blob: f2ef37290de3bb08ae592d9a3df49fb34781b3c0 [file] [log] [blame]
/* Support routines for Value Range Propagation (VRP).
Copyright (C) 2005-2017 Free Software Foundation, Inc.
Contributed by Diego Novillo <dnovillo@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "flags.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "calls.h"
#include "cfganal.h"
#include "gimple-fold.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "gimple-walk.h"
#include "tree-cfg.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "tree-into-ssa.h"
#include "tree-ssa.h"
#include "intl.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-ssa-propagate.h"
#include "tree-chrec.h"
#include "tree-ssa-threadupdate.h"
#include "tree-ssa-scopedtables.h"
#include "tree-ssa-threadedge.h"
#include "omp-general.h"
#include "target.h"
#include "case-cfn-macros.h"
#include "params.h"
#include "alloc-pool.h"
#include "domwalk.h"
#include "tree-cfgcleanup.h"
#define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
/* Allocation pools for tree-vrp allocations. */
static object_allocator<value_range> vrp_value_range_pool ("Tree VRP value ranges");
static bitmap_obstack vrp_equiv_obstack;
/* Set of SSA names found live during the RPO traversal of the function
for still active basic-blocks. */
static sbitmap *live;
/* Return true if the SSA name NAME is live on the edge E. */
static bool
live_on_edge (edge e, tree name)
{
return (live[e->dest->index]
&& bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
}
/* Local functions. */
static int compare_values (tree val1, tree val2);
static int compare_values_warnv (tree val1, tree val2, bool *);
static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
tree, tree, bool, bool *,
bool *);
/* Location information for ASSERT_EXPRs. Each instance of this
structure describes an ASSERT_EXPR for an SSA name. Since a single
SSA name may have more than one assertion associated with it, these
locations are kept in a linked list attached to the corresponding
SSA name. */
struct assert_locus
{
/* Basic block where the assertion would be inserted. */
basic_block bb;
/* Some assertions need to be inserted on an edge (e.g., assertions
generated by COND_EXPRs). In those cases, BB will be NULL. */
edge e;
/* Pointer to the statement that generated this assertion. */
gimple_stmt_iterator si;
/* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
enum tree_code comp_code;
/* Value being compared against. */
tree val;
/* Expression to compare. */
tree expr;
/* Next node in the linked list. */
assert_locus *next;
};
/* If bit I is present, it means that SSA name N_i has a list of
assertions that should be inserted in the IL. */
static bitmap need_assert_for;
/* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
holds a list of ASSERT_LOCUS_T nodes that describe where
ASSERT_EXPRs for SSA name N_I should be inserted. */
static assert_locus **asserts_for;
/* Value range array. After propagation, VR_VALUE[I] holds the range
of values that SSA name N_I may take. */
static unsigned num_vr_values;
static value_range **vr_value;
static bool values_propagated;
/* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
number of executable edges we saw the last time we visited the
node. */
static int *vr_phi_edge_counts;
struct switch_update {
gswitch *stmt;
tree vec;
};
static vec<edge> to_remove_edges;
static vec<switch_update> to_update_switch_stmts;
/* Return the maximum value for TYPE. */
static inline tree
vrp_val_max (const_tree type)
{
if (!INTEGRAL_TYPE_P (type))
return NULL_TREE;
return TYPE_MAX_VALUE (type);
}
/* Return the minimum value for TYPE. */
static inline tree
vrp_val_min (const_tree type)
{
if (!INTEGRAL_TYPE_P (type))
return NULL_TREE;
return TYPE_MIN_VALUE (type);
}
/* Return whether VAL is equal to the maximum value of its type. This
will be true for a positive overflow infinity. We can't do a
simple equality comparison with TYPE_MAX_VALUE because C typedefs
and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
to the integer constant with the same value in the type. */
static inline bool
vrp_val_is_max (const_tree val)
{
tree type_max = vrp_val_max (TREE_TYPE (val));
return (val == type_max
|| (type_max != NULL_TREE
&& operand_equal_p (val, type_max, 0)));
}
/* Return whether VAL is equal to the minimum value of its type. This
will be true for a negative overflow infinity. */
static inline bool
vrp_val_is_min (const_tree val)
{
tree type_min = vrp_val_min (TREE_TYPE (val));
return (val == type_min
|| (type_min != NULL_TREE
&& operand_equal_p (val, type_min, 0)));
}
/* Return whether TYPE should use an overflow infinity distinct from
TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
represent a signed overflow during VRP computations. An infinity
is distinct from a half-range, which will go from some number to
TYPE_{MIN,MAX}_VALUE. */
static inline bool
needs_overflow_infinity (const_tree type)
{
return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
}
/* Return whether TYPE can support our overflow infinity
representation: we use the TREE_OVERFLOW flag, which only exists
for constants. If TYPE doesn't support this, we don't optimize
cases which would require signed overflow--we drop them to
VARYING. */
static inline bool
supports_overflow_infinity (const_tree type)
{
tree min = vrp_val_min (type), max = vrp_val_max (type);
gcc_checking_assert (needs_overflow_infinity (type));
return (min != NULL_TREE
&& CONSTANT_CLASS_P (min)
&& max != NULL_TREE
&& CONSTANT_CLASS_P (max));
}
/* VAL is the maximum or minimum value of a type. Return a
corresponding overflow infinity. */
static inline tree
make_overflow_infinity (tree val)
{
gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
val = copy_node (val);
TREE_OVERFLOW (val) = 1;
return val;
}
/* Return a negative overflow infinity for TYPE. */
static inline tree
negative_overflow_infinity (tree type)
{
gcc_checking_assert (supports_overflow_infinity (type));
return make_overflow_infinity (vrp_val_min (type));
}
/* Return a positive overflow infinity for TYPE. */
static inline tree
positive_overflow_infinity (tree type)
{
gcc_checking_assert (supports_overflow_infinity (type));
return make_overflow_infinity (vrp_val_max (type));
}
/* Return whether VAL is a negative overflow infinity. */
static inline bool
is_negative_overflow_infinity (const_tree val)
{
return (TREE_OVERFLOW_P (val)
&& needs_overflow_infinity (TREE_TYPE (val))
&& vrp_val_is_min (val));
}
/* Return whether VAL is a positive overflow infinity. */
static inline bool
is_positive_overflow_infinity (const_tree val)
{
return (TREE_OVERFLOW_P (val)
&& needs_overflow_infinity (TREE_TYPE (val))
&& vrp_val_is_max (val));
}
/* Return whether VAL is a positive or negative overflow infinity. */
static inline bool
is_overflow_infinity (const_tree val)
{
return (TREE_OVERFLOW_P (val)
&& needs_overflow_infinity (TREE_TYPE (val))
&& (vrp_val_is_min (val) || vrp_val_is_max (val)));
}
/* Return whether STMT has a constant rhs that is_overflow_infinity. */
static inline bool
stmt_overflow_infinity (gimple *stmt)
{
if (is_gimple_assign (stmt)
&& get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
GIMPLE_SINGLE_RHS)
return is_overflow_infinity (gimple_assign_rhs1 (stmt));
return false;
}
/* If VAL is now an overflow infinity, return VAL. Otherwise, return
the same value with TREE_OVERFLOW clear. This can be used to avoid
confusing a regular value with an overflow value. */
static inline tree
avoid_overflow_infinity (tree val)
{
if (!is_overflow_infinity (val))
return val;
if (vrp_val_is_max (val))
return vrp_val_max (TREE_TYPE (val));
else
{
gcc_checking_assert (vrp_val_is_min (val));
return vrp_val_min (TREE_TYPE (val));
}
}
/* Set value range VR to VR_UNDEFINED. */
static inline void
set_value_range_to_undefined (value_range *vr)
{
vr->type = VR_UNDEFINED;
vr->min = vr->max = NULL_TREE;
if (vr->equiv)
bitmap_clear (vr->equiv);
}
/* Set value range VR to VR_VARYING. */
static inline void
set_value_range_to_varying (value_range *vr)
{
vr->type = VR_VARYING;
vr->min = vr->max = NULL_TREE;
if (vr->equiv)
bitmap_clear (vr->equiv);
}
/* Set value range VR to {T, MIN, MAX, EQUIV}. */
static void
set_value_range (value_range *vr, enum value_range_type t, tree min,
tree max, bitmap equiv)
{
/* Check the validity of the range. */
if (flag_checking
&& (t == VR_RANGE || t == VR_ANTI_RANGE))
{
int cmp;
gcc_assert (min && max);
gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
&& (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
cmp = compare_values (min, max);
gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
}
if (flag_checking
&& (t == VR_UNDEFINED || t == VR_VARYING))
{
gcc_assert (min == NULL_TREE && max == NULL_TREE);
gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
}
vr->type = t;
vr->min = min;
vr->max = max;
/* Since updating the equivalence set involves deep copying the
bitmaps, only do it if absolutely necessary. */
if (vr->equiv == NULL
&& equiv != NULL)
vr->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
if (equiv != vr->equiv)
{
if (equiv && !bitmap_empty_p (equiv))
bitmap_copy (vr->equiv, equiv);
else
bitmap_clear (vr->equiv);
}
}
/* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
This means adjusting T, MIN and MAX representing the case of a
wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
In corner cases where MAX+1 or MIN-1 wraps this will fall back
to varying.
This routine exists to ease canonicalization in the case where we
extract ranges from var + CST op limit. */
static void
set_and_canonicalize_value_range (value_range *vr, enum value_range_type t,
tree min, tree max, bitmap equiv)
{
/* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
if (t == VR_UNDEFINED)
{
set_value_range_to_undefined (vr);
return;
}
else if (t == VR_VARYING)
{
set_value_range_to_varying (vr);
return;
}
/* Nothing to canonicalize for symbolic ranges. */
if (TREE_CODE (min) != INTEGER_CST
|| TREE_CODE (max) != INTEGER_CST)
{
set_value_range (vr, t, min, max, equiv);
return;
}
/* Wrong order for min and max, to swap them and the VR type we need
to adjust them. */
if (tree_int_cst_lt (max, min))
{
tree one, tmp;
/* For one bit precision if max < min, then the swapped
range covers all values, so for VR_RANGE it is varying and
for VR_ANTI_RANGE empty range, so drop to varying as well. */
if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
{
set_value_range_to_varying (vr);
return;
}
one = build_int_cst (TREE_TYPE (min), 1);
tmp = int_const_binop (PLUS_EXPR, max, one);
max = int_const_binop (MINUS_EXPR, min, one);
min = tmp;
/* There's one corner case, if we had [C+1, C] before we now have
that again. But this represents an empty value range, so drop
to varying in this case. */
if (tree_int_cst_lt (max, min))
{
set_value_range_to_varying (vr);
return;
}
t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
}
/* Anti-ranges that can be represented as ranges should be so. */
if (t == VR_ANTI_RANGE)
{
bool is_min = vrp_val_is_min (min);
bool is_max = vrp_val_is_max (max);
if (is_min && is_max)
{
/* We cannot deal with empty ranges, drop to varying.
