other, and the maintainer would like one central place to keep |
| these definitions. |
| |
| For example, the PowerPC System V.4 targets use @code{EXTRA_SPECS} to |
| define either @code{_CALL_SYSV} when the System V calling sequence is |
| used or @code{_CALL_AIX} when the older AIX-based calling sequence is |
| used. |
| |
| The @file{config/rs6000/rs6000.h} target file defines: |
| |
| @smallexample |
| #define EXTRA_SPECS \ |
| @{ "cpp_sysv_default", CPP_SYSV_DEFAULT @}, |
| |
| #define CPP_SYS_DEFAULT "" |
| @end smallexample |
| |
| The @file{config/rs6000/sysv.h} target file defines: |
| @smallexample |
| #undef CPP_SPEC |
| #define CPP_SPEC \ |
| "%@{posix: -D_POSIX_SOURCE @} \ |
| %@{mcall-sysv: -D_CALL_SYSV @} \ |
| %@{!mcall-sysv: %(cpp_sysv_default) @} \ |
| %@{msoft-float: -D_SOFT_FLOAT@} %@{mcpu=403: -D_SOFT_FLOAT@}" |
| |
| #undef CPP_SYSV_DEFAULT |
| #define CPP_SYSV_DEFAULT "-D_CALL_SYSV" |
| @end smallexample |
| |
| while the @file{config/rs6000/eabiaix.h} target file defines |
| @code{CPP_SYSV_DEFAULT} as: |
| |
| @smallexample |
| #undef CPP_SYSV_DEFAULT |
| #define CPP_SYSV_DEFAULT "-D_CALL_AIX" |
| @end smallexample |
| @end defmac |
| |
| @defmac LINK_LIBGCC_SPECIAL_1 |
| Define this macro if the driver program should find the library |
| @file{libgcc.a}. If you do not define this macro, the driver program will pass |
| the argument @option{-lgcc} to tell the linker to do the search. |
| @end defmac |
| |
| @defmac LINK_GCC_C_SEQUENCE_SPEC |
| The sequence in which libgcc and libc are specified to the linker. |
| By default this is @code{%G %L %G}. |
| @end defmac |
| |
| @defmac POST_LINK_SPEC |
| Define this macro to add additional steps to be executed after linker. |
| The default value of this macro is empty string. |
| @end defmac |
| |
| @defmac LINK_COMMAND_SPEC |
| A C string constant giving the complete command line need to execute the |
| linker. When you do this, you will need to update your port each time a |
| change is made to the link command line within @file{gcc.c}. Therefore, |
| define this macro only if you need to completely redefine the command |
| line for invoking the linker and there is no other way to accomplish |
| the effect you need. Overriding this macro may be avoidable by overriding |
| @code{LINK_GCC_C_SEQUENCE_SPEC} instead. |
| @end defmac |
| |
| @deftypevr {Common Target Hook} bool TARGET_ALWAYS_STRIP_DOTDOT |
| True if @file{..} components should always be removed from directory names computed relative to GCC's internal directories, false (default) if such components should be preserved and directory names containing them passed to other tools such as the linker. |
| @end deftypevr |
| |
| @defmac MULTILIB_DEFAULTS |
| Define this macro as a C expression for the initializer of an array of |
| string to tell the driver program which options are defaults for this |
| target and thus do not need to be handled specially when using |
| @code{MULTILIB_OPTIONS}. |
| |
| Do not define this macro if @code{MULTILIB_OPTIONS} is not defined in |
| the target makefile fragment or if none of the options listed in |
| @code{MULTILIB_OPTIONS} are set by default. |
| @xref{Target Fragment}. |
| @end defmac |
| |
| @defmac RELATIVE_PREFIX_NOT_LINKDIR |
| Define this macro to tell @command{gcc} that it should only translate |
| a @option{-B} prefix into a @option{-L} linker option if the prefix |
| indicates an absolute file name. |
| @end defmac |
| |
| @defmac MD_EXEC_PREFIX |
| If defined, this macro is an additional prefix to try after |
| @code{STANDARD_EXEC_PREFIX}. @code{MD_EXEC_PREFIX} is not searched |
| when the compiler is built as a cross |
| compiler. If you define @code{MD_EXEC_PREFIX}, then be sure to add it |
| to the list of directories used to find the assembler in @file{configure.ac}. |
| @end defmac |
| |
| @defmac STANDARD_STARTFILE_PREFIX |
| Define this macro as a C string constant if you wish to override the |
| standard choice of @code{libdir} as the default prefix to |
| try when searching for startup files such as @file{crt0.o}. |
| @code{STANDARD_STARTFILE_PREFIX} is not searched when the compiler |
| is built as a cross compiler. |
| @end defmac |
| |
| @defmac STANDARD_STARTFILE_PREFIX_1 |
| Define this macro as a C string constant if you wish to override the |
| standard choice of @code{/lib} as a prefix to try after the default prefix |
| when searching for startup files such as @file{crt0.o}. |
| @code{STANDARD_STARTFILE_PREFIX_1} is not searched when the compiler |
| is built as a cross compiler. |
| @end defmac |
| |
| @defmac STANDARD_STARTFILE_PREFIX_2 |
| Define this macro as a C string constant if you wish to override the |
| standard choice of @code{/lib} as yet another prefix to try after the |
| default prefix when searching for startup files such as @file{crt0.o}. |
| @code{STANDARD_STARTFILE_PREFIX_2} is not searched when the compiler |
| is built as a cross compiler. |
| @end defmac |
| |
| @defmac MD_STARTFILE_PREFIX |
| If defined, this macro supplies an additional prefix to try after the |
| standard prefixes. @code{MD_EXEC_PREFIX} is not searched when the |
| compiler is built as a cross compiler. |
| @end defmac |
| |
| @defmac MD_STARTFILE_PREFIX_1 |
| If defined, this macro supplies yet another prefix to try after the |
| standard prefixes. It is not searched when the compiler is built as a |
| cross compiler. |
| @end defmac |
| |
| @defmac INIT_ENVIRONMENT |
| Define this macro as a C string constant if you wish to set environment |
| variables for programs called by the driver, such as the assembler and |
| loader. The driver passes the value of this macro to @code{putenv} to |
| initialize the necessary environment variables. |
| @end defmac |
| |
| @defmac LOCAL_INCLUDE_DIR |
| Define this macro as a C string constant if you wish to override the |
| standard choice of @file{/usr/local/include} as the default prefix to |
| try when searching for local header files. @code{LOCAL_INCLUDE_DIR} |
| comes before @code{NATIVE_SYSTEM_HEADER_DIR} (set in |
| @file{config.gcc}, normally @file{/usr/include}) in the search order. |
| |
| Cross compilers do not search either @file{/usr/local/include} or its |
| replacement. |
| @end defmac |
| |
| @defmac NATIVE_SYSTEM_HEADER_COMPONENT |
| The ``component'' corresponding to @code{NATIVE_SYSTEM_HEADER_DIR}. |
| See @code{INCLUDE_DEFAULTS}, below, for the description of components. |
| If you do not define this macro, no component is used. |
| @end defmac |
| |
| @defmac INCLUDE_DEFAULTS |
| Define this macro if you wish to override the entire default search path |
| for include files. For a native compiler, the default search path |
| usually consists of @code{GCC_INCLUDE_DIR}, @code{LOCAL_INCLUDE_DIR}, |
| @code{GPLUSPLUS_INCLUDE_DIR}, and |
| @code{NATIVE_SYSTEM_HEADER_DIR}. In addition, @code{GPLUSPLUS_INCLUDE_DIR} |
| and @code{GCC_INCLUDE_DIR} are defined automatically by @file{Makefile}, |
| and specify private search areas for GCC@. The directory |
| @code{GPLUSPLUS_INCLUDE_DIR} is used only for C++ programs. |
| |
| The definition should be an initializer for an array of structures. |
| Each array element should have four elements: the directory name (a |
| string constant), the component name (also a string constant), a flag |
| for C++-only directories, |
| and a flag showing that the includes in the directory don't need to be |
| wrapped in @code{extern @samp{C}} when compiling C++. Mark the end of |
| the array with a null element. |
| |
| The component name denotes what GNU package the include file is part of, |
| if any, in all uppercase letters. For example, it might be @samp{GCC} |
| or @samp{BINUTILS}. If the package is part of a vendor-supplied |
| operating system, code the component name as @samp{0}. |
| |
| For example, here is the definition used for VAX/VMS: |
| |
| @smallexample |
| #define INCLUDE_DEFAULTS \ |
| @{ \ |
| @{ "GNU_GXX_INCLUDE:", "G++", 1, 1@}, \ |
| @{ "GNU_CC_INCLUDE:", "GCC", 0, 0@}, \ |
| @{ "SYS$SYSROOT:[SYSLIB.]", 0, 0, 0@}, \ |
| @{ ".", 0, 0, 0@}, \ |
| @{ 0, 0, 0, 0@} \ |
| @} |
| @end smallexample |
| @end defmac |
| |
| Here is the order of prefixes tried for exec files: |
| |
| @enumerate |
| @item |
| Any prefixes specified by the user with @option{-B}. |
| |
| @item |
| The environment variable @code{GCC_EXEC_PREFIX} or, if @code{GCC_EXEC_PREFIX} |
| is not set and the compiler has not been installed in the configure-time |
| @var{prefix}, the location in which the compiler has actually been installed. |
| |
| @item |
| The directories specified by the environment variable @code{COMPILER_PATH}. |
| |
| @item |
| The macro @code{STANDARD_EXEC_PREFIX}, if the compiler has been installed |
| in the configured-time @var{prefix}. |
| |
| @item |
| The location @file{/usr/libexec/gcc/}, but only if this is a native compiler. |
| |
| @item |
| The location @file{/usr/lib/gcc/}, but only if this is a native compiler. |
| |
| @item |
| The macro @code{MD_EXEC_PREFIX}, if defined, but only if this is a native |
| compiler. |
| @end enumerate |
| |
| Here is the order of prefixes tried for startfiles: |
| |
| @enumerate |
| @item |
| Any prefixes specified by the user with @option{-B}. |
| |
| @item |
| The environment variable @code{GCC_EXEC_PREFIX} or its automatically determined |
| value based on the installed toolchain location. |
| |
| @item |
| The directories specified by the environment variable @code{LIBRARY_PATH} |
| (or port-specific name; native only, cross compilers do not use this). |
| |
| @item |
| The macro @code{STANDARD_EXEC_PREFIX}, but only if the toolchain is installed |
| in the configured @var{prefix} or this is a native compiler. |
| |
| @item |
| The location @file{/usr/lib/gcc/}, but only if this is a native compiler. |
| |
| @item |
| The macro @code{MD_EXEC_PREFIX}, if defined, but only if this is a native |
| compiler. |
| |
| @item |
| The macro @code{MD_STARTFILE_PREFIX}, if defined, but only if this is a |
| native compiler, or we have a target system root. |
| |
| @item |
| The macro @code{MD_STARTFILE_PREFIX_1}, if defined, but only if this is a |
| native compiler, or we have a target system root. |
| |
| @item |
| The macro @code{STANDARD_STARTFILE_PREFIX}, with any sysroot modifications. |
| If this path is relative it will be prefixed by @code{GCC_EXEC_PREFIX} and |
| the machine suffix or @code{STANDARD_EXEC_PREFIX} and the machine suffix. |
| |
| @item |
| The macro @code{STANDARD_STARTFILE_PREFIX_1}, but only if this is a native |
| compiler, or we have a target system root. The default for this macro is |
| @file{/lib/}. |
| |
| @item |
| The macro @code{STANDARD_STARTFILE_PREFIX_2}, but only if this is a native |
| compiler, or we have a target system root. The default for this macro is |
| @file{/usr/lib/}. |
| @end enumerate |
| |
| @node Run-time Target |
| @section Run-time Target Specification |
| @cindex run-time target specification |
| @cindex predefined macros |
| @cindex target specifications |
| |
| @c prevent bad page break with this line |
| Here are run-time target specifications. |
| |
| @defmac TARGET_CPU_CPP_BUILTINS () |
| This function-like macro expands to a block of code that defines |
| built-in preprocessor macros and assertions for the target CPU, using |
| the functions @code{builtin_define}, @code{builtin_define_std} and |
| @code{builtin_assert}. When the front end |
| calls this macro it provides a trailing semicolon, and since it has |
| finished command line option processing your code can use those |
| results freely. |
| |
| @code{builtin_assert} takes a string in the form you pass to the |
| command-line option @option{-A}, such as @code{cpu=mips}, and creates |
| the assertion. @code{builtin_define} takes a string in the form |
| accepted by option @option{-D} and unconditionally defines the macro. |
| |
| @code{builtin_define_std} takes a string representing the name of an |
| object-like macro. If it doesn't lie in the user's namespace, |
| @code{builtin_define_std} defines it unconditionally. Otherwise, it |
| defines a version with two leading underscores, and another version |
| with two leading and trailing underscores, and defines the original |
| only if an ISO standard was not requested on the command line. For |
| example, passing @code{unix} defines @code{__unix}, @code{__unix__} |
| and possibly @code{unix}; passing @code{_mips} defines @code{__mips}, |
| @code{__mips__} and possibly @code{_mips}, and passing @code{_ABI64} |
| defines only @code{_ABI64}. |
| |
| You can also test for the C dialect being compiled. The variable |
| @code{c_language} is set to one of @code{clk_c}, @code{clk_cplusplus} |
| or @code{clk_objective_c}. Note that if we are preprocessing |
| assembler, this variable will be @code{clk_c} but the function-like |
| macro @code{preprocessing_asm_p()} will return true, so you might want |
| to check for that first. If you need to check for strict ANSI, the |
| variable @code{flag_iso} can be used. The function-like macro |
| @code{preprocessing_trad_p()} can be used to check for traditional |
| preprocessing. |
| @end defmac |
| |
| @defmac TARGET_OS_CPP_BUILTINS () |
| Similarly to @code{TARGET_CPU_CPP_BUILTINS} but this macro is optional |
| and is used for the target operating system instead. |
| @end defmac |
| |
| @defmac TARGET_OBJFMT_CPP_BUILTINS () |
| Similarly to @code{TARGET_CPU_CPP_BUILTINS} but this macro is optional |
| and is used for the target object format. @file{elfos.h} uses this |
| macro to define @code{__ELF__}, so you probably do not need to define |
| it yourself. |
| @end defmac |
| |
| @deftypevar {extern int} target_flags |
| This variable is declared in @file{options.h}, which is included before |
| any target-specific headers. |
| @end deftypevar |
| |
| @deftypevr {Common Target Hook} int TARGET_DEFAULT_TARGET_FLAGS |
| This variable specifies the initial value of @code{target_flags}. |
| Its default setting is 0. |
| @end deftypevr |
| |
| @cindex optional hardware or system features |
| @cindex features, optional, in system conventions |
| |
| @deftypefn {Common Target Hook} bool TARGET_HANDLE_OPTION (struct gcc_options *@var{opts}, struct gcc_options *@var{opts_set}, const struct cl_decoded_option *@var{decoded}, location_t @var{loc}) |
| This hook is called whenever the user specifies one of the |
| target-specific options described by the @file{.opt} definition files |
| (@pxref{Options}). It has the opportunity to do some option-specific |
| processing and should return true if the option is valid. The default |
| definition does nothing but return true. |
| |
| @var{decoded} specifies the option and its arguments. @var{opts} and |
| @var{opts_set} are the @code{gcc_options} structures to be used for |
| storing option state, and @var{loc} is the location at which the |
| option was passed (@code{UNKNOWN_LOCATION} except for options passed |
| via attributes). |
| @end deftypefn |
| |
| @deftypefn {C Target Hook} bool TARGET_HANDLE_C_OPTION (size_t @var{code}, const char *@var{arg}, int @var{value}) |
| This target hook is called whenever the user specifies one of the |
| target-specific C language family options described by the @file{.opt} |
| definition files(@pxref{Options}). It has the opportunity to do some |
| option-specific processing and should return true if the option is |
| valid. The arguments are like for @code{TARGET_HANDLE_OPTION}. The |
| default definition does nothing but return false. |
| |
| In general, you should use @code{TARGET_HANDLE_OPTION} to handle |
| options. However, if processing an option requires routines that are |
| only available in the C (and related language) front ends, then you |
| should use @code{TARGET_HANDLE_C_OPTION} instead. |
| @end deftypefn |
| |
| @deftypefn {C Target Hook} tree TARGET_OBJC_CONSTRUCT_STRING_OBJECT (tree @var{string}) |
| Targets may provide a string object type that can be used within and between C, C++ and their respective Objective-C dialects. A string object might, for example, embed encoding and length information. These objects are considered opaque to the compiler and handled as references. An ideal implementation makes the composition of the string object match that of the Objective-C @code{NSString} (@code{NXString} for GNUStep), allowing efficient interworking between C-only and Objective-C code. If a target implements string objects then this hook should return a reference to such an object constructed from the normal `C' string representation provided in @var{string}. At present, the hook is used by Objective-C only, to obtain a common-format string object when the target provides one. |
| @end deftypefn |
| |
| @deftypefn {C Target Hook} void TARGET_OBJC_DECLARE_UNRESOLVED_CLASS_REFERENCE (const char *@var{classname}) |
| Declare that Objective C class @var{classname} is referenced by the current TU. |
| @end deftypefn |
| |
| @deftypefn {C Target Hook} void TARGET_OBJC_DECLARE_CLASS_DEFINITION (const char *@var{classname}) |
| Declare that Objective C class @var{classname} is defined by the current TU. |
| @end deftypefn |
| |
| @deftypefn {C Target Hook} bool TARGET_STRING_OBJECT_REF_TYPE_P (const_tree @var{stringref}) |
| If a target implements string objects then this hook should return @code{true} if @var{stringref} is a valid reference to such an object. |
| @end deftypefn |
| |
| @deftypefn {C Target Hook} void TARGET_CHECK_STRING_OBJECT_FORMAT_ARG (tree @var{format_arg}, tree @var{args_list}) |
| If a target implements string objects then this hook should should provide a facility to check the function arguments in @var{args_list} against the format specifiers in @var{format_arg} where the type of @var{format_arg} is one recognized as a valid string reference type. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} void TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE (void) |
| This target function is similar to the hook @code{TARGET_OPTION_OVERRIDE} |
| but is called when the optimize level is changed via an attribute or |
| pragma or when it is reset at the end of the code affected by the |
| attribute or pragma. It is not called at the beginning of compilation |
| when @code{TARGET_OPTION_OVERRIDE} is called so if you want to perform these |
| actions then, you should have @code{TARGET_OPTION_OVERRIDE} call |
| @code{TARGET_OVERRIDE_OPTIONS_AFTER_CHANGE}. |
| @end deftypefn |
| |
| @defmac C_COMMON_OVERRIDE_OPTIONS |
| This is similar to the @code{TARGET_OPTION_OVERRIDE} hook |
| but is only used in the C |
| language frontends (C, Objective-C, C++, Objective-C++) and so can be |
| used to alter option flag variables which only exist in those |
| frontends. |
| @end defmac |
| |
| @deftypevr {Common Target Hook} {const struct default_options *} TARGET_OPTION_OPTIMIZATION_TABLE |
| Some machines may desire to change what optimizations are performed for |
| various optimization levels. This variable, if defined, describes |
| options to enable at particular sets of optimization levels. These |
| options are processed once |
| just after the optimization level is determined and before the remainder |
| of the command options have been parsed, so may be overridden by other |
| options passed explicitly. |
| |
| This processing is run once at program startup and when the optimization |
| options are changed via @code{#pragma GCC optimize} or by using the |
| @code{optimize} attribute. |
| @end deftypevr |
| |
| @deftypefn {Common Target Hook} void TARGET_OPTION_INIT_STRUCT (struct gcc_options *@var{opts}) |
| Set target-dependent initial values of fields in @var{opts}. |
| @end deftypefn |
| |
| @deftypefn {Common Target Hook} void TARGET_OPTION_DEFAULT_PARAMS (void) |
| Set target-dependent default values for @option{--param} settings, using calls to @code{set_default_param_value}. |
| @end deftypefn |
| |
| @defmac SWITCHABLE_TARGET |
| Some targets need to switch between substantially different subtargets |
| during compilation. For example, the MIPS target has one subtarget for |
| the traditional MIPS architecture and another for MIPS16. Source code |
| can switch between these two subarchitectures using the @code{mips16} |
| and @code{nomips16} attributes. |
| |
| Such subtargets can differ in things like the set of available |
| registers, the set of available instructions, the costs of various |
| operations, and so on. GCC caches a lot of this type of information |
| in global variables, and recomputing them for each subtarget takes a |
| significant amount of time. The compiler therefore provides a facility |
| for maintaining several versions of the global variables and quickly |
| switching between them; see @file{target-globals.h} for details. |
| |
| Define this macro to 1 if your target needs this facility. The default |
| is 0. |
| @end defmac |
| |
| @deftypefn {Target Hook} bool TARGET_FLOAT_EXCEPTIONS_ROUNDING_SUPPORTED_P (void) |
| Returns true if the target supports IEEE 754 floating-point exceptions and rounding modes, false otherwise. This is intended to relate to the @code{float} and @code{double} types, but not necessarily @code{long double}. By default, returns true if the @code{adddf3} instruction pattern is available and false otherwise, on the assumption that hardware floating point supports exceptions and rounding modes but software floating point does not. |
| @end deftypefn |
| |
| @node Per-Function Data |
| @section Defining data structures for per-function information. |
| @cindex per-function data |
| @cindex data structures |
| |
| If the target needs to store information on a per-function basis, GCC |
| provides a macro and a couple of variables to allow this. Note, just |
| using statics to store the information is a bad idea, since GCC supports |
| nested functions, so you can be halfway through encoding one function |
| when another one comes along. |
| |
| GCC defines a data structure called @code{struct function} which |
| contains all of the data specific to an individual function. This |
| structure contains a field called @code{machine} whose type is |
| @code{struct machine_function *}, which can be used by targets to point |
| to their own specific data. |
| |
| If a target needs per-function specific data it should define the type |
| @code{struct machine_function} and also the macro @code{INIT_EXPANDERS}. |
| This macro should be used to initialize the function pointer |
| @code{init_machine_status}. This pointer is explained below. |
| |
| One typical use of per-function, target specific data is to create an |
| RTX to hold the register containing the function's return address. This |
| RTX can then be used to implement the @code{__builtin_return_address} |
| function, for level 0. |
| |
| Note---earlier implementations of GCC used a single data area to hold |
| all of the per-function information. Thus when processing of a nested |
| function began the old per-function data had to be pushed onto a |
| stack, and when the processing was finished, it had to be popped off the |
| stack. GCC used to provide function pointers called |
| @code{save_machine_status} and @code{restore_machine_status} to handle |
