| /* Operations with very long integers. -*- C++ -*- |
| Copyright (C) 2012-2017 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it |
| under the terms of the GNU General Public License as published by the |
| Free Software Foundation; either version 3, or (at your option) any |
| later version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef WIDE_INT_H |
| #define WIDE_INT_H |
| |
| /* wide-int.[cc|h] implements a class that efficiently performs |
| mathematical operations on finite precision integers. wide_ints |
| are designed to be transient - they are not for long term storage |
| of values. There is tight integration between wide_ints and the |
| other longer storage GCC representations (rtl and tree). |
| |
| The actual precision of a wide_int depends on the flavor. There |
| are three predefined flavors: |
| |
| 1) wide_int (the default). This flavor does the math in the |
| precision of its input arguments. It is assumed (and checked) |
| that the precisions of the operands and results are consistent. |
| This is the most efficient flavor. It is not possible to examine |
| bits above the precision that has been specified. Because of |
| this, the default flavor has semantics that are simple to |
| understand and in general model the underlying hardware that the |
| compiler is targetted for. |
| |
| This flavor must be used at the RTL level of gcc because there |
| is, in general, not enough information in the RTL representation |
| to extend a value beyond the precision specified in the mode. |
| |
| This flavor should also be used at the TREE and GIMPLE levels of |
| the compiler except for the circumstances described in the |
| descriptions of the other two flavors. |
| |
| The default wide_int representation does not contain any |
| information inherent about signedness of the represented value, |
| so it can be used to represent both signed and unsigned numbers. |
| For operations where the results depend on signedness (full width |
| multiply, division, shifts, comparisons, and operations that need |
| overflow detected), the signedness must be specified separately. |
| |
| 2) offset_int. This is a fixed-precision integer that can hold |
| any address offset, measured in either bits or bytes, with at |
| least one extra sign bit. At the moment the maximum address |
| size GCC supports is 64 bits. With 8-bit bytes and an extra |
| sign bit, offset_int therefore needs to have at least 68 bits |
| of precision. We round this up to 128 bits for efficiency. |
| Values of type T are converted to this precision by sign- or |
| zero-extending them based on the signedness of T. |
| |
| The extra sign bit means that offset_int is effectively a signed |
| 128-bit integer, i.e. it behaves like int128_t. |
| |
| Since the values are logically signed, there is no need to |
| distinguish between signed and unsigned operations. Sign-sensitive |
| comparison operators <, <=, > and >= are therefore supported. |
| Shift operators << and >> are also supported, with >> being |
| an _arithmetic_ right shift. |
| |
| [ Note that, even though offset_int is effectively int128_t, |
| it can still be useful to use unsigned comparisons like |
| wi::leu_p (a, b) as a more efficient short-hand for |
| "a >= 0 && a <= b". ] |
| |
| 3) widest_int. This representation is an approximation of |
| infinite precision math. However, it is not really infinite |
| precision math as in the GMP library. It is really finite |
| precision math where the precision is 4 times the size of the |
| largest integer that the target port can represent. |
| |
| Like offset_int, widest_int is wider than all the values that |
| it needs to represent, so the integers are logically signed. |
| Sign-sensitive comparison operators <, <=, > and >= are supported, |
| as are << and >>. |
| |
| There are several places in the GCC where this should/must be used: |
| |
| * Code that does induction variable optimizations. This code |
| works with induction variables of many different types at the |
| same time. Because of this, it ends up doing many different |
| calculations where the operands are not compatible types. The |
| widest_int makes this easy, because it provides a field where |
| nothing is lost when converting from any variable, |
| |
| * There are a small number of passes that currently use the |
| widest_int that should use the default. These should be |
| changed. |
| |
| There are surprising features of offset_int and widest_int |
| that the users should be careful about: |
| |
| 1) Shifts and rotations are just weird. You have to specify a |
| precision in which the shift or rotate is to happen in. The bits |
| above this precision are zeroed. While this is what you |
| want, it is clearly non obvious. |
| |
| 2) Larger precision math sometimes does not produce the same |
| answer as would be expected for doing the math at the proper |
| precision. In particular, a multiply followed by a divide will |
| produce a different answer if the first product is larger than |
| what can be represented in the input precision. |
| |
| The offset_int and the widest_int flavors are more expensive |
| than the default wide int, so in addition to the caveats with these |
| two, the default is the prefered representation. |
| |
| All three flavors of wide_int are represented as a vector of |
| HOST_WIDE_INTs. The default and widest_int vectors contain enough elements |
| to hold a value of MAX_BITSIZE_MODE_ANY_INT bits. offset_int contains only |
| enough elements to hold ADDR_MAX_PRECISION bits. The values are stored |
| in the vector with the least significant HOST_BITS_PER_WIDE_INT bits |
| in element 0. |
| |
| The default wide_int contains three fields: the vector (VAL), |
| the precision and a length (LEN). The length is the number of HWIs |
| needed to represent the value. widest_int and offset_int have a |
| constant precision that cannot be changed, so they only store the |
| VAL and LEN fields. |
| |
| Since most integers used in a compiler are small values, it is |
| generally profitable to use a representation of the value that is |
| as small as possible. LEN is used to indicate the number of |
| elements of the vector that are in use. The numbers are stored as |
| sign extended numbers as a means of compression. Leading |
| HOST_WIDE_INTs that contain strings of either -1 or 0 are removed |
| as long as they can be reconstructed from the top bit that is being |
| represented. |
| |
| The precision and length of a wide_int are always greater than 0. |
| Any bits in a wide_int above the precision are sign-extended from the |
| most significant bit. For example, a 4-bit value 0x8 is represented as |