??? This could be VR_UNDEFINED instead. */
set_value_range_to_varying (vr);
return;
}
else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
&& (is_min || is_max))
{
/* Non-empty boolean ranges can always be represented
as a singleton range. */
if (is_min)
min = max = vrp_val_max (TREE_TYPE (min));
else
min = max = vrp_val_min (TREE_TYPE (min));
t = VR_RANGE;
}
else if (is_min
/* As a special exception preserve non-null ranges. */
&& !(TYPE_UNSIGNED (TREE_TYPE (min))
&& integer_zerop (max)))
{
tree one = build_int_cst (TREE_TYPE (max), 1);
min = int_const_binop (PLUS_EXPR, max, one);
max = vrp_val_max (TREE_TYPE (max));
t = VR_RANGE;
}
else if (is_max)
{
tree one = build_int_cst (TREE_TYPE (min), 1);
max = int_const_binop (MINUS_EXPR, min, one);
min = vrp_val_min (TREE_TYPE (min));
t = VR_RANGE;
}
}
/* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
to make sure VRP iteration terminates, otherwise we can get into
oscillations. */
set_value_range (vr, t, min, max, equiv);
}
/* Copy value range FROM into value range TO. */
static inline void
copy_value_range (value_range *to, value_range *from)
{
set_value_range (to, from->type, from->min, from->max, from->equiv);
}
/* Set value range VR to a single value. This function is only called
with values we get from statements, and exists to clear the
TREE_OVERFLOW flag so that we don't think we have an overflow
infinity when we shouldn't. */
static inline void
set_value_range_to_value (value_range *vr, tree val, bitmap equiv)
{
gcc_assert (is_gimple_min_invariant (val));
if (TREE_OVERFLOW_P (val))
val = drop_tree_overflow (val);
set_value_range (vr, VR_RANGE, val, val, equiv);
}
/* Set value range VR to a non-negative range of type TYPE.
OVERFLOW_INFINITY indicates whether to use an overflow infinity
rather than TYPE_MAX_VALUE; this should be true if we determine
that the range is nonnegative based on the assumption that signed
overflow does not occur. */
static inline void
set_value_range_to_nonnegative (value_range *vr, tree type,
bool overflow_infinity)
{
tree zero;
if (overflow_infinity && !supports_overflow_infinity (type))
{
set_value_range_to_varying (vr);
return;
}
zero = build_int_cst (type, 0);
set_value_range (vr, VR_RANGE, zero,
(overflow_infinity
? positive_overflow_infinity (type)
: TYPE_MAX_VALUE (type)),
vr->equiv);
}
/* Set value range VR to a non-NULL range of type TYPE. */
static inline void
set_value_range_to_nonnull (value_range *vr, tree type)
{
tree zero = build_int_cst (type, 0);
set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
}
/* Set value range VR to a NULL range of type TYPE. */
static inline void
set_value_range_to_null (value_range *vr, tree type)
{
set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
}
/* Set value range VR to a range of a truthvalue of type TYPE. */
static inline void
set_value_range_to_truthvalue (value_range *vr, tree type)
{
if (TYPE_PRECISION (type) == 1)
set_value_range_to_varying (vr);
else
set_value_range (vr, VR_RANGE,
build_int_cst (type, 0), build_int_cst (type, 1),
vr->equiv);
}
/* If abs (min) < abs (max), set VR to [-max, max], if
abs (min) >= abs (max), set VR to [-min, min]. */
static void
abs_extent_range (value_range *vr, tree min, tree max)
{
int cmp;
gcc_assert (TREE_CODE (min) == INTEGER_CST);
gcc_assert (TREE_CODE (max) == INTEGER_CST);
gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
{
set_value_range_to_varying (vr);
return;
}
cmp = compare_values (min, max);
if (cmp == -1)
min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
else if (cmp == 0 || cmp == 1)
{
max = min;
min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
}
else
{
set_value_range_to_varying (vr);
return;
}
set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
}
/* Return value range information for VAR.
If we have no values ranges recorded (ie, VRP is not running), then
return NULL. Otherwise create an empty range if none existed for VAR. */
static value_range *
get_value_range (const_tree var)
{
static const value_range vr_const_varying
= { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
value_range *vr;
tree sym;
unsigned ver = SSA_NAME_VERSION (var);
/* If we have no recorded ranges, then return NULL. */
if (! vr_value)
return NULL;
/* If we query the range for a new SSA name return an unmodifiable VARYING.
We should get here at most from the substitute-and-fold stage which
will never try to change values. */
if (ver >= num_vr_values)
return CONST_CAST (value_range *, &vr_const_varying);
vr = vr_value[ver];
if (vr)
return vr;
/* After propagation finished do not allocate new value-ranges. */
if (values_propagated)
return CONST_CAST (value_range *, &vr_const_varying);
/* Create a default value range. */
vr_value[ver] = vr = vrp_value_range_pool.allocate ();
memset (vr, 0, sizeof (*vr));
/* Defer allocating the equivalence set. */
vr->equiv = NULL;
/* If VAR is a default definition of a parameter, the variable can
take any value in VAR's type. */
if (SSA_NAME_IS_DEFAULT_DEF (var))
{
sym = SSA_NAME_VAR (var);
if (TREE_CODE (sym) == PARM_DECL)
{
/* Try to use the "nonnull" attribute to create ~[0, 0]
anti-ranges for pointers. Note that this is only valid with
default definitions of PARM_DECLs. */
if (POINTER_TYPE_P (TREE_TYPE (sym))
&& (nonnull_arg_p (sym)
|| get_ptr_nonnull (var)))
set_value_range_to_nonnull (vr, TREE_TYPE (sym));
else if (INTEGRAL_TYPE_P (TREE_TYPE (sym)))
{
wide_int min, max;
value_range_type rtype = get_range_info (var, &min, &max);
if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
set_value_range (vr, rtype,
wide_int_to_tree (TREE_TYPE (var), min),
wide_int_to_tree (TREE_TYPE (var), max),
NULL);
else
set_value_range_to_varying (vr);
}
else
set_value_range_to_varying (vr);
}
else if (TREE_CODE (sym) == RESULT_DECL
&& DECL_BY_REFERENCE (sym))
set_value_range_to_nonnull (vr, TREE_TYPE (sym));
}
return vr;
}
/* Set value-ranges of all SSA names defined by STMT to varying. */
static void
set_defs_to_varying (gimple *stmt)
{
ssa_op_iter i;
tree def;
FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
{
value_range *vr = get_value_range (def);
/* Avoid writing to vr_const_varying get_value_range may return. */
if (vr->type != VR_VARYING)
set_value_range_to_varying (vr);
}
}
/* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
static inline bool
vrp_operand_equal_p (const_tree val1, const_tree val2)
{
if (val1 == val2)
return true;
if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
return false;
return is_overflow_infinity (val1) == is_overflow_infinity (val2);
}
/* Return true, if the bitmaps B1 and B2 are equal. */
static inline bool
vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
{
return (b1 == b2
|| ((!b1 || bitmap_empty_p (b1))
&& (!b2 || bitmap_empty_p (b2)))
|| (b1 && b2
&& bitmap_equal_p (b1, b2)));
}
/* Update the value range and equivalence set for variable VAR to
NEW_VR. Return true if NEW_VR is different from VAR's previous
value.
NOTE: This function assumes that NEW_VR is a temporary value range
object created for the sole purpose of updating VAR's range. The
storage used by the equivalence set from NEW_VR will be freed by
this function. Do not call update_value_range when NEW_VR
is the range object associated with another SSA name. */
static inline bool
update_value_range (const_tree var, value_range *new_vr)
{
value_range *old_vr;
bool is_new;
/* If there is a value-range on the SSA name from earlier analysis
factor that in. */
if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
{
wide_int min, max;
value_range_type rtype = get_range_info (var, &min, &max);
if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
{
tree nr_min, nr_max;
/* Range info on SSA names doesn't carry overflow information
so make sure to preserve the overflow bit on the lattice. */
if (rtype == VR_RANGE
&& needs_overflow_infinity (TREE_TYPE (var))
&& (new_vr->type == VR_VARYING
|| (new_vr->type == VR_RANGE
&& is_negative_overflow_infinity (new_vr->min)))
&& wi::eq_p (vrp_val_min (TREE_TYPE (var)), min))
nr_min = negative_overflow_infinity (TREE_TYPE (var));
else
nr_min = wide_int_to_tree (TREE_TYPE (var), min);
if (rtype == VR_RANGE
&& needs_overflow_infinity (TREE_TYPE (var))
&& (new_vr->type == VR_VARYING
|| (new_vr->type == VR_RANGE
&& is_positive_overflow_infinity (new_vr->max)))
&& wi::eq_p (vrp_val_max (TREE_TYPE (var)), max))
nr_max = positive_overflow_infinity (TREE_TYPE (var));
else
nr_max = wide_int_to_tree (TREE_TYPE (var), max);
value_range nr = VR_INITIALIZER;
set_and_canonicalize_value_range (&nr, rtype, nr_min, nr_max, NULL);
vrp_intersect_ranges (new_vr, &nr);
}
}
/* Update the value range, if necessary. */
old_vr = get_value_range (var);
is_new = old_vr->type != new_vr->type
|| !vrp_operand_equal_p (old_vr->min, new_vr->min)
|| !vrp_operand_equal_p (old_vr->max, new_vr->max)
|| !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
if (is_new)
{
/* Do not allow transitions up the lattice. The following
is slightly more awkward than just new_vr->type < old_vr->type
because VR_RANGE and VR_ANTI_RANGE need to be considered
the same. We may not have is_new when transitioning to
UNDEFINED. If old_vr->type is VARYING, we shouldn't be
called. */
if (new_vr->type == VR_UNDEFINED)
{
BITMAP_FREE (new_vr->equiv);
set_value_range_to_varying (old_vr);
set_value_range_to_varying (new_vr);
return true;
}
else
set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
new_vr->equiv);
}
BITMAP_FREE (new_vr->equiv);
return is_new;
}
/* Add VAR and VAR's equivalence set to EQUIV. This is the central
point where equivalence processing can be turned on/off. */
static void
add_equivalence (bitmap *equiv, const_tree var)
{
unsigned ver = SSA_NAME_VERSION (var);
value_range *vr = get_value_range (var);
if (*equiv == NULL)
*equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
bitmap_set_bit (*equiv, ver);
if (vr && vr->equiv)
bitmap_ior_into (*equiv, vr->equiv);
}
/* Return true if VR is ~[0, 0]. */
static inline bool
range_is_nonnull (value_range *vr)
{
return vr->type == VR_ANTI_RANGE
&& integer_zerop (vr->min)
&& integer_zerop (vr->max);
}
/* Return true if VR is [0, 0]. */
static inline bool
range_is_null (value_range *vr)
{
return vr->type == VR_RANGE
&& integer_zerop (vr->min)
&& integer_zerop (vr->max);
}
/* Return true if max and min of VR are INTEGER_CST. It's not necessary
a singleton. */
static inline bool
range_int_cst_p (value_range *vr)
{
return (vr->type == VR_RANGE
&& TREE_CODE (vr->max) == INTEGER_CST
&& TREE_CODE (vr->min) == INTEGER_CST);
}
/* Return true if VR is a INTEGER_CST singleton. */
static inline bool
range_int_cst_singleton_p (value_range *vr)
{
return (range_int_cst_p (vr)
&& !is_overflow_infinity (vr->min)
&& !is_overflow_infinity (vr->max)
&& tree_int_cst_equal (vr->min, vr->max));
}
/* Return true if value range VR involves at least one symbol. */
static inline bool
symbolic_range_p (value_range *vr)
{
return (!is_gimple_min_invariant (vr->min)
|| !is_gimple_min_invariant (vr->max));