| the saving and restoring of the target specific information. Since the |
| single data area approach is no longer used, these pointers are no |
| longer supported. |
| |
| @defmac INIT_EXPANDERS |
| Macro called to initialize any target specific information. This macro |
| is called once per function, before generation of any RTL has begun. |
| The intention of this macro is to allow the initialization of the |
| function pointer @code{init_machine_status}. |
| @end defmac |
| |
| @deftypevar {void (*)(struct function *)} init_machine_status |
| If this function pointer is non-@code{NULL} it will be called once per |
| function, before function compilation starts, in order to allow the |
| target to perform any target specific initialization of the |
| @code{struct function} structure. It is intended that this would be |
| used to initialize the @code{machine} of that structure. |
| |
| @code{struct machine_function} structures are expected to be freed by GC@. |
| Generally, any memory that they reference must be allocated by using |
| GC allocation, including the structure itself. |
| @end deftypevar |
| |
| @node Storage Layout |
| @section Storage Layout |
| @cindex storage layout |
| |
| Note that the definitions of the macros in this table which are sizes or |
| alignments measured in bits do not need to be constant. They can be C |
| expressions that refer to static variables, such as the @code{target_flags}. |
| @xref{Run-time Target}. |
| |
| @defmac BITS_BIG_ENDIAN |
| Define this macro to have the value 1 if the most significant bit in a |
| byte has the lowest number; otherwise define it to have the value zero. |
| This means that bit-field instructions count from the most significant |
| bit. If the machine has no bit-field instructions, then this must still |
| be defined, but it doesn't matter which value it is defined to. This |
| macro need not be a constant. |
| |
| This macro does not affect the way structure fields are packed into |
| bytes or words; that is controlled by @code{BYTES_BIG_ENDIAN}. |
| @end defmac |
| |
| @defmac BYTES_BIG_ENDIAN |
| Define this macro to have the value 1 if the most significant byte in a |
| word has the lowest number. This macro need not be a constant. |
| @end defmac |
| |
| @defmac WORDS_BIG_ENDIAN |
| Define this macro to have the value 1 if, in a multiword object, the |
| most significant word has the lowest number. This applies to both |
| memory locations and registers; see @code{REG_WORDS_BIG_ENDIAN} if the |
| order of words in memory is not the same as the order in registers. This |
| macro need not be a constant. |
| @end defmac |
| |
| @defmac REG_WORDS_BIG_ENDIAN |
| On some machines, the order of words in a multiword object differs between |
| registers in memory. In such a situation, define this macro to describe |
| the order of words in a register. The macro @code{WORDS_BIG_ENDIAN} controls |
| the order of words in memory. |
| @end defmac |
| |
| @defmac FLOAT_WORDS_BIG_ENDIAN |
| Define this macro to have the value 1 if @code{DFmode}, @code{XFmode} or |
| @code{TFmode} floating point numbers are stored in memory with the word |
| containing the sign bit at the lowest address; otherwise define it to |
| have the value 0. This macro need not be a constant. |
| |
| You need not define this macro if the ordering is the same as for |
| multi-word integers. |
| @end defmac |
| |
| @defmac BITS_PER_WORD |
| Number of bits in a word. If you do not define this macro, the default |
| is @code{BITS_PER_UNIT * UNITS_PER_WORD}. |
| @end defmac |
| |
| @defmac MAX_BITS_PER_WORD |
| Maximum number of bits in a word. If this is undefined, the default is |
| @code{BITS_PER_WORD}. Otherwise, it is the constant value that is the |
| largest value that @code{BITS_PER_WORD} can have at run-time. |
| @end defmac |
| |
| @defmac UNITS_PER_WORD |
| Number of storage units in a word; normally the size of a general-purpose |
| register, a power of two from 1 or 8. |
| @end defmac |
| |
| @defmac MIN_UNITS_PER_WORD |
| Minimum number of units in a word. If this is undefined, the default is |
| @code{UNITS_PER_WORD}. Otherwise, it is the constant value that is the |
| smallest value that @code{UNITS_PER_WORD} can have at run-time. |
| @end defmac |
| |
| @defmac POINTER_SIZE |
| Width of a pointer, in bits. You must specify a value no wider than the |
| width of @code{Pmode}. If it is not equal to the width of @code{Pmode}, |
| you must define @code{POINTERS_EXTEND_UNSIGNED}. If you do not specify |
| a value the default is @code{BITS_PER_WORD}. |
| @end defmac |
| |
| @defmac POINTERS_EXTEND_UNSIGNED |
| A C expression that determines how pointers should be extended from |
| @code{ptr_mode} to either @code{Pmode} or @code{word_mode}. It is |
| greater than zero if pointers should be zero-extended, zero if they |
| should be sign-extended, and negative if some other sort of conversion |
| is needed. In the last case, the extension is done by the target's |
| @code{ptr_extend} instruction. |
| |
| You need not define this macro if the @code{ptr_mode}, @code{Pmode} |
| and @code{word_mode} are all the same width. |
| @end defmac |
| |
| @defmac PROMOTE_MODE (@var{m}, @var{unsignedp}, @var{type}) |
| A macro to update @var{m} and @var{unsignedp} when an object whose type |
| is @var{type} and which has the specified mode and signedness is to be |
| stored in a register. This macro is only called when @var{type} is a |
| scalar type. |
| |
| On most RISC machines, which only have operations that operate on a full |
| register, define this macro to set @var{m} to @code{word_mode} if |
| @var{m} is an integer mode narrower than @code{BITS_PER_WORD}. In most |
| cases, only integer modes should be widened because wider-precision |
| floating-point operations are usually more expensive than their narrower |
| counterparts. |
| |
| For most machines, the macro definition does not change @var{unsignedp}. |
| However, some machines, have instructions that preferentially handle |
| either signed or unsigned quantities of certain modes. For example, on |
| the DEC Alpha, 32-bit loads from memory and 32-bit add instructions |
| sign-extend the result to 64 bits. On such machines, set |
| @var{unsignedp} according to which kind of extension is more efficient. |
| |
| Do not define this macro if it would never modify @var{m}. |
| @end defmac |
| |
| @deftypefn {Target Hook} {enum flt_eval_method} TARGET_C_EXCESS_PRECISION (enum excess_precision_type @var{type}) |
| Return a value, with the same meaning as the C99 macro @code{FLT_EVAL_METHOD} that describes which excess precision should be applied. @var{type} is either @code{EXCESS_PRECISION_TYPE_IMPLICIT}, @code{EXCESS_PRECISION_TYPE_FAST}, or @code{EXCESS_PRECISION_TYPE_STANDARD}. For @code{EXCESS_PRECISION_TYPE_IMPLICIT}, the target should return which precision and range operations will be implictly evaluated in regardless of the excess precision explicitly added. For @code{EXCESS_PRECISION_TYPE_STANDARD} and @code{EXCESS_PRECISION_TYPE_FAST}, the target should return the explicit excess precision that should be added depending on the value set for @option{-fexcess-precision=@r{[}standard@r{|}fast@r{]}}. Note that unpredictable explicit excess precision does not make sense, so a target should never return @code{FLT_EVAL_METHOD_UNPREDICTABLE} when @var{type} is @code{EXCESS_PRECISION_TYPE_STANDARD} or @code{EXCESS_PRECISION_TYPE_FAST}. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} machine_mode TARGET_PROMOTE_FUNCTION_MODE (const_tree @var{type}, machine_mode @var{mode}, int *@var{punsignedp}, const_tree @var{funtype}, int @var{for_return}) |
| Like @code{PROMOTE_MODE}, but it is applied to outgoing function arguments or |
| function return values. The target hook should return the new mode |
| and possibly change @code{*@var{punsignedp}} if the promotion should |
| change signedness. This function is called only for scalar @emph{or |
| pointer} types. |
| |
| @var{for_return} allows to distinguish the promotion of arguments and |
| return values. If it is @code{1}, a return value is being promoted and |
| @code{TARGET_FUNCTION_VALUE} must perform the same promotions done here. |
| If it is @code{2}, the returned mode should be that of the register in |
| which an incoming parameter is copied, or the outgoing result is computed; |
| then the hook should return the same mode as @code{promote_mode}, though |
| the signedness may be different. |
| |
| @var{type} can be NULL when promoting function arguments of libcalls. |
| |
| The default is to not promote arguments and return values. You can |
| also define the hook to @code{default_promote_function_mode_always_promote} |
| if you would like to apply the same rules given by @code{PROMOTE_MODE}. |
| @end deftypefn |
| |
| @defmac PARM_BOUNDARY |
| Normal alignment required for function parameters on the stack, in |
| bits. All stack parameters receive at least this much alignment |
| regardless of data type. On most machines, this is the same as the |
| size of an integer. |
| @end defmac |
| |
| @defmac STACK_BOUNDARY |
| Define this macro to the minimum alignment enforced by hardware for the |
| stack pointer on this machine. The definition is a C expression for the |
| desired alignment (measured in bits). This value is used as a default |
| if @code{PREFERRED_STACK_BOUNDARY} is not defined. On most machines, |
| this should be the same as @code{PARM_BOUNDARY}. |
| @end defmac |
| |
| @defmac PREFERRED_STACK_BOUNDARY |
| Define this macro if you wish to preserve a certain alignment for the |
| stack pointer, greater than what the hardware enforces. The definition |
| is a C expression for the desired alignment (measured in bits). This |
| macro must evaluate to a value equal to or larger than |
| @code{STACK_BOUNDARY}. |
| @end defmac |
| |
| @defmac INCOMING_STACK_BOUNDARY |
| Define this macro if the incoming stack boundary may be different |
| from @code{PREFERRED_STACK_BOUNDARY}. This macro must evaluate |
| to a value equal to or larger than @code{STACK_BOUNDARY}. |
| @end defmac |
| |
| @defmac FUNCTION_BOUNDARY |
| Alignment required for a function entry point, in bits. |
| @end defmac |
| |
| @defmac BIGGEST_ALIGNMENT |
| Biggest alignment that any data type can require on this machine, in |
| bits. Note that this is not the biggest alignment that is supported, |
| just the biggest alignment that, when violated, may cause a fault. |
| @end defmac |
| |
| @deftypevr {Target Hook} HOST_WIDE_INT TARGET_ABSOLUTE_BIGGEST_ALIGNMENT |
| If defined, this target hook specifies the absolute biggest alignment |
| that a type or variable can have on this machine, otherwise, |
| @code{BIGGEST_ALIGNMENT} is used. |
| @end deftypevr |
| |
| @defmac MALLOC_ABI_ALIGNMENT |
| Alignment, in bits, a C conformant malloc implementation has to |
| provide. If not defined, the default value is @code{BITS_PER_WORD}. |
| @end defmac |
| |
| @defmac ATTRIBUTE_ALIGNED_VALUE |
| Alignment used by the @code{__attribute__ ((aligned))} construct. If |
| not defined, the default value is @code{BIGGEST_ALIGNMENT}. |
| @end defmac |
| |
| @defmac MINIMUM_ATOMIC_ALIGNMENT |
| If defined, the smallest alignment, in bits, that can be given to an |
| object that can be referenced in one operation, without disturbing any |
| nearby object. Normally, this is @code{BITS_PER_UNIT}, but may be larger |
| on machines that don't have byte or half-word store operations. |
| @end defmac |
| |
| @defmac BIGGEST_FIELD_ALIGNMENT |
| Biggest alignment that any structure or union field can require on this |
| machine, in bits. If defined, this overrides @code{BIGGEST_ALIGNMENT} for |
| structure and union fields only, unless the field alignment has been set |
| by the @code{__attribute__ ((aligned (@var{n})))} construct. |
| @end defmac |
| |
| @defmac ADJUST_FIELD_ALIGN (@var{field}, @var{type}, @var{computed}) |
| An expression for the alignment of a structure field @var{field} of |
| type @var{type} if the alignment computed in the usual way (including |
| applying of @code{BIGGEST_ALIGNMENT} and @code{BIGGEST_FIELD_ALIGNMENT} to the |
| alignment) is @var{computed}. It overrides alignment only if the |
| field alignment has not been set by the |
| @code{__attribute__ ((aligned (@var{n})))} construct. Note that @var{field} |
| may be @code{NULL_TREE} in case we just query for the minimum alignment |
| of a field of type @var{type} in structure context. |
| @end defmac |
| |
| @defmac MAX_STACK_ALIGNMENT |
| Biggest stack alignment guaranteed by the backend. Use this macro |
| to specify the maximum alignment of a variable on stack. |
| |
| If not defined, the default value is @code{STACK_BOUNDARY}. |
| |
| @c FIXME: The default should be @code{PREFERRED_STACK_BOUNDARY}. |
| @c But the fix for PR 32893 indicates that we can only guarantee |
| @c maximum stack alignment on stack up to @code{STACK_BOUNDARY}, not |
| @c @code{PREFERRED_STACK_BOUNDARY}, if stack alignment isn't supported. |
| @end defmac |
| |
| @defmac MAX_OFILE_ALIGNMENT |
| Biggest alignment supported by the object file format of this machine. |
| Use this macro to limit the alignment which can be specified using the |
| @code{__attribute__ ((aligned (@var{n})))} construct. If not defined, |
| the default value is @code{BIGGEST_ALIGNMENT}. |
| |
| On systems that use ELF, the default (in @file{config/elfos.h}) is |
| the largest supported 32-bit ELF section alignment representable on |
| a 32-bit host e.g. @samp{(((uint64_t) 1 << 28) * 8)}. |
| On 32-bit ELF the largest supported section alignment in bits is |
| @samp{(0x80000000 * 8)}, but this is not representable on 32-bit hosts. |
| @end defmac |
| |
| @defmac DATA_ALIGNMENT (@var{type}, @var{basic-align}) |
| If defined, a C expression to compute the alignment for a variable in |
| the static store. @var{type} is the data type, and @var{basic-align} is |
| the alignment that the object would ordinarily have. The value of this |
| macro is used instead of that alignment to align the object. |
| |
| If this macro is not defined, then @var{basic-align} is used. |
| |
| @findex strcpy |
| One use of this macro is to increase alignment of medium-size data to |
| make it all fit in fewer cache lines. Another is to cause character |
| arrays to be word-aligned so that @code{strcpy} calls that copy |
| constants to character arrays can be done inline. |
| @end defmac |
| |
| @defmac DATA_ABI_ALIGNMENT (@var{type}, @var{basic-align}) |
| Similar to @code{DATA_ALIGNMENT}, but for the cases where the ABI mandates |
| some alignment increase, instead of optimization only purposes. E.g.@ |
| AMD x86-64 psABI says that variables with array type larger than 15 bytes |
| must be aligned to 16 byte boundaries. |
| |
| If this macro is not defined, then @var{basic-align} is used. |
| @end defmac |
| |
| @defmac CONSTANT_ALIGNMENT (@var{constant}, @var{basic-align}) |
| If defined, a C expression to compute the alignment given to a constant |
| that is being placed in memory. @var{constant} is the constant and |
| @var{basic-align} is the alignment that the object would ordinarily |
| have. The value of this macro is used instead of that alignment to |
| align the object. |
| |
| The default definition just returns @var{basic-align}. |
| |
| The typical use of this macro is to increase alignment for string |
| constants to be word aligned so that @code{strcpy} calls that copy |
| constants can be done inline. |
| @end defmac |
| |
| @defmac LOCAL_ALIGNMENT (@var{type}, @var{basic-align}) |
| If defined, a C expression to compute the alignment for a variable in |
| the local store. @var{type} is the data type, and @var{basic-align} is |
| the alignment that the object would ordinarily have. The value of this |
| macro is used instead of that alignment to align the object. |
| |
| If this macro is not defined, then @var{basic-align} is used. |
| |
| One use of this macro is to increase alignment of medium-size data to |
| make it all fit in fewer cache lines. |
| |
| If the value of this macro has a type, it should be an unsigned type. |
| @end defmac |
| |
| @deftypefn {Target Hook} HOST_WIDE_INT TARGET_VECTOR_ALIGNMENT (const_tree @var{type}) |
| This hook can be used to define the alignment for a vector of type |
| @var{type}, in order to comply with a platform ABI. The default is to |
| require natural alignment for vector types. The alignment returned by |
| this hook must be a power-of-two multiple of the default alignment of |
| the vector element type. |
| @end deftypefn |
| |
| @defmac STACK_SLOT_ALIGNMENT (@var{type}, @var{mode}, @var{basic-align}) |
| If defined, a C expression to compute the alignment for stack slot. |
| @var{type} is the data type, @var{mode} is the widest mode available, |
| and @var{basic-align} is the alignment that the slot would ordinarily |
| have. The value of this macro is used instead of that alignment to |
| align the slot. |
| |
| If this macro is not defined, then @var{basic-align} is used when |
| @var{type} is @code{NULL}. Otherwise, @code{LOCAL_ALIGNMENT} will |
| be used. |
| |
| This macro is to set alignment of stack slot to the maximum alignment |
| of all possible modes which the slot may have. |
| |
| If the value of this macro has a type, it should be an unsigned type. |
| @end defmac |
| |
| @defmac LOCAL_DECL_ALIGNMENT (@var{decl}) |
| If defined, a C expression to compute the alignment for a local |
| variable @var{decl}. |
| |
| If this macro is not defined, then |
| @code{LOCAL_ALIGNMENT (TREE_TYPE (@var{decl}), DECL_ALIGN (@var{decl}))} |
| is used. |
| |
| One use of this macro is to increase alignment of medium-size data to |
| make it all fit in fewer cache lines. |
| |
| If the value of this macro has a type, it should be an unsigned type. |
| @end defmac |
| |
| @defmac MINIMUM_ALIGNMENT (@var{exp}, @var{mode}, @var{align}) |
| If defined, a C expression to compute the minimum required alignment |
| for dynamic stack realignment purposes for @var{exp} (a type or decl), |
| @var{mode}, assuming normal alignment @var{align}. |
| |
| If this macro is not defined, then @var{align} will be used. |
| @end defmac |
| |
| @defmac EMPTY_FIELD_BOUNDARY |
| Alignment in bits to be given to a structure bit-field that follows an |
| empty field such as @code{int : 0;}. |
| |
| If @code{PCC_BITFIELD_TYPE_MATTERS} is true, it overrides this macro. |
| @end defmac |
| |
| @defmac STRUCTURE_SIZE_BOUNDARY |
| Number of bits which any structure or union's size must be a multiple of. |
| Each structure or union's size is rounded up to a multiple of this. |
| |
| If you do not define this macro, the default is the same as |
| @code{BITS_PER_UNIT}. |
| @end defmac |
| |
| @defmac STRICT_ALIGNMENT |
| Define this macro to be the value 1 if instructions will fail to work |
| if given data not on the nominal alignment. If instructions will merely |
| go slower in that case, define this macro as 0. |
| @end defmac |
| |
| @defmac PCC_BITFIELD_TYPE_MATTERS |
| Define this if you wish to imitate the way many other C compilers handle |
| alignment of bit-fields and the structures that contain them. |
| |
| The behavior is that the type written for a named bit-field (@code{int}, |
| @code{short}, or other integer type) imposes an alignment for the entire |
| structure, as if the structure really did contain an ordinary field of |
| that type. In addition, the bit-field is placed within the structure so |
| that it would fit within such a field, not crossing a boundary for it. |
| |
| Thus, on most machines, a named bit-field whose type is written as |
| @code{int} would not cross a four-byte boundary, and would force |
| four-byte alignment for the whole structure. (The alignment used may |
| not be four bytes; it is controlled by the other alignment parameters.) |
| |
| An unnamed bit-field will not affect the alignment of the containing |
| structure. |
| |
| If the macro is defined, its definition should be a C expression; |
| a nonzero value for the expression enables this behavior. |
| |
| Note that if this macro is not defined, or its value is zero, some |
| bit-fields may cross more than one alignment boundary. The compiler can |
| support such references if there are @samp{insv}, @samp{extv}, and |
| @samp{extzv} insns that can directly reference memory. |
| |
| The other known way of making bit-fields work is to define |
| @code{STRUCTURE_SIZE_BOUNDARY} as large as @code{BIGGEST_ALIGNMENT}. |
| Then every structure can be accessed with fullwords. |
| |
| Unless the machine has bit-field instructions or you define |
| @code{STRUCTURE_SIZE_BOUNDARY} that way, you must define |
| @code{PCC_BITFIELD_TYPE_MATTERS} to have a nonzero value. |
| |
| If your aim is to make GCC use the same conventions for laying out |
| bit-fields as are used by another compiler, here is how to investigate |
| what the other compiler does. Compile and run this program: |
| |
| @smallexample |
| struct foo1 |
| @{ |
| char x; |
| char :0; |
| char y; |
| @}; |
| |
| struct foo2 |
| @{ |
| char x; |
| int :0; |
| char y; |
| @}; |
| |
| main () |
| @{ |
| printf ("Size of foo1 is %d\n", |
| sizeof (struct foo1)); |
| printf ("Size of foo2 is %d\n", |
| sizeof (struct foo2)); |
| exit (0); |
| @} |
| @end smallexample |
| |
| If this prints 2 and 5, then the compiler's behavior is what you would |
| get from @code{PCC_BITFIELD_TYPE_MATTERS}. |
| @end defmac |
| |
| @defmac BITFIELD_NBYTES_LIMITED |
| Like @code{PCC_BITFIELD_TYPE_MATTERS} except that its effect is limited |
| to aligning a bit-field within the structure. |
| @end defmac |
| |
| @deftypefn {Target Hook} bool TARGET_ALIGN_ANON_BITFIELD (void) |
| When @code{PCC_BITFIELD_TYPE_MATTERS} is true this hook will determine |
| whether unnamed bitfields affect the alignment of the containing |
| structure. The hook should return true if the structure should inherit |
| the alignment requirements of an unnamed bitfield's type. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_NARROW_VOLATILE_BITFIELD (void) |
| This target hook should return @code{true} if accesses to volatile bitfields |
| should use the narrowest mode possible. It should return @code{false} if |
| these accesses should use the bitfield container type. |
| |
| The default is @code{false}. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_MEMBER_TYPE_FORCES_BLK (const_tree @var{field}, machine_mode @var{mode}) |
| Return true if a structure, union or array containing @var{field} should |
| be accessed using @code{BLKMODE}. |
| |
| If @var{field} is the only field in the structure, @var{mode} is its |
| mode, otherwise @var{mode} is VOIDmode. @var{mode} is provided in the |
| case where structures of one field would require the structure's mode to |
| retain the field's mode. |
| |
| Normally, this is not needed. |
| @end deftypefn |
| |
| @defmac ROUND_TYPE_ALIGN (@var{type}, @var{computed}, @var{specified}) |
| Define this macro as an expression for the alignment of a type (given |
| by @var{type} as a tree node) if the alignment computed in the usual |
| way is @var{computed} and the alignment explicitly specified was |
| @var{specified}. |
| |
| The default is to use @var{specified} if it is larger; otherwise, use |