| VAL = { 0xf...fff8 }. However, as an optimization, we allow other integer |
| constants to be represented with undefined bits above the precision. |
| This allows INTEGER_CSTs to be pre-extended according to TYPE_SIGN, |
| so that the INTEGER_CST representation can be used both in TYPE_PRECISION |
| and in wider precisions. |
| |
| There are constructors to create the various forms of wide_int from |
| trees, rtl and constants. For trees you can simply say: |
| |
| tree t = ...; |
| wide_int x = t; |
| |
| However, a little more syntax is required for rtl constants since |
| they do not have an explicit precision. To make an rtl into a |
| wide_int, you have to pair it with a mode. The canonical way to do |
| this is with rtx_mode_t as in: |
| |
| rtx r = ... |
| wide_int x = rtx_mode_t (r, mode); |
| |
| Similarly, a wide_int can only be constructed from a host value if |
| the target precision is given explicitly, such as in: |
| |
| wide_int x = wi::shwi (c, prec); // sign-extend C if necessary |
| wide_int y = wi::uhwi (c, prec); // zero-extend C if necessary |
| |
| However, offset_int and widest_int have an inherent precision and so |
| can be initialized directly from a host value: |
| |
| offset_int x = (int) c; // sign-extend C |
| widest_int x = (unsigned int) c; // zero-extend C |
| |
| It is also possible to do arithmetic directly on trees, rtxes and |
| constants. For example: |
| |
| wi::add (t1, t2); // add equal-sized INTEGER_CSTs t1 and t2 |
| wi::add (t1, 1); // add 1 to INTEGER_CST t1 |
| wi::add (r1, r2); // add equal-sized rtx constants r1 and r2 |
| wi::lshift (1, 100); // 1 << 100 as a widest_int |
| |
| Many binary operations place restrictions on the combinations of inputs, |
| using the following rules: |
| |
| - {tree, rtx, wide_int} op {tree, rtx, wide_int} -> wide_int |
| The inputs must be the same precision. The result is a wide_int |
| of the same precision |
| |
| - {tree, rtx, wide_int} op (un)signed HOST_WIDE_INT -> wide_int |
| (un)signed HOST_WIDE_INT op {tree, rtx, wide_int} -> wide_int |
| The HOST_WIDE_INT is extended or truncated to the precision of |
| the other input. The result is a wide_int of the same precision |
| as that input. |
| |
| - (un)signed HOST_WIDE_INT op (un)signed HOST_WIDE_INT -> widest_int |
| The inputs are extended to widest_int precision and produce a |
| widest_int result. |
| |
| - offset_int op offset_int -> offset_int |
| offset_int op (un)signed HOST_WIDE_INT -> offset_int |
| (un)signed HOST_WIDE_INT op offset_int -> offset_int |
| |
| - widest_int op widest_int -> widest_int |
| widest_int op (un)signed HOST_WIDE_INT -> widest_int |
| (un)signed HOST_WIDE_INT op widest_int -> widest_int |
| |
| Other combinations like: |
| |
| - widest_int op offset_int and |
| - wide_int op offset_int |
| |
| are not allowed. The inputs should instead be extended or truncated |
| so that they match. |
| |
| The inputs to comparison functions like wi::eq_p and wi::lts_p |
| follow the same compatibility rules, although their return types |
| are different. Unary functions on X produce the same result as |
| a binary operation X + X. Shift functions X op Y also produce |
| the same result as X + X; the precision of the shift amount Y |
| can be arbitrarily different from X. */ |
| |
| /* The MAX_BITSIZE_MODE_ANY_INT is automatically generated by a very |
| early examination of the target's mode file. The WIDE_INT_MAX_ELTS |
| can accomodate at least 1 more bit so that unsigned numbers of that |
| mode can be represented as a signed value. Note that it is still |
| possible to create fixed_wide_ints that have precisions greater than |
| MAX_BITSIZE_MODE_ANY_INT. This can be useful when representing a |
| double-width multiplication result, for example. */ |
| #define WIDE_INT_MAX_ELTS \ |
| ((MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT) / HOST_BITS_PER_WIDE_INT) |
| |
| #define WIDE_INT_MAX_PRECISION (WIDE_INT_MAX_ELTS * HOST_BITS_PER_WIDE_INT) |
| |
| /* This is the max size of any pointer on any machine. It does not |
| seem to be as easy to sniff this out of the machine description as |
| it is for MAX_BITSIZE_MODE_ANY_INT since targets may support |
| multiple address sizes and may have different address sizes for |
| different address spaces. However, currently the largest pointer |
| on any platform is 64 bits. When that changes, then it is likely |
| that a target hook should be defined so that targets can make this |
| value larger for those targets. */ |
| #define ADDR_MAX_BITSIZE 64 |
| |
| /* This is the internal precision used when doing any address |
| arithmetic. The '4' is really 3 + 1. Three of the bits are for |
| the number of extra bits needed to do bit addresses and the other bit |
| is to allow everything to be signed without loosing any precision. |
| Then everything is rounded up to the next HWI for efficiency. */ |
| #define ADDR_MAX_PRECISION \ |
| ((ADDR_MAX_BITSIZE + 4 + HOST_BITS_PER_WIDE_INT - 1) \ |
| & ~(HOST_BITS_PER_WIDE_INT - 1)) |
| |
| /* The number of HWIs needed to store an offset_int. */ |
| #define OFFSET_INT_ELTS (ADDR_MAX_PRECISION / HOST_BITS_PER_WIDE_INT) |
| |
| /* The type of result produced by a binary operation on types T1 and T2. |
| Defined purely for brevity. */ |
| #define WI_BINARY_RESULT(T1, T2) \ |
| typename wi::binary_traits <T1, T2>::result_type |
| |
| /* The type of result produced by T1 << T2. Leads to substitution failure |
| if the operation isn't supported. Defined purely for brevity. */ |
| #define WI_SIGNED_SHIFT_RESULT(T1, T2) \ |
| typename wi::binary_traits <T1, T2>::signed_shift_result_type |
| |
| /* The type of result produced by a signed binary predicate on types T1 and T2. |
| This is bool if signed comparisons make sense for T1 and T2 and leads to |
| substitution failure otherwise. */ |
| #define WI_SIGNED_BINARY_PREDICATE_RESULT(T1, T2) \ |
| typename wi::binary_traits <T1, T2>::signed_predicate_result |
| |
| /* The type of result produced by a unary operation on type T. */ |
| #define WI_UNARY_RESULT(T) \ |
| typename wi::unary_traits <T>::result_type |
| |
| /* Define a variable RESULT to hold the result of a binary operation on |
| X and Y, which have types T1 and T2 respectively. Define VAL to |
| point to the blocks of RESULT. Once the user of the macro has |
| filled in VAL, it should call RESULT.set_len to set the number |
| of initialized blocks. */ |
| #define WI_BINARY_RESULT_VAR(RESULT, VAL, T1, X, T2, Y) \ |
| WI_BINARY_RESULT (T1, T2) RESULT = \ |
| wi::int_traits <WI_BINARY_RESULT (T1, T2)>::get_binary_result (X, Y); \ |
| HOST_WIDE_INT *VAL = RESULT.write_val () |
| |