}
/* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
otherwise. We only handle additive operations and set NEG to true if the
symbol is negated and INV to the invariant part, if any. */
static tree
get_single_symbol (tree t, bool *neg, tree *inv)
{
bool neg_;
tree inv_;
*inv = NULL_TREE;
*neg = false;
if (TREE_CODE (t) == PLUS_EXPR
|| TREE_CODE (t) == POINTER_PLUS_EXPR
|| TREE_CODE (t) == MINUS_EXPR)
{
if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
{
neg_ = (TREE_CODE (t) == MINUS_EXPR);
inv_ = TREE_OPERAND (t, 0);
t = TREE_OPERAND (t, 1);
}
else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
{
neg_ = false;
inv_ = TREE_OPERAND (t, 1);
t = TREE_OPERAND (t, 0);
}
else
return NULL_TREE;
}
else
{
neg_ = false;
inv_ = NULL_TREE;
}
if (TREE_CODE (t) == NEGATE_EXPR)
{
t = TREE_OPERAND (t, 0);
neg_ = !neg_;
}
if (TREE_CODE (t) != SSA_NAME)
return NULL_TREE;
*neg = neg_;
*inv = inv_;
return t;
}
/* The reverse operation: build a symbolic expression with TYPE
from symbol SYM, negated according to NEG, and invariant INV. */
static tree
build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
{
const bool pointer_p = POINTER_TYPE_P (type);
tree t = sym;
if (neg)
t = build1 (NEGATE_EXPR, type, t);
if (integer_zerop (inv))
return t;
return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
}
/* Return true if value range VR involves exactly one symbol SYM. */
static bool
symbolic_range_based_on_p (value_range *vr, const_tree sym)
{
bool neg, min_has_symbol, max_has_symbol;
tree inv;
if (is_gimple_min_invariant (vr->min))
min_has_symbol = false;
else if (get_single_symbol (vr->min, &neg, &inv) == sym)
min_has_symbol = true;
else
return false;
if (is_gimple_min_invariant (vr->max))
max_has_symbol = false;
else if (get_single_symbol (vr->max, &neg, &inv) == sym)
max_has_symbol = true;
else
return false;
return (min_has_symbol || max_has_symbol);
}
/* Return true if value range VR uses an overflow infinity. */
static inline bool
overflow_infinity_range_p (value_range *vr)
{
return (vr->type == VR_RANGE
&& (is_overflow_infinity (vr->min)
|| is_overflow_infinity (vr->max)));
}
/* Return false if we can not make a valid comparison based on VR;
this will be the case if it uses an overflow infinity and overflow
is not undefined (i.e., -fno-strict-overflow is in effect).
Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
uses an overflow infinity. */
static bool
usable_range_p (value_range *vr, bool *strict_overflow_p)
{
gcc_assert (vr->type == VR_RANGE);
if (is_overflow_infinity (vr->min))
{
*strict_overflow_p = true;
if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
return false;
}
if (is_overflow_infinity (vr->max))
{
*strict_overflow_p = true;
if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
return false;
}
return true;
}
/* Return true if the result of assignment STMT is know to be non-zero.
If the return value is based on the assumption that signed overflow is
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
*STRICT_OVERFLOW_P.*/
static bool
gimple_assign_nonzero_warnv_p (gimple *stmt, bool *strict_overflow_p)
{
enum tree_code code = gimple_assign_rhs_code (stmt);
switch (get_gimple_rhs_class (code))
{
case GIMPLE_UNARY_RHS:
return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
gimple_expr_type (stmt),
gimple_assign_rhs1 (stmt),
strict_overflow_p);
case GIMPLE_BINARY_RHS:
return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
gimple_expr_type (stmt),
gimple_assign_rhs1 (stmt),
gimple_assign_rhs2 (stmt),
strict_overflow_p);
case GIMPLE_TERNARY_RHS:
return false;
case GIMPLE_SINGLE_RHS:
return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
strict_overflow_p);
case GIMPLE_INVALID_RHS:
gcc_unreachable ();
default:
gcc_unreachable ();
}
}
/* Return true if STMT is known to compute a non-zero value.
If the return value is based on the assumption that signed overflow is
undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
*STRICT_OVERFLOW_P.*/
static bool
gimple_stmt_nonzero_warnv_p (gimple *stmt, bool *strict_overflow_p)
{
switch (gimple_code (stmt))
{
case GIMPLE_ASSIGN:
return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
case GIMPLE_CALL:
{
tree fndecl = gimple_call_fndecl (stmt);
if (!fndecl) return false;
if (flag_delete_null_pointer_checks && !flag_check_new
&& DECL_IS_OPERATOR_NEW (fndecl)
&& !TREE_NOTHROW (fndecl))
return true;
/* References are always non-NULL. */
if (flag_delete_null_pointer_checks
&& TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
return true;
if (flag_delete_null_pointer_checks &&
lookup_attribute ("returns_nonnull",
TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
return true;
gcall *call_stmt = as_a<gcall *> (stmt);
unsigned rf = gimple_call_return_flags (call_stmt);
if (rf & ERF_RETURNS_ARG)
{
unsigned argnum = rf & ERF_RETURN_ARG_MASK;
if (argnum < gimple_call_num_args (call_stmt))
{
tree arg = gimple_call_arg (call_stmt, argnum);
if (SSA_VAR_P (arg)
&& infer_nonnull_range_by_attribute (stmt, arg))
return true;
}
}
return gimple_alloca_call_p (stmt);
}
default:
gcc_unreachable ();
}
}
/* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
obtained so far. */
static bool
vrp_stmt_computes_nonzero (gimple *stmt, bool *strict_overflow_p)
{
if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
return true;
/* If we have an expression of the form &X->a, then the expression
is nonnull if X is nonnull. */
if (is_gimple_assign (stmt)
&& gimple_assign_rhs_code (stmt) == ADDR_EXPR)
{
tree expr = gimple_assign_rhs1 (stmt);
tree base = get_base_address (TREE_OPERAND (expr, 0));
if (base != NULL_TREE
&& TREE_CODE (base) == MEM_REF
&& TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
{
value_range *vr = get_value_range (TREE_OPERAND (base, 0));
if (range_is_nonnull (vr))
return true;
}
}
return false;
}
/* Returns true if EXPR is a valid value (as expected by compare_values) --
a gimple invariant, or SSA_NAME +- CST. */
static bool
valid_value_p (tree expr)
{
if (TREE_CODE (expr) == SSA_NAME)
return true;
if (TREE_CODE (expr) == PLUS_EXPR
|| TREE_CODE (expr) == MINUS_EXPR)
return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
&& TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
return is_gimple_min_invariant (expr);
}
/* Return
1 if VAL < VAL2
0 if !(VAL < VAL2)
-2 if those are incomparable. */
static inline int
operand_less_p (tree val, tree val2)
{
/* LT is folded faster than GE and others. Inline the common case. */
if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
{
if (! is_positive_overflow_infinity (val2))
return tree_int_cst_lt (val, val2);
}
else
{
tree tcmp;
fold_defer_overflow_warnings ();
tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
fold_undefer_and_ignore_overflow_warnings ();
if (!tcmp
|| TREE_CODE (tcmp) != INTEGER_CST)
return -2;
if (!integer_zerop (tcmp))
return 1;
}
/* val >= val2, not considering overflow infinity. */
if (is_negative_overflow_infinity (val))
return is_negative_overflow_infinity (val2) ? 0 : 1;
else if (is_positive_overflow_infinity (val2))
return is_positive_overflow_infinity (val) ? 0 : 1;
return 0;
}
/* Compare two values VAL1 and VAL2. Return
-2 if VAL1 and VAL2 cannot be compared at compile-time,
-1 if VAL1 < VAL2,
0 if VAL1 == VAL2,
+1 if VAL1 > VAL2, and
+2 if VAL1 != VAL2
This is similar to tree_int_cst_compare but supports pointer values
and values that cannot be compared at compile time.
If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
true if the return value is only valid if we assume that signed
overflow is undefined. */
static int
compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
{
if (val1 == val2)
return 0;
/* Below we rely on the fact that VAL1 and VAL2 are both pointers or
both integers. */
gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
== POINTER_TYPE_P (TREE_TYPE (val2)));
/* Convert the two values into the same type. This is needed because
sizetype causes sign extension even for unsigned types. */
val2 = fold_convert (TREE_TYPE (val1), val2);
STRIP_USELESS_TYPE_CONVERSION (val2);
const bool overflow_undefined
= INTEGRAL_TYPE_P (TREE_TYPE (val1))
&& TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
tree inv1, inv2;
bool neg1, neg2;
tree sym1 = get_single_symbol (val1, &neg1, &inv1);
tree sym2 = get_single_symbol (val2, &neg2, &inv2);
/* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
if (sym1 && sym2)
{
/* Both values must use the same name with the same sign. */
if (sym1 != sym2 || neg1 != neg2)
return -2;
/* [-]NAME + CST == [-]NAME + CST. */
if (inv1 == inv2)
return 0;
/* If overflow is defined we cannot simplify more. */
if (!overflow_undefined)
return -2;
if (strict_overflow_p != NULL
&& (!inv1 || !TREE_NO_WARNING (val1))
&& (!inv2 || !TREE_NO_WARNING (val2)))
*strict_overflow_p = true;
if (!inv1)
inv1 = build_int_cst (TREE_TYPE (val1), 0);
if (!inv2)
inv2 = build_int_cst (TREE_TYPE (val2), 0);
return compare_values_warnv (inv1, inv2, strict_overflow_p);
}
const bool cst1 = is_gimple_min_invariant (val1);
const bool cst2 = is_gimple_min_invariant (val2);
/* If one is of the form '[-]NAME + CST' and the other is constant, then
it might be possible to say something depending on the constants. */
if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
{
if (!overflow_undefined)
return -2;
if (strict_overflow_p != NULL
&& (!sym1 || !TREE_NO_WARNING (val1))
&& (!sym2 || !TREE_NO_WARNING (val2)))
*strict_overflow_p = true;
const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
tree cst = cst1 ? val1 : val2;
tree inv = cst1 ? inv2 : inv1;
/* Compute the difference between the constants. If it overflows or
underflows, this means that we can trivially compare the NAME with
it and, consequently, the two values with each other. */
wide_int diff = wi::sub (cst, inv);
if (wi::cmp (0, inv, sgn) != wi::cmp (diff, cst, sgn))
{
const int res = wi::cmp (cst, inv, sgn);
return cst1 ? res : -res;
}
return -2;
}
/* We cannot say anything more for non-constants. */
if (!cst1 || !cst2)
return -2;
if (!POINTER_TYPE_P (TREE_TYPE (val1)))
{
/* We cannot compare overflowed values, except for overflow
infinities. */
if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
{
if (strict_overflow_p != NULL)
*strict_overflow_p = true;
if (is_negative_overflow_infinity (val1))
return is_negative_overflow_infinity (val2) ? 0 : -1;
else if (is_negative_overflow_infinity (val2))
return 1;
else if (is_positive_overflow_infinity (val1))
return is_positive_overflow_infinity (val2) ? 0 : 1;
else if (is_positive_overflow_infinity (val2))
return -1;
return -2;
}
return tree_int_cst_compare (val1, val2);
}
else
{
tree t;
/* First see if VAL1 and VAL2 are not the same. */
if (val1 == val2 || operand_equal_p (val1, val2, 0))
return 0;
/* If VAL1 is a lower address than VAL2, return -1. */
if (operand_less_p (val1, val2) == 1)
return -1;
/* If VAL1 is a higher address than VAL2, return +1. */
if (operand_less_p (val2, val1) == 1)
return 1;
/* If VAL1 is different than VAL2, return +2.