| the smaller of @var{computed} and @code{BIGGEST_ALIGNMENT} |
| @end defmac |
| |
| @defmac MAX_FIXED_MODE_SIZE |
| An integer expression for the size in bits of the largest integer |
| machine mode that should actually be used. All integer machine modes of |
| this size or smaller can be used for structures and unions with the |
| appropriate sizes. If this macro is undefined, @code{GET_MODE_BITSIZE |
| (DImode)} is assumed. |
| @end defmac |
| |
| @defmac STACK_SAVEAREA_MODE (@var{save_level}) |
| If defined, an expression of type @code{machine_mode} that |
| specifies the mode of the save area operand of a |
| @code{save_stack_@var{level}} named pattern (@pxref{Standard Names}). |
| @var{save_level} is one of @code{SAVE_BLOCK}, @code{SAVE_FUNCTION}, or |
| @code{SAVE_NONLOCAL} and selects which of the three named patterns is |
| having its mode specified. |
| |
| You need not define this macro if it always returns @code{Pmode}. You |
| would most commonly define this macro if the |
| @code{save_stack_@var{level}} patterns need to support both a 32- and a |
| 64-bit mode. |
| @end defmac |
| |
| @defmac STACK_SIZE_MODE |
| If defined, an expression of type @code{machine_mode} that |
| specifies the mode of the size increment operand of an |
| @code{allocate_stack} named pattern (@pxref{Standard Names}). |
| |
| You need not define this macro if it always returns @code{word_mode}. |
| You would most commonly define this macro if the @code{allocate_stack} |
| pattern needs to support both a 32- and a 64-bit mode. |
| @end defmac |
| |
| @deftypefn {Target Hook} machine_mode TARGET_LIBGCC_CMP_RETURN_MODE (void) |
| This target hook should return the mode to be used for the return value |
| of compare instructions expanded to libgcc calls. If not defined |
| @code{word_mode} is returned which is the right choice for a majority of |
| targets. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} machine_mode TARGET_LIBGCC_SHIFT_COUNT_MODE (void) |
| This target hook should return the mode to be used for the shift count operand |
| of shift instructions expanded to libgcc calls. If not defined |
| @code{word_mode} is returned which is the right choice for a majority of |
| targets. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} machine_mode TARGET_UNWIND_WORD_MODE (void) |
| Return machine mode to be used for @code{_Unwind_Word} type. |
| The default is to use @code{word_mode}. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_MS_BITFIELD_LAYOUT_P (const_tree @var{record_type}) |
| This target hook returns @code{true} if bit-fields in the given |
| @var{record_type} are to be laid out following the rules of Microsoft |
| Visual C/C++, namely: (i) a bit-field won't share the same storage |
| unit with the previous bit-field if their underlying types have |
| different sizes, and the bit-field will be aligned to the highest |
| alignment of the underlying types of itself and of the previous |
| bit-field; (ii) a zero-sized bit-field will affect the alignment of |
| the whole enclosing structure, even if it is unnamed; except that |
| (iii) a zero-sized bit-field will be disregarded unless it follows |
| another bit-field of nonzero size. If this hook returns @code{true}, |
| other macros that control bit-field layout are ignored. |
| |
| When a bit-field is inserted into a packed record, the whole size |
| of the underlying type is used by one or more same-size adjacent |
| bit-fields (that is, if its long:3, 32 bits is used in the record, |
| and any additional adjacent long bit-fields are packed into the same |
| chunk of 32 bits. However, if the size changes, a new field of that |
| size is allocated). In an unpacked record, this is the same as using |
| alignment, but not equivalent when packing. |
| |
| If both MS bit-fields and @samp{__attribute__((packed))} are used, |
| the latter will take precedence. If @samp{__attribute__((packed))} is |
| used on a single field when MS bit-fields are in use, it will take |
| precedence for that field, but the alignment of the rest of the structure |
| may affect its placement. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_DECIMAL_FLOAT_SUPPORTED_P (void) |
| Returns true if the target supports decimal floating point. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_FIXED_POINT_SUPPORTED_P (void) |
| Returns true if the target supports fixed-point arithmetic. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} void TARGET_EXPAND_TO_RTL_HOOK (void) |
| This hook is called just before expansion into rtl, allowing the target |
| to perform additional initializations or analysis before the expansion. |
| For example, the rs6000 port uses it to allocate a scratch stack slot |
| for use in copying SDmode values between memory and floating point |
| registers whenever the function being expanded has any SDmode |
| usage. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} void TARGET_INSTANTIATE_DECLS (void) |
| This hook allows the backend to perform additional instantiations on rtl |
| that are not actually in any insns yet, but will be later. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} {const char *} TARGET_MANGLE_TYPE (const_tree @var{type}) |
| If your target defines any fundamental types, or any types your target |
| uses should be mangled differently from the default, define this hook |
| to return the appropriate encoding for these types as part of a C++ |
| mangled name. The @var{type} argument is the tree structure representing |
| the type to be mangled. The hook may be applied to trees which are |
| not target-specific fundamental types; it should return @code{NULL} |
| for all such types, as well as arguments it does not recognize. If the |
| return value is not @code{NULL}, it must point to a statically-allocated |
| string constant. |
| |
| Target-specific fundamental types might be new fundamental types or |
| qualified versions of ordinary fundamental types. Encode new |
| fundamental types as @samp{@w{u @var{n} @var{name}}}, where @var{name} |
| is the name used for the type in source code, and @var{n} is the |
| length of @var{name} in decimal. Encode qualified versions of |
| ordinary types as @samp{@w{U @var{n} @var{name} @var{code}}}, where |
| @var{name} is the name used for the type qualifier in source code, |
| @var{n} is the length of @var{name} as above, and @var{code} is the |
| code used to represent the unqualified version of this type. (See |
| @code{write_builtin_type} in @file{cp/mangle.c} for the list of |
| codes.) In both cases the spaces are for clarity; do not include any |
| spaces in your string. |
| |
| This hook is applied to types prior to typedef resolution. If the mangled |
| name for a particular type depends only on that type's main variant, you |
| can perform typedef resolution yourself using @code{TYPE_MAIN_VARIANT} |
| before mangling. |
| |
| The default version of this hook always returns @code{NULL}, which is |
| appropriate for a target that does not define any new fundamental |
| types. |
| @end deftypefn |
| |
| @node Type Layout |
| @section Layout of Source Language Data Types |
| |
| These macros define the sizes and other characteristics of the standard |
| basic data types used in programs being compiled. Unlike the macros in |
| the previous section, these apply to specific features of C and related |
| languages, rather than to fundamental aspects of storage layout. |
| |
| @defmac INT_TYPE_SIZE |
| A C expression for the size in bits of the type @code{int} on the |
| target machine. If you don't define this, the default is one word. |
| @end defmac |
| |
| @defmac SHORT_TYPE_SIZE |
| A C expression for the size in bits of the type @code{short} on the |
| target machine. If you don't define this, the default is half a word. |
| (If this would be less than one storage unit, it is rounded up to one |
| unit.) |
| @end defmac |
| |
| @defmac LONG_TYPE_SIZE |
| A C expression for the size in bits of the type @code{long} on the |
| target machine. If you don't define this, the default is one word. |
| @end defmac |
| |
| @defmac ADA_LONG_TYPE_SIZE |
| On some machines, the size used for the Ada equivalent of the type |
| @code{long} by a native Ada compiler differs from that used by C@. In |
| that situation, define this macro to be a C expression to be used for |
| the size of that type. If you don't define this, the default is the |
| value of @code{LONG_TYPE_SIZE}. |
| @end defmac |
| |
| @defmac LONG_LONG_TYPE_SIZE |
| A C expression for the size in bits of the type @code{long long} on the |
| target machine. If you don't define this, the default is two |
| words. If you want to support GNU Ada on your machine, the value of this |
| macro must be at least 64. |
| @end defmac |
| |
| @defmac CHAR_TYPE_SIZE |
| A C expression for the size in bits of the type @code{char} on the |
| target machine. If you don't define this, the default is |
| @code{BITS_PER_UNIT}. |
| @end defmac |
| |
| @defmac BOOL_TYPE_SIZE |
| A C expression for the size in bits of the C++ type @code{bool} and |
| C99 type @code{_Bool} on the target machine. If you don't define |
| this, and you probably shouldn't, the default is @code{CHAR_TYPE_SIZE}. |
| @end defmac |
| |
| @defmac FLOAT_TYPE_SIZE |
| A C expression for the size in bits of the type @code{float} on the |
| target machine. If you don't define this, the default is one word. |
| @end defmac |
| |
| @defmac DOUBLE_TYPE_SIZE |
| A C expression for the size in bits of the type @code{double} on the |
| target machine. If you don't define this, the default is two |
| words. |
| @end defmac |
| |
| @defmac LONG_DOUBLE_TYPE_SIZE |
| A C expression for the size in bits of the type @code{long double} on |
| the target machine. If you don't define this, the default is two |
| words. |
| @end defmac |
| |
| @defmac SHORT_FRACT_TYPE_SIZE |
| A C expression for the size in bits of the type @code{short _Fract} on |
| the target machine. If you don't define this, the default is |
| @code{BITS_PER_UNIT}. |
| @end defmac |
| |
| @defmac FRACT_TYPE_SIZE |
| A C expression for the size in bits of the type @code{_Fract} on |
| the target machine. If you don't define this, the default is |
| @code{BITS_PER_UNIT * 2}. |
| @end defmac |
| |
| @defmac LONG_FRACT_TYPE_SIZE |
| A C expression for the size in bits of the type @code{long _Fract} on |
| the target machine. If you don't define this, the default is |
| @code{BITS_PER_UNIT * 4}. |
| @end defmac |
| |
| @defmac LONG_LONG_FRACT_TYPE_SIZE |
| A C expression for the size in bits of the type @code{long long _Fract} on |
| the target machine. If you don't define this, the default is |
| @code{BITS_PER_UNIT * 8}. |
| @end defmac |
| |
| @defmac SHORT_ACCUM_TYPE_SIZE |
| A C expression for the size in bits of the type @code{short _Accum} on |
| the target machine. If you don't define this, the default is |
| @code{BITS_PER_UNIT * 2}. |
| @end defmac |
| |
| @defmac ACCUM_TYPE_SIZE |
| A C expression for the size in bits of the type @code{_Accum} on |
| the target machine. If you don't define this, the default is |
| @code{BITS_PER_UNIT * 4}. |
| @end defmac |
| |
| @defmac LONG_ACCUM_TYPE_SIZE |
| A C expression for the size in bits of the type @code{long _Accum} on |
| the target machine. If you don't define this, the default is |
| @code{BITS_PER_UNIT * 8}. |
| @end defmac |
| |
| @defmac LONG_LONG_ACCUM_TYPE_SIZE |
| A C expression for the size in bits of the type @code{long long _Accum} on |
| the target machine. If you don't define this, the default is |
| @code{BITS_PER_UNIT * 16}. |
| @end defmac |
| |
| @defmac LIBGCC2_GNU_PREFIX |
| This macro corresponds to the @code{TARGET_LIBFUNC_GNU_PREFIX} target |
| hook and should be defined if that hook is overriden to be true. It |
| causes function names in libgcc to be changed to use a @code{__gnu_} |
| prefix for their name rather than the default @code{__}. A port which |
| uses this macro should also arrange to use @file{t-gnu-prefix} in |
| the libgcc @file{config.host}. |
| @end defmac |
| |
| @defmac WIDEST_HARDWARE_FP_SIZE |
| A C expression for the size in bits of the widest floating-point format |
| supported by the hardware. If you define this macro, you must specify a |
| value less than or equal to the value of @code{LONG_DOUBLE_TYPE_SIZE}. |
| If you do not define this macro, the value of @code{LONG_DOUBLE_TYPE_SIZE} |
| is the default. |
| @end defmac |
| |
| @defmac DEFAULT_SIGNED_CHAR |
| An expression whose value is 1 or 0, according to whether the type |
| @code{char} should be signed or unsigned by default. The user can |
| always override this default with the options @option{-fsigned-char} |
| and @option{-funsigned-char}. |
| @end defmac |
| |
| @deftypefn {Target Hook} bool TARGET_DEFAULT_SHORT_ENUMS (void) |
| This target hook should return true if the compiler should give an |
| @code{enum} type only as many bytes as it takes to represent the range |
| of possible values of that type. It should return false if all |
| @code{enum} types should be allocated like @code{int}. |
| |
| The default is to return false. |
| @end deftypefn |
| |
| @defmac SIZE_TYPE |
| A C expression for a string describing the name of the data type to use |
| for size values. The typedef name @code{size_t} is defined using the |
| contents of the string. |
| |
| The string can contain more than one keyword. If so, separate them with |
| spaces, and write first any length keyword, then @code{unsigned} if |
| appropriate, and finally @code{int}. The string must exactly match one |
| of the data type names defined in the function |
| @code{c_common_nodes_and_builtins} in the file @file{c-family/c-common.c}. |
| You may not omit @code{int} or change the order---that would cause the |
| compiler to crash on startup. |
| |
| If you don't define this macro, the default is @code{"long unsigned |
| int"}. |
| @end defmac |
| |
| @defmac SIZETYPE |
| GCC defines internal types (@code{sizetype}, @code{ssizetype}, |
| @code{bitsizetype} and @code{sbitsizetype}) for expressions |
| dealing with size. This macro is a C expression for a string describing |
| the name of the data type from which the precision of @code{sizetype} |
| is extracted. |
| |
| The string has the same restrictions as @code{SIZE_TYPE} string. |
| |
| If you don't define this macro, the default is @code{SIZE_TYPE}. |
| @end defmac |
| |
| @defmac PTRDIFF_TYPE |
| A C expression for a string describing the name of the data type to use |
| for the result of subtracting two pointers. The typedef name |
| @code{ptrdiff_t} is defined using the contents of the string. See |
| @code{SIZE_TYPE} above for more information. |
| |
| If you don't define this macro, the default is @code{"long int"}. |
| @end defmac |
| |
| @defmac WCHAR_TYPE |
| A C expression for a string describing the name of the data type to use |
| for wide characters. The typedef name @code{wchar_t} is defined using |
| the contents of the string. See @code{SIZE_TYPE} above for more |
| information. |
| |
| If you don't define this macro, the default is @code{"int"}. |
| @end defmac |
| |
| @defmac WCHAR_TYPE_SIZE |
| A C expression for the size in bits of the data type for wide |
| characters. This is used in @code{cpp}, which cannot make use of |
| @code{WCHAR_TYPE}. |
| @end defmac |
| |
| @defmac WINT_TYPE |
| A C expression for a string describing the name of the data type to |
| use for wide characters passed to @code{printf} and returned from |
| @code{getwc}. The typedef name @code{wint_t} is defined using the |
| contents of the string. See @code{SIZE_TYPE} above for more |
| information. |
| |
| If you don't define this macro, the default is @code{"unsigned int"}. |
| @end defmac |
| |
| @defmac INTMAX_TYPE |
| A C expression for a string describing the name of the data type that |
| can represent any value of any standard or extended signed integer type. |
| The typedef name @code{intmax_t} is defined using the contents of the |
| string. See @code{SIZE_TYPE} above for more information. |
| |
| If you don't define this macro, the default is the first of |
| @code{"int"}, @code{"long int"}, or @code{"long long int"} that has as |
| much precision as @code{long long int}. |
| @end defmac |
| |
| @defmac UINTMAX_TYPE |
| A C expression for a string describing the name of the data type that |
| can represent any value of any standard or extended unsigned integer |
| type. The typedef name @code{uintmax_t} is defined using the contents |
| of the string. See @code{SIZE_TYPE} above for more information. |
| |
| If you don't define this macro, the default is the first of |
| @code{"unsigned int"}, @code{"long unsigned int"}, or @code{"long long |
| unsigned int"} that has as much precision as @code{long long unsigned |
| int}. |
| @end defmac |
| |
| @defmac SIG_ATOMIC_TYPE |
| @defmacx INT8_TYPE |
| @defmacx INT16_TYPE |
| @defmacx INT32_TYPE |
| @defmacx INT64_TYPE |
| @defmacx UINT8_TYPE |
| @defmacx UINT16_TYPE |
| @defmacx UINT32_TYPE |
| @defmacx UINT64_TYPE |
| @defmacx INT_LEAST8_TYPE |
| @defmacx INT_LEAST16_TYPE |
| @defmacx INT_LEAST32_TYPE |
| @defmacx INT_LEAST64_TYPE |
| @defmacx UINT_LEAST8_TYPE |
| @defmacx UINT_LEAST16_TYPE |
| @defmacx UINT_LEAST32_TYPE |
| @defmacx UINT_LEAST64_TYPE |
| @defmacx INT_FAST8_TYPE |
| @defmacx INT_FAST16_TYPE |
| @defmacx INT_FAST32_TYPE |
| @defmacx INT_FAST64_TYPE |
| @defmacx UINT_FAST8_TYPE |
| @defmacx UINT_FAST16_TYPE |
| @defmacx UINT_FAST32_TYPE |
| @defmacx UINT_FAST64_TYPE |
| @defmacx INTPTR_TYPE |
| @defmacx UINTPTR_TYPE |
| C expressions for the standard types @code{sig_atomic_t}, |
| @code{int8_t}, @code{int16_t}, @code{int32_t}, @code{int64_t}, |
| @code{uint8_t}, @code{uint16_t}, @code{uint32_t}, @code{uint64_t}, |
| @code{int_least8_t}, @code{int_least16_t}, @code{int_least32_t}, |
| @code{int_least64_t}, @code{uint_least8_t}, @code{uint_least16_t}, |
| @code{uint_least32_t}, @code{uint_least64_t}, @code{int_fast8_t}, |
| @code{int_fast16_t}, @code{int_fast32_t}, @code{int_fast64_t}, |
| @code{uint_fast8_t}, @code{uint_fast16_t}, @code{uint_fast32_t}, |
| @code{uint_fast64_t}, @code{intptr_t}, and @code{uintptr_t}. See |
| @code{SIZE_TYPE} above for more information. |
| |
| If any of these macros evaluates to a null pointer, the corresponding |
| type is not supported; if GCC is configured to provide |
| @code{<stdint.h>} in such a case, the header provided may not conform |
| to C99, depending on the type in question. The defaults for all of |
| these macros are null pointers. |
| @end defmac |
| |
| @defmac TARGET_PTRMEMFUNC_VBIT_LOCATION |
| The C++ compiler represents a pointer-to-member-function with a struct |
| that looks like: |
| |
| @smallexample |
| struct @{ |
| union @{ |
| void (*fn)(); |
| ptrdiff_t vtable_index; |
| @}; |
| ptrdiff_t delta; |
| @}; |
| @end smallexample |
| |
| @noindent |
| The C++ compiler must use one bit to indicate whether the function that |
| will be called through a pointer-to-member-function is virtual. |
| Normally, we assume that the low-order bit of a function pointer must |
| always be zero. Then, by ensuring that the vtable_index is odd, we can |
| distinguish which variant of the union is in use. But, on some |
| platforms function pointers can be odd, and so this doesn't work. In |
| that case, we use the low-order bit of the @code{delta} field, and shift |
| the remainder of the @code{delta} field to the left. |
| |
| GCC will automatically make the right selection about where to store |
| this bit using the @code{FUNCTION_BOUNDARY} setting for your platform. |
| However, some platforms such as ARM/Thumb have @code{FUNCTION_BOUNDARY} |
| set such that functions always start at even addresses, but the lowest |
| bit of pointers to functions indicate whether the function at that |
| address is in ARM or Thumb mode. If this is the case of your |
| architecture, you should define this macro to |
| @code{ptrmemfunc_vbit_in_delta}. |
| |
| In general, you should not have to define this macro. On architectures |
| in which function addresses are always even, according to |
| @code{FUNCTION_BOUNDARY}, GCC will automatically define this macro to |
| @code{ptrmemfunc_vbit_in_pfn}. |
| @end defmac |
| |
| @defmac TARGET_VTABLE_USES_DESCRIPTORS |
| Normally, the C++ compiler uses function pointers in vtables. This |
| macro allows the target to change to use ``function descriptors'' |
| instead. Function descriptors are found on targets for whom a |
| function pointer is actually a small data structure. Normally the |
| data structure consists of the actual code address plus a data |
| pointer to which the function's data is relative. |
| |
| If vtables are used, the value of this macro should be the number |
| of words that the function descriptor occupies. |
| @end defmac |
| |
| @defmac TARGET_VTABLE_ENTRY_ALIGN |
| By default, the vtable entries are void pointers, the so the alignment |
| is the same as pointer alignment. The value of this macro specifies |
| the alignment of the vtable entry in bits. It should be defined only |
| when special alignment is necessary. */ |
| @end defmac |
| |
| @defmac TARGET_VTABLE_DATA_ENTRY_DISTANCE |
| There are a few non-descriptor entries in the vtable at offsets below |
| zero. If these entries must be padded (say, to preserve the alignment |
| specified by @code{TARGET_VTABLE_ENTRY_ALIGN}), set this to the number |
| of words in each data entry. |
| @end defmac |
| |
| @node Registers |
| @section Register Usage |
| @cindex register usage |
| |
| This section explains how to describe what registers the target machine |
| has, and how (in general) they can be used. |
| |
| The description of which registers a specific instruction can use is |
| done with register classes; see @ref{Register Classes}. For information |
| on using registers to access a stack frame, see @ref{Frame Registers}. |
| For passing values in registers, see @ref{Register Arguments}. |
| For returning values in registers, see @ref{Scalar Return}. |
| |
| @menu |
| * Register Basics:: Number and kinds of registers. |
| * Allocation Order:: Order in which registers are allocated. |
| * Values in Registers:: What kinds of values each reg can hold. |
| * Leaf Functions:: Renumbering registers for leaf functions. |
| * Stack Registers:: Handling a register stack such as 80387. |
| @end menu |
| |
| @node Register Basics |
| @subsection Basic Characteristics of Registers |
| |
| @c prevent bad page break with this line |
| Registers have various characteristics. |
| |
| @defmac FIRST_PSEUDO_REGISTER |
| Number of hardware registers known to the compiler. They receive |
| numbers 0 through @code{FIRST_PSEUDO_REGISTER-1}; thus, the first |
| pseudo register's number really is assigned the number |
| @code{FIRST_PSEUDO_REGISTER}. |
| @end defmac |
| |
| @defmac FIXED_REGISTERS |
| @cindex fixed register |
| An initializer that says which registers are used for fixed purposes |
| all throughout the compiled code and are therefore not available for |
| general allocation. These would include the stack pointer, the frame |
| pointer (except on machines where that can be used as a general |