| /* Similar for the result of a unary operation on X, which has type T. */ |
| #define WI_UNARY_RESULT_VAR(RESULT, VAL, T, X) \ |
| WI_UNARY_RESULT (T) RESULT = \ |
| wi::int_traits <WI_UNARY_RESULT (T)>::get_binary_result (X, X); \ |
| HOST_WIDE_INT *VAL = RESULT.write_val () |
| |
| template <typename T> class generic_wide_int; |
| template <int N> class fixed_wide_int_storage; |
| class wide_int_storage; |
| |
| /* An N-bit integer. Until we can use typedef templates, use this instead. */ |
| #define FIXED_WIDE_INT(N) \ |
| generic_wide_int < fixed_wide_int_storage <N> > |
| |
| typedef generic_wide_int <wide_int_storage> wide_int; |
| typedef FIXED_WIDE_INT (ADDR_MAX_PRECISION) offset_int; |
| typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION) widest_int; |
| |
| template <bool SE> |
| struct wide_int_ref_storage; |
| |
| typedef generic_wide_int <wide_int_ref_storage <false> > wide_int_ref; |
| |
| /* This can be used instead of wide_int_ref if the referenced value is |
| known to have type T. It carries across properties of T's representation, |
| such as whether excess upper bits in a HWI are defined, and can therefore |
| help avoid redundant work. |
| |
| The macro could be replaced with a template typedef, once we're able |
| to use those. */ |
| #define WIDE_INT_REF_FOR(T) \ |
| generic_wide_int \ |
| <wide_int_ref_storage <wi::int_traits <T>::is_sign_extended> > |
| |
| namespace wi |
| { |
| /* Classifies an integer based on its precision. */ |
| enum precision_type { |
| /* The integer has both a precision and defined signedness. This allows |
| the integer to be converted to any width, since we know whether to fill |
| any extra bits with zeros or signs. */ |
| FLEXIBLE_PRECISION, |
| |
| /* The integer has a variable precision but no defined signedness. */ |
| VAR_PRECISION, |
| |
| /* The integer has a constant precision (known at GCC compile time) |
| and is signed. */ |
| CONST_PRECISION |
| }; |
| |
| /* This class, which has no default implementation, is expected to |
| provide the following members: |
| |
| static const enum precision_type precision_type; |
| Classifies the type of T. |
| |
| static const unsigned int precision; |
| Only defined if precision_type == CONST_PRECISION. Specifies the |
| precision of all integers of type T. |
| |
| static const bool host_dependent_precision; |
| True if the precision of T depends (or can depend) on the host. |
| |
| static unsigned int get_precision (const T &x) |
| Return the number of bits in X. |
| |
| static wi::storage_ref *decompose (HOST_WIDE_INT *scratch, |
| unsigned int precision, const T &x) |
| Decompose X as a PRECISION-bit integer, returning the associated |
| wi::storage_ref. SCRATCH is available as scratch space if needed. |
| The routine should assert that PRECISION is acceptable. */ |
| template <typename T> struct int_traits; |
| |
| /* This class provides a single type, result_type, which specifies the |
| type of integer produced by a binary operation whose inputs have |
| types T1 and T2. The definition should be symmetric. */ |
| template <typename T1, typename T2, |
| enum precision_type P1 = int_traits <T1>::precision_type, |
| enum precision_type P2 = int_traits <T2>::precision_type> |
| struct binary_traits; |
| |
| /* The result of a unary operation on T is the same as the result of |
| a binary operation on two values of type T. */ |
| template <typename T> |
| struct unary_traits : public binary_traits <T, T> {}; |
| |
| /* Specify the result type for each supported combination of binary |
| inputs. Note that CONST_PRECISION and VAR_PRECISION cannot be |
| mixed, in order to give stronger type checking. When both inputs |
| are CONST_PRECISION, they must have the same precision. */ |
| template <typename T1, typename T2> |
| struct binary_traits <T1, T2, FLEXIBLE_PRECISION, FLEXIBLE_PRECISION> |
| { |
| typedef widest_int result_type; |
| }; |
| |
| template <typename T1, typename T2> |
| struct binary_traits <T1, T2, FLEXIBLE_PRECISION, VAR_PRECISION> |
| { |
| typedef wide_int result_type; |
| }; |
| |
| template <typename T1, typename T2> |
| struct binary_traits <T1, T2, FLEXIBLE_PRECISION, CONST_PRECISION> |
| { |
| /* Spelled out explicitly (rather than through FIXED_WIDE_INT) |
| so as not to confuse gengtype. */ |
| typedef generic_wide_int < fixed_wide_int_storage |
| <int_traits <T2>::precision> > result_type; |
| typedef bool signed_predicate_result; |
| }; |
| |
| template <typename T1, typename T2> |
| struct binary_traits <T1, T2, VAR_PRECISION, FLEXIBLE_PRECISION> |
| { |
| typedef wide_int result_type; |
| }; |
| |
| template <typename T1, typename T2> |
| struct binary_traits <T1, T2, CONST_PRECISION, FLEXIBLE_PRECISION> |
| { |
| /* Spelled out explicitly (rather than through FIXED_WIDE_INT) |
| so as not to confuse gengtype. */ |
| typedef generic_wide_int < fixed_wide_int_storage |
| <int_traits <T1>::precision> > result_type; |
| typedef result_type signed_shift_result_type; |
| typedef bool signed_predicate_result; |
| }; |
| |
| template <typename T1, typename T2> |
| struct binary_traits <T1, T2, CONST_PRECISION, CONST_PRECISION> |
| { |
| /* Spelled out explicitly (rather than through FIXED_WIDE_INT) |
| so as not to confuse gengtype. */ |
| STATIC_ASSERT (int_traits <T1>::precision == int_traits <T2>::precision); |
| typedef generic_wide_int < fixed_wide_int_storage |
| <int_traits <T1>::precision> > result_type; |
| typedef result_type signed_shift_result_type; |
| typedef bool signed_predicate_result; |
| }; |
| |
| template <typename T1, typename T2> |
| struct binary_traits <T1, T2, VAR_PRECISION, VAR_PRECISION> |
| { |
| typedef wide_int result_type; |
| }; |
| } |
| |
| /* Public functions for querying and operating on integers. */ |
| namespace wi |
| { |
| template <typename T> |
| unsigned int get_precision (const T &); |
| |
| template <typename T1, typename T2> |
| unsigned int get_binary_precision (const T1 &, const T2 &); |
| |
| template <typename T1, typename T2> |
| void copy (T1 &, const T2 &); |
| |
| #define UNARY_PREDICATE \ |
| template <typename T> bool |
| #define UNARY_FUNCTION \ |
| template <typename T> WI_UNARY_RESULT (T) |
| #define BINARY_PREDICATE \ |
| template <typename T1, typename T2> bool |
| #define BINARY_FUNCTION \ |
| template <typename T1, typename T2> WI_BINARY_RESULT (T1, T2) |
| #define SHIFT_FUNCTION \ |
| template <typename T1, typename T2> WI_UNARY_RESULT (T1) |
| |
| UNARY_PREDICATE fits_shwi_p (const T &); |
| UNARY_PREDICATE fits_uhwi_p (const T &); |
| UNARY_PREDICATE neg_p (const T &, signop = SIGNED); |
| |
| template <typename T> |
| HOST_WIDE_INT sign_mask (const T &); |
| |