For integer constants we either have already returned -1 or 1
or they are equivalent. We still might succeed in proving
something about non-trivial operands. */
if (TREE_CODE (val1) != INTEGER_CST
|| TREE_CODE (val2) != INTEGER_CST)
{
t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
if (t && integer_onep (t))
return 2;
}
return -2;
}
}
/* Compare values like compare_values_warnv, but treat comparisons of
nonconstants which rely on undefined overflow as incomparable. */
static int
compare_values (tree val1, tree val2)
{
bool sop;
int ret;
sop = false;
ret = compare_values_warnv (val1, val2, &sop);
if (sop
&& (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
ret = -2;
return ret;
}
/* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
0 if VAL is not inside [MIN, MAX],
-2 if we cannot tell either way.
Benchmark compile/20001226-1.c compilation time after changing this
function. */
static inline int
value_inside_range (tree val, tree min, tree max)
{
int cmp1, cmp2;
cmp1 = operand_less_p (val, min);
if (cmp1 == -2)
return -2;
if (cmp1 == 1)
return 0;
cmp2 = operand_less_p (max, val);
if (cmp2 == -2)
return -2;
return !cmp2;
}
/* Return true if value ranges VR0 and VR1 have a non-empty
intersection.
Benchmark compile/20001226-1.c compilation time after changing this
function.
*/
static inline bool
value_ranges_intersect_p (value_range *vr0, value_range *vr1)
{
/* The value ranges do not intersect if the maximum of the first range is
less than the minimum of the second range or vice versa.
When those relations are unknown, we can't do any better. */
if (operand_less_p (vr0->max, vr1->min) != 0)
return false;
if (operand_less_p (vr1->max, vr0->min) != 0)
return false;
return true;
}
/* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
include the value zero, -2 if we cannot tell. */
static inline int
range_includes_zero_p (tree min, tree max)
{
tree zero = build_int_cst (TREE_TYPE (min), 0);
return value_inside_range (zero, min, max);
}
/* Return true if *VR is know to only contain nonnegative values. */
static inline bool
value_range_nonnegative_p (value_range *vr)
{
/* Testing for VR_ANTI_RANGE is not useful here as any anti-range
which would return a useful value should be encoded as a
VR_RANGE. */
if (vr->type == VR_RANGE)
{
int result = compare_values (vr->min, integer_zero_node);
return (result == 0 || result == 1);
}
return false;
}
/* If *VR has a value rante that is a single constant value return that,
otherwise return NULL_TREE. */
static tree
value_range_constant_singleton (value_range *vr)
{
if (vr->type == VR_RANGE
&& vrp_operand_equal_p (vr->min, vr->max)
&& is_gimple_min_invariant (vr->min))
return vr->min;
return NULL_TREE;
}
/* If OP has a value range with a single constant value return that,
otherwise return NULL_TREE. This returns OP itself if OP is a
constant. */
static tree
op_with_constant_singleton_value_range (tree op)
{
if (is_gimple_min_invariant (op))
return op;
if (TREE_CODE (op) != SSA_NAME)
return NULL_TREE;
return value_range_constant_singleton (get_value_range (op));
}
/* Return true if op is in a boolean [0, 1] value-range. */
static bool
op_with_boolean_value_range_p (tree op)
{
value_range *vr;
if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
return true;
if (integer_zerop (op)
|| integer_onep (op))
return true;
if (TREE_CODE (op) != SSA_NAME)
return false;
vr = get_value_range (op);
return (vr->type == VR_RANGE
&& integer_zerop (vr->min)
&& integer_onep (vr->max));
}
/* Extract value range information for VAR when (OP COND_CODE LIMIT) is
true and store it in *VR_P. */
static void
extract_range_for_var_from_comparison_expr (tree var, enum tree_code cond_code,
tree op, tree limit,
value_range *vr_p)
{
tree min, max, type;
value_range *limit_vr;
limit = avoid_overflow_infinity (limit);
type = TREE_TYPE (var);
gcc_assert (limit != var);
/* For pointer arithmetic, we only keep track of pointer equality
and inequality. */
if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
{
set_value_range_to_varying (vr_p);
return;
}
/* If LIMIT is another SSA name and LIMIT has a range of its own,
try to use LIMIT's range to avoid creating symbolic ranges
unnecessarily. */
limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
/* LIMIT's range is only interesting if it has any useful information. */
if (! limit_vr
|| limit_vr->type == VR_UNDEFINED
|| limit_vr->type == VR_VARYING
|| (symbolic_range_p (limit_vr)
&& ! (limit_vr->type == VR_RANGE
&& (limit_vr->min == limit_vr->max
|| operand_equal_p (limit_vr->min, limit_vr->max, 0)))))
limit_vr = NULL;
/* Initially, the new range has the same set of equivalences of
VAR's range. This will be revised before returning the final
value. Since assertions may be chained via mutually exclusive
predicates, we will need to trim the set of equivalences before
we are done. */
gcc_assert (vr_p->equiv == NULL);
add_equivalence (&vr_p->equiv, var);
/* Extract a new range based on the asserted comparison for VAR and
LIMIT's value range. Notice that if LIMIT has an anti-range, we
will only use it for equality comparisons (EQ_EXPR). For any
other kind of assertion, we cannot derive a range from LIMIT's
anti-range that can be used to describe the new range. For
instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
no single range for x_2 that could describe LE_EXPR, so we might
as well build the range [b_4, +INF] for it.
One special case we handle is extracting a range from a
range test encoded as (unsigned)var + CST <= limit. */
if (TREE_CODE (op) == NOP_EXPR
|| TREE_CODE (op) == PLUS_EXPR)
{
if (TREE_CODE (op) == PLUS_EXPR)
{
min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (op, 1)),
TREE_OPERAND (op, 1));
max = int_const_binop (PLUS_EXPR, limit, min);
op = TREE_OPERAND (op, 0);
}
else
{
min = build_int_cst (TREE_TYPE (var), 0);
max = limit;
}
/* Make sure to not set TREE_OVERFLOW on the final type
conversion. We are willingly interpreting large positive
unsigned values as negative signed values here. */
min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
/* We can transform a max, min range to an anti-range or
vice-versa. Use set_and_canonicalize_value_range which does
this for us. */
if (cond_code == LE_EXPR)
set_and_canonicalize_value_range (vr_p, VR_RANGE,
min, max, vr_p->equiv);
else if (cond_code == GT_EXPR)
set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
min, max, vr_p->equiv);
else
gcc_unreachable ();
}
else if (cond_code == EQ_EXPR)
{
enum value_range_type range_type;
if (limit_vr)
{
range_type = limit_vr->type;
min = limit_vr->min;
max = limit_vr->max;
}
else
{
range_type = VR_RANGE;
min = limit;
max = limit;
}
set_value_range (vr_p, range_type, min, max, vr_p->equiv);
/* When asserting the equality VAR == LIMIT and LIMIT is another
SSA name, the new range will also inherit the equivalence set
from LIMIT. */
if (TREE_CODE (limit) == SSA_NAME)
add_equivalence (&vr_p->equiv, limit);
}
else if (cond_code == NE_EXPR)
{
/* As described above, when LIMIT's range is an anti-range and
this assertion is an inequality (NE_EXPR), then we cannot
derive anything from the anti-range. For instance, if
LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
not imply that VAR's range is [0, 0]. So, in the case of
anti-ranges, we just assert the inequality using LIMIT and
not its anti-range.
If LIMIT_VR is a range, we can only use it to build a new
anti-range if LIMIT_VR is a single-valued range. For
instance, if LIMIT_VR is [0, 1], the predicate
VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
Rather, it means that for value 0 VAR should be ~[0, 0]
and for value 1, VAR should be ~[1, 1]. We cannot
represent these ranges.
The only situation in which we can build a valid
anti-range is when LIMIT_VR is a single-valued range
(i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
if (limit_vr
&& limit_vr->type == VR_RANGE
&& compare_values (limit_vr->min, limit_vr->max) == 0)
{
min = limit_vr->min;
max = limit_vr->max;
}
else
{
/* In any other case, we cannot use LIMIT's range to build a
valid anti-range. */
min = max = limit;
}
/* If MIN and MAX cover the whole range for their type, then
just use the original LIMIT. */
if (INTEGRAL_TYPE_P (type)
&& vrp_val_is_min (min)
&& vrp_val_is_max (max))
min = max = limit;
set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
min, max, vr_p->equiv);
}
else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
{
min = TYPE_MIN_VALUE (type);
if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
max = limit;
else
{
/* If LIMIT_VR is of the form [N1, N2], we need to build the
range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
LT_EXPR. */
max = limit_vr->max;
}
/* If the maximum value forces us to be out of bounds, simply punt.