| register when no frame pointer is needed), the program counter on |
| machines where that is considered one of the addressable registers, |
| and any other numbered register with a standard use. |
| |
| This information is expressed as a sequence of numbers, separated by |
| commas and surrounded by braces. The @var{n}th number is 1 if |
| register @var{n} is fixed, 0 otherwise. |
| |
| The table initialized from this macro, and the table initialized by |
| the following one, may be overridden at run time either automatically, |
| by the actions of the macro @code{CONDITIONAL_REGISTER_USAGE}, or by |
| the user with the command options @option{-ffixed-@var{reg}}, |
| @option{-fcall-used-@var{reg}} and @option{-fcall-saved-@var{reg}}. |
| @end defmac |
| |
| @defmac CALL_USED_REGISTERS |
| @cindex call-used register |
| @cindex call-clobbered register |
| @cindex call-saved register |
| Like @code{FIXED_REGISTERS} but has 1 for each register that is |
| clobbered (in general) by function calls as well as for fixed |
| registers. This macro therefore identifies the registers that are not |
| available for general allocation of values that must live across |
| function calls. |
| |
| If a register has 0 in @code{CALL_USED_REGISTERS}, the compiler |
| automatically saves it on function entry and restores it on function |
| exit, if the register is used within the function. |
| @end defmac |
| |
| @defmac CALL_REALLY_USED_REGISTERS |
| @cindex call-used register |
| @cindex call-clobbered register |
| @cindex call-saved register |
| Like @code{CALL_USED_REGISTERS} except this macro doesn't require |
| that the entire set of @code{FIXED_REGISTERS} be included. |
| (@code{CALL_USED_REGISTERS} must be a superset of @code{FIXED_REGISTERS}). |
| This macro is optional. If not specified, it defaults to the value |
| of @code{CALL_USED_REGISTERS}. |
| @end defmac |
| |
| @defmac HARD_REGNO_CALL_PART_CLOBBERED (@var{regno}, @var{mode}) |
| @cindex call-used register |
| @cindex call-clobbered register |
| @cindex call-saved register |
| A C expression that is nonzero if it is not permissible to store a |
| value of mode @var{mode} in hard register number @var{regno} across a |
| call without some part of it being clobbered. For most machines this |
| macro need not be defined. It is only required for machines that do not |
| preserve the entire contents of a register across a call. |
| @end defmac |
| |
| @findex fixed_regs |
| @findex call_used_regs |
| @findex global_regs |
| @findex reg_names |
| @findex reg_class_contents |
| @deftypefn {Target Hook} void TARGET_CONDITIONAL_REGISTER_USAGE (void) |
| This hook may conditionally modify five variables |
| @code{fixed_regs}, @code{call_used_regs}, @code{global_regs}, |
| @code{reg_names}, and @code{reg_class_contents}, to take into account |
| any dependence of these register sets on target flags. The first three |
| of these are of type @code{char []} (interpreted as boolean vectors). |
| @code{global_regs} is a @code{const char *[]}, and |
| @code{reg_class_contents} is a @code{HARD_REG_SET}. Before the macro is |
| called, @code{fixed_regs}, @code{call_used_regs}, |
| @code{reg_class_contents}, and @code{reg_names} have been initialized |
| from @code{FIXED_REGISTERS}, @code{CALL_USED_REGISTERS}, |
| @code{REG_CLASS_CONTENTS}, and @code{REGISTER_NAMES}, respectively. |
| @code{global_regs} has been cleared, and any @option{-ffixed-@var{reg}}, |
| @option{-fcall-used-@var{reg}} and @option{-fcall-saved-@var{reg}} |
| command options have been applied. |
| |
| @cindex disabling certain registers |
| @cindex controlling register usage |
| If the usage of an entire class of registers depends on the target |
| flags, you may indicate this to GCC by using this macro to modify |
| @code{fixed_regs} and @code{call_used_regs} to 1 for each of the |
| registers in the classes which should not be used by GCC@. Also make |
| @code{define_register_constraint}s return @code{NO_REGS} for constraints |
| that shouldn't be used. |
| |
| (However, if this class is not included in @code{GENERAL_REGS} and all |
| of the insn patterns whose constraints permit this class are |
| controlled by target switches, then GCC will automatically avoid using |
| these registers when the target switches are opposed to them.) |
| @end deftypefn |
| |
| @defmac INCOMING_REGNO (@var{out}) |
| Define this macro if the target machine has register windows. This C |
| expression returns the register number as seen by the called function |
| corresponding to the register number @var{out} as seen by the calling |
| function. Return @var{out} if register number @var{out} is not an |
| outbound register. |
| @end defmac |
| |
| @defmac OUTGOING_REGNO (@var{in}) |
| Define this macro if the target machine has register windows. This C |
| expression returns the register number as seen by the calling function |
| corresponding to the register number @var{in} as seen by the called |
| function. Return @var{in} if register number @var{in} is not an inbound |
| register. |
| @end defmac |
| |
| @defmac LOCAL_REGNO (@var{regno}) |
| Define this macro if the target machine has register windows. This C |
| expression returns true if the register is call-saved but is in the |
| register window. Unlike most call-saved registers, such registers |
| need not be explicitly restored on function exit or during non-local |
| gotos. |
| @end defmac |
| |
| @defmac PC_REGNUM |
| If the program counter has a register number, define this as that |
| register number. Otherwise, do not define it. |
| @end defmac |
| |
| @node Allocation Order |
| @subsection Order of Allocation of Registers |
| @cindex order of register allocation |
| @cindex register allocation order |
| |
| @c prevent bad page break with this line |
| Registers are allocated in order. |
| |
| @defmac REG_ALLOC_ORDER |
| If defined, an initializer for a vector of integers, containing the |
| numbers of hard registers in the order in which GCC should prefer |
| to use them (from most preferred to least). |
| |
| If this macro is not defined, registers are used lowest numbered first |
| (all else being equal). |
| |
| One use of this macro is on machines where the highest numbered |
| registers must always be saved and the save-multiple-registers |
| instruction supports only sequences of consecutive registers. On such |
| machines, define @code{REG_ALLOC_ORDER} to be an initializer that lists |
| the highest numbered allocable register first. |
| @end defmac |
| |
| @defmac ADJUST_REG_ALLOC_ORDER |
| A C statement (sans semicolon) to choose the order in which to allocate |
| hard registers for pseudo-registers local to a basic block. |
| |
| Store the desired register order in the array @code{reg_alloc_order}. |
| Element 0 should be the register to allocate first; element 1, the next |
| register; and so on. |
| |
| The macro body should not assume anything about the contents of |
| @code{reg_alloc_order} before execution of the macro. |
| |
| On most machines, it is not necessary to define this macro. |
| @end defmac |
| |
| @defmac HONOR_REG_ALLOC_ORDER |
| Normally, IRA tries to estimate the costs for saving a register in the |
| prologue and restoring it in the epilogue. This discourages it from |
| using call-saved registers. If a machine wants to ensure that IRA |
| allocates registers in the order given by REG_ALLOC_ORDER even if some |
| call-saved registers appear earlier than call-used ones, then define this |
| macro as a C expression to nonzero. Default is 0. |
| @end defmac |
| |
| @defmac IRA_HARD_REGNO_ADD_COST_MULTIPLIER (@var{regno}) |
| In some case register allocation order is not enough for the |
| Integrated Register Allocator (@acronym{IRA}) to generate a good code. |
| If this macro is defined, it should return a floating point value |
| based on @var{regno}. The cost of using @var{regno} for a pseudo will |
| be increased by approximately the pseudo's usage frequency times the |
| value returned by this macro. Not defining this macro is equivalent |
| to having it always return @code{0.0}. |
| |
| On most machines, it is not necessary to define this macro. |
| @end defmac |
| |
| @node Values in Registers |
| @subsection How Values Fit in Registers |
| |
| This section discusses the macros that describe which kinds of values |
| (specifically, which machine modes) each register can hold, and how many |
| consecutive registers are needed for a given mode. |
| |
| @defmac HARD_REGNO_NREGS (@var{regno}, @var{mode}) |
| A C expression for the number of consecutive hard registers, starting |
| at register number @var{regno}, required to hold a value of mode |
| @var{mode}. This macro must never return zero, even if a register |
| cannot hold the requested mode - indicate that with HARD_REGNO_MODE_OK |
| and/or CANNOT_CHANGE_MODE_CLASS instead. |
| |
| On a machine where all registers are exactly one word, a suitable |
| definition of this macro is |
| |
| @smallexample |
| #define HARD_REGNO_NREGS(REGNO, MODE) \ |
| ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \ |
| / UNITS_PER_WORD) |
| @end smallexample |
| @end defmac |
| |
| @defmac HARD_REGNO_NREGS_HAS_PADDING (@var{regno}, @var{mode}) |
| A C expression that is nonzero if a value of mode @var{mode}, stored |
| in memory, ends with padding that causes it to take up more space than |
| in registers starting at register number @var{regno} (as determined by |
| multiplying GCC's notion of the size of the register when containing |
| this mode by the number of registers returned by |
| @code{HARD_REGNO_NREGS}). By default this is zero. |
| |
| For example, if a floating-point value is stored in three 32-bit |
| registers but takes up 128 bits in memory, then this would be |
| nonzero. |
| |
| This macros only needs to be defined if there are cases where |
| @code{subreg_get_info} |
| would otherwise wrongly determine that a @code{subreg} can be |
| represented by an offset to the register number, when in fact such a |
| @code{subreg} would contain some of the padding not stored in |
| registers and so not be representable. |
| @end defmac |
| |
| @defmac HARD_REGNO_NREGS_WITH_PADDING (@var{regno}, @var{mode}) |
| For values of @var{regno} and @var{mode} for which |
| @code{HARD_REGNO_NREGS_HAS_PADDING} returns nonzero, a C expression |
| returning the greater number of registers required to hold the value |
| including any padding. In the example above, the value would be four. |
| @end defmac |
| |
| @defmac REGMODE_NATURAL_SIZE (@var{mode}) |
| Define this macro if the natural size of registers that hold values |
| of mode @var{mode} is not the word size. It is a C expression that |
| should give the natural size in bytes for the specified mode. It is |
| used by the register allocator to try to optimize its results. This |
| happens for example on SPARC 64-bit where the natural size of |
| floating-point registers is still 32-bit. |
| @end defmac |
| |
| @defmac HARD_REGNO_MODE_OK (@var{regno}, @var{mode}) |
| A C expression that is nonzero if it is permissible to store a value |
| of mode @var{mode} in hard register number @var{regno} (or in several |
| registers starting with that one). For a machine where all registers |
| are equivalent, a suitable definition is |
| |
| @smallexample |
| #define HARD_REGNO_MODE_OK(REGNO, MODE) 1 |
| @end smallexample |
| |
| You need not include code to check for the numbers of fixed registers, |
| because the allocation mechanism considers them to be always occupied. |
| |
| @cindex register pairs |
| On some machines, double-precision values must be kept in even/odd |
| register pairs. You can implement that by defining this macro to reject |
| odd register numbers for such modes. |
| |
| The minimum requirement for a mode to be OK in a register is that the |
| @samp{mov@var{mode}} instruction pattern support moves between the |
| register and other hard register in the same class and that moving a |
| value into the register and back out not alter it. |
| |
| Since the same instruction used to move @code{word_mode} will work for |
| all narrower integer modes, it is not necessary on any machine for |
| @code{HARD_REGNO_MODE_OK} to distinguish between these modes, provided |
| you define patterns @samp{movhi}, etc., to take advantage of this. This |
| is useful because of the interaction between @code{HARD_REGNO_MODE_OK} |
| and @code{MODES_TIEABLE_P}; it is very desirable for all integer modes |
| to be tieable. |
| |
| Many machines have special registers for floating point arithmetic. |
| Often people assume that floating point machine modes are allowed only |
| in floating point registers. This is not true. Any registers that |
| can hold integers can safely @emph{hold} a floating point machine |
| mode, whether or not floating arithmetic can be done on it in those |
| registers. Integer move instructions can be used to move the values. |
| |
| On some machines, though, the converse is true: fixed-point machine |
| modes may not go in floating registers. This is true if the floating |
| registers normalize any value stored in them, because storing a |
| non-floating value there would garble it. In this case, |
| @code{HARD_REGNO_MODE_OK} should reject fixed-point machine modes in |
| floating registers. But if the floating registers do not automatically |
| normalize, if you can store any bit pattern in one and retrieve it |
| unchanged without a trap, then any machine mode may go in a floating |
| register, so you can define this macro to say so. |
| |
| The primary significance of special floating registers is rather that |
| they are the registers acceptable in floating point arithmetic |
| instructions. However, this is of no concern to |
| @code{HARD_REGNO_MODE_OK}. You handle it by writing the proper |
| constraints for those instructions. |
| |
| On some machines, the floating registers are especially slow to access, |
| so that it is better to store a value in a stack frame than in such a |
| register if floating point arithmetic is not being done. As long as the |
| floating registers are not in class @code{GENERAL_REGS}, they will not |
| be used unless some pattern's constraint asks for one. |
| @end defmac |
| |
| @defmac HARD_REGNO_RENAME_OK (@var{from}, @var{to}) |
| A C expression that is nonzero if it is OK to rename a hard register |
| @var{from} to another hard register @var{to}. |
| |
| One common use of this macro is to prevent renaming of a register to |
| another register that is not saved by a prologue in an interrupt |
| handler. |
| |
| The default is always nonzero. |
| @end defmac |
| |
| @defmac MODES_TIEABLE_P (@var{mode1}, @var{mode2}) |
| A C expression that is nonzero if a value of mode |
| @var{mode1} is accessible in mode @var{mode2} without copying. |
| |
| If @code{HARD_REGNO_MODE_OK (@var{r}, @var{mode1})} and |
| @code{HARD_REGNO_MODE_OK (@var{r}, @var{mode2})} are always the same for |
| any @var{r}, then @code{MODES_TIEABLE_P (@var{mode1}, @var{mode2})} |
| should be nonzero. If they differ for any @var{r}, you should define |
| this macro to return zero unless some other mechanism ensures the |
| accessibility of the value in a narrower mode. |
| |
| You should define this macro to return nonzero in as many cases as |
| possible since doing so will allow GCC to perform better register |
| allocation. |
| @end defmac |
| |
| @deftypefn {Target Hook} bool TARGET_HARD_REGNO_SCRATCH_OK (unsigned int @var{regno}) |
| This target hook should return @code{true} if it is OK to use a hard register |
| @var{regno} as scratch reg in peephole2. |
| |
| One common use of this macro is to prevent using of a register that |
| is not saved by a prologue in an interrupt handler. |
| |
| The default version of this hook always returns @code{true}. |
| @end deftypefn |
| |
| @defmac AVOID_CCMODE_COPIES |
| Define this macro if the compiler should avoid copies to/from @code{CCmode} |
| registers. You should only define this macro if support for copying to/from |
| @code{CCmode} is incomplete. |
| @end defmac |
| |
| @node Leaf Functions |
| @subsection Handling Leaf Functions |
| |
| @cindex leaf functions |
| @cindex functions, leaf |
| On some machines, a leaf function (i.e., one which makes no calls) can run |
| more efficiently if it does not make its own register window. Often this |
| means it is required to receive its arguments in the registers where they |
| are passed by the caller, instead of the registers where they would |
| normally arrive. |
| |
| The special treatment for leaf functions generally applies only when |
| other conditions are met; for example, often they may use only those |
| registers for its own variables and temporaries. We use the term ``leaf |
| function'' to mean a function that is suitable for this special |
| handling, so that functions with no calls are not necessarily ``leaf |
| functions''. |
| |
| GCC assigns register numbers before it knows whether the function is |
| suitable for leaf function treatment. So it needs to renumber the |
| registers in order to output a leaf function. The following macros |
| accomplish this. |
| |
| @defmac LEAF_REGISTERS |
| Name of a char vector, indexed by hard register number, which |
| contains 1 for a register that is allowable in a candidate for leaf |
| function treatment. |
| |
| If leaf function treatment involves renumbering the registers, then the |
| registers marked here should be the ones before renumbering---those that |
| GCC would ordinarily allocate. The registers which will actually be |
| used in the assembler code, after renumbering, should not be marked with 1 |
| in this vector. |
| |
| Define this macro only if the target machine offers a way to optimize |
| the treatment of leaf functions. |
| @end defmac |
| |
| @defmac LEAF_REG_REMAP (@var{regno}) |
| A C expression whose value is the register number to which @var{regno} |
| should be renumbered, when a function is treated as a leaf function. |
| |
| If @var{regno} is a register number which should not appear in a leaf |
| function before renumbering, then the expression should yield @minus{}1, which |
| will cause the compiler to abort. |
| |
| Define this macro only if the target machine offers a way to optimize the |
| treatment of leaf functions, and registers need to be renumbered to do |
| this. |
| @end defmac |
| |
| @findex current_function_is_leaf |
| @findex current_function_uses_only_leaf_regs |
| @code{TARGET_ASM_FUNCTION_PROLOGUE} and |
| @code{TARGET_ASM_FUNCTION_EPILOGUE} must usually treat leaf functions |
| specially. They can test the C variable @code{current_function_is_leaf} |
| which is nonzero for leaf functions. @code{current_function_is_leaf} is |
| set prior to local register allocation and is valid for the remaining |
| compiler passes. They can also test the C variable |
| @code{current_function_uses_only_leaf_regs} which is nonzero for leaf |
| functions which only use leaf registers. |
| @code{current_function_uses_only_leaf_regs} is valid after all passes |
| that modify the instructions have been run and is only useful if |
| @code{LEAF_REGISTERS} is defined. |
| @c changed this to fix overfull. ALSO: why the "it" at the beginning |
| @c of the next paragraph?! --mew 2feb93 |
| |
| @node Stack Registers |
| @subsection Registers That Form a Stack |
| |
| There are special features to handle computers where some of the |
| ``registers'' form a stack. Stack registers are normally written by |
| pushing onto the stack, and are numbered relative to the top of the |
| stack. |
| |
| Currently, GCC can only handle one group of stack-like registers, and |
| they must be consecutively numbered. Furthermore, the existing |
| support for stack-like registers is specific to the 80387 floating |
| point coprocessor. If you have a new architecture that uses |
| stack-like registers, you will need to do substantial work on |
| @file{reg-stack.c} and write your machine description to cooperate |
| with it, as well as defining these macros. |
| |
| @defmac STACK_REGS |
| Define this if the machine has any stack-like registers. |
| @end defmac |
| |
| @defmac STACK_REG_COVER_CLASS |
| This is a cover class containing the stack registers. Define this if |
| the machine has any stack-like registers. |
| @end defmac |
| |
| @defmac FIRST_STACK_REG |
| The number of the first stack-like register. This one is the top |
| of the stack. |
| @end defmac |
| |
| @defmac LAST_STACK_REG |
| The number of the last stack-like register. This one is the bottom of |
| the stack. |
| @end defmac |
| |
| @node Register Classes |
| @section Register Classes |
| @cindex register class definitions |
| @cindex class definitions, register |
| |
| On many machines, the numbered registers are not all equivalent. |
| For example, certain registers may not be allowed for indexed addressing; |
| certain registers may not be allowed in some instructions. These machine |
| restrictions are described to the compiler using @dfn{register classes}. |
| |
| You define a number of register classes, giving each one a name and saying |
| which of the registers belong to it. Then you can specify register classes |
| that are allowed as operands to particular instruction patterns. |
| |
| @findex ALL_REGS |
| @findex NO_REGS |
| In general, each register will belong to several classes. In fact, one |
| class must be named @code{ALL_REGS} and contain all the registers. Another |
| class must be named @code{NO_REGS} and contain no registers. Often the |
| union of two classes will be another class; however, this is not required. |
| |
| @findex GENERAL_REGS |
| One of the classes must be named @code{GENERAL_REGS}. There is nothing |
| terribly special about the name, but the operand constraint letters |
| @samp{r} and @samp{g} specify this class. If @code{GENERAL_REGS} is |
| the same as @code{ALL_REGS}, just define it as a macro which expands |
| to @code{ALL_REGS}. |
| |
| Order the classes so that if class @var{x} is contained in class @var{y} |
| then @var{x} has a lower class number than @var{y}. |
| |
| The way classes other than @code{GENERAL_REGS} are specified in operand |
| constraints is through machine-dependent operand constraint letters. |
| You can define such letters to correspond to various classes, then use |
| them in operand constraints. |
| |
| You must define the narrowest register classes for allocatable |
| registers, so that each class either has no subclasses, or that for |
| some mode, the move cost between registers within the class is |
| cheaper than moving a register in the class to or from memory |
| (@pxref{Costs}). |
| |
| You should define a class for the union of two classes whenever some |
| instruction allows both classes. For example, if an instruction allows |
| either a floating point (coprocessor) register or a general register for a |
| certain operand, you should define a class @code{FLOAT_OR_GENERAL_REGS} |
| which includes both of them. Otherwise you will get suboptimal code, |
| or even internal compiler errors when reload cannot find a register in the |
| class computed via @code{reg_class_subunion}. |
| |
| You must also specify certain redundant information about the register |