| BINARY_PREDICATE eq_p (const T1 &, const T2 &); |
| BINARY_PREDICATE ne_p (const T1 &, const T2 &); |
| BINARY_PREDICATE lt_p (const T1 &, const T2 &, signop); |
| BINARY_PREDICATE lts_p (const T1 &, const T2 &); |
| BINARY_PREDICATE ltu_p (const T1 &, const T2 &); |
| BINARY_PREDICATE le_p (const T1 &, const T2 &, signop); |
| BINARY_PREDICATE les_p (const T1 &, const T2 &); |
| BINARY_PREDICATE leu_p (const T1 &, const T2 &); |
| BINARY_PREDICATE gt_p (const T1 &, const T2 &, signop); |
| BINARY_PREDICATE gts_p (const T1 &, const T2 &); |
| BINARY_PREDICATE gtu_p (const T1 &, const T2 &); |
| BINARY_PREDICATE ge_p (const T1 &, const T2 &, signop); |
| BINARY_PREDICATE ges_p (const T1 &, const T2 &); |
| BINARY_PREDICATE geu_p (const T1 &, const T2 &); |
| |
| template <typename T1, typename T2> |
| int cmp (const T1 &, const T2 &, signop); |
| |
| template <typename T1, typename T2> |
| int cmps (const T1 &, const T2 &); |
| |
| template <typename T1, typename T2> |
| int cmpu (const T1 &, const T2 &); |
| |
| UNARY_FUNCTION bit_not (const T &); |
| UNARY_FUNCTION neg (const T &); |
| UNARY_FUNCTION neg (const T &, bool *); |
| UNARY_FUNCTION abs (const T &); |
| UNARY_FUNCTION ext (const T &, unsigned int, signop); |
| UNARY_FUNCTION sext (const T &, unsigned int); |
| UNARY_FUNCTION zext (const T &, unsigned int); |
| UNARY_FUNCTION set_bit (const T &, unsigned int); |
| |
| BINARY_FUNCTION min (const T1 &, const T2 &, signop); |
| BINARY_FUNCTION smin (const T1 &, const T2 &); |
| BINARY_FUNCTION umin (const T1 &, const T2 &); |
| BINARY_FUNCTION max (const T1 &, const T2 &, signop); |
| BINARY_FUNCTION smax (const T1 &, const T2 &); |
| BINARY_FUNCTION umax (const T1 &, const T2 &); |
| |
| BINARY_FUNCTION bit_and (const T1 &, const T2 &); |
| BINARY_FUNCTION bit_and_not (const T1 &, const T2 &); |
| BINARY_FUNCTION bit_or (const T1 &, const T2 &); |
| BINARY_FUNCTION bit_or_not (const T1 &, const T2 &); |
| BINARY_FUNCTION bit_xor (const T1 &, const T2 &); |
| BINARY_FUNCTION add (const T1 &, const T2 &); |
| BINARY_FUNCTION add (const T1 &, const T2 &, signop, bool *); |
| BINARY_FUNCTION sub (const T1 &, const T2 &); |
| BINARY_FUNCTION sub (const T1 &, const T2 &, signop, bool *); |
| BINARY_FUNCTION mul (const T1 &, const T2 &); |
| BINARY_FUNCTION mul (const T1 &, const T2 &, signop, bool *); |
| BINARY_FUNCTION smul (const T1 &, const T2 &, bool *); |
| BINARY_FUNCTION umul (const T1 &, const T2 &, bool *); |
| BINARY_FUNCTION mul_high (const T1 &, const T2 &, signop); |
| BINARY_FUNCTION div_trunc (const T1 &, const T2 &, signop, bool * = 0); |
| BINARY_FUNCTION sdiv_trunc (const T1 &, const T2 &); |
| BINARY_FUNCTION udiv_trunc (const T1 &, const T2 &); |
| BINARY_FUNCTION div_floor (const T1 &, const T2 &, signop, bool * = 0); |
| BINARY_FUNCTION udiv_floor (const T1 &, const T2 &); |
| BINARY_FUNCTION sdiv_floor (const T1 &, const T2 &); |
| BINARY_FUNCTION div_ceil (const T1 &, const T2 &, signop, bool * = 0); |
| BINARY_FUNCTION div_round (const T1 &, const T2 &, signop, bool * = 0); |
| BINARY_FUNCTION divmod_trunc (const T1 &, const T2 &, signop, |
| WI_BINARY_RESULT (T1, T2) *); |
| BINARY_FUNCTION gcd (const T1 &, const T2 &, signop = UNSIGNED); |
| BINARY_FUNCTION mod_trunc (const T1 &, const T2 &, signop, bool * = 0); |
| BINARY_FUNCTION smod_trunc (const T1 &, const T2 &); |
| BINARY_FUNCTION umod_trunc (const T1 &, const T2 &); |
| BINARY_FUNCTION mod_floor (const T1 &, const T2 &, signop, bool * = 0); |
| BINARY_FUNCTION umod_floor (const T1 &, const T2 &); |
| BINARY_FUNCTION mod_ceil (const T1 &, const T2 &, signop, bool * = 0); |
| BINARY_FUNCTION mod_round (const T1 &, const T2 &, signop, bool * = 0); |
| |
| template <typename T1, typename T2> |
| bool multiple_of_p (const T1 &, const T2 &, signop); |
| |
| template <typename T1, typename T2> |
| bool multiple_of_p (const T1 &, const T2 &, signop, |
| WI_BINARY_RESULT (T1, T2) *); |
| |
| SHIFT_FUNCTION lshift (const T1 &, const T2 &); |
| SHIFT_FUNCTION lrshift (const T1 &, const T2 &); |
| SHIFT_FUNCTION arshift (const T1 &, const T2 &); |
| SHIFT_FUNCTION rshift (const T1 &, const T2 &, signop sgn); |
| SHIFT_FUNCTION lrotate (const T1 &, const T2 &, unsigned int = 0); |
| SHIFT_FUNCTION rrotate (const T1 &, const T2 &, unsigned int = 0); |
| |
| #undef SHIFT_FUNCTION |
| #undef BINARY_PREDICATE |
| #undef BINARY_FUNCTION |
| #undef UNARY_PREDICATE |
| #undef UNARY_FUNCTION |
| |
| bool only_sign_bit_p (const wide_int_ref &, unsigned int); |
| bool only_sign_bit_p (const wide_int_ref &); |
| int clz (const wide_int_ref &); |
| int clrsb (const wide_int_ref &); |
| int ctz (const wide_int_ref &); |
| int exact_log2 (const wide_int_ref &); |
| int floor_log2 (const wide_int_ref &); |
| int ffs (const wide_int_ref &); |
| int popcount (const wide_int_ref &); |
| int parity (const wide_int_ref &); |
| |
| template <typename T> |
| unsigned HOST_WIDE_INT extract_uhwi (const T &, unsigned int, unsigned int); |
| |
| template <typename T> |
| unsigned int min_precision (const T &, signop); |
| } |
| |
| namespace wi |
| { |
| /* Contains the components of a decomposed integer for easy, direct |
| access. */ |
| struct storage_ref |
| { |
| storage_ref (const HOST_WIDE_INT *, unsigned int, unsigned int); |
| |
| const HOST_WIDE_INT *val; |
| unsigned int len; |
| unsigned int precision; |
| |
| /* Provide enough trappings for this class to act as storage for |
| generic_wide_int. */ |
| unsigned int get_len () const; |
| unsigned int get_precision () const; |
| const HOST_WIDE_INT *get_val () const; |
| }; |
| } |
| |
| inline::wi::storage_ref::storage_ref (const HOST_WIDE_INT *val_in, |
| unsigned int len_in, |
| unsigned int precision_in) |
| : val (val_in), len (len_in), precision (precision_in) |
| { |
| } |
| |
| inline unsigned int |
| wi::storage_ref::get_len () const |
| { |
| return len; |
| } |
| |
| inline unsigned int |
| wi::storage_ref::get_precision () const |
| { |
| return precision; |
| } |
| |
| inline const HOST_WIDE_INT * |
| wi::storage_ref::get_val () const |
| { |
| return val; |
| } |
| |
| /* This class defines an integer type using the storage provided by the |
| template argument. The storage class must provide the following |
| functions: |
| |
| unsigned int get_precision () const |
| Return the number of bits in the integer. |
| |
| HOST_WIDE_INT *get_val () const |
| Return a pointer to the array of blocks that encodes the integer. |
| |
| unsigned int get_len () const |
| Return the number of blocks in get_val (). If this is smaller |
| than the number of blocks implied by get_precision (), the |
| remaining blocks are sign extensions of block get_len () - 1. |