It would be pointless to try and do anything more since this
all should be optimized away above us. */
if ((cond_code == LT_EXPR
&& compare_values (max, min) == 0)
|| is_overflow_infinity (max))
set_value_range_to_varying (vr_p);
else
{
/* For LT_EXPR, we create the range [MIN, MAX - 1]. */
if (cond_code == LT_EXPR)
{
if (TYPE_PRECISION (TREE_TYPE (max)) == 1
&& !TYPE_UNSIGNED (TREE_TYPE (max)))
max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
build_int_cst (TREE_TYPE (max), -1));
else
max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
build_int_cst (TREE_TYPE (max), 1));
if (EXPR_P (max))
TREE_NO_WARNING (max) = 1;
}
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
}
}
else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
{
max = TYPE_MAX_VALUE (type);
if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
min = limit;
else
{
/* If LIMIT_VR is of the form [N1, N2], we need to build the
range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
GT_EXPR. */
min = limit_vr->min;
}
/* If the minimum value forces us to be out of bounds, simply punt.
It would be pointless to try and do anything more since this
all should be optimized away above us. */
if ((cond_code == GT_EXPR
&& compare_values (min, max) == 0)
|| is_overflow_infinity (min))
set_value_range_to_varying (vr_p);
else
{
/* For GT_EXPR, we create the range [MIN + 1, MAX]. */
if (cond_code == GT_EXPR)
{
if (TYPE_PRECISION (TREE_TYPE (min)) == 1
&& !TYPE_UNSIGNED (TREE_TYPE (min)))
min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
build_int_cst (TREE_TYPE (min), -1));
else
min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
build_int_cst (TREE_TYPE (min), 1));
if (EXPR_P (min))
TREE_NO_WARNING (min) = 1;
}
set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
}
}
else
gcc_unreachable ();
/* Finally intersect the new range with what we already know about var. */
vrp_intersect_ranges (vr_p, get_value_range (var));
}
/* Extract value range information from an ASSERT_EXPR EXPR and store
it in *VR_P. */
static void
extract_range_from_assert (value_range *vr_p, tree expr)
{
tree var = ASSERT_EXPR_VAR (expr);
tree cond = ASSERT_EXPR_COND (expr);
tree limit, op;
enum tree_code cond_code;
gcc_assert (COMPARISON_CLASS_P (cond));
/* Find VAR in the ASSERT_EXPR conditional. */
if (var == TREE_OPERAND (cond, 0)
|| TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
|| TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
{
/* If the predicate is of the form VAR COMP LIMIT, then we just
take LIMIT from the RHS and use the same comparison code. */
cond_code = TREE_CODE (cond);
limit = TREE_OPERAND (cond, 1);
op = TREE_OPERAND (cond, 0);
}
else
{
/* If the predicate is of the form LIMIT COMP VAR, then we need
to flip around the comparison code to create the proper range
for VAR. */
cond_code = swap_tree_comparison (TREE_CODE (cond));
limit = TREE_OPERAND (cond, 0);
op = TREE_OPERAND (cond, 1);
}
extract_range_for_var_from_comparison_expr (var, cond_code, op,
limit, vr_p);
}
/* Extract range information from SSA name VAR and store it in VR. If
VAR has an interesting range, use it. Otherwise, create the
range [VAR, VAR] and return it. This is useful in situations where
we may have conditionals testing values of VARYING names. For
instance,
x_3 = y_5;
if (x_3 > y_5)
...
Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
always false. */
static void
extract_range_from_ssa_name (value_range *vr, tree var)
{
value_range *var_vr = get_value_range (var);
if (var_vr->type != VR_VARYING)
copy_value_range (vr, var_vr);
else
set_value_range (vr, VR_RANGE, var, var, NULL);
add_equivalence (&vr->equiv, var);
}
/* Wrapper around int_const_binop. If the operation overflows and we
are not using wrapping arithmetic, then adjust the result to be
-INF or +INF depending on CODE, VAL1 and VAL2. This can return
NULL_TREE if we need to use an overflow infinity representation but
the type does not support it. */
static tree
vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
{
tree res;
res = int_const_binop (code, val1, val2);
/* If we are using unsigned arithmetic, operate symbolically
on -INF and +INF as int_const_binop only handles signed overflow. */
if (TYPE_UNSIGNED (TREE_TYPE (val1)))
{
int checkz = compare_values (res, val1);
bool overflow = false;
/* Ensure that res = val1 [+*] val2 >= val1
or that res = val1 - val2 <= val1. */
if ((code == PLUS_EXPR
&& !(checkz == 1 || checkz == 0))
|| (code == MINUS_EXPR
&& !(checkz == 0 || checkz == -1)))
{
overflow = true;
}
/* Checking for multiplication overflow is done by dividing the
output of the multiplication by the first input of the
multiplication. If the result of that division operation is
not equal to the second input of the multiplication, then the
multiplication overflowed. */
else if (code == MULT_EXPR && !integer_zerop (val1))
{
tree tmp = int_const_binop (TRUNC_DIV_EXPR,
res,
val1);
int check = compare_values (tmp, val2);
if (check != 0)
overflow = true;
}
if (overflow)
{
res = copy_node (res);
TREE_OVERFLOW (res) = 1;
}
}
else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
/* If the singed operation wraps then int_const_binop has done
everything we want. */
;
/* Signed division of -1/0 overflows and by the time it gets here
returns NULL_TREE. */
else if (!res)
return NULL_TREE;
else if ((TREE_OVERFLOW (res)
&& !TREE_OVERFLOW (val1)
&& !TREE_OVERFLOW (val2))
|| is_overflow_infinity (val1)
|| is_overflow_infinity (val2))
{
/* If the operation overflowed but neither VAL1 nor VAL2 are
overflown, return -INF or +INF depending on the operation
and the combination of signs of the operands. */
int sgn1 = tree_int_cst_sgn (val1);
int sgn2 = tree_int_cst_sgn (val2);
if (needs_overflow_infinity (TREE_TYPE (res))
&& !supports_overflow_infinity (TREE_TYPE (res)))
return NULL_TREE;
/* We have to punt on adding infinities of different signs,
since we can't tell what the sign of the result should be.
Likewise for subtracting infinities of the same sign. */
if (((code == PLUS_EXPR && sgn1 != sgn2)
|| (code == MINUS_EXPR && sgn1 == sgn2))
&& is_overflow_infinity (val1)
&& is_overflow_infinity (val2))
return NULL_TREE;
/* Don't try to handle division or shifting of infinities. */
if ((code == TRUNC_DIV_EXPR
|| code == FLOOR_DIV_EXPR
|| code == CEIL_DIV_EXPR
|| code == EXACT_DIV_EXPR
|| code == ROUND_DIV_EXPR
|| code == RSHIFT_EXPR)
&& (is_overflow_infinity (val1)
|| is_overflow_infinity (val2)))
return NULL_TREE;
/* Notice that we only need to handle the restricted set of
operations handled by extract_range_from_binary_expr.
Among them, only multiplication, addition and subtraction
can yield overflow without overflown operands because we
are working with integral types only... except in the
case VAL1 = -INF and VAL2 = -1 which overflows to +INF
for division too. */
/* For multiplication, the sign of the overflow is given
by the comparison of the signs of the operands. */
if ((code == MULT_EXPR && sgn1 == sgn2)
/* For addition, the operands must be of the same sign
to yield an overflow. Its sign is therefore that
of one of the operands, for example the first. For
infinite operands X + -INF is negative, not positive. */
|| (code == PLUS_EXPR
&& (sgn1 >= 0
? !is_negative_overflow_infinity (val2)
: is_positive_overflow_infinity (val2)))
/* For subtraction, non-infinite operands must be of
different signs to yield an overflow. Its sign is
therefore that of the first operand or the opposite of
that of the second operand. A first operand of 0 counts
as positive here, for the corner case 0 - (-INF), which
overflows, but must yield +INF. For infinite operands 0
- INF is negative, not positive. */
|| (code == MINUS_EXPR
&& (sgn1 >= 0
? !is_positive_overflow_infinity (val2)
: is_negative_overflow_infinity (val2)))
/* We only get in here with positive shift count, so the
overflow direction is the same as the sign of val1.
Actually rshift does not overflow at all, but we only
handle the case of shifting overflowed -INF and +INF. */
|| (code == RSHIFT_EXPR
&& sgn1 >= 0)
/* For division, the only case is -INF / -1 = +INF. */
|| code == TRUNC_DIV_EXPR
|| code == FLOOR_DIV_EXPR
|| code == CEIL_DIV_EXPR
|| code == EXACT_DIV_EXPR
|| code == ROUND_DIV_EXPR)
return (needs_overflow_infinity (TREE_TYPE (res))
? positive_overflow_infinity (TREE_TYPE (res))
: TYPE_MAX_VALUE (TREE_TYPE (res)));
else
return (needs_overflow_infinity (TREE_TYPE (res))
? negative_overflow_infinity (TREE_TYPE (res))
: TYPE_MIN_VALUE (TREE_TYPE (res)));
}
return res;
}
/* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
bitmask if some bit is unset, it means for all numbers in the range
the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
bitmask if some bit is set, it means for all numbers in the range
the bit is 1, otherwise it might be 0 or 1. */
static bool
zero_nonzero_bits_from_vr (const tree expr_type,
value_range *vr,
wide_int *may_be_nonzero,
wide_int *must_be_nonzero)
{
*may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
*must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
if (!range_int_cst_p (vr)
|| is_overflow_infinity (vr->min)
|| is_overflow_infinity (vr->max))
return false;
if (range_int_cst_singleton_p (vr))
{
*may_be_nonzero = vr->min;
*must_be_nonzero = *may_be_nonzero;
}
else if (tree_int_cst_sgn (vr->min) >= 0
|| tree_int_cst_sgn (vr->max) < 0)
{
wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
*may_be_nonzero = wi::bit_or (vr->min, vr->max);
*must_be_nonzero = wi::bit_and (vr->min, vr->max);
if (xor_mask != 0)
{
wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
may_be_nonzero->get_precision ());
*may_be_nonzero = *may_be_nonzero | mask;
*must_be_nonzero = must_be_nonzero->and_not (mask);
}
}
return true;
}
/* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
so that *VR0 U *VR1 == *AR. Returns true if that is possible,
false otherwise. If *AR can be represented with a single range
*VR1 will be VR_UNDEFINED. */
static bool
ranges_from_anti_range (value_range *ar,
value_range *vr0, value_range *vr1)
{
tree type = TREE_TYPE (ar->min);
vr0->type = VR_UNDEFINED;
vr1->type = VR_UNDEFINED;
if (ar->type != VR_ANTI_RANGE
|| TREE_CODE (ar->min) != INTEGER_CST
|| TREE_CODE (ar->max) != INTEGER_CST
|| !vrp_val_min (type)
|| !vrp_val_max (type))
return false;
if (!vrp_val_is_min (ar->min))
{
vr0->type = VR_RANGE;
vr0->min = vrp_val_min (type);
vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
}
if (!vrp_val_is_max (ar->max))
{
vr1->type = VR_RANGE;
vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
vr1->max = vrp_val_max (type);
}
if (vr0->type == VR_UNDEFINED)
{
*vr0 = *vr1;
vr1->type = VR_UNDEFINED;
}
return vr0->type != VR_UNDEFINED;
}
/* Helper to extract a value-range *VR for a multiplicative operation
*VR0 CODE *VR1. */
static void
extract_range_from_multiplicative_op_1 (value_range *vr,
enum tree_code code,
value_range *vr0, value_range *vr1)
{
enum value_range_type type;
tree val[4];
size_t i;
tree min, max;
bool sop;
int cmp;
/* Multiplications, divisions and shifts are a bit tricky to handle,
depending on the mix of signs we have in the two ranges, we
need to operate on different values to get the minimum and
maximum values for the new range. One approach is to figure
out all the variations of range combinations and do the
operations.