| classes: for each class, which classes contain it and which ones are |
| contained in it; for each pair of classes, the largest class contained |
| in their union. |
| |
| When a value occupying several consecutive registers is expected in a |
| certain class, all the registers used must belong to that class. |
| Therefore, register classes cannot be used to enforce a requirement for |
| a register pair to start with an even-numbered register. The way to |
| specify this requirement is with @code{HARD_REGNO_MODE_OK}. |
| |
| Register classes used for input-operands of bitwise-and or shift |
| instructions have a special requirement: each such class must have, for |
| each fixed-point machine mode, a subclass whose registers can transfer that |
| mode to or from memory. For example, on some machines, the operations for |
| single-byte values (@code{QImode}) are limited to certain registers. When |
| this is so, each register class that is used in a bitwise-and or shift |
| instruction must have a subclass consisting of registers from which |
| single-byte values can be loaded or stored. This is so that |
| @code{PREFERRED_RELOAD_CLASS} can always have a possible value to return. |
| |
| @deftp {Data type} {enum reg_class} |
| An enumerated type that must be defined with all the register class names |
| as enumerated values. @code{NO_REGS} must be first. @code{ALL_REGS} |
| must be the last register class, followed by one more enumerated value, |
| @code{LIM_REG_CLASSES}, which is not a register class but rather |
| tells how many classes there are. |
| |
| Each register class has a number, which is the value of casting |
| the class name to type @code{int}. The number serves as an index |
| in many of the tables described below. |
| @end deftp |
| |
| @defmac N_REG_CLASSES |
| The number of distinct register classes, defined as follows: |
| |
| @smallexample |
| #define N_REG_CLASSES (int) LIM_REG_CLASSES |
| @end smallexample |
| @end defmac |
| |
| @defmac REG_CLASS_NAMES |
| An initializer containing the names of the register classes as C string |
| constants. These names are used in writing some of the debugging dumps. |
| @end defmac |
| |
| @defmac REG_CLASS_CONTENTS |
| An initializer containing the contents of the register classes, as integers |
| which are bit masks. The @var{n}th integer specifies the contents of class |
| @var{n}. The way the integer @var{mask} is interpreted is that |
| register @var{r} is in the class if @code{@var{mask} & (1 << @var{r})} is 1. |
| |
| When the machine has more than 32 registers, an integer does not suffice. |
| Then the integers are replaced by sub-initializers, braced groupings containing |
| several integers. Each sub-initializer must be suitable as an initializer |
| for the type @code{HARD_REG_SET} which is defined in @file{hard-reg-set.h}. |
| In this situation, the first integer in each sub-initializer corresponds to |
| registers 0 through 31, the second integer to registers 32 through 63, and |
| so on. |
| @end defmac |
| |
| @defmac REGNO_REG_CLASS (@var{regno}) |
| A C expression whose value is a register class containing hard register |
| @var{regno}. In general there is more than one such class; choose a class |
| which is @dfn{minimal}, meaning that no smaller class also contains the |
| register. |
| @end defmac |
| |
| @defmac BASE_REG_CLASS |
| A macro whose definition is the name of the class to which a valid |
| base register must belong. A base register is one used in an address |
| which is the register value plus a displacement. |
| @end defmac |
| |
| @defmac MODE_BASE_REG_CLASS (@var{mode}) |
| This is a variation of the @code{BASE_REG_CLASS} macro which allows |
| the selection of a base register in a mode dependent manner. If |
| @var{mode} is VOIDmode then it should return the same value as |
| @code{BASE_REG_CLASS}. |
| @end defmac |
| |
| @defmac MODE_BASE_REG_REG_CLASS (@var{mode}) |
| A C expression whose value is the register class to which a valid |
| base register must belong in order to be used in a base plus index |
| register address. You should define this macro if base plus index |
| addresses have different requirements than other base register uses. |
| @end defmac |
| |
| @defmac MODE_CODE_BASE_REG_CLASS (@var{mode}, @var{address_space}, @var{outer_code}, @var{index_code}) |
| A C expression whose value is the register class to which a valid |
| base register for a memory reference in mode @var{mode} to address |
| space @var{address_space} must belong. @var{outer_code} and @var{index_code} |
| define the context in which the base register occurs. @var{outer_code} is |
| the code of the immediately enclosing expression (@code{MEM} for the top level |
| of an address, @code{ADDRESS} for something that occurs in an |
| @code{address_operand}). @var{index_code} is the code of the corresponding |
| index expression if @var{outer_code} is @code{PLUS}; @code{SCRATCH} otherwise. |
| @end defmac |
| |
| @defmac INDEX_REG_CLASS |
| A macro whose definition is the name of the class to which a valid |
| index register must belong. An index register is one used in an |
| address where its value is either multiplied by a scale factor or |
| added to another register (as well as added to a displacement). |
| @end defmac |
| |
| @defmac REGNO_OK_FOR_BASE_P (@var{num}) |
| A C expression which is nonzero if register number @var{num} is |
| suitable for use as a base register in operand addresses. |
| @end defmac |
| |
| @defmac REGNO_MODE_OK_FOR_BASE_P (@var{num}, @var{mode}) |
| A C expression that is just like @code{REGNO_OK_FOR_BASE_P}, except that |
| that expression may examine the mode of the memory reference in |
| @var{mode}. You should define this macro if the mode of the memory |
| reference affects whether a register may be used as a base register. If |
| you define this macro, the compiler will use it instead of |
| @code{REGNO_OK_FOR_BASE_P}. The mode may be @code{VOIDmode} for |
| addresses that appear outside a @code{MEM}, i.e., as an |
| @code{address_operand}. |
| @end defmac |
| |
| @defmac REGNO_MODE_OK_FOR_REG_BASE_P (@var{num}, @var{mode}) |
| A C expression which is nonzero if register number @var{num} is suitable for |
| use as a base register in base plus index operand addresses, accessing |
| memory in mode @var{mode}. It may be either a suitable hard register or a |
| pseudo register that has been allocated such a hard register. You should |
| define this macro if base plus index addresses have different requirements |
| than other base register uses. |
| |
| Use of this macro is deprecated; please use the more general |
| @code{REGNO_MODE_CODE_OK_FOR_BASE_P}. |
| @end defmac |
| |
| @defmac REGNO_MODE_CODE_OK_FOR_BASE_P (@var{num}, @var{mode}, @var{address_space}, @var{outer_code}, @var{index_code}) |
| A C expression which is nonzero if register number @var{num} is |
| suitable for use as a base register in operand addresses, accessing |
| memory in mode @var{mode} in address space @var{address_space}. |
| This is similar to @code{REGNO_MODE_OK_FOR_BASE_P}, except |
| that that expression may examine the context in which the register |
| appears in the memory reference. @var{outer_code} is the code of the |
| immediately enclosing expression (@code{MEM} if at the top level of the |
| address, @code{ADDRESS} for something that occurs in an |
| @code{address_operand}). @var{index_code} is the code of the |
| corresponding index expression if @var{outer_code} is @code{PLUS}; |
| @code{SCRATCH} otherwise. The mode may be @code{VOIDmode} for addresses |
| that appear outside a @code{MEM}, i.e., as an @code{address_operand}. |
| @end defmac |
| |
| @defmac REGNO_OK_FOR_INDEX_P (@var{num}) |
| A C expression which is nonzero if register number @var{num} is |
| suitable for use as an index register in operand addresses. It may be |
| either a suitable hard register or a pseudo register that has been |
| allocated such a hard register. |
| |
| The difference between an index register and a base register is that |
| the index register may be scaled. If an address involves the sum of |
| two registers, neither one of them scaled, then either one may be |
| labeled the ``base'' and the other the ``index''; but whichever |
| labeling is used must fit the machine's constraints of which registers |
| may serve in each capacity. The compiler will try both labelings, |
| looking for one that is valid, and will reload one or both registers |
| only if neither labeling works. |
| @end defmac |
| |
| @deftypefn {Target Hook} reg_class_t TARGET_PREFERRED_RENAME_CLASS (reg_class_t @var{rclass}) |
| A target hook that places additional preference on the register class to use when it is necessary to rename a register in class @var{rclass} to another class, or perhaps @var{NO_REGS}, if no preferred register class is found or hook @code{preferred_rename_class} is not implemented. Sometimes returning a more restrictive class makes better code. For example, on ARM, thumb-2 instructions using @code{LO_REGS} may be smaller than instructions using @code{GENERIC_REGS}. By returning @code{LO_REGS} from @code{preferred_rename_class}, code size can be reduced. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} reg_class_t TARGET_PREFERRED_RELOAD_CLASS (rtx @var{x}, reg_class_t @var{rclass}) |
| A target hook that places additional restrictions on the register class |
| to use when it is necessary to copy value @var{x} into a register in class |
| @var{rclass}. The value is a register class; perhaps @var{rclass}, or perhaps |
| another, smaller class. |
| |
| The default version of this hook always returns value of @code{rclass} argument. |
| |
| Sometimes returning a more restrictive class makes better code. For |
| example, on the 68000, when @var{x} is an integer constant that is in range |
| for a @samp{moveq} instruction, the value of this macro is always |
| @code{DATA_REGS} as long as @var{rclass} includes the data registers. |
| Requiring a data register guarantees that a @samp{moveq} will be used. |
| |
| One case where @code{TARGET_PREFERRED_RELOAD_CLASS} must not return |
| @var{rclass} is if @var{x} is a legitimate constant which cannot be |
| loaded into some register class. By returning @code{NO_REGS} you can |
| force @var{x} into a memory location. For example, rs6000 can load |
| immediate values into general-purpose registers, but does not have an |
| instruction for loading an immediate value into a floating-point |
| register, so @code{TARGET_PREFERRED_RELOAD_CLASS} returns @code{NO_REGS} when |
| @var{x} is a floating-point constant. If the constant can't be loaded |
| into any kind of register, code generation will be better if |
| @code{TARGET_LEGITIMATE_CONSTANT_P} makes the constant illegitimate instead |
| of using @code{TARGET_PREFERRED_RELOAD_CLASS}. |
| |
| If an insn has pseudos in it after register allocation, reload will go |
| through the alternatives and call repeatedly @code{TARGET_PREFERRED_RELOAD_CLASS} |
| to find the best one. Returning @code{NO_REGS}, in this case, makes |
| reload add a @code{!} in front of the constraint: the x86 back-end uses |
| this feature to discourage usage of 387 registers when math is done in |
| the SSE registers (and vice versa). |
| @end deftypefn |
| |
| @defmac PREFERRED_RELOAD_CLASS (@var{x}, @var{class}) |
| A C expression that places additional restrictions on the register class |
| to use when it is necessary to copy value @var{x} into a register in class |
| @var{class}. The value is a register class; perhaps @var{class}, or perhaps |
| another, smaller class. On many machines, the following definition is |
| safe: |
| |
| @smallexample |
| #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS |
| @end smallexample |
| |
| Sometimes returning a more restrictive class makes better code. For |
| example, on the 68000, when @var{x} is an integer constant that is in range |
| for a @samp{moveq} instruction, the value of this macro is always |
| @code{DATA_REGS} as long as @var{class} includes the data registers. |
| Requiring a data register guarantees that a @samp{moveq} will be used. |
| |
| One case where @code{PREFERRED_RELOAD_CLASS} must not return |
| @var{class} is if @var{x} is a legitimate constant which cannot be |
| loaded into some register class. By returning @code{NO_REGS} you can |
| force @var{x} into a memory location. For example, rs6000 can load |
| immediate values into general-purpose registers, but does not have an |
| instruction for loading an immediate value into a floating-point |
| register, so @code{PREFERRED_RELOAD_CLASS} returns @code{NO_REGS} when |
| @var{x} is a floating-point constant. If the constant cannot be loaded |
| into any kind of register, code generation will be better if |
| @code{TARGET_LEGITIMATE_CONSTANT_P} makes the constant illegitimate instead |
| of using @code{TARGET_PREFERRED_RELOAD_CLASS}. |
| |
| If an insn has pseudos in it after register allocation, reload will go |
| through the alternatives and call repeatedly @code{PREFERRED_RELOAD_CLASS} |
| to find the best one. Returning @code{NO_REGS}, in this case, makes |
| reload add a @code{!} in front of the constraint: the x86 back-end uses |
| this feature to discourage usage of 387 registers when math is done in |
| the SSE registers (and vice versa). |
| @end defmac |
| |
| @deftypefn {Target Hook} reg_class_t TARGET_PREFERRED_OUTPUT_RELOAD_CLASS (rtx @var{x}, reg_class_t @var{rclass}) |
| Like @code{TARGET_PREFERRED_RELOAD_CLASS}, but for output reloads instead of |
| input reloads. |
| |
| The default version of this hook always returns value of @code{rclass} |
| argument. |
| |
| You can also use @code{TARGET_PREFERRED_OUTPUT_RELOAD_CLASS} to discourage |
| reload from using some alternatives, like @code{TARGET_PREFERRED_RELOAD_CLASS}. |
| @end deftypefn |
| |
| @defmac LIMIT_RELOAD_CLASS (@var{mode}, @var{class}) |
| A C expression that places additional restrictions on the register class |
| to use when it is necessary to be able to hold a value of mode |
| @var{mode} in a reload register for which class @var{class} would |
| ordinarily be used. |
| |
| Unlike @code{PREFERRED_RELOAD_CLASS}, this macro should be used when |
| there are certain modes that simply cannot go in certain reload classes. |
| |
| The value is a register class; perhaps @var{class}, or perhaps another, |
| smaller class. |
| |
| Don't define this macro unless the target machine has limitations which |
| require the macro to do something nontrivial. |
| @end defmac |
| |
| @deftypefn {Target Hook} reg_class_t TARGET_SECONDARY_RELOAD (bool @var{in_p}, rtx @var{x}, reg_class_t @var{reload_class}, machine_mode @var{reload_mode}, secondary_reload_info *@var{sri}) |
| Many machines have some registers that cannot be copied directly to or |
| from memory or even from other types of registers. An example is the |
| @samp{MQ} register, which on most machines, can only be copied to or |
| from general registers, but not memory. Below, we shall be using the |
| term 'intermediate register' when a move operation cannot be performed |
| directly, but has to be done by copying the source into the intermediate |
| register first, and then copying the intermediate register to the |
| destination. An intermediate register always has the same mode as |
| source and destination. Since it holds the actual value being copied, |
| reload might apply optimizations to re-use an intermediate register |
| and eliding the copy from the source when it can determine that the |
| intermediate register still holds the required value. |
| |
| Another kind of secondary reload is required on some machines which |
| allow copying all registers to and from memory, but require a scratch |
| register for stores to some memory locations (e.g., those with symbolic |
| address on the RT, and those with certain symbolic address on the SPARC |
| when compiling PIC)@. Scratch registers need not have the same mode |
| as the value being copied, and usually hold a different value than |
| that being copied. Special patterns in the md file are needed to |
| describe how the copy is performed with the help of the scratch register; |
| these patterns also describe the number, register class(es) and mode(s) |
| of the scratch register(s). |
| |
| In some cases, both an intermediate and a scratch register are required. |
| |
| For input reloads, this target hook is called with nonzero @var{in_p}, |
| and @var{x} is an rtx that needs to be copied to a register of class |
| @var{reload_class} in @var{reload_mode}. For output reloads, this target |
| hook is called with zero @var{in_p}, and a register of class @var{reload_class} |
| needs to be copied to rtx @var{x} in @var{reload_mode}. |
| |
| If copying a register of @var{reload_class} from/to @var{x} requires |
| an intermediate register, the hook @code{secondary_reload} should |
| return the register class required for this intermediate register. |
| If no intermediate register is required, it should return NO_REGS. |
| If more than one intermediate register is required, describe the one |
| that is closest in the copy chain to the reload register. |
| |
| If scratch registers are needed, you also have to describe how to |
| perform the copy from/to the reload register to/from this |
| closest intermediate register. Or if no intermediate register is |
| required, but still a scratch register is needed, describe the |
| copy from/to the reload register to/from the reload operand @var{x}. |
| |
| You do this by setting @code{sri->icode} to the instruction code of a pattern |
| in the md file which performs the move. Operands 0 and 1 are the output |
| and input of this copy, respectively. Operands from operand 2 onward are |
| for scratch operands. These scratch operands must have a mode, and a |
| single-register-class |
| @c [later: or memory] |
| output constraint. |
| |
| When an intermediate register is used, the @code{secondary_reload} |
| hook will be called again to determine how to copy the intermediate |
| register to/from the reload operand @var{x}, so your hook must also |
| have code to handle the register class of the intermediate operand. |
| |
| @c [For later: maybe we'll allow multi-alternative reload patterns - |
| @c the port maintainer could name a mov<mode> pattern that has clobbers - |
| @c and match the constraints of input and output to determine the required |
| @c alternative. A restriction would be that constraints used to match |
| @c against reloads registers would have to be written as register class |
| @c constraints, or we need a new target macro / hook that tells us if an |
| @c arbitrary constraint can match an unknown register of a given class. |
| @c Such a macro / hook would also be useful in other places.] |
| |
| |
| @var{x} might be a pseudo-register or a @code{subreg} of a |
| pseudo-register, which could either be in a hard register or in memory. |
| Use @code{true_regnum} to find out; it will return @minus{}1 if the pseudo is |
| in memory and the hard register number if it is in a register. |
| |
| Scratch operands in memory (constraint @code{"=m"} / @code{"=&m"}) are |
| currently not supported. For the time being, you will have to continue |
| to use @code{SECONDARY_MEMORY_NEEDED} for that purpose. |
| |
| @code{copy_cost} also uses this target hook to find out how values are |
| copied. If you want it to include some extra cost for the need to allocate |
| (a) scratch register(s), set @code{sri->extra_cost} to the additional cost. |
| Or if two dependent moves are supposed to have a lower cost than the sum |
| of the individual moves due to expected fortuitous scheduling and/or special |
| forwarding logic, you can set @code{sri->extra_cost} to a negative amount. |
| @end deftypefn |
| |
| @defmac SECONDARY_RELOAD_CLASS (@var{class}, @var{mode}, @var{x}) |
| @defmacx SECONDARY_INPUT_RELOAD_CLASS (@var{class}, @var{mode}, @var{x}) |
| @defmacx SECONDARY_OUTPUT_RELOAD_CLASS (@var{class}, @var{mode}, @var{x}) |
| These macros are obsolete, new ports should use the target hook |
| @code{TARGET_SECONDARY_RELOAD} instead. |
| |
| These are obsolete macros, replaced by the @code{TARGET_SECONDARY_RELOAD} |
| target hook. Older ports still define these macros to indicate to the |
| reload phase that it may |
| need to allocate at least one register for a reload in addition to the |
| register to contain the data. Specifically, if copying @var{x} to a |
| register @var{class} in @var{mode} requires an intermediate register, |
| you were supposed to define @code{SECONDARY_INPUT_RELOAD_CLASS} to return the |
| largest register class all of whose registers can be used as |
| intermediate registers or scratch registers. |
| |
| If copying a register @var{class} in @var{mode} to @var{x} requires an |
| intermediate or scratch register, @code{SECONDARY_OUTPUT_RELOAD_CLASS} |
| was supposed to be defined be defined to return the largest register |
| class required. If the |
| requirements for input and output reloads were the same, the macro |
| @code{SECONDARY_RELOAD_CLASS} should have been used instead of defining both |
| macros identically. |
| |
| The values returned by these macros are often @code{GENERAL_REGS}. |
| Return @code{NO_REGS} if no spare register is needed; i.e., if @var{x} |
| can be directly copied to or from a register of @var{class} in |
| @var{mode} without requiring a scratch register. Do not define this |
| macro if it would always return @code{NO_REGS}. |
| |
| If a scratch register is required (either with or without an |
| intermediate register), you were supposed to define patterns for |
| @samp{reload_in@var{m}} or @samp{reload_out@var{m}}, as required |
| (@pxref{Standard Names}. These patterns, which were normally |
| implemented with a @code{define_expand}, should be similar to the |
| @samp{mov@var{m}} patterns, except that operand 2 is the scratch |
| register. |
| |
| These patterns need constraints for the reload register and scratch |
| register that |
| contain a single register class. If the original reload register (whose |
| class is @var{class}) can meet the constraint given in the pattern, the |
| value returned by these macros is used for the class of the scratch |
| register. Otherwise, two additional reload registers are required. |
| Their classes are obtained from the constraints in the insn pattern. |
| |
| @var{x} might be a pseudo-register or a @code{subreg} of a |
| pseudo-register, which could either be in a hard register or in memory. |
| Use @code{true_regnum} to find out; it will return @minus{}1 if the pseudo is |
| in memory and the hard register number if it is in a register. |
| |
| These macros should not be used in the case where a particular class of |
| registers can only be copied to memory and not to another class of |
| registers. In that case, secondary reload registers are not needed and |
| would not be helpful. Instead, a stack location must be used to perform |
| the copy and the @code{mov@var{m}} pattern should use memory as an |
| intermediate storage. This case often occurs between floating-point and |
| general registers. |
| @end defmac |
| |