| |
| Although not required by generic_wide_int itself, writable storage |
| classes can also provide the following functions: |
| |
| HOST_WIDE_INT *write_val () |
| Get a modifiable version of get_val () |
| |
| unsigned int set_len (unsigned int len) |
| Set the value returned by get_len () to LEN. */ |
| template <typename storage> |
| class GTY(()) generic_wide_int : public storage |
| { |
| public: |
| generic_wide_int (); |
| |
| template <typename T> |
| generic_wide_int (const T &); |
| |
| template <typename T> |
| generic_wide_int (const T &, unsigned int); |
| |
| /* Conversions. */ |
| HOST_WIDE_INT to_shwi (unsigned int) const; |
| HOST_WIDE_INT to_shwi () const; |
| unsigned HOST_WIDE_INT to_uhwi (unsigned int) const; |
| unsigned HOST_WIDE_INT to_uhwi () const; |
| HOST_WIDE_INT to_short_addr () const; |
| |
| /* Public accessors for the interior of a wide int. */ |
| HOST_WIDE_INT sign_mask () const; |
| HOST_WIDE_INT elt (unsigned int) const; |
| unsigned HOST_WIDE_INT ulow () const; |
| unsigned HOST_WIDE_INT uhigh () const; |
| HOST_WIDE_INT slow () const; |
| HOST_WIDE_INT shigh () const; |
| |
| template <typename T> |
| generic_wide_int &operator = (const T &); |
| |
| #define BINARY_PREDICATE(OP, F) \ |
| template <typename T> \ |
| bool OP (const T &c) const { return wi::F (*this, c); } |
| |
| #define UNARY_OPERATOR(OP, F) \ |
| WI_UNARY_RESULT (generic_wide_int) OP () const { return wi::F (*this); } |
| |
| #define BINARY_OPERATOR(OP, F) \ |
| template <typename T> \ |
| WI_BINARY_RESULT (generic_wide_int, T) \ |
| OP (const T &c) const { return wi::F (*this, c); } |
| |
| #define ASSIGNMENT_OPERATOR(OP, F) \ |
| template <typename T> \ |
| generic_wide_int &OP (const T &c) { return (*this = wi::F (*this, c)); } |
| |
| /* Restrict these to cases where the shift operator is defined. */ |
| #define SHIFT_ASSIGNMENT_OPERATOR(OP, OP2) \ |
| template <typename T> \ |
| generic_wide_int &OP (const T &c) { return (*this = *this OP2 c); } |
| |
| #define INCDEC_OPERATOR(OP, DELTA) \ |
| generic_wide_int &OP () { *this += DELTA; return *this; } |
| |
| UNARY_OPERATOR (operator ~, bit_not) |
| UNARY_OPERATOR (operator -, neg) |
| BINARY_PREDICATE (operator ==, eq_p) |
| BINARY_PREDICATE (operator !=, ne_p) |
| BINARY_OPERATOR (operator &, bit_and) |
| BINARY_OPERATOR (and_not, bit_and_not) |
| BINARY_OPERATOR (operator |, bit_or) |
| BINARY_OPERATOR (or_not, bit_or_not) |
| BINARY_OPERATOR (operator ^, bit_xor) |
| BINARY_OPERATOR (operator +, add) |
| BINARY_OPERATOR (operator -, sub) |
| BINARY_OPERATOR (operator *, mul) |
| ASSIGNMENT_OPERATOR (operator &=, bit_and) |
| ASSIGNMENT_OPERATOR (operator |=, bit_or) |
| ASSIGNMENT_OPERATOR (operator ^=, bit_xor) |
| ASSIGNMENT_OPERATOR (operator +=, add) |
| ASSIGNMENT_OPERATOR (operator -=, sub) |
| ASSIGNMENT_OPERATOR (operator *=, mul) |
| SHIFT_ASSIGNMENT_OPERATOR (operator <<=, <<) |
| SHIFT_ASSIGNMENT_OPERATOR (operator >>=, >>) |
| INCDEC_OPERATOR (operator ++, 1) |
| INCDEC_OPERATOR (operator --, -1) |
| |
| #undef BINARY_PREDICATE |
| #undef UNARY_OPERATOR |
| #undef BINARY_OPERATOR |
| #undef SHIFT_ASSIGNMENT_OPERATOR |
| #undef ASSIGNMENT_OPERATOR |
| #undef INCDEC_OPERATOR |
| |
| /* Debugging functions. */ |
| void dump () const; |
| |
| static const bool is_sign_extended |
| = wi::int_traits <generic_wide_int <storage> >::is_sign_extended; |
| }; |
| |
| template <typename storage> |
| inline generic_wide_int <storage>::generic_wide_int () {} |
| |
| template <typename storage> |
| template <typename T> |
| inline generic_wide_int <storage>::generic_wide_int (const T &x) |
| : storage (x) |
| { |
| } |
| |
| template <typename storage> |
| template <typename T> |
| inline generic_wide_int <storage>::generic_wide_int (const T &x, |
| unsigned int precision) |
| : storage (x, precision) |
| { |
| } |
| |
| /* Return THIS as a signed HOST_WIDE_INT, sign-extending from PRECISION. |
| If THIS does not fit in PRECISION, the information is lost. */ |
| template <typename storage> |
| inline HOST_WIDE_INT |
| generic_wide_int <storage>::to_shwi (unsigned int precision) const |
| { |
| if (precision < HOST_BITS_PER_WIDE_INT) |
| return sext_hwi (this->get_val ()[0], precision); |
| else |
| return this->get_val ()[0]; |
| } |
| |
| /* Return THIS as a signed HOST_WIDE_INT, in its natural precision. */ |
| template <typename storage> |
| inline HOST_WIDE_INT |
| generic_wide_int <storage>::to_shwi () const |
| { |
| if (is_sign_extended) |
| return this->get_val ()[0]; |
| else |
| return to_shwi (this->get_precision ()); |
| } |
| |
| /* Return THIS as an unsigned HOST_WIDE_INT, zero-extending from |
| PRECISION. If THIS does not fit in PRECISION, the information |
| is lost. */ |
| template <typename storage> |
| inline unsigned HOST_WIDE_INT |
| generic_wide_int <storage>::to_uhwi (unsigned int precision) const |
| { |
| if (precision < HOST_BITS_PER_WIDE_INT) |
| return zext_hwi (this->get_val ()[0], precision); |
| else |
| return this->get_val ()[0]; |
| } |
| |
| /* Return THIS as an signed HOST_WIDE_INT, in its natural precision. */ |
| template <typename storage> |
| inline unsigned HOST_WIDE_INT |
| generic_wide_int <storage>::to_uhwi () const |
| { |
| return to_uhwi (this->get_precision ()); |
| } |
| |
| /* TODO: The compiler is half converted from using HOST_WIDE_INT to |
| represent addresses to using offset_int to represent addresses. |
| We use to_short_addr at the interface from new code to old, |
| unconverted code. */ |
| template <typename storage> |
| inline HOST_WIDE_INT |
| generic_wide_int <storage>::to_short_addr () const |
| { |
| return this->get_val ()[0]; |
| } |
| |
| /* Return the implicit value of blocks above get_len (). */ |
| template <typename storage> |
| inline HOST_WIDE_INT |
| generic_wide_int <storage>::sign_mask () const |
| { |
| unsigned int len = this->get_len (); |
| unsigned HOST_WIDE_INT high = this->get_val ()[len - 1]; |
| if (!is_sign_extended) |
| { |
| unsigned int precision = this->get_precision (); |
| int excess = len * HOST_BITS_PER_WIDE_INT - precision; |
| if (excess > 0) |
| high <<= excess; |
| } |
| return (HOST_WIDE_INT) (high) < 0 ? -1 : 0; |
| } |
| |
| /* Return the signed value of the least-significant explicitly-encoded |
| block. */ |
| template <typename storage> |
| inline HOST_WIDE_INT |
| generic_wide_int <storage>::slow () const |
| { |
| return this->get_val ()[0]; |
| } |
| |
| /* Return the signed value of the most-significant explicitly-encoded |
| block. */ |
| template <typename storage> |
| inline HOST_WIDE_INT |
| generic_wide_int <storage>::shigh () const |
| { |
| return this->get_val ()[this->get_len () - 1]; |