However, this involves several calls to compare_values and it
is pretty convoluted. It's simpler to do the 4 operations
(MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
MAX1) and then figure the smallest and largest values to form
the new range. */
gcc_assert (code == MULT_EXPR
|| code == TRUNC_DIV_EXPR
|| code == FLOOR_DIV_EXPR
|| code == CEIL_DIV_EXPR
|| code == EXACT_DIV_EXPR
|| code == ROUND_DIV_EXPR
|| code == RSHIFT_EXPR
|| code == LSHIFT_EXPR);
gcc_assert ((vr0->type == VR_RANGE
|| (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
&& vr0->type == vr1->type);
type = vr0->type;
/* Compute the 4 cross operations. */
sop = false;
val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
if (val[0] == NULL_TREE)
sop = true;
if (vr1->max == vr1->min)
val[1] = NULL_TREE;
else
{
val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
if (val[1] == NULL_TREE)
sop = true;
}
if (vr0->max == vr0->min)
val[2] = NULL_TREE;
else
{
val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
if (val[2] == NULL_TREE)
sop = true;
}
if (vr0->min == vr0->max || vr1->min == vr1->max)
val[3] = NULL_TREE;
else
{
val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
if (val[3] == NULL_TREE)
sop = true;
}
if (sop)
{
set_value_range_to_varying (vr);
return;
}
/* Set MIN to the minimum of VAL[i] and MAX to the maximum
of VAL[i]. */
min = val[0];
max = val[0];
for (i = 1; i < 4; i++)
{
if (!is_gimple_min_invariant (min)
|| (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
|| !is_gimple_min_invariant (max)
|| (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
break;
if (val[i])
{
if (!is_gimple_min_invariant (val[i])
|| (TREE_OVERFLOW (val[i])
&& !is_overflow_infinity (val[i])))
{
/* If we found an overflowed value, set MIN and MAX
to it so that we set the resulting range to
VARYING. */
min = max = val[i];
break;
}
if (compare_values (val[i], min) == -1)
min = val[i];
if (compare_values (val[i], max) == 1)
max = val[i];
}
}
/* If either MIN or MAX overflowed, then set the resulting range to
VARYING. But we do accept an overflow infinity
representation. */
if (min == NULL_TREE
|| !is_gimple_min_invariant (min)
|| (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
|| max == NULL_TREE
|| !is_gimple_min_invariant (max)
|| (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
{
set_value_range_to_varying (vr);
return;
}
/* We punt if:
1) [-INF, +INF]
2) [-INF, +-INF(OVF)]
3) [+-INF(OVF), +INF]
4) [+-INF(OVF), +-INF(OVF)]
We learn nothing when we have INF and INF(OVF) on both sides.
Note that we do accept [-INF, -INF] and [+INF, +INF] without
overflow. */
if ((vrp_val_is_min (min) || is_overflow_infinity (min))
&& (vrp_val_is_max (max) || is_overflow_infinity (max)))
{
set_value_range_to_varying (vr);
return;
}
cmp = compare_values (min, max);
if (cmp == -2 || cmp == 1)
{
/* If the new range has its limits swapped around (MIN > MAX),
then the operation caused one of them to wrap around, mark
the new range VARYING. */
set_value_range_to_varying (vr);
}
else
set_value_range (vr, type, min, max, NULL);
}
/* Extract range information from a binary operation CODE based on
the ranges of each of its operands *VR0 and *VR1 with resulting
type EXPR_TYPE. The resulting range is stored in *VR. */
static void
extract_range_from_binary_expr_1 (value_range *vr,
enum tree_code code, tree expr_type,
value_range *vr0_, value_range *vr1_)
{
value_range vr0 = *vr0_, vr1 = *vr1_;
value_range vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
enum value_range_type type;
tree min = NULL_TREE, max = NULL_TREE;
int cmp;
if (!INTEGRAL_TYPE_P (expr_type)
&& !POINTER_TYPE_P (expr_type))
{
set_value_range_to_varying (vr);
return;
}
/* Not all binary expressions can be applied to ranges in a
meaningful way. Handle only arithmetic operations. */
if (code != PLUS_EXPR
&& code != MINUS_EXPR
&& code != POINTER_PLUS_EXPR
&& code != MULT_EXPR
&& code != TRUNC_DIV_EXPR
&& code != FLOOR_DIV_EXPR
&& code != CEIL_DIV_EXPR
&& code != EXACT_DIV_EXPR
&& code != ROUND_DIV_EXPR
&& code != TRUNC_MOD_EXPR
&& code != RSHIFT_EXPR
&& code != LSHIFT_EXPR
&& code != MIN_EXPR
&& code != MAX_EXPR
&& code != BIT_AND_EXPR
&& code != BIT_IOR_EXPR
&& code != BIT_XOR_EXPR)
{
set_value_range_to_varying (vr);
return;
}
/* If both ranges are UNDEFINED, so is the result. */
if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
{
set_value_range_to_undefined (vr);
return;
}
/* If one of the ranges is UNDEFINED drop it to VARYING for the following
code. At some point we may want to special-case operations that
have UNDEFINED result for all or some value-ranges of the not UNDEFINED
operand. */
else if (vr0.type == VR_UNDEFINED)
set_value_range_to_varying (&vr0);
else if (vr1.type == VR_UNDEFINED)
set_value_range_to_varying (&vr1);
/* We get imprecise results from ranges_from_anti_range when
code is EXACT_DIV_EXPR. We could mask out bits in the resulting
range, but then we also need to hack up vrp_meet. It's just
easier to special case when vr0 is ~[0,0] for EXACT_DIV_EXPR. */
if (code == EXACT_DIV_EXPR
&& vr0.type == VR_ANTI_RANGE
&& vr0.min == vr0.max
&& integer_zerop (vr0.min))
{
set_value_range_to_nonnull (vr, expr_type);
return;
}
/* Now canonicalize anti-ranges to ranges when they are not symbolic
and express ~[] op X as ([]' op X) U ([]'' op X). */
if (vr0.type == VR_ANTI_RANGE
&& ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
{
extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
if (vrtem1.type != VR_UNDEFINED)
{
value_range vrres = VR_INITIALIZER;
extract_range_from_binary_expr_1 (&vrres, code, expr_type,
&vrtem1, vr1_);
vrp_meet (vr, &vrres);
}
return;
}
/* Likewise for X op ~[]. */
if (vr1.type == VR_ANTI_RANGE
&& ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
{
extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
if (vrtem1.type != VR_UNDEFINED)
{
value_range vrres = VR_INITIALIZER;
extract_range_from_binary_expr_1 (&vrres, code, expr_type,
vr0_, &vrtem1);
vrp_meet (vr, &vrres);
}
return;
}
/* The type of the resulting value range defaults to VR0.TYPE. */
type = vr0.type;
/* Refuse to operate on VARYING ranges, ranges of different kinds
and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
because we may be able to derive a useful range even if one of
the operands is VR_VARYING or symbolic range. Similarly for
divisions, MIN/MAX and PLUS/MINUS.
TODO, we may be able to derive anti-ranges in some cases. */
if (code != BIT_AND_EXPR
&& code != BIT_IOR_EXPR
&& code != TRUNC_DIV_EXPR
&& code != FLOOR_DIV_EXPR
&& code != CEIL_DIV_EXPR
&& code != EXACT_DIV_EXPR
&& code != ROUND_DIV_EXPR
&& code != TRUNC_MOD_EXPR
&& code != MIN_EXPR
&& code != MAX_EXPR
&& code != PLUS_EXPR
&& code != MINUS_EXPR
&& code != RSHIFT_EXPR
&& (vr0.type == VR_VARYING
|| vr1.type == VR_VARYING
|| vr0.type != vr1.type
|| symbolic_range_p (&vr0)
|| symbolic_range_p (&vr1)))
{
set_value_range_to_varying (vr);
return;
}
/* Now evaluate the expression to determine the new range. */
if (POINTER_TYPE_P (expr_type))
{
if (code == MIN_EXPR || code == MAX_EXPR)
{
/* For MIN/MAX expressions with pointers, we only care about
nullness, if both are non null, then the result is nonnull.