| @defmac SECONDARY_MEMORY_NEEDED (@var{class1}, @var{class2}, @var{m}) |
| Certain machines have the property that some registers cannot be copied |
| to some other registers without using memory. Define this macro on |
| those machines to be a C expression that is nonzero if objects of mode |
| @var{m} in registers of @var{class1} can only be copied to registers of |
| class @var{class2} by storing a register of @var{class1} into memory |
| and loading that memory location into a register of @var{class2}. |
| |
| Do not define this macro if its value would always be zero. |
| @end defmac |
| |
| @defmac SECONDARY_MEMORY_NEEDED_RTX (@var{mode}) |
| Normally when @code{SECONDARY_MEMORY_NEEDED} is defined, the compiler |
| allocates a stack slot for a memory location needed for register copies. |
| If this macro is defined, the compiler instead uses the memory location |
| defined by this macro. |
| |
| Do not define this macro if you do not define |
| @code{SECONDARY_MEMORY_NEEDED}. |
| @end defmac |
| |
| @defmac SECONDARY_MEMORY_NEEDED_MODE (@var{mode}) |
| When the compiler needs a secondary memory location to copy between two |
| registers of mode @var{mode}, it normally allocates sufficient memory to |
| hold a quantity of @code{BITS_PER_WORD} bits and performs the store and |
| load operations in a mode that many bits wide and whose class is the |
| same as that of @var{mode}. |
| |
| This is right thing to do on most machines because it ensures that all |
| bits of the register are copied and prevents accesses to the registers |
| in a narrower mode, which some machines prohibit for floating-point |
| registers. |
| |
| However, this default behavior is not correct on some machines, such as |
| the DEC Alpha, that store short integers in floating-point registers |
| differently than in integer registers. On those machines, the default |
| widening will not work correctly and you must define this macro to |
| suppress that widening in some cases. See the file @file{alpha.h} for |
| details. |
| |
| Do not define this macro if you do not define |
| @code{SECONDARY_MEMORY_NEEDED} or if widening @var{mode} to a mode that |
| is @code{BITS_PER_WORD} bits wide is correct for your machine. |
| @end defmac |
| |
| @deftypefn {Target Hook} bool TARGET_CLASS_LIKELY_SPILLED_P (reg_class_t @var{rclass}) |
| A target hook which returns @code{true} if pseudos that have been assigned |
| to registers of class @var{rclass} would likely be spilled because |
| registers of @var{rclass} are needed for spill registers. |
| |
| The default version of this target hook returns @code{true} if @var{rclass} |
| has exactly one register and @code{false} otherwise. On most machines, this |
| default should be used. For generally register-starved machines, such as |
| i386, or machines with right register constraints, such as SH, this hook |
| can be used to avoid excessive spilling. |
| |
| This hook is also used by some of the global intra-procedural code |
| transformations to throtle code motion, to avoid increasing register |
| pressure. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} {unsigned char} TARGET_CLASS_MAX_NREGS (reg_class_t @var{rclass}, machine_mode @var{mode}) |
| A target hook returns the maximum number of consecutive registers |
| of class @var{rclass} needed to hold a value of mode @var{mode}. |
| |
| This is closely related to the macro @code{HARD_REGNO_NREGS}. In fact, |
| the value returned by @code{TARGET_CLASS_MAX_NREGS (@var{rclass}, |
| @var{mode})} target hook should be the maximum value of |
| @code{HARD_REGNO_NREGS (@var{regno}, @var{mode})} for all @var{regno} |
| values in the class @var{rclass}. |
| |
| This target hook helps control the handling of multiple-word values |
| in the reload pass. |
| |
| The default version of this target hook returns the size of @var{mode} |
| in words. |
| @end deftypefn |
| |
| @defmac CLASS_MAX_NREGS (@var{class}, @var{mode}) |
| A C expression for the maximum number of consecutive registers |
| of class @var{class} needed to hold a value of mode @var{mode}. |
| |
| This is closely related to the macro @code{HARD_REGNO_NREGS}. In fact, |
| the value of the macro @code{CLASS_MAX_NREGS (@var{class}, @var{mode})} |
| should be the maximum value of @code{HARD_REGNO_NREGS (@var{regno}, |
| @var{mode})} for all @var{regno} values in the class @var{class}. |
| |
| This macro helps control the handling of multiple-word values |
| in the reload pass. |
| @end defmac |
| |
| @defmac CANNOT_CHANGE_MODE_CLASS (@var{from}, @var{to}, @var{class}) |
| If defined, a C expression that returns nonzero for a @var{class} for which |
| a change from mode @var{from} to mode @var{to} is invalid. |
| |
| For example, loading 32-bit integer or floating-point objects into |
| floating-point registers on Alpha extends them to 64 bits. |
| Therefore loading a 64-bit object and then storing it as a 32-bit object |
| does not store the low-order 32 bits, as would be the case for a normal |
| register. Therefore, @file{alpha.h} defines @code{CANNOT_CHANGE_MODE_CLASS} |
| as below: |
| |
| @smallexample |
| #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \ |
| (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \ |
| ? reg_classes_intersect_p (FLOAT_REGS, (CLASS)) : 0) |
| @end smallexample |
| |
| Even if storing from a register in mode @var{to} would be valid, |
| if both @var{from} and @code{raw_reg_mode} for @var{class} are wider |
| than @code{word_mode}, then we must prevent @var{to} narrowing the |
| mode. This happens when the middle-end assumes that it can load |
| or store pieces of an @var{N}-word pseudo, and that the pseudo will |
| eventually be allocated to @var{N} @code{word_mode} hard registers. |
| Failure to prevent this kind of mode change will result in the |
| entire @code{raw_reg_mode} being modified instead of the partial |
| value that the middle-end intended. |
| |
| @end defmac |
| |
| @deftypefn {Target Hook} reg_class_t TARGET_IRA_CHANGE_PSEUDO_ALLOCNO_CLASS (int, @var{reg_class_t}, @var{reg_class_t}) |
| A target hook which can change allocno class for given pseudo from |
| allocno and best class calculated by IRA. |
| |
| The default version of this target hook always returns given class. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_LRA_P (void) |
| A target hook which returns true if we use LRA instead of reload pass. The default version of this target hook returns true. New ports should use LRA, and existing ports are encouraged to convert. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} int TARGET_REGISTER_PRIORITY (int) |
| A target hook which returns the register priority number to which the register @var{hard_regno} belongs to. The bigger the number, the more preferable the hard register usage (when all other conditions are the same). This hook can be used to prefer some hard register over others in LRA. For example, some x86-64 register usage needs additional prefix which makes instructions longer. The hook can return lower priority number for such registers make them less favorable and as result making the generated code smaller. The default version of this target hook returns always zero. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_REGISTER_USAGE_LEVELING_P (void) |
| A target hook which returns true if we need register usage leveling. That means if a few hard registers are equally good for the assignment, we choose the least used hard register. The register usage leveling may be profitable for some targets. Don't use the usage leveling for targets with conditional execution or targets with big register files as it hurts if-conversion and cross-jumping optimizations. The default version of this target hook returns always false. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_DIFFERENT_ADDR_DISPLACEMENT_P (void) |
| A target hook which returns true if an address with the same structure can have different maximal legitimate displacement. For example, the displacement can depend on memory mode or on operand combinations in the insn. The default version of this target hook returns always false. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_CANNOT_SUBSTITUTE_MEM_EQUIV_P (rtx @var{subst}) |
| A target hook which returns @code{true} if @var{subst} can't |
| substitute safely pseudos with equivalent memory values during |
| register allocation. |
| The default version of this target hook returns @code{false}. |
| On most machines, this default should be used. For generally |
| machines with non orthogonal register usage for addressing, such |
| as SH, this hook can be used to avoid excessive spilling. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_LEGITIMIZE_ADDRESS_DISPLACEMENT (rtx *@var{disp}, rtx *@var{offset}, machine_mode @var{mode}) |
| A target hook which returns @code{true} if *@var{disp} is |
| legitimezed to valid address displacement with subtracting *@var{offset} |
| at memory mode @var{mode}. |
| The default version of this target hook returns @code{false}. |
| This hook will benefit machines with limited base plus displacement |
| addressing. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} reg_class_t TARGET_SPILL_CLASS (reg_class_t, @var{machine_mode}) |
| This hook defines a class of registers which could be used for spilling pseudos of the given mode and class, or @code{NO_REGS} if only memory should be used. Not defining this hook is equivalent to returning @code{NO_REGS} for all inputs. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_ADDITIONAL_ALLOCNO_CLASS_P (reg_class_t) |
| This hook should return @code{true} if given class of registers should be an allocno class in any way. Usually RA uses only one register class from all classes containing the same register set. In some complicated cases, you need to have two or more such classes as allocno ones for RA correct work. Not defining this hook is equivalent to returning @code{false} for all inputs. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} machine_mode TARGET_CSTORE_MODE (enum insn_code @var{icode}) |
| This hook defines the machine mode to use for the boolean result of conditional store patterns. The ICODE argument is the instruction code for the cstore being performed. Not definiting this hook is the same as accepting the mode encoded into operand 0 of the cstore expander patterns. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} int TARGET_COMPUTE_PRESSURE_CLASSES (enum reg_class *@var{pressure_classes}) |
| A target hook which lets a backend compute the set of pressure classes to be used by those optimization passes which take register pressure into account, as opposed to letting IRA compute them. It returns the number of register classes stored in the array @var{pressure_classes}. |
| @end deftypefn |
| |
| @node Stack and Calling |
| @section Stack Layout and Calling Conventions |
| @cindex calling conventions |
| |
| @c prevent bad page break with this line |
| This describes the stack layout and calling conventions. |
| |
| @menu |
| * Frame Layout:: |
| * Exception Handling:: |
| * Stack Checking:: |
| * Frame Registers:: |
| * Elimination:: |
| * Stack Arguments:: |
| * Register Arguments:: |
| * Scalar Return:: |
| * Aggregate Return:: |
| * Caller Saves:: |
| * Function Entry:: |
| * Profiling:: |
| * Tail Calls:: |
| * Shrink-wrapping separate components:: |
| * Stack Smashing Protection:: |
| * Miscellaneous Register Hooks:: |
| @end menu |
| |
| @node Frame Layout |
| @subsection Basic Stack Layout |
| @cindex stack frame layout |
| @cindex frame layout |
| |
| @c prevent bad page break with this line |
| Here is the basic stack layout. |
| |
| @defmac STACK_GROWS_DOWNWARD |
| Define this macro to be true if pushing a word onto the stack moves the stack |
| pointer to a smaller address, and false otherwise. |
| @end defmac |
| |
| @defmac STACK_PUSH_CODE |
| This macro defines the operation used when something is pushed |
| on the stack. In RTL, a push operation will be |
| @code{(set (mem (STACK_PUSH_CODE (reg sp))) @dots{})} |
| |
| The choices are @code{PRE_DEC}, @code{POST_DEC}, @code{PRE_INC}, |
| and @code{POST_INC}. Which of these is correct depends on |
| the stack direction and on whether the stack pointer points |
| to the last item on the stack or whether it points to the |
| space for the next item on the stack. |
| |
| The default is @code{PRE_DEC} when @code{STACK_GROWS_DOWNWARD} is |
| true, which is almost always right, and @code{PRE_INC} otherwise, |
| which is often wrong. |
| @end defmac |
| |
| @defmac FRAME_GROWS_DOWNWARD |
| Define this macro to nonzero value if the addresses of local variable slots |
| are at negative offsets from the frame pointer. |
| @end defmac |
| |
| @defmac ARGS_GROW_DOWNWARD |
| Define this macro if successive arguments to a function occupy decreasing |
| addresses on the stack. |
| @end defmac |
| |
| @defmac STARTING_FRAME_OFFSET |
| Offset from the frame pointer to the first local variable slot to be allocated. |
| |
| If @code{FRAME_GROWS_DOWNWARD}, find the next slot's offset by |
| subtracting the first slot's length from @code{STARTING_FRAME_OFFSET}. |
| Otherwise, it is found by adding the length of the first slot to the |
| value @code{STARTING_FRAME_OFFSET}. |
| @c i'm not sure if the above is still correct.. had to change it to get |
| @c rid of an overfull. --mew 2feb93 |
| @end defmac |
| |
| @defmac STACK_ALIGNMENT_NEEDED |
| Define to zero to disable final alignment of the stack during reload. |
| The nonzero default for this macro is suitable for most ports. |
| |
| On ports where @code{STARTING_FRAME_OFFSET} is nonzero or where there |
| is a register save block following the local block that doesn't require |
| alignment to @code{STACK_BOUNDARY}, it may be beneficial to disable |
| stack alignment and do it in the backend. |
| @end defmac |
| |
| @defmac STACK_POINTER_OFFSET |
| Offset from the stack pointer register to the first location at which |
| outgoing arguments are placed. If not specified, the default value of |
| zero is used. This is the proper value for most machines. |
| |
| If @code{ARGS_GROW_DOWNWARD}, this is the offset to the location above |
| the first location at which outgoing arguments are placed. |
| @end defmac |
| |
| @defmac FIRST_PARM_OFFSET (@var{fundecl}) |
| Offset from the argument pointer register to the first argument's |
| address. On some machines it may depend on the data type of the |
| function. |
| |
| If @code{ARGS_GROW_DOWNWARD}, this is the offset to the location above |
| the first argument's address. |
| @end defmac |
| |
| @defmac STACK_DYNAMIC_OFFSET (@var{fundecl}) |
| Offset from the stack pointer register to an item dynamically allocated |
| on the stack, e.g., by @code{alloca}. |
| |
| The default value for this macro is @code{STACK_POINTER_OFFSET} plus the |
| length of the outgoing arguments. The default is correct for most |
| machines. See @file{function.c} for details. |
| @end defmac |
| |
| @defmac INITIAL_FRAME_ADDRESS_RTX |
| A C expression whose value is RTL representing the address of the initial |
| stack frame. This address is passed to @code{RETURN_ADDR_RTX} and |
| @code{DYNAMIC_CHAIN_ADDRESS}. If you don't define this macro, a reasonable |
| default value will be used. Define this macro in order to make frame pointer |
| elimination work in the presence of @code{__builtin_frame_address (count)} and |
| @code{__builtin_return_address (count)} for @code{count} not equal to zero. |
| @end defmac |
| |
| @defmac DYNAMIC_CHAIN_ADDRESS (@var{frameaddr}) |
| A C expression whose value is RTL representing the address in a stack |
| frame where the pointer to the caller's frame is stored. Assume that |
| @var{frameaddr} is an RTL expression for the address of the stack frame |
| itself. |
| |
| If you don't define this macro, the default is to return the value |
| of @var{frameaddr}---that is, the stack frame address is also the |
| address of the stack word that points to the previous frame. |
| @end defmac |
| |
| @defmac SETUP_FRAME_ADDRESSES |
| A C expression that produces the machine-specific code to |
| setup the stack so that arbitrary frames can be accessed. For example, |
| on the SPARC, we must flush all of the register windows to the stack |
| before we can access arbitrary stack frames. You will seldom need to |
| define this macro. The default is to do nothing. |
| @end defmac |
| |
| @deftypefn {Target Hook} rtx TARGET_BUILTIN_SETJMP_FRAME_VALUE (void) |
| This target hook should return an rtx that is used to store |
| the address of the current frame into the built in @code{setjmp} buffer. |
| The default value, @code{virtual_stack_vars_rtx}, is correct for most |
| machines. One reason you may need to define this target hook is if |
| @code{hard_frame_pointer_rtx} is the appropriate value on your machine. |
| @end deftypefn |
| |
| @defmac FRAME_ADDR_RTX (@var{frameaddr}) |
| A C expression whose value is RTL representing the value of the frame |
| address for the current frame. @var{frameaddr} is the frame pointer |
| of the current frame. This is used for __builtin_frame_address. |
| You need only define this macro if the frame address is not the same |
| as the frame pointer. Most machines do not need to define it. |
| @end defmac |
| |
| @defmac RETURN_ADDR_RTX (@var{count}, @var{frameaddr}) |
| A C expression whose value is RTL representing the value of the return |
| address for the frame @var{count} steps up from the current frame, after |
| the prologue. @var{frameaddr} is the frame pointer of the @var{count} |
| frame, or the frame pointer of the @var{count} @minus{} 1 frame if |
| @code{RETURN_ADDR_IN_PREVIOUS_FRAME} is nonzero. |
| |
| The value of the expression must always be the correct address when |
| @var{count} is zero, but may be @code{NULL_RTX} if there is no way to |
| determine the return address of other frames. |
| @end defmac |
| |
| @defmac RETURN_ADDR_IN_PREVIOUS_FRAME |
| Define this macro to nonzero value if the return address of a particular |
| stack frame is accessed from the frame pointer of the previous stack |
| frame. The zero default for this macro is suitable for most ports. |
| @end defmac |
| |
| @defmac INCOMING_RETURN_ADDR_RTX |
| A C expression whose value is RTL representing the location of the |
| incoming return address at the beginning of any function, before the |
| prologue. This RTL is either a @code{REG}, indicating that the return |
| value is saved in @samp{REG}, or a @code{MEM} representing a location in |
| the stack. |
| |
| You only need to define this macro if you want to support call frame |
| debugging information like that provided by DWARF 2. |
| |
| If this RTL is a @code{REG}, you should also define |
| @code{DWARF_FRAME_RETURN_COLUMN} to @code{DWARF_FRAME_REGNUM (REGNO)}. |
| @end defmac |
| |
| @defmac DWARF_ALT_FRAME_RETURN_COLUMN |
| A C expression whose value is an integer giving a DWARF 2 column |
| number that may be used as an alternative return column. The column |
| must not correspond to any gcc hard register (that is, it must not |
| be in the range of @code{DWARF_FRAME_REGNUM}). |
| |
| This macro can be useful if @code{DWARF_FRAME_RETURN_COLUMN} is set to a |
| general register, but an alternative column needs to be used for signal |
| frames. Some targets have also used different frame return columns |
| over time. |
| @end defmac |
| |
| @defmac DWARF_ZERO_REG |
| A C expression whose value is an integer giving a DWARF 2 register |
| number that is considered to always have the value zero. This should |
| only be defined if the target has an architected zero register, and |
| someone decided it was a good idea to use that register number to |
| terminate the stack backtrace. New ports should avoid this. |
| @end defmac |
| |
| @deftypefn {Target Hook} void TARGET_DWARF_HANDLE_FRAME_UNSPEC (const char *@var{label}, rtx @var{pattern}, int @var{index}) |
| This target hook allows the backend to emit frame-related insns that |
| contain UNSPECs or UNSPEC_VOLATILEs. The DWARF 2 call frame debugging |
| info engine will invoke it on insns of the form |
| @smallexample |
| (set (reg) (unspec [@dots{}] UNSPEC_INDEX)) |
| @end smallexample |
| and |
| @smallexample |
| (set (reg) (unspec_volatile [@dots{}] UNSPECV_INDEX)). |
| @end smallexample |
| to let the backend emit the call frame instructions. @var{label} is |
| the CFI label attached to the insn, @var{pattern} is the pattern of |
| the insn and @var{index} is @code{UNSPEC_INDEX} or @code{UNSPECV_INDEX}. |
| @end deftypefn |
| |
| @defmac INCOMING_FRAME_SP_OFFSET |
| A C expression whose value is an integer giving the offset, in bytes, |
| from the value of the stack pointer register to the top of the stack |
| frame at the beginning of any function, before the prologue. The top of |
| the frame is defined to be the value of the stack pointer in the |
| previous frame, just before the call instruction. |
| |
| You only need to define this macro if you want to support call frame |
| debugging information like that provided by DWARF 2. |
| @end defmac |
| |
| @defmac ARG_POINTER_CFA_OFFSET (@var{fundecl}) |
| A C expression whose value is an integer giving the offset, in bytes, |
| from the argument pointer to the canonical frame address (cfa). The |
| final value should coincide with that calculated by |
| @code{INCOMING_FRAME_SP_OFFSET}. Which is unfortunately not usable |
| during virtual register instantiation. |
| |
| The default value for this macro is |
| @code{FIRST_PARM_OFFSET (fundecl) + crtl->args.pretend_args_size}, |
| which is correct for most machines; in general, the arguments are found |
| immediately before the stack frame. Note that this is not the case on |
| some targets that save registers into the caller's frame, such as SPARC |
| and rs6000, and so such targets need to define this macro. |
| |
| You only need to define this macro if the default is incorrect, and you |
| want to support call frame debugging information like that provided by |
| DWARF 2. |
| @end defmac |
| |
| @defmac FRAME_POINTER_CFA_OFFSET (@var{fundecl}) |
| If defined, a C expression whose value is an integer giving the offset |
| in bytes from the frame pointer to the canonical frame address (cfa). |
| The final value should coincide with that calculated by |
| @code{INCOMING_FRAME_SP_OFFSET}. |
| |
| Normally the CFA is calculated as an offset from the argument pointer, |
| via @code{ARG_POINTER_CFA_OFFSET}, but if the argument pointer is |
| variable due to the ABI, this may not be possible. If this macro is |
| defined, it implies that the virtual register instantiation should be |
| based on the frame pointer instead of the argument pointer. Only one |
| of @code{FRAME_POINTER_CFA_OFFSET} and @code{ARG_POINTER_CFA_OFFSET} |
| should be defined. |
| @end defmac |
| |
| @defmac CFA_FRAME_BASE_OFFSET (@var{fundecl}) |
| If defined, a C expression whose value is an integer giving the offset |
| in bytes from the canonical frame address (cfa) to the frame base used |
| in DWARF 2 debug information. The default is zero. A different value |
| may reduce the size of debug information on some ports. |
| @end defmac |
| |
| @node Exception Handling |