| } |
| |
| /* Return the unsigned value of the least-significant |
| explicitly-encoded block. */ |
| template <typename storage> |
| inline unsigned HOST_WIDE_INT |
| generic_wide_int <storage>::ulow () const |
| { |
| return this->get_val ()[0]; |
| } |
| |
| /* Return the unsigned value of the most-significant |
| explicitly-encoded block. */ |
| template <typename storage> |
| inline unsigned HOST_WIDE_INT |
| generic_wide_int <storage>::uhigh () const |
| { |
| return this->get_val ()[this->get_len () - 1]; |
| } |
| |
| /* Return block I, which might be implicitly or explicit encoded. */ |
| template <typename storage> |
| inline HOST_WIDE_INT |
| generic_wide_int <storage>::elt (unsigned int i) const |
| { |
| if (i >= this->get_len ()) |
| return sign_mask (); |
| else |
| return this->get_val ()[i]; |
| } |
| |
| template <typename storage> |
| template <typename T> |
| inline generic_wide_int <storage> & |
| generic_wide_int <storage>::operator = (const T &x) |
| { |
| storage::operator = (x); |
| return *this; |
| } |
| |
| /* Dump the contents of the integer to stderr, for debugging. */ |
| template <typename storage> |
| void |
| generic_wide_int <storage>::dump () const |
| { |
| unsigned int len = this->get_len (); |
| const HOST_WIDE_INT *val = this->get_val (); |
| unsigned int precision = this->get_precision (); |
| fprintf (stderr, "["); |
| if (len * HOST_BITS_PER_WIDE_INT < precision) |
| fprintf (stderr, "...,"); |
| for (unsigned int i = 0; i < len - 1; ++i) |
| fprintf (stderr, HOST_WIDE_INT_PRINT_HEX ",", val[len - 1 - i]); |
| fprintf (stderr, HOST_WIDE_INT_PRINT_HEX "], precision = %d\n", |
| val[0], precision); |
| } |
| |
| namespace wi |
| { |
| template <typename storage> |
| struct int_traits < generic_wide_int <storage> > |
| : public wi::int_traits <storage> |
| { |
| static unsigned int get_precision (const generic_wide_int <storage> &); |
| static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, |
| const generic_wide_int <storage> &); |
| }; |
| } |
| |
| template <typename storage> |
| inline unsigned int |
| wi::int_traits < generic_wide_int <storage> >:: |
| get_precision (const generic_wide_int <storage> &x) |
| { |
| return x.get_precision (); |
| } |
| |
| template <typename storage> |
| inline wi::storage_ref |
| wi::int_traits < generic_wide_int <storage> >:: |
| decompose (HOST_WIDE_INT *, unsigned int precision, |
| const generic_wide_int <storage> &x) |
| { |
| gcc_checking_assert (precision == x.get_precision ()); |
| return wi::storage_ref (x.get_val (), x.get_len (), precision); |
| } |
| |
| /* Provide the storage for a wide_int_ref. This acts like a read-only |
| wide_int, with the optimization that VAL is normally a pointer to |
| another integer's storage, so that no array copy is needed. */ |
| template <bool SE> |
| struct wide_int_ref_storage : public wi::storage_ref |
| { |
| private: |
| /* Scratch space that can be used when decomposing the original integer. |
| It must live as long as this object. */ |
| HOST_WIDE_INT scratch[2]; |
| |
| public: |
| wide_int_ref_storage (const wi::storage_ref &); |
| |
| template <typename T> |
| wide_int_ref_storage (const T &); |
| |
| template <typename T> |
| wide_int_ref_storage (const T &, unsigned int); |
| }; |
| |
| /* Create a reference from an existing reference. */ |
| template <bool SE> |
| inline wide_int_ref_storage <SE>:: |
| wide_int_ref_storage (const wi::storage_ref &x) |
| : storage_ref (x) |
| {} |
| |
| /* Create a reference to integer X in its natural precision. Note |
| that the natural precision is host-dependent for primitive |
| types. */ |
| template <bool SE> |
| template <typename T> |
| inline wide_int_ref_storage <SE>::wide_int_ref_storage (const T &x) |
| : storage_ref (wi::int_traits <T>::decompose (scratch, |
| wi::get_precision (x), x)) |
| { |
| } |
| |
| /* Create a reference to integer X in precision PRECISION. */ |
| template <bool SE> |
| template <typename T> |
| inline wide_int_ref_storage <SE>::wide_int_ref_storage (const T &x, |
| unsigned int precision) |
| : storage_ref (wi::int_traits <T>::decompose (scratch, precision, x)) |
| { |
| } |
| |
| namespace wi |
| { |
| template <bool SE> |
| struct int_traits <wide_int_ref_storage <SE> > |
| { |
| static const enum precision_type precision_type = VAR_PRECISION; |
| /* wi::storage_ref can be a reference to a primitive type, |
| so this is the conservatively-correct setting. */ |
| static const bool host_dependent_precision = true; |
| static const bool is_sign_extended = SE; |
| }; |
| } |
| |
| namespace wi |
| { |
| unsigned int force_to_size (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| unsigned int, unsigned int, unsigned int, |
| signop sgn); |
| unsigned int from_array (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| unsigned int, unsigned int, bool = true); |
| } |
| |
| /* The storage used by wide_int. */ |
| class GTY(()) wide_int_storage |
| { |
| private: |
| HOST_WIDE_INT val[WIDE_INT_MAX_ELTS]; |
| unsigned int len; |
| unsigned int precision; |
| |
| public: |
| wide_int_storage (); |
| template <typename T> |
| wide_int_storage (const T &); |
| |
| /* The standard generic_wide_int storage methods. */ |
| unsigned int get_precision () const; |
| const HOST_WIDE_INT *get_val () const; |
| unsigned int get_len () const; |
| HOST_WIDE_INT *write_val (); |
| void set_len (unsigned int, bool = false); |
| |
| template <typename T> |
| wide_int_storage &operator = (const T &); |
| |
| static wide_int from (const wide_int_ref &, unsigned int, signop); |
| static wide_int from_array (const HOST_WIDE_INT *, unsigned int, |
| unsigned int, bool = true); |
| static wide_int create (unsigned int); |
| |
| /* FIXME: target-dependent, so should disappear. */ |
| wide_int bswap () const; |
| }; |
| |
| namespace wi |
| { |
| template <> |
| struct int_traits <wide_int_storage> |
| { |
| static const enum precision_type precision_type = VAR_PRECISION; |
| /* Guaranteed by a static assert in the wide_int_storage constructor. */ |
| static const bool host_dependent_precision = false; |
| static const bool is_sign_extended = true; |
| template <typename T1, typename T2> |
| static wide_int get_binary_result (const T1 &, const T2 &); |
| }; |
| } |
| |
| inline wide_int_storage::wide_int_storage () {} |
| |
| /* Initialize the storage from integer X, in its natural precision. |
| Note that we do not allow integers with host-dependent precision |
| to become wide_ints; wide_ints must always be logically independent |
| of the host. */ |
| template <typename T> |
| inline wide_int_storage::wide_int_storage (const T &x) |
| { |
| { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); } |
| { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); } |
| WIDE_INT_REF_FOR (T) xi (x); |
| precision = xi.precision; |
| wi::copy (*this, xi); |
| } |
| |
| template <typename T> |
| inline wide_int_storage& |
| wide_int_storage::operator = (const T &x) |
| { |
| { STATIC_ASSERT (!wi::int_traits<T>::host_dependent_precision); } |
| { STATIC_ASSERT (wi::int_traits<T>::precision_type != wi::CONST_PRECISION); } |
| WIDE_INT_REF_FOR (T) xi (x); |
| precision = xi.precision; |
| wi::copy (*this, xi); |
| return *this; |
| } |
| |
| inline unsigned int |
| wide_int_storage::get_precision () const |
| { |
| return precision; |
| } |
| |
| inline const HOST_WIDE_INT * |
| wide_int_storage::get_val () const |
| { |
| return val; |
| } |
| |
| inline unsigned int |
| wide_int_storage::get_len () const |
| { |
| return len; |
| } |
| |
| inline HOST_WIDE_INT * |
| wide_int_storage::write_val () |
| { |
| return val; |
| } |
| |
| inline void |
| wide_int_storage::set_len (unsigned int l, bool is_sign_extended) |
| { |
| len = l; |
| if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > precision) |
| val[len - 1] = sext_hwi (val[len - 1], |
| precision % HOST_BITS_PER_WIDE_INT); |
| } |
| |
| /* Treat X as having signedness SGN and convert it to a PRECISION-bit |
| number. */ |
| inline wide_int |
| wide_int_storage::from (const wide_int_ref &x, unsigned int precision, |
| signop sgn) |
| { |
| wide_int result = wide_int::create (precision); |
| result.set_len (wi::force_to_size (result.write_val (), x.val, x.len, |
| x.precision, precision, sgn)); |
| return result; |
| } |
| |
| /* Create a wide_int from the explicit block encoding given by VAL and |
| LEN. PRECISION is the precision of the integer. NEED_CANON_P is |
| true if the encoding may have redundant trailing blocks. */ |
| inline wide_int |
| wide_int_storage::from_array (const HOST_WIDE_INT *val, unsigned int len, |
| unsigned int precision, bool need_canon_p) |
| { |
| wide_int result = wide_int::create (precision); |
| result.set_len (wi::from_array (result.write_val (), val, len, precision, |
| need_canon_p)); |
| return result; |
| } |
| |
| /* Return an uninitialized wide_int with precision PRECISION. */ |
| inline wide_int |
| wide_int_storage::create (unsigned int precision) |
| { |
| wide_int x; |
| x.precision = precision; |
| return x; |
| } |
| |
| template <typename T1, typename T2> |
| inline wide_int |
| wi::int_traits <wide_int_storage>::get_binary_result (const T1 &x, const T2 &y) |
| { |
| /* This shouldn't be used for two flexible-precision inputs. */ |
| STATIC_ASSERT (wi::int_traits <T1>::precision_type != FLEXIBLE_PRECISION |
| || wi::int_traits <T2>::precision_type != FLEXIBLE_PRECISION); |
| if (wi::int_traits <T1>::precision_type == FLEXIBLE_PRECISION) |
| return wide_int::create (wi::get_precision (y)); |
| else |
| return wide_int::create (wi::get_precision (x)); |
| } |
| |
| /* The storage used by FIXED_WIDE_INT (N). */ |
| template <int N> |
| class GTY(()) fixed_wide_int_storage |
| { |
| private: |
| HOST_WIDE_INT val[(N + HOST_BITS_PER_WIDE_INT + 1) / HOST_BITS_PER_WIDE_INT]; |
| unsigned int len; |
| |
| public: |
| fixed_wide_int_storage (); |
| template <typename T> |
| fixed_wide_int_storage (const T &); |
| |
| /* The standard generic_wide_int storage methods. */ |
| unsigned int get_precision () const; |
| const HOST_WIDE_INT *get_val () const; |
| unsigned int get_len () const; |
| HOST_WIDE_INT *write_val (); |
| void set_len (unsigned int, bool = false); |
| |
| static FIXED_WIDE_INT (N) from (const wide_int_ref &, signop); |
| static FIXED_WIDE_INT (N) from_array (const HOST_WIDE_INT *, unsigned int, |
| bool = true); |
| }; |
| |
| namespace wi |
| { |
| template <int N> |
| struct int_traits < fixed_wide_int_storage <N> > |
| { |
| static const enum precision_type precision_type = CONST_PRECISION; |
| static const bool host_dependent_precision = false; |
| static const bool is_sign_extended = true; |
| static const unsigned int precision = N; |
| template <typename T1, typename T2> |
| static FIXED_WIDE_INT (N) get_binary_result (const T1 &, const T2 &); |
| }; |
| } |
| |
| template <int N> |
| inline fixed_wide_int_storage <N>::fixed_wide_int_storage () {} |
| |
| /* Initialize the storage from integer X, in precision N. */ |
| template <int N> |
| template <typename T> |
| inline fixed_wide_int_storage <N>::fixed_wide_int_storage (const T &x) |
| { |
| /* Check for type compatibility. We don't want to initialize a |
| fixed-width integer from something like a wide_int. */ |
| WI_BINARY_RESULT (T, FIXED_WIDE_INT (N)) *assertion ATTRIBUTE_UNUSED; |
| wi::copy (*this, WIDE_INT_REF_FOR (T) (x, N)); |
| } |
| |
| template <int N> |
| inline unsigned int |
| fixed_wide_int_storage <N>::get_precision () const |
| { |
| return N; |
| } |
| |
| template <int N> |
| inline const HOST_WIDE_INT * |
| fixed_wide_int_storage <N>::get_val () const |
| { |
| return val; |
| } |
| |
| template <int N> |
| inline unsigned int |
| fixed_wide_int_storage <N>::get_len () const |
| { |
| return len; |
| } |
| |
| template <int N> |
| inline HOST_WIDE_INT * |
| fixed_wide_int_storage <N>::write_val () |
| { |
| return val; |
| } |
| |
| template <int N> |
| inline void |
| fixed_wide_int_storage <N>::set_len (unsigned int l, bool) |
| { |
| len = l; |
| /* There are no excess bits in val[len - 1]. */ |
| STATIC_ASSERT (N % HOST_BITS_PER_WIDE_INT == 0); |
| } |
| |
| /* Treat X as having signedness SGN and convert it to an N-bit number. */ |
| template <int N> |
| inline FIXED_WIDE_INT (N) |
| fixed_wide_int_storage <N>::from (const wide_int_ref &x, signop sgn) |
| { |
| FIXED_WIDE_INT (N) result; |
| result.set_len (wi::force_to_size (result.write_val (), x.val, x.len, |
| x.precision, N, sgn)); |
| return result; |
| } |
| |
| /* Create a FIXED_WIDE_INT (N) from the explicit block encoding given by |
| VAL and LEN. NEED_CANON_P is true if the encoding may have redundant |
| trailing blocks. */ |
| template <int N> |
| inline FIXED_WIDE_INT (N) |
| fixed_wide_int_storage <N>::from_array (const HOST_WIDE_INT *val, |
| unsigned int len, |
| bool need_canon_p) |
| { |
| FIXED_WIDE_INT (N) result; |
| result.set_len (wi::from_array (result.write_val (), val, len, |
| N, need_canon_p)); |
| return result; |
| } |
| |
| template <int N> |
| template <typename T1, typename T2> |
| inline FIXED_WIDE_INT (N) |
| wi::int_traits < fixed_wide_int_storage <N> >:: |
| get_binary_result (const T1 &, const T2 &) |
| { |
| return FIXED_WIDE_INT (N) (); |
| } |
| |
| /* A reference to one element of a trailing_wide_ints structure. */ |