If both are null, then the result is null. Otherwise they
are varying. */
if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
set_value_range_to_nonnull (vr, expr_type);
else if (range_is_null (&vr0) && range_is_null (&vr1))
set_value_range_to_null (vr, expr_type);
else
set_value_range_to_varying (vr);
}
else if (code == POINTER_PLUS_EXPR)
{
/* For pointer types, we are really only interested in asserting
whether the expression evaluates to non-NULL. */
if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
set_value_range_to_nonnull (vr, expr_type);
else if (range_is_null (&vr0) && range_is_null (&vr1))
set_value_range_to_null (vr, expr_type);
else
set_value_range_to_varying (vr);
}
else if (code == BIT_AND_EXPR)
{
/* For pointer types, we are really only interested in asserting
whether the expression evaluates to non-NULL. */
if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
set_value_range_to_nonnull (vr, expr_type);
else if (range_is_null (&vr0) || range_is_null (&vr1))
set_value_range_to_null (vr, expr_type);
else
set_value_range_to_varying (vr);
}
else
set_value_range_to_varying (vr);
return;
}
/* For integer ranges, apply the operation to each end of the
range and see what we end up with. */
if (code == PLUS_EXPR || code == MINUS_EXPR)
{
const bool minus_p = (code == MINUS_EXPR);
tree min_op0 = vr0.min;
tree min_op1 = minus_p ? vr1.max : vr1.min;
tree max_op0 = vr0.max;
tree max_op1 = minus_p ? vr1.min : vr1.max;
tree sym_min_op0 = NULL_TREE;
tree sym_min_op1 = NULL_TREE;
tree sym_max_op0 = NULL_TREE;
tree sym_max_op1 = NULL_TREE;
bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
/* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
single-symbolic ranges, try to compute the precise resulting range,
but only if we know that this resulting range will also be constant
or single-symbolic. */
if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
&& (TREE_CODE (min_op0) == INTEGER_CST
|| (sym_min_op0
= get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
&& (TREE_CODE (min_op1) == INTEGER_CST
|| (sym_min_op1
= get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
&& (!(sym_min_op0 && sym_min_op1)
|| (sym_min_op0 == sym_min_op1
&& neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
&& (TREE_CODE (max_op0) == INTEGER_CST
|| (sym_max_op0
= get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
&& (TREE_CODE (max_op1) == INTEGER_CST
|| (sym_max_op1
= get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
&& (!(sym_max_op0 && sym_max_op1)
|| (sym_max_op0 == sym_max_op1
&& neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
{
const signop sgn = TYPE_SIGN (expr_type);
const unsigned int prec = TYPE_PRECISION (expr_type);
wide_int type_min, type_max, wmin, wmax;
int min_ovf = 0;
int max_ovf = 0;
/* Get the lower and upper bounds of the type. */
if (TYPE_OVERFLOW_WRAPS (expr_type))
{
type_min = wi::min_value (prec, sgn);
type_max = wi::max_value (prec, sgn);
}
else
{
type_min = vrp_val_min (expr_type);
type_max = vrp_val_max (expr_type);
}
/* Combine the lower bounds, if any. */
if (min_op0 && min_op1)
{
if (minus_p)
{
wmin = wi::sub (min_op0, min_op1);
/* Check for overflow. */
if (wi::cmp (0, min_op1, sgn)
!= wi::cmp (wmin, min_op0, sgn))
min_ovf = wi::cmp (min_op0, min_op1, sgn);
}
else
{
wmin = wi::add (min_op0, min_op1);
/* Check for overflow. */
if (wi::cmp (min_op1, 0, sgn)
!= wi::cmp (wmin, min_op0, sgn))
min_ovf = wi::cmp (min_op0, wmin, sgn);
}
}
else if (min_op0)
wmin = min_op0;
else if (min_op1)
{
if (minus_p)
{
wmin = wi::neg (min_op1);
/* Check for overflow. */
if (sgn == SIGNED && wi::neg_p (min_op1) && wi::neg_p (wmin))
min_ovf = 1;
else if (sgn == UNSIGNED && wi::ne_p (min_op1, 0))
min_ovf = -1;
}
else
wmin = min_op1;
}
else
wmin = wi::shwi (0, prec);
/* Combine the upper bounds, if any. */
if (max_op0 && max_op1)
{
if (minus_p)
{
wmax = wi::sub (max_op0, max_op1);
/* Check for overflow. */
if (wi::cmp (0, max_op1, sgn)
!= wi::cmp (wmax, max_op0, sgn))
max_ovf = wi::cmp (max_op0, max_op1, sgn);
}
else
{
wmax = wi::add (max_op0, max_op1);
if (wi::cmp (max_op1, 0, sgn)
!= wi::cmp (wmax, max_op0, sgn))
max_ovf = wi::cmp (max_op0, wmax, sgn);
}
}
else if (max_op0)
wmax = max_op0;
else if (max_op1)
{
if (minus_p)
{
wmax = wi::neg (max_op1);
/* Check for overflow. */
if (sgn == SIGNED && wi::neg_p (max_op1) && wi::neg_p (wmax))
max_ovf = 1;
else if (sgn == UNSIGNED && wi::ne_p (max_op1, 0))
max_ovf = -1;
}
else
wmax = max_op1;
}
else
wmax = wi::shwi (0, prec);
/* Check for type overflow. */
if (min_ovf == 0)
{
if (wi::cmp (wmin, type_min, sgn) == -1)
min_ovf = -1;
else if (wi::cmp (wmin, type_max, sgn) == 1)
min_ovf = 1;
}
if (max_ovf == 0)
{
if (wi::cmp (wmax, type_min, sgn) == -1)
max_ovf = -1;
else if (wi::cmp (wmax, type_max, sgn) == 1)
max_ovf = 1;
}
/* If the resulting range will be symbolic, we need to eliminate any
explicit or implicit overflow introduced in the above computation
because compare_values could make an incorrect use of it. That's
why we require one of the ranges to be a singleton. */
if ((sym_min_op0 != sym_min_op1 || sym_max_op0 != sym_max_op1)
&& (min_ovf || max_ovf
|| (min_op0 != max_op0 && min_op1 != max_op1)))
{
set_value_range_to_varying (vr);
return;
}
if (TYPE_OVERFLOW_WRAPS (expr_type))
{
/* If overflow wraps, truncate the values and adjust the
range kind and bounds appropriately. */
wide_int tmin = wide_int::from (wmin, prec, sgn);
wide_int tmax = wide_int::from (wmax, prec, sgn);
if (min_ovf == max_ovf)
{
/* No overflow or both overflow or underflow. The
range kind stays VR_RANGE. */
min = wide_int_to_tree (expr_type, tmin);
max = wide_int_to_tree (expr_type, tmax);
}
else if ((min_ovf == -1 && max_ovf == 0)
|| (max_ovf == 1 && min_ovf == 0))
{
/* Min underflow or max overflow. The range kind
changes to VR_ANTI_RANGE. */
bool covers = false;
wide_int tem = tmin;
type = VR_ANTI_RANGE;
tmin = tmax + 1;
if (wi::cmp (tmin, tmax, sgn) < 0)
covers = true;
tmax = tem - 1;
if (wi::cmp (tmax, tem, sgn) > 0)
covers = true;
/* If the anti-range would cover nothing, drop to varying.
Likewise if the anti-range bounds are outside of the
types values. */
if (covers || wi::cmp (tmin, tmax, sgn) > 0)
{
set_value_range_to_varying (vr);
return;
}
min = wide_int_to_tree (expr_type, tmin);
max = wide_int_to_tree (expr_type, tmax);
}
else
{
/* Other underflow and/or overflow, drop to VR_VARYING. */
set_value_range_to_varying (vr);
return;
}
}
else
{
/* If overflow does not wrap, saturate to the types min/max
value. */
if (min_ovf == -1)
{
if (needs_overflow_infinity (expr_type)
&& supports_overflow_infinity (expr_type))
min = negative_overflow_infinity (expr_type);
else
min = wide_int_to_tree (expr_type, type_min);
}
else if (min_ovf == 1)
{
if (needs_overflow_infinity (expr_type)
&& supports_overflow_infinity (expr_type))
min = positive_overflow_infinity (expr_type);
else
min = wide_int_to_tree (expr_type, type_max);
}
else
min = wide_int_to_tree (expr_type, wmin);
if (max_ovf == -1)
{
if (needs_overflow_infinity (expr_type)
&& supports_overflow_infinity (expr_type))
max = negative_overflow_infinity (expr_type);
else
max = wide_int_to_tree (expr_type, type_min);
}
else if (max_ovf == 1)
{
if (needs_overflow_infinity (expr_type)
&& supports_overflow_infinity (expr_type))
max = positive_overflow_infinity (expr_type);
else
max = wide_int_to_tree (expr_type, type_max);
}
else
max = wide_int_to_tree (expr_type, wmax);
}
if (needs_overflow_infinity (expr_type)
&& supports_overflow_infinity (expr_type))
{
if ((min_op0 && is_negative_overflow_infinity (min_op0))
|| (min_op1
&& (minus_p
? is_positive_overflow_infinity (min_op1)
: is_negative_overflow_infinity (min_op1))))
min = negative_overflow_infinity (expr_type);
if ((max_op0 && is_positive_overflow_infinity (max_op0))
|| (max_op1
&& (minus_p
? is_negative_overflow_infinity (max_op1)
: is_positive_overflow_infinity (max_op1))))
max = positive_overflow_infinity (expr_type);
}
/* If the result lower bound is constant, we're done;
otherwise, build the symbolic lower bound. */
if (sym_min_op0 == sym_min_op1)
;
else if (sym_min_op0)
min = build_symbolic_expr (expr_type, sym_min_op0,
neg_min_op0, min);
else if (sym_min_op1)
{
/* We may not negate if that might introduce
undefined overflow. */
if (! minus_p
|| neg_min_op1
|| TYPE_OVERFLOW_WRAPS (expr_type))
min = build_symbolic_expr (expr_type, sym_min_op1,
neg_min_op1 ^ minus_p, min);
else
min = NULL_TREE;
}
/* Likewise for the upper bound. */
if (sym_max_op0 == sym_max_op1)
;
else if (sym_max_op0)
max = build_symbolic_expr (expr_type, sym_max_op0,
neg_max_op0, max);
else if (sym_max_op1)
{
/* We may not negate if that might introduce
undefined overflow. */
if (! minus_p
|| neg_max_op1
|| TYPE_OVERFLOW_WRAPS (expr_type))
max = build_symbolic_expr (expr_type, sym_max_op1,
neg_max_op1 ^ minus_p, max);
else
max = NULL_TREE;
}
}
else
{
/* For other cases, for example if we have a PLUS_EXPR with two
VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
to compute a precise range for such a case.
??? General even mixed range kind operations can be expressed
by for example transforming ~[3, 5] + [1, 2] to range-only
operations and a union primitive:
[-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
[-INF+1, 4] U [6, +INF(OVF)]
though usually the union is not exactly representable with
a single range or anti-range as the above is
[-INF+1, +INF(OVF)] intersected with ~[5, 5]
but one could use a scheme similar to equivalences for this. */
set_value_range_to_varying (vr);
return;
}
}
else if (code == MIN_EXPR
|| code == MAX_EXPR)
{
if (vr0.type == VR_RANGE
&& !symbolic_range_p (&vr0))
{
type = VR_RANGE;
if (vr1.type == VR_RANGE
&& !symbolic_range_p (&vr1))
{
/* For operations that make the resulting range directly
proportional to the original ranges, apply the operation to
the same end of each range. */
min = vrp_int_const_binop (code, vr0.min, vr1.min);
max = vrp_int_const_binop (code, vr0.max, vr1.max);
}
else if (code == MIN_EXPR)
{
min = vrp_val_min (expr_type);
max = vr0.max;
}
else if (code == MAX_EXPR)
{
min = vr0.min;
max = vrp_val_max (expr_type);
}
}
else if (vr1.type == VR_RANGE
&& !symbolic_range_p (&vr1))
{
type = VR_RANGE;
if (code == MIN_EXPR)
{
min = vrp_val_min (expr_type);
max = vr1.max;
}
else if (code == MAX_EXPR)
{
min = vr1.min;
max = vrp_val_max (expr_type);
}
}
else
{
set_value_range_to_varying (vr);
return;
}
}
else if (code == MULT_EXPR)
{
/* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
drop to varying. This test requires 2*prec bits if both
operands are signed and 2*prec + 2 bits if either is not. */
signop sign = TYPE_SIGN (expr_type);
unsigned int prec = TYPE_PRECISION (expr_type);
if (range_int_cst_p (&vr0)
&& range_int_cst_p (&vr1)
&& TYPE_OVERFLOW_WRAPS (expr_type))
{
typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
typedef generic_wide_int
<wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
vrp_int size = sizem1 + 1;
/* Extend the values using the sign of the result to PREC2.