| @subsection Exception Handling Support |
| @cindex exception handling |
| |
| @defmac EH_RETURN_DATA_REGNO (@var{N}) |
| A C expression whose value is the @var{N}th register number used for |
| data by exception handlers, or @code{INVALID_REGNUM} if fewer than |
| @var{N} registers are usable. |
| |
| The exception handling library routines communicate with the exception |
| handlers via a set of agreed upon registers. Ideally these registers |
| should be call-clobbered; it is possible to use call-saved registers, |
| but may negatively impact code size. The target must support at least |
| 2 data registers, but should define 4 if there are enough free registers. |
| |
| You must define this macro if you want to support call frame exception |
| handling like that provided by DWARF 2. |
| @end defmac |
| |
| @defmac EH_RETURN_STACKADJ_RTX |
| A C expression whose value is RTL representing a location in which |
| to store a stack adjustment to be applied before function return. |
| This is used to unwind the stack to an exception handler's call frame. |
| It will be assigned zero on code paths that return normally. |
| |
| Typically this is a call-clobbered hard register that is otherwise |
| untouched by the epilogue, but could also be a stack slot. |
| |
| Do not define this macro if the stack pointer is saved and restored |
| by the regular prolog and epilog code in the call frame itself; in |
| this case, the exception handling library routines will update the |
| stack location to be restored in place. Otherwise, you must define |
| this macro if you want to support call frame exception handling like |
| that provided by DWARF 2. |
| @end defmac |
| |
| @defmac EH_RETURN_HANDLER_RTX |
| A C expression whose value is RTL representing a location in which |
| to store the address of an exception handler to which we should |
| return. It will not be assigned on code paths that return normally. |
| |
| Typically this is the location in the call frame at which the normal |
| return address is stored. For targets that return by popping an |
| address off the stack, this might be a memory address just below |
| the @emph{target} call frame rather than inside the current call |
| frame. If defined, @code{EH_RETURN_STACKADJ_RTX} will have already |
| been assigned, so it may be used to calculate the location of the |
| target call frame. |
| |
| Some targets have more complex requirements than storing to an |
| address calculable during initial code generation. In that case |
| the @code{eh_return} instruction pattern should be used instead. |
| |
| If you want to support call frame exception handling, you must |
| define either this macro or the @code{eh_return} instruction pattern. |
| @end defmac |
| |
| @defmac RETURN_ADDR_OFFSET |
| If defined, an integer-valued C expression for which rtl will be generated |
| to add it to the exception handler address before it is searched in the |
| exception handling tables, and to subtract it again from the address before |
| using it to return to the exception handler. |
| @end defmac |
| |
| @defmac ASM_PREFERRED_EH_DATA_FORMAT (@var{code}, @var{global}) |
| This macro chooses the encoding of pointers embedded in the exception |
| handling sections. If at all possible, this should be defined such |
| that the exception handling section will not require dynamic relocations, |
| and so may be read-only. |
| |
| @var{code} is 0 for data, 1 for code labels, 2 for function pointers. |
| @var{global} is true if the symbol may be affected by dynamic relocations. |
| The macro should return a combination of the @code{DW_EH_PE_*} defines |
| as found in @file{dwarf2.h}. |
| |
| If this macro is not defined, pointers will not be encoded but |
| represented directly. |
| @end defmac |
| |
| @defmac ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX (@var{file}, @var{encoding}, @var{size}, @var{addr}, @var{done}) |
| This macro allows the target to emit whatever special magic is required |
| to represent the encoding chosen by @code{ASM_PREFERRED_EH_DATA_FORMAT}. |
| Generic code takes care of pc-relative and indirect encodings; this must |
| be defined if the target uses text-relative or data-relative encodings. |
| |
| This is a C statement that branches to @var{done} if the format was |
| handled. @var{encoding} is the format chosen, @var{size} is the number |
| of bytes that the format occupies, @var{addr} is the @code{SYMBOL_REF} |
| to be emitted. |
| @end defmac |
| |
| @defmac MD_FALLBACK_FRAME_STATE_FOR (@var{context}, @var{fs}) |
| This macro allows the target to add CPU and operating system specific |
| code to the call-frame unwinder for use when there is no unwind data |
| available. The most common reason to implement this macro is to unwind |
| through signal frames. |
| |
| This macro is called from @code{uw_frame_state_for} in |
| @file{unwind-dw2.c}, @file{unwind-dw2-xtensa.c} and |
| @file{unwind-ia64.c}. @var{context} is an @code{_Unwind_Context}; |
| @var{fs} is an @code{_Unwind_FrameState}. Examine @code{context->ra} |
| for the address of the code being executed and @code{context->cfa} for |
| the stack pointer value. If the frame can be decoded, the register |
| save addresses should be updated in @var{fs} and the macro should |
| evaluate to @code{_URC_NO_REASON}. If the frame cannot be decoded, |
| the macro should evaluate to @code{_URC_END_OF_STACK}. |
| |
| For proper signal handling in Java this macro is accompanied by |
| @code{MAKE_THROW_FRAME}, defined in @file{libjava/include/*-signal.h} headers. |
| @end defmac |
| |
| @defmac MD_HANDLE_UNWABI (@var{context}, @var{fs}) |
| This macro allows the target to add operating system specific code to the |
| call-frame unwinder to handle the IA-64 @code{.unwabi} unwinding directive, |
| usually used for signal or interrupt frames. |
| |
| This macro is called from @code{uw_update_context} in libgcc's |
| @file{unwind-ia64.c}. @var{context} is an @code{_Unwind_Context}; |
| @var{fs} is an @code{_Unwind_FrameState}. Examine @code{fs->unwabi} |
| for the abi and context in the @code{.unwabi} directive. If the |
| @code{.unwabi} directive can be handled, the register save addresses should |
| be updated in @var{fs}. |
| @end defmac |
| |
| @defmac TARGET_USES_WEAK_UNWIND_INFO |
| A C expression that evaluates to true if the target requires unwind |
| info to be given comdat linkage. Define it to be @code{1} if comdat |
| linkage is necessary. The default is @code{0}. |
| @end defmac |
| |
| @node Stack Checking |
| @subsection Specifying How Stack Checking is Done |
| |
| GCC will check that stack references are within the boundaries of the |
| stack, if the option @option{-fstack-check} is specified, in one of |
| three ways: |
| |
| @enumerate |
| @item |
| If the value of the @code{STACK_CHECK_BUILTIN} macro is nonzero, GCC |
| will assume that you have arranged for full stack checking to be done |
| at appropriate places in the configuration files. GCC will not do |
| other special processing. |
| |
| @item |
| If @code{STACK_CHECK_BUILTIN} is zero and the value of the |
| @code{STACK_CHECK_STATIC_BUILTIN} macro is nonzero, GCC will assume |
| that you have arranged for static stack checking (checking of the |
| static stack frame of functions) to be done at appropriate places |
| in the configuration files. GCC will only emit code to do dynamic |
| stack checking (checking on dynamic stack allocations) using the third |
| approach below. |
| |
| @item |
| If neither of the above are true, GCC will generate code to periodically |
| ``probe'' the stack pointer using the values of the macros defined below. |
| @end enumerate |
| |
| If neither STACK_CHECK_BUILTIN nor STACK_CHECK_STATIC_BUILTIN is defined, |
| GCC will change its allocation strategy for large objects if the option |
| @option{-fstack-check} is specified: they will always be allocated |
| dynamically if their size exceeds @code{STACK_CHECK_MAX_VAR_SIZE} bytes. |
| |
| @defmac STACK_CHECK_BUILTIN |
| A nonzero value if stack checking is done by the configuration files in a |
| machine-dependent manner. You should define this macro if stack checking |
| is required by the ABI of your machine or if you would like to do stack |
| checking in some more efficient way than the generic approach. The default |
| value of this macro is zero. |
| @end defmac |
| |
| @defmac STACK_CHECK_STATIC_BUILTIN |
| A nonzero value if static stack checking is done by the configuration files |
| in a machine-dependent manner. You should define this macro if you would |
| like to do static stack checking in some more efficient way than the generic |
| approach. The default value of this macro is zero. |
| @end defmac |
| |
| @defmac STACK_CHECK_PROBE_INTERVAL_EXP |
| An integer specifying the interval at which GCC must generate stack probe |
| instructions, defined as 2 raised to this integer. You will normally |
| define this macro so that the interval be no larger than the size of |
| the ``guard pages'' at the end of a stack area. The default value |
| of 12 (4096-byte interval) is suitable for most systems. |
| @end defmac |
| |
| @defmac STACK_CHECK_MOVING_SP |
| An integer which is nonzero if GCC should move the stack pointer page by page |
| when doing probes. This can be necessary on systems where the stack pointer |
| contains the bottom address of the memory area accessible to the executing |
| thread at any point in time. In this situation an alternate signal stack |
| is required in order to be able to recover from a stack overflow. The |
| default value of this macro is zero. |
| @end defmac |
| |
| @defmac STACK_CHECK_PROTECT |
| The number of bytes of stack needed to recover from a stack overflow, for |
| languages where such a recovery is supported. The default value of 4KB/8KB |
| with the @code{setjmp}/@code{longjmp}-based exception handling mechanism and |
| 8KB/12KB with other exception handling mechanisms should be adequate for most |
| architectures and operating systems. |
| @end defmac |
| |
| The following macros are relevant only if neither STACK_CHECK_BUILTIN |
| nor STACK_CHECK_STATIC_BUILTIN is defined; you can omit them altogether |
| in the opposite case. |
| |
| @defmac STACK_CHECK_MAX_FRAME_SIZE |
| The maximum size of a stack frame, in bytes. GCC will generate probe |
| instructions in non-leaf functions to ensure at least this many bytes of |
| stack are available. If a stack frame is larger than this size, stack |
| checking will not be reliable and GCC will issue a warning. The |
| default is chosen so that GCC only generates one instruction on most |
| systems. You should normally not change the default value of this macro. |
| @end defmac |
| |
| @defmac STACK_CHECK_FIXED_FRAME_SIZE |
| GCC uses this value to generate the above warning message. It |
| represents the amount of fixed frame used by a function, not including |
| space for any callee-saved registers, temporaries and user variables. |
| You need only specify an upper bound for this amount and will normally |
| use the default of four words. |
| @end defmac |
| |
| @defmac STACK_CHECK_MAX_VAR_SIZE |
| The maximum size, in bytes, of an object that GCC will place in the |
| fixed area of the stack frame when the user specifies |
| @option{-fstack-check}. |
| GCC computed the default from the values of the above macros and you will |
| normally not need to override that default. |
| @end defmac |
| |
| @need 2000 |
| @node Frame Registers |
| @subsection Registers That Address the Stack Frame |
| |
| @c prevent bad page break with this line |
| This discusses registers that address the stack frame. |
| |
| @defmac STACK_POINTER_REGNUM |
| The register number of the stack pointer register, which must also be a |
| fixed register according to @code{FIXED_REGISTERS}. On most machines, |
| the hardware determines which register this is. |
| @end defmac |
| |
| @defmac FRAME_POINTER_REGNUM |
| The register number of the frame pointer register, which is used to |
| access automatic variables in the stack frame. On some machines, the |
| hardware determines which register this is. On other machines, you can |
| choose any register you wish for this purpose. |
| @end defmac |
| |
| @defmac HARD_FRAME_POINTER_REGNUM |
| On some machines the offset between the frame pointer and starting |
| offset of the automatic variables is not known until after register |
| allocation has been done (for example, because the saved registers are |
| between these two locations). On those machines, define |
| @code{FRAME_POINTER_REGNUM} the number of a special, fixed register to |
| be used internally until the offset is known, and define |
| @code{HARD_FRAME_POINTER_REGNUM} to be the actual hard register number |
| used for the frame pointer. |
| |
| You should define this macro only in the very rare circumstances when it |
| is not possible to calculate the offset between the frame pointer and |
| the automatic variables until after register allocation has been |
| completed. When this macro is defined, you must also indicate in your |
| definition of @code{ELIMINABLE_REGS} how to eliminate |
| @code{FRAME_POINTER_REGNUM} into either @code{HARD_FRAME_POINTER_REGNUM} |
| or @code{STACK_POINTER_REGNUM}. |
| |
| Do not define this macro if it would be the same as |
| @code{FRAME_POINTER_REGNUM}. |
| @end defmac |
| |
| @defmac ARG_POINTER_REGNUM |
| The register number of the arg pointer register, which is used to access |
| the function's argument list. On some machines, this is the same as the |
| frame pointer register. On some machines, the hardware determines which |
| register this is. On other machines, you can choose any register you |
| wish for this purpose. If this is not the same register as the frame |
| pointer register, then you must mark it as a fixed register according to |
| @code{FIXED_REGISTERS}, or arrange to be able to eliminate it |
| (@pxref{Elimination}). |
| @end defmac |
| |
| @defmac HARD_FRAME_POINTER_IS_FRAME_POINTER |
| Define this to a preprocessor constant that is nonzero if |
| @code{hard_frame_pointer_rtx} and @code{frame_pointer_rtx} should be |
| the same. The default definition is @samp{(HARD_FRAME_POINTER_REGNUM |
| == FRAME_POINTER_REGNUM)}; you only need to define this macro if that |
| definition is not suitable for use in preprocessor conditionals. |
| @end defmac |
| |
| @defmac HARD_FRAME_POINTER_IS_ARG_POINTER |
| Define this to a preprocessor constant that is nonzero if |
| @code{hard_frame_pointer_rtx} and @code{arg_pointer_rtx} should be the |
| same. The default definition is @samp{(HARD_FRAME_POINTER_REGNUM == |
| ARG_POINTER_REGNUM)}; you only need to define this macro if that |
| definition is not suitable for use in preprocessor conditionals. |
| @end defmac |
| |
| @defmac RETURN_ADDRESS_POINTER_REGNUM |
| The register number of the return address pointer register, which is used to |
| access the current function's return address from the stack. On some |
| machines, the return address is not at a fixed offset from the frame |
| pointer or stack pointer or argument pointer. This register can be defined |
| to point to the return address on the stack, and then be converted by |
| @code{ELIMINABLE_REGS} into either the frame pointer or stack pointer. |
| |
| Do not define this macro unless there is no other way to get the return |
| address from the stack. |
| @end defmac |
| |
| @defmac STATIC_CHAIN_REGNUM |
| @defmacx STATIC_CHAIN_INCOMING_REGNUM |
| Register numbers used for passing a function's static chain pointer. If |
| register windows are used, the register number as seen by the called |
| function is @code{STATIC_CHAIN_INCOMING_REGNUM}, while the register |
| number as seen by the calling function is @code{STATIC_CHAIN_REGNUM}. If |
| these registers are the same, @code{STATIC_CHAIN_INCOMING_REGNUM} need |
| not be defined. |
| |
| The static chain register need not be a fixed register. |
| |
| If the static chain is passed in memory, these macros should not be |
| defined; instead, the @code{TARGET_STATIC_CHAIN} hook should be used. |
| @end defmac |
| |
| @deftypefn {Target Hook} rtx TARGET_STATIC_CHAIN (const_tree @var{fndecl_or_type}, bool @var{incoming_p}) |
| This hook replaces the use of @code{STATIC_CHAIN_REGNUM} et al for |
| targets that may use different static chain locations for different |
| nested functions. This may be required if the target has function |
| attributes that affect the calling conventions of the function and |
| those calling conventions use different static chain locations. |
| |
| The default version of this hook uses @code{STATIC_CHAIN_REGNUM} et al. |
| |
| If the static chain is passed in memory, this hook should be used to |
| provide rtx giving @code{mem} expressions that denote where they are stored. |
| Often the @code{mem} expression as seen by the caller will be at an offset |
| from the stack pointer and the @code{mem} expression as seen by the callee |
| will be at an offset from the frame pointer. |
| @findex stack_pointer_rtx |
| @findex frame_pointer_rtx |
| @findex arg_pointer_rtx |
| The variables @code{stack_pointer_rtx}, @code{frame_pointer_rtx}, and |
| @code{arg_pointer_rtx} will have been initialized and should be used |
| to refer to those items. |
| @end deftypefn |
| |
| @defmac DWARF_FRAME_REGISTERS |
| This macro specifies the maximum number of hard registers that can be |
| saved in a call frame. This is used to size data structures used in |
| DWARF2 exception handling. |
| |
| Prior to GCC 3.0, this macro was needed in order to establish a stable |
| exception handling ABI in the face of adding new hard registers for ISA |
| extensions. In GCC 3.0 and later, the EH ABI is insulated from changes |
| in the number of hard registers. Nevertheless, this macro can still be |
| used to reduce the runtime memory requirements of the exception handling |
| routines, which can be substantial if the ISA contains a lot of |
| registers that are not call-saved. |
| |
| If this macro is not defined, it defaults to |
| @code{FIRST_PSEUDO_REGISTER}. |
| @end defmac |
| |
| @defmac PRE_GCC3_DWARF_FRAME_REGISTERS |
| |
| This macro is similar to @code{DWARF_FRAME_REGISTERS}, but is provided |
| for backward compatibility in pre GCC 3.0 compiled code. |
| |
| If this macro is not defined, it defaults to |
| @code{DWARF_FRAME_REGISTERS}. |
| @end defmac |
| |
| @defmac DWARF_REG_TO_UNWIND_COLUMN (@var{regno}) |
| |
| Define this macro if the target's representation for dwarf registers |
| is different than the internal representation for unwind column. |
| Given a dwarf register, this macro should return the internal unwind |
| column number to use instead. |
| |
| See the PowerPC's SPE target for an example. |
| @end defmac |
| |
| @defmac DWARF_FRAME_REGNUM (@var{regno}) |
| |
| Define this macro if the target's representation for dwarf registers |
| used in .eh_frame or .debug_frame is different from that used in other |
| debug info sections. Given a GCC hard register number, this macro |
| should return the .eh_frame register number. The default is |
| @code{DBX_REGISTER_NUMBER (@var{regno})}. |
| |
| @end defmac |
| |
| @defmac DWARF2_FRAME_REG_OUT (@var{regno}, @var{for_eh}) |
| |
| Define this macro to map register numbers held in the call frame info |
| that GCC has collected using @code{DWARF_FRAME_REGNUM} to those that |
| should be output in .debug_frame (@code{@var{for_eh}} is zero) and |
| .eh_frame (@code{@var{for_eh}} is nonzero). The default is to |
| return @code{@var{regno}}. |
| |
| @end defmac |
| |
| @defmac REG_VALUE_IN_UNWIND_CONTEXT |
| |
| Define this macro if the target stores register values as |
| @code{_Unwind_Word} type in unwind context. It should be defined if |
| target register size is larger than the size of @code{void *}. The |
| default is to store register values as @code{void *} type. |
| |
| @end defmac |
| |
| @defmac ASSUME_EXTENDED_UNWIND_CONTEXT |
| |
| Define this macro to be 1 if the target always uses extended unwind |
| context with version, args_size and by_value fields. If it is undefined, |
| it will be defined to 1 when @code{REG_VALUE_IN_UNWIND_CONTEXT} is |
| defined and 0 otherwise. |
| |
| @end defmac |
| |
| @node Elimination |
| @subsection Eliminating Frame Pointer and Arg Pointer |
| |
| @c prevent bad page break with this line |
| This is about eliminating the frame pointer and arg pointer. |
| |
| @deftypefn {Target Hook} bool TARGET_FRAME_POINTER_REQUIRED (void) |
| This target hook should return @code{true} if a function must have and use |
| a frame pointer. This target hook is called in the reload pass. If its return |
| value is @code{true} the function will have a frame pointer. |
| |
| This target hook can in principle examine the current function and decide |
| according to the facts, but on most machines the constant @code{false} or the |
| constant @code{true} suffices. Use @code{false} when the machine allows code |
| to be generated with no frame pointer, and doing so saves some time or space. |
| Use @code{true} when there is no possible advantage to avoiding a frame |
| pointer. |
| |
| In certain cases, the compiler does not know how to produce valid code |
| without a frame pointer. The compiler recognizes those cases and |
| automatically gives the function a frame pointer regardless of what |
| @code{targetm.frame_pointer_required} returns. You don't need to worry about |
| them. |
| |
| In a function that does not require a frame pointer, the frame pointer |
| register can be allocated for ordinary usage, unless you mark it as a |
| fixed register. See @code{FIXED_REGISTERS} for more information. |
| |
| Default return value is @code{false}. |
| @end deftypefn |
| |
| @defmac ELIMINABLE_REGS |
| This macro specifies a table of register pairs used to eliminate |
| unneeded registers that point into the stack frame. |
| |
| The definition of this macro is a list of structure initializations, each |
| of which specifies an original and replacement register. |
| |
| On some machines, the position of the argument pointer is not known until |
| the compilation is completed. In such a case, a separate hard register |
| must be used for the argument pointer. This register can be eliminated by |
| replacing it with either the frame pointer or the argument pointer, |
| depending on whether or not the frame pointer has been eliminated. |
| |
| In this case, you might specify: |
| @smallexample |
| #define ELIMINABLE_REGS \ |
| @{@{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM@}, \ |
| @{ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM@}, \ |
| @{FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM@}@} |
| @end smallexample |
| |
| Note that the elimination of the argument pointer with the stack pointer is |
| specified first since that is the preferred elimination. |
| @end defmac |
| |
| @deftypefn {Target Hook} bool TARGET_CAN_ELIMINATE (const int @var{from_reg}, const int @var{to_reg}) |
| This target hook should return @code{true} if the compiler is allowed to |
| try to replace register number @var{from_reg} with register number |
| @var{to_reg}. This target hook will usually be @code{true}, since most of the |