From here on out, everthing is just signed math no matter
what the input types were. */
vrp_int min0 = vrp_int_cst (vr0.min);
vrp_int max0 = vrp_int_cst (vr0.max);
vrp_int min1 = vrp_int_cst (vr1.min);
vrp_int max1 = vrp_int_cst (vr1.max);
/* Canonicalize the intervals. */
if (sign == UNSIGNED)
{
if (wi::ltu_p (size, min0 + max0))
{
min0 -= size;
max0 -= size;
}
if (wi::ltu_p (size, min1 + max1))
{
min1 -= size;
max1 -= size;
}
}
vrp_int prod0 = min0 * min1;
vrp_int prod1 = min0 * max1;
vrp_int prod2 = max0 * min1;
vrp_int prod3 = max0 * max1;
/* Sort the 4 products so that min is in prod0 and max is in
prod3. */
/* min0min1 > max0max1 */
if (prod0 > prod3)
std::swap (prod0, prod3);
/* min0max1 > max0min1 */
if (prod1 > prod2)
std::swap (prod1, prod2);
if (prod0 > prod1)
std::swap (prod0, prod1);
if (prod2 > prod3)
std::swap (prod2, prod3);
/* diff = max - min. */
prod2 = prod3 - prod0;
if (wi::geu_p (prod2, sizem1))
{
/* the range covers all values. */
set_value_range_to_varying (vr);
return;
}
/* The following should handle the wrapping and selecting
VR_ANTI_RANGE for us. */
min = wide_int_to_tree (expr_type, prod0);
max = wide_int_to_tree (expr_type, prod3);
set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
return;
}
/* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
drop to VR_VARYING. It would take more effort to compute a
precise range for such a case. For example, if we have
op0 == 65536 and op1 == 65536 with their ranges both being
~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
we cannot claim that the product is in ~[0,0]. Note that we
are guaranteed to have vr0.type == vr1.type at this
point. */
if (vr0.type == VR_ANTI_RANGE
&& !TYPE_OVERFLOW_UNDEFINED (expr_type))
{
set_value_range_to_varying (vr);
return;
}
extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
return;
}
else if (code == RSHIFT_EXPR
|| code == LSHIFT_EXPR)
{
/* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
then drop to VR_VARYING. Outside of this range we get undefined
behavior from the shift operation. We cannot even trust
SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
shifts, and the operation at the tree level may be widened. */
if (range_int_cst_p (&vr1)
&& compare_tree_int (vr1.min, 0) >= 0
&& compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
{
if (code == RSHIFT_EXPR)
{
/* Even if vr0 is VARYING or otherwise not usable, we can derive
useful ranges just from the shift count. E.g.
x >> 63 for signed 64-bit x is always [-1, 0]. */
if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
{
vr0.type = type = VR_RANGE;
vr0.min = vrp_val_min (expr_type);
vr0.max = vrp_val_max (expr_type);
}
extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
return;
}
/* We can map lshifts by constants to MULT_EXPR handling. */
else if (code == LSHIFT_EXPR
&& range_int_cst_singleton_p (&vr1))
{
bool saved_flag_wrapv;
value_range vr1p = VR_INITIALIZER;
vr1p.type = VR_RANGE;
vr1p.min = (wide_int_to_tree
(expr_type,
wi::set_bit_in_zero (tree_to_shwi (vr1.min),
TYPE_PRECISION (expr_type))));
vr1p.max = vr1p.min;
/* We have to use a wrapping multiply though as signed overflow
on lshifts is implementation defined in C89. */
saved_flag_wrapv = flag_wrapv;
flag_wrapv = 1;
extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
&vr0, &vr1p);
flag_wrapv = saved_flag_wrapv;
return;
}
else if (code == LSHIFT_EXPR
&& range_int_cst_p (&vr0))
{
int prec = TYPE_PRECISION (expr_type);
int overflow_pos = prec;
int bound_shift;
wide_int low_bound, high_bound;
bool uns = TYPE_UNSIGNED (expr_type);
bool in_bounds = false;
if (!uns)
overflow_pos -= 1;
bound_shift = overflow_pos - tree_to_shwi (vr1.max);
/* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
overflow. However, for that to happen, vr1.max needs to be
zero, which means vr1 is a singleton range of zero, which
means it should be handled by the previous LSHIFT_EXPR
if-clause. */
wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
wide_int complement = ~(bound - 1);
if (uns)
{
low_bound = bound;
high_bound = complement;
if (wi::ltu_p (vr0.max, low_bound))
{
/* [5, 6] << [1, 2] == [10, 24]. */
/* We're shifting out only zeroes, the value increases
monotonically. */
in_bounds = true;
}
else if (wi::ltu_p (high_bound, vr0.min))
{
/* [0xffffff00, 0xffffffff] << [1, 2]
== [0xfffffc00, 0xfffffffe]. */
/* We're shifting out only ones, the value decreases
monotonically. */
in_bounds = true;
}
}
else
{
/* [-1, 1] << [1, 2] == [-4, 4]. */
low_bound = complement;
high_bound = bound;
if (wi::lts_p (vr0.max, high_bound)
&& wi::lts_p (low_bound, vr0.min))
{
/* For non-negative numbers, we're shifting out only
zeroes, the value increases monotonically.
For negative numbers, we're shifting out only ones, the
value decreases monotomically. */
in_bounds = true;
}
}
if (in_bounds)
{
extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
return;
}
}
}
set_value_range_to_varying (vr);
return;
}
else if (code == TRUNC_DIV_EXPR
|| code == FLOOR_DIV_EXPR
|| code == CEIL_DIV_EXPR
|| code == EXACT_DIV_EXPR
|| code == ROUND_DIV_EXPR)
{
if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
{
/* For division, if op1 has VR_RANGE but op0 does not, something
can be deduced just from that range. Say [min, max] / [4, max]
gives [min / 4, max / 4] range. */
if (vr1.type == VR_RANGE
&& !symbolic_range_p (&vr1)
&& range_includes_zero_p (vr1.min, vr1.max) == 0)
{
vr0.type = type = VR_RANGE;
vr0.min = vrp_val_min (expr_type);
vr0.max = vrp_val_max (expr_type);
}
else
{
set_value_range_to_varying (vr);
return;
}
}
/* For divisions, if flag_non_call_exceptions is true, we must
not eliminate a division by zero. */
if (cfun->can_throw_non_call_exceptions
&& (vr1.type != VR_RANGE
|| range_includes_zero_p (vr1.min, vr1.max) != 0))
{
set_value_range_to_varying (vr);
return;
}
/* For divisions, if op0 is VR_RANGE, we can deduce a range
even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
include 0. */
if (vr0.type == VR_RANGE
&& (vr1.type != VR_RANGE
|| range_includes_zero_p (vr1.min, vr1.max) != 0))
{
tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
int cmp;
min = NULL_TREE;
max = NULL_TREE;
if (TYPE_UNSIGNED (expr_type)
|| value_range_nonnegative_p (&vr1))
{
/* For unsigned division or when divisor is known
to be non-negative, the range has to cover
all numbers from 0 to max for positive max
and all numbers from min to 0 for negative min. */
cmp = compare_values (vr0.max, zero);
if (cmp == -1)
{
/* When vr0.max < 0, vr1.min != 0 and value
ranges for dividend and divisor are available. */
if (vr1.type == VR_RANGE
&& !symbolic_range_p (&vr0)
&& !symbolic_range_p (&vr1)
&& compare_values (vr1.min, zero) != 0)
max = int_const_binop (code, vr0.max, vr1.min);
else
max = zero;
}
else if (cmp == 0 || cmp == 1)
max = vr0.max;
else
type = VR_VARYING;
cmp = compare_values (vr0.min, zero);
if (cmp == 1)
{
/* For unsigned division when value ranges for dividend
and divisor are available. */
if (vr1.type == VR_RANGE
&& !symbolic_range_p (&vr0)
&& !symbolic_range_p (&vr1)
&& compare_values (vr1.max, zero) != 0)
min = int_const_binop (code, vr0.min, vr1.max);
else
min = zero;
}
else if (cmp == 0 || cmp == -1)
min = vr0.min;
else
type = VR_VARYING;
}
else
{
/* Otherwise the range is -max .. max or min .. -min
depending on which bound is bigger in absolute value,
as the division can change the sign. */
abs_extent_range (vr, vr0.min, vr0.max);
return;
}
if (type == VR_VARYING)
{
set_value_range_to_varying (vr);
return;
}
}
else if (!symbolic_range_p (&vr0) && !symbolic_range_p (&vr1))
{
extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
return;
}
}
else if (code == TRUNC_MOD_EXPR)
{
if (range_is_null (&vr1))
{
set_value_range_to_undefined (vr);
return;
}
/* ABS (A % B) < ABS (B) and either
0 <= A % B <= A or A <= A % B <= 0. */
type = VR_RANGE;
signop sgn = TYPE_SIGN (expr_type);
unsigned int prec = TYPE_PRECISION (expr_type);
wide_int wmin, wmax, tmp;
wide_int zero = wi::zero (prec);
wide_int one = wi::one (prec);
if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1))
{
wmax = wi::sub (vr1.max, one);
if (sgn == SIGNED)
{
tmp = wi::sub (wi::minus_one (prec), vr1.min);
wmax = wi::smax (wmax, tmp);
}
}
else
{
wmax = wi::max_value (prec, sgn);
/* X % INT_MIN may be INT_MAX. */
if (sgn == UNSIGNED)
wmax = wmax - one;
}
if (sgn == UNSIGNED)
wmin = zero;
else
{
wmin = -wmax;
if (vr0.type == VR_RANGE && TREE_CODE (vr0.min) == INTEGER_CST)
{
tmp = vr0.min;
if (wi::gts_p (tmp, zero))
tmp = zero;
wmin = wi::smax (wmin, tmp);
}
}
if (vr0.type == VR_RANGE && TREE_CODE (vr0.max) == INTEGER_CST)
{
tmp = vr0.max;
if (sgn == SIGNED && wi::neg_p (tmp))
tmp = zero;
wmax = wi::min (wmax, tmp, sgn);
}
min = wide_int_to_tree (expr_type, wmin);
max = wide_int_to_tree (expr_type, wmax);
}
else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
{
bool int_cst_range0, int_cst_range1;
wide_int may_be_nonzero0, may_be_nonzero1;
wide_int must_be_nonzero0, must_be_nonzero1;
int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
&may_be_nonzero0,
&must_be_nonzero0);
int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
&may_be_nonzero1,
&must_be_nonzero1);
type = VR_RANGE;
if (code == BIT_AND_EXPR)
{
min = wide_int_to_tree (expr_type,
must_be_nonzero0 & must_be_nonzero1);
wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
/* If both input ranges contain only negative values we can
truncate the result range maximum to the minimum of the
input range maxima. */
if (int_cst_range0 && int_cst_range1
&& tree_int_cst_sgn (vr0.max) < 0
&& tree_int_cst_sgn (vr1.max) < 0)
{
wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
}
/* If either input range contains only non-negative values
we can truncate the result range maximum to the respective
maximum of the input range. */
if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
wmax =