| cases preventing register elimination are things that the compiler already |
| knows about. |
| |
| Default return value is @code{true}. |
| @end deftypefn |
| |
| @defmac INITIAL_ELIMINATION_OFFSET (@var{from-reg}, @var{to-reg}, @var{offset-var}) |
| This macro returns the initial difference between the specified pair |
| of registers. The value would be computed from information |
| such as the result of @code{get_frame_size ()} and the tables of |
| registers @code{df_regs_ever_live_p} and @code{call_used_regs}. |
| @end defmac |
| |
| @node Stack Arguments |
| @subsection Passing Function Arguments on the Stack |
| @cindex arguments on stack |
| @cindex stack arguments |
| |
| The macros in this section control how arguments are passed |
| on the stack. See the following section for other macros that |
| control passing certain arguments in registers. |
| |
| @deftypefn {Target Hook} bool TARGET_PROMOTE_PROTOTYPES (const_tree @var{fntype}) |
| This target hook returns @code{true} if an argument declared in a |
| prototype as an integral type smaller than @code{int} should actually be |
| passed as an @code{int}. In addition to avoiding errors in certain |
| cases of mismatch, it also makes for better code on certain machines. |
| The default is to not promote prototypes. |
| @end deftypefn |
| |
| @defmac PUSH_ARGS |
| A C expression. If nonzero, push insns will be used to pass |
| outgoing arguments. |
| If the target machine does not have a push instruction, set it to zero. |
| That directs GCC to use an alternate strategy: to |
| allocate the entire argument block and then store the arguments into |
| it. When @code{PUSH_ARGS} is nonzero, @code{PUSH_ROUNDING} must be defined too. |
| @end defmac |
| |
| @defmac PUSH_ARGS_REVERSED |
| A C expression. If nonzero, function arguments will be evaluated from |
| last to first, rather than from first to last. If this macro is not |
| defined, it defaults to @code{PUSH_ARGS} on targets where the stack |
| and args grow in opposite directions, and 0 otherwise. |
| @end defmac |
| |
| @defmac PUSH_ROUNDING (@var{npushed}) |
| A C expression that is the number of bytes actually pushed onto the |
| stack when an instruction attempts to push @var{npushed} bytes. |
| |
| On some machines, the definition |
| |
| @smallexample |
| #define PUSH_ROUNDING(BYTES) (BYTES) |
| @end smallexample |
| |
| @noindent |
| will suffice. But on other machines, instructions that appear |
| to push one byte actually push two bytes in an attempt to maintain |
| alignment. Then the definition should be |
| |
| @smallexample |
| #define PUSH_ROUNDING(BYTES) (((BYTES) + 1) & ~1) |
| @end smallexample |
| |
| If the value of this macro has a type, it should be an unsigned type. |
| @end defmac |
| |
| @findex outgoing_args_size |
| @findex crtl->outgoing_args_size |
| @defmac ACCUMULATE_OUTGOING_ARGS |
| A C expression. If nonzero, the maximum amount of space required for outgoing arguments |
| will be computed and placed into |
| @code{crtl->outgoing_args_size}. No space will be pushed |
| onto the stack for each call; instead, the function prologue should |
| increase the stack frame size by this amount. |
| |
| Setting both @code{PUSH_ARGS} and @code{ACCUMULATE_OUTGOING_ARGS} |
| is not proper. |
| @end defmac |
| |
| @defmac REG_PARM_STACK_SPACE (@var{fndecl}) |
| Define this macro if functions should assume that stack space has been |
| allocated for arguments even when their values are passed in |
| registers. |
| |
| The value of this macro is the size, in bytes, of the area reserved for |
| arguments passed in registers for the function represented by @var{fndecl}, |
| which can be zero if GCC is calling a library function. |
| The argument @var{fndecl} can be the FUNCTION_DECL, or the type itself |
| of the function. |
| |
| This space can be allocated by the caller, or be a part of the |
| machine-dependent stack frame: @code{OUTGOING_REG_PARM_STACK_SPACE} says |
| which. |
| @end defmac |
| @c above is overfull. not sure what to do. --mew 5feb93 did |
| @c something, not sure if it looks good. --mew 10feb93 |
| |
| @defmac INCOMING_REG_PARM_STACK_SPACE (@var{fndecl}) |
| Like @code{REG_PARM_STACK_SPACE}, but for incoming register arguments. |
| Define this macro if space guaranteed when compiling a function body |
| is different to space required when making a call, a situation that |
| can arise with K&R style function definitions. |
| @end defmac |
| |
| @defmac OUTGOING_REG_PARM_STACK_SPACE (@var{fntype}) |
| Define this to a nonzero value if it is the responsibility of the |
| caller to allocate the area reserved for arguments passed in registers |
| when calling a function of @var{fntype}. @var{fntype} may be NULL |
| if the function called is a library function. |
| |
| If @code{ACCUMULATE_OUTGOING_ARGS} is defined, this macro controls |
| whether the space for these arguments counts in the value of |
| @code{crtl->outgoing_args_size}. |
| @end defmac |
| |
| @defmac STACK_PARMS_IN_REG_PARM_AREA |
| Define this macro if @code{REG_PARM_STACK_SPACE} is defined, but the |
| stack parameters don't skip the area specified by it. |
| @c i changed this, makes more sens and it should have taken care of the |
| @c overfull.. not as specific, tho. --mew 5feb93 |
| |
| Normally, when a parameter is not passed in registers, it is placed on the |
| stack beyond the @code{REG_PARM_STACK_SPACE} area. Defining this macro |
| suppresses this behavior and causes the parameter to be passed on the |
| stack in its natural location. |
| @end defmac |
| |
| @deftypefn {Target Hook} int TARGET_RETURN_POPS_ARGS (tree @var{fundecl}, tree @var{funtype}, int @var{size}) |
| This target hook returns the number of bytes of its own arguments that |
| a function pops on returning, or 0 if the function pops no arguments |
| and the caller must therefore pop them all after the function returns. |
| |
| @var{fundecl} is a C variable whose value is a tree node that describes |
| the function in question. Normally it is a node of type |
| @code{FUNCTION_DECL} that describes the declaration of the function. |
| From this you can obtain the @code{DECL_ATTRIBUTES} of the function. |
| |
| @var{funtype} is a C variable whose value is a tree node that |
| describes the function in question. Normally it is a node of type |
| @code{FUNCTION_TYPE} that describes the data type of the function. |
| From this it is possible to obtain the data types of the value and |
| arguments (if known). |
| |
| When a call to a library function is being considered, @var{fundecl} |
| will contain an identifier node for the library function. Thus, if |
| you need to distinguish among various library functions, you can do so |
| by their names. Note that ``library function'' in this context means |
| a function used to perform arithmetic, whose name is known specially |
| in the compiler and was not mentioned in the C code being compiled. |
| |
| @var{size} is the number of bytes of arguments passed on the |
| stack. If a variable number of bytes is passed, it is zero, and |
| argument popping will always be the responsibility of the calling function. |
| |
| On the VAX, all functions always pop their arguments, so the definition |
| of this macro is @var{size}. On the 68000, using the standard |
| calling convention, no functions pop their arguments, so the value of |
| the macro is always 0 in this case. But an alternative calling |
| convention is available in which functions that take a fixed number of |
| arguments pop them but other functions (such as @code{printf}) pop |
| nothing (the caller pops all). When this convention is in use, |
| @var{funtype} is examined to determine whether a function takes a fixed |
| number of arguments. |
| @end deftypefn |
| |
| @defmac CALL_POPS_ARGS (@var{cum}) |
| A C expression that should indicate the number of bytes a call sequence |
| pops off the stack. It is added to the value of @code{RETURN_POPS_ARGS} |
| when compiling a function call. |
| |
| @var{cum} is the variable in which all arguments to the called function |
| have been accumulated. |
| |
| On certain architectures, such as the SH5, a call trampoline is used |
| that pops certain registers off the stack, depending on the arguments |
| that have been passed to the function. Since this is a property of the |
| call site, not of the called function, @code{RETURN_POPS_ARGS} is not |
| appropriate. |
| @end defmac |
| |
| @node Register Arguments |
| @subsection Passing Arguments in Registers |
| @cindex arguments in registers |
| @cindex registers arguments |
| |
| This section describes the macros which let you control how various |
| types of arguments are passed in registers or how they are arranged in |
| the stack. |
| |
| @deftypefn {Target Hook} rtx TARGET_FUNCTION_ARG (cumulative_args_t @var{ca}, machine_mode @var{mode}, const_tree @var{type}, bool @var{named}) |
| Return an RTX indicating whether a function argument is passed in a |
| register and if so, which register. |
| |
| The arguments are @var{ca}, which summarizes all the previous |
| arguments; @var{mode}, the machine mode of the argument; @var{type}, |
| the data type of the argument as a tree node or 0 if that is not known |
| (which happens for C support library functions); and @var{named}, |
| which is @code{true} for an ordinary argument and @code{false} for |
| nameless arguments that correspond to @samp{@dots{}} in the called |
| function's prototype. @var{type} can be an incomplete type if a |
| syntax error has previously occurred. |
| |
| The return value is usually either a @code{reg} RTX for the hard |
| register in which to pass the argument, or zero to pass the argument |
| on the stack. |
| |
| The return value can be a @code{const_int} which means argument is |
| passed in a target specific slot with specified number. Target hooks |
| should be used to store or load argument in such case. See |
| @code{TARGET_STORE_BOUNDS_FOR_ARG} and @code{TARGET_LOAD_BOUNDS_FOR_ARG} |
| for more information. |
| |
| The value of the expression can also be a @code{parallel} RTX@. This is |
| used when an argument is passed in multiple locations. The mode of the |
| @code{parallel} should be the mode of the entire argument. The |
| @code{parallel} holds any number of @code{expr_list} pairs; each one |
| describes where part of the argument is passed. In each |
| @code{expr_list} the first operand must be a @code{reg} RTX for the hard |
| register in which to pass this part of the argument, and the mode of the |
| register RTX indicates how large this part of the argument is. The |
| second operand of the @code{expr_list} is a @code{const_int} which gives |
| the offset in bytes into the entire argument of where this part starts. |
| As a special exception the first @code{expr_list} in the @code{parallel} |
| RTX may have a first operand of zero. This indicates that the entire |
| argument is also stored on the stack. |
| |
| The last time this hook is called, it is called with @code{MODE == |
| VOIDmode}, and its result is passed to the @code{call} or @code{call_value} |
| pattern as operands 2 and 3 respectively. |
| |
| @cindex @file{stdarg.h} and register arguments |
| The usual way to make the ISO library @file{stdarg.h} work on a |
| machine where some arguments are usually passed in registers, is to |
| cause nameless arguments to be passed on the stack instead. This is |
| done by making @code{TARGET_FUNCTION_ARG} return 0 whenever |
| @var{named} is @code{false}. |
| |
| @cindex @code{TARGET_MUST_PASS_IN_STACK}, and @code{TARGET_FUNCTION_ARG} |
| @cindex @code{REG_PARM_STACK_SPACE}, and @code{TARGET_FUNCTION_ARG} |
| You may use the hook @code{targetm.calls.must_pass_in_stack} |
| in the definition of this macro to determine if this argument is of a |
| type that must be passed in the stack. If @code{REG_PARM_STACK_SPACE} |
| is not defined and @code{TARGET_FUNCTION_ARG} returns nonzero for such an |
| argument, the compiler will abort. If @code{REG_PARM_STACK_SPACE} is |
| defined, the argument will be computed in the stack and then loaded into |
| a register. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_MUST_PASS_IN_STACK (machine_mode @var{mode}, const_tree @var{type}) |
| This target hook should return @code{true} if we should not pass @var{type} |
| solely in registers. The file @file{expr.h} defines a |
| definition that is usually appropriate, refer to @file{expr.h} for additional |
| documentation. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} rtx TARGET_FUNCTION_INCOMING_ARG (cumulative_args_t @var{ca}, machine_mode @var{mode}, const_tree @var{type}, bool @var{named}) |
| Define this hook if the caller and callee on the target have different |
| views of where arguments are passed. Also define this hook if there are |
| functions that are never directly called, but are invoked by the hardware |
| and which have nonstandard calling conventions. |
| |
| In this case @code{TARGET_FUNCTION_ARG} computes the register in |
| which the caller passes the value, and |
| @code{TARGET_FUNCTION_INCOMING_ARG} should be defined in a similar |
| fashion to tell the function being called where the arguments will |
| arrive. |
| |
| @code{TARGET_FUNCTION_INCOMING_ARG} can also return arbitrary address |
| computation using hard register, which can be forced into a register, |
| so that it can be used to pass special arguments. |
| |
| If @code{TARGET_FUNCTION_INCOMING_ARG} is not defined, |
| @code{TARGET_FUNCTION_ARG} serves both purposes. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_USE_PSEUDO_PIC_REG (void) |
| This hook should return 1 in case pseudo register should be created |
| for pic_offset_table_rtx during function expand. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} void TARGET_INIT_PIC_REG (void) |
| Perform a target dependent initialization of pic_offset_table_rtx. |
| This hook is called at the start of register allocation. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} int TARGET_ARG_PARTIAL_BYTES (cumulative_args_t @var{cum}, machine_mode @var{mode}, tree @var{type}, bool @var{named}) |
| This target hook returns the number of bytes at the beginning of an |
| argument that must be put in registers. The value must be zero for |
| arguments that are passed entirely in registers or that are entirely |
| pushed on the stack. |
| |
| On some machines, certain arguments must be passed partially in |
| registers and partially in memory. On these machines, typically the |
| first few words of arguments are passed in registers, and the rest |
| on the stack. If a multi-word argument (a @code{double} or a |
| structure) crosses that boundary, its first few words must be passed |
| in registers and the rest must be pushed. This macro tells the |
| compiler when this occurs, and how many bytes should go in registers. |
| |
| @code{TARGET_FUNCTION_ARG} for these arguments should return the first |
| register to be used by the caller for this argument; likewise |
| @code{TARGET_FUNCTION_INCOMING_ARG}, for the called function. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_PASS_BY_REFERENCE (cumulative_args_t @var{cum}, machine_mode @var{mode}, const_tree @var{type}, bool @var{named}) |
| This target hook should return @code{true} if an argument at the |
| position indicated by @var{cum} should be passed by reference. This |
| predicate is queried after target independent reasons for being |
| passed by reference, such as @code{TREE_ADDRESSABLE (type)}. |
| |
| If the hook returns true, a copy of that argument is made in memory and a |
| pointer to the argument is passed instead of the argument itself. |
| The pointer is passed in whatever way is appropriate for passing a pointer |
| to that type. |
| @end deftypefn |
| |
| @deftypefn {Target Hook} bool TARGET_CALLEE_COPIES (cumulative_args_t @var{cum}, machine_mode @var{mode}, const_tree @var{type}, bool @var{named}) |
| The function argument described by the parameters to this hook is |
| known to be passed by reference. The hook should return true if the |
| function argument should be copied by the callee instead of copied |
| by the caller. |
| |
| For any argument for which the hook returns true, if it can be |
| determined that the argument is not modified, then a copy need |
| not be generated. |
| |
| The default version of this hook always returns false. |
| @end deftypefn |
| |
| @defmac CUMULATIVE_ARGS |
| A C type for declaring a variable that is used as the first argument |
| of @code{TARGET_FUNCTION_ARG} and other related values. For some |
| target machines, the type @code{int} suffices and can hold the number |
| of bytes of argument so far. |
| |
| There is no need to record in @code{CUMULATIVE_ARGS} anything about the |
| arguments that have been passed on the stack. The compiler has other |
| variables to keep track of that. For target machines on which all |
| arguments are passed on the stack, there is no need to store anything in |
| @code{CUMULATIVE_ARGS}; however, the data structure must exist and |
| should not be empty, so use @code{int}. |
| @end defmac |
| |
| @defmac OVERRIDE_ABI_FORMAT (@var{fndecl}) |
| If defined, this macro is called before generating any code for a |
| function, but after the @var{cfun} descriptor for the function has been |
| created. The back end may use this macro to update @var{cfun} to |
| reflect an ABI other than that which would normally be used by default. |
| If the compiler is generating code for a compiler-generated function, |
| @var{fndecl} may be @code{NULL}. |
| @end defmac |
| |
| @defmac INIT_CUMULATIVE_ARGS (@var{cum}, @var{fntype}, @var{libname}, @var{fndecl}, @var{n_named_args}) |
| A C statement (sans semicolon) for initializing the variable |
| @var{cum} for the state at the beginning of the argument list. The |
| variable has type @code{CUMULATIVE_ARGS}. The value of @var{fntype} |
| is the tree node for the data type of the function which will receive |
| the args, or 0 if the args are to a compiler support library function. |
| For direct calls that are not libcalls, @var{fndecl} contain the |
| declaration node of the function. @var{fndecl} is also set when |
| @code{INIT_CUMULATIVE_ARGS} is used to find arguments for the function |
| being compiled. @var{n_named_args} is set to the number of named |
| arguments, including a structure return address if it is passed as a |
| parameter, when making a call. When processing incoming arguments, |
| @var{n_named_args} is set to @minus{}1. |
| |
| When processing a call to a compiler support library function, |
| @var{libname} identifies which one. It is a @code{symbol_ref} rtx which |
| contains the name of the function, as a string. @var{libname} is 0 when |
| an ordinary C function call is being processed. Thus, each time this |
| macro is called, either @var{libname} or @var{fntype} is nonzero, but |
| never both of them at once. |
| @end defmac |
| |
| @defmac INIT_CUMULATIVE_LIBCALL_ARGS (@var{cum}, @var{mode}, @var{libname}) |
| Like @code{INIT_CUMULATIVE_ARGS} but only used for outgoing libcalls, |
| it gets a @code{MODE} argument instead of @var{fntype}, that would be |
| @code{NULL}. @var{indirect} would always be zero, too. If this macro |
| is not defined, @code{INIT_CUMULATIVE_ARGS (cum, NULL_RTX, libname, |
| 0)} is used instead. |
| @end defmac |
| |
| @defmac INIT_CUMULATIVE_INCOMING_ARGS (@var{cum}, @var{fntype}, @var{libname}) |
| Like @code{INIT_CUMULATIVE_ARGS} but overrides it for the purposes of |
| finding the arguments for the function being compiled. If this macro is |
| undefined, @code{INIT_CUMULATIVE_ARGS} is used instead. |
| |
| The value passed for @var{libname} is always 0, since library routines |
| with special calling conventions are never compiled with GCC@. The |
| argument @var{libname} exists for symmetry with |
| @code{INIT_CUMULATIVE_ARGS}. |
| @c could use "this macro" in place of @code{INIT_CUMULATIVE_ARGS}, maybe. |
| @c --mew 5feb93 i switched the order of the sentences. --mew 10feb93 |
| @end defmac |
| |
| @deftypefn {Target Hook} void TARGET_FUNCTION_ARG_ADVANCE (cumulative_args_t @var{ca}, machine_mode @var{mode}, const_tree @var{type}, bool @var{named}) |
| This hook updates the summarizer variable pointed to by @var{ca} to |
| advance past an argument in the argument list. The values @var{mode}, |
| @var{type} and @var{named} describe that argument. Once this is done, |
| the variable @var{cum} is suitable for analyzing the @emph{following} |
| argument with @code{TARGET_FUNCTION_ARG}, etc. |
| |
| This hook need not do anything if the argument in question was passed |
| on the stack. The compiler knows how to track the amount of stack space |
| used for arguments without any special help. |
| @end deftypefn |
| |
| @defmac FUNCTION_ARG_OFFSET (@var{mode}, @var{type}) |
| If defined, a C expression that is the number of bytes to add to the |
| offset of the argument passed in memory. This is needed for the SPU, |
| which passes @code{char} and @code{short} arguments in the preferred |
| slot that is in the middle of the quad word instead of starting at the |
| top. |
| @end defmac |
| |
| @defmac FUNCTION_ARG_PADDING (@var{mode}, @var{type}) |
| If defined, a C expression which determines whether, and in which direction, |
| to pad out an argument with extra space. The value should be of type |
| @code{enum direction}: either @code{upward} to pad above the argument, |
| @code{downward} to pad below, or @code{none} to inhibit padding. |
| |
| The @emph{amount} of padding is not controlled by this macro, but by the |
| target hook @code{TARGET_FUNCTION_ARG_ROUND_BOUNDARY}. It is |
| always just enough to reach the next multiple of that boundary. |
| |
| This macro has a default definition which is right for most systems. |
| For little-endian machines, the default is to pad upward. For |
| big-endian machines, the default is to pad downward for an argument of |
| constant size shorter than an @code{int}, and upward otherwise. |
| @end defmac |
| |
| @defmac PAD_VARARGS_DOWN |
| If defined, a C expression which determines whether the default |
| implementation of va_arg will attempt to pad down before reading the |
| next argument, if that argument is smaller than its aligned space as |
| controlled by @code{PARM_BOUNDARY}. If this macro is not defined, all such |
| arguments are padded down if @code{BYTES_BIG_ENDIAN} is true. |
| @end defmac |
| |
| @defmac BLOCK_REG_PADDING (@var{mode}, @var{type}, @var{first}) |
| Specify padding for the last element of a block move between registers and |
| memory. @var{first} is nonzero if this is the only element. Defining this |
| macro allows better control of register function parameters on big-endian |
| machines, without using @code{PARALLEL} rtl. In particular, |
| @code{MUST_PASS_IN_STACK} need not test padding and mode of types in |
| registers, as there is no longer a "wrong" part of a register; For example, |
| a three byte aggregate may be passed in the high part of a register if so |
| required. |
| @end defmac |
| |
| @deftypefn {Target Hook} {unsigned int} TARGET_FUNCTION_ARG_BOUNDARY (machine_mode @var{mode}, const_tree @var{type}) |
| |