| class trailing_wide_int_storage |
| { |
| private: |
| /* The precision of the integer, which is a fixed property of the |
| parent trailing_wide_ints. */ |
| unsigned int m_precision; |
| |
| /* A pointer to the length field. */ |
| unsigned char *m_len; |
| |
| /* A pointer to the HWI array. There are enough elements to hold all |
| values of precision M_PRECISION. */ |
| HOST_WIDE_INT *m_val; |
| |
| public: |
| trailing_wide_int_storage (unsigned int, unsigned char *, HOST_WIDE_INT *); |
| |
| /* The standard generic_wide_int storage methods. */ |
| unsigned int get_len () const; |
| unsigned int get_precision () const; |
| const HOST_WIDE_INT *get_val () const; |
| HOST_WIDE_INT *write_val (); |
| void set_len (unsigned int, bool = false); |
| |
| template <typename T> |
| trailing_wide_int_storage &operator = (const T &); |
| }; |
| |
| typedef generic_wide_int <trailing_wide_int_storage> trailing_wide_int; |
| |
| /* trailing_wide_int behaves like a wide_int. */ |
| namespace wi |
| { |
| template <> |
| struct int_traits <trailing_wide_int_storage> |
| : public int_traits <wide_int_storage> {}; |
| } |
| |
| /* An array of N wide_int-like objects that can be put at the end of |
| a variable-sized structure. Use extra_size to calculate how many |
| bytes beyond the sizeof need to be allocated. Use set_precision |
| to initialize the structure. */ |
| template <int N> |
| class GTY(()) trailing_wide_ints |
| { |
| private: |
| /* The shared precision of each number. */ |
| unsigned short m_precision; |
| |
| /* The shared maximum length of each number. */ |
| unsigned char m_max_len; |
| |
| /* The current length of each number. */ |
| unsigned char m_len[N]; |
| |
| /* The variable-length part of the structure, which always contains |
| at least one HWI. Element I starts at index I * M_MAX_LEN. */ |
| HOST_WIDE_INT m_val[1]; |
| |
| public: |
| void set_precision (unsigned int); |
| trailing_wide_int operator [] (unsigned int); |
| static size_t extra_size (unsigned int); |
| }; |
| |
| inline trailing_wide_int_storage:: |
| trailing_wide_int_storage (unsigned int precision, unsigned char *len, |
| HOST_WIDE_INT *val) |
| : m_precision (precision), m_len (len), m_val (val) |
| { |
| } |
| |
| inline unsigned int |
| trailing_wide_int_storage::get_len () const |
| { |
| return *m_len; |
| } |
| |
| inline unsigned int |
| trailing_wide_int_storage::get_precision () const |
| { |
| return m_precision; |
| } |
| |
| inline const HOST_WIDE_INT * |
| trailing_wide_int_storage::get_val () const |
| { |
| return m_val; |
| } |
| |
| inline HOST_WIDE_INT * |
| trailing_wide_int_storage::write_val () |
| { |
| return m_val; |
| } |
| |
| inline void |
| trailing_wide_int_storage::set_len (unsigned int len, bool is_sign_extended) |
| { |
| *m_len = len; |
| if (!is_sign_extended && len * HOST_BITS_PER_WIDE_INT > m_precision) |
| m_val[len - 1] = sext_hwi (m_val[len - 1], |
| m_precision % HOST_BITS_PER_WIDE_INT); |
| } |
| |
| template <typename T> |
| inline trailing_wide_int_storage & |
| trailing_wide_int_storage::operator = (const T &x) |
| { |
| WIDE_INT_REF_FOR (T) xi (x, m_precision); |
| wi::copy (*this, xi); |
| return *this; |
| } |
| |
| /* Initialize the structure and record that all elements have precision |
| PRECISION. */ |
| template <int N> |
| inline void |
| trailing_wide_ints <N>::set_precision (unsigned int precision) |
| { |
| m_precision = precision; |
| m_max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1) |
| / HOST_BITS_PER_WIDE_INT); |
| } |
| |
| /* Return a reference to element INDEX. */ |
| template <int N> |
| inline trailing_wide_int |
| trailing_wide_ints <N>::operator [] (unsigned int index) |
| { |
| return trailing_wide_int_storage (m_precision, &m_len[index], |
| &m_val[index * m_max_len]); |
| } |
| |
| /* Return how many extra bytes need to be added to the end of the structure |
| in order to handle N wide_ints of precision PRECISION. */ |
| template <int N> |
| inline size_t |
| trailing_wide_ints <N>::extra_size (unsigned int precision) |
| { |
| unsigned int max_len = ((precision + HOST_BITS_PER_WIDE_INT - 1) |
| / HOST_BITS_PER_WIDE_INT); |
| return (N * max_len - 1) * sizeof (HOST_WIDE_INT); |
| } |
| |
| /* This macro is used in structures that end with a trailing_wide_ints field |
| called FIELD. It declares get_NAME() and set_NAME() methods to access |
| element I of FIELD. */ |
| #define TRAILING_WIDE_INT_ACCESSOR(NAME, FIELD, I) \ |
| trailing_wide_int get_##NAME () { return FIELD[I]; } \ |
| template <typename T> void set_##NAME (const T &x) { FIELD[I] = x; } |
| |
| namespace wi |
| { |
| /* Implementation of int_traits for primitive integer types like "int". */ |
| template <typename T, bool signed_p> |
| struct primitive_int_traits |
| { |
| static const enum precision_type precision_type = FLEXIBLE_PRECISION; |
| static const bool host_dependent_precision = true; |
| static const bool is_sign_extended = true; |
| static unsigned int get_precision (T); |
| static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, T); |
| }; |
| } |
| |
| template <typename T, bool signed_p> |
| inline unsigned int |
| wi::primitive_int_traits <T, signed_p>::get_precision (T) |
| { |
| return sizeof (T) * CHAR_BIT; |
| } |
| |
| template <typename T, bool signed_p> |
| inline wi::storage_ref |
| wi::primitive_int_traits <T, signed_p>::decompose (HOST_WIDE_INT *scratch, |
| unsigned int precision, T x) |
| { |
| scratch[0] = x; |
| if (signed_p || scratch[0] >= 0 || precision <= HOST_BITS_PER_WIDE_INT) |
| return wi::storage_ref (scratch, 1, precision); |
| scratch[1] = 0; |
| return wi::storage_ref (scratch, 2, precision); |
| } |
| |
| /* Allow primitive C types to be used in wi:: routines. */ |
| namespace wi |
| { |
| template <> |
| struct int_traits <int> |
| : public primitive_int_traits <int, true> {}; |
| |
| template <> |
| struct int_traits <unsigned int> |
| : public primitive_int_traits <unsigned int, false> {}; |
| |
| template <> |
| struct int_traits <long> |
| : public primitive_int_traits <long, true> {}; |
| |
| template <> |
| struct int_traits <unsigned long> |
| : public primitive_int_traits <unsigned long, false> {}; |
| |
| #if defined HAVE_LONG_LONG |
| template <> |
| struct int_traits <long long> |
| : public primitive_int_traits <long long, true> {}; |
| |
| template <> |
| struct int_traits <unsigned long long> |
| : public primitive_int_traits <unsigned long long, false> {}; |
| #endif |
| } |
| |
| namespace wi |
| { |
| /* Stores HWI-sized integer VAL, treating it as having signedness SGN |
| and precision PRECISION. */ |
| struct hwi_with_prec |
| { |
| hwi_with_prec (HOST_WIDE_INT, unsigned int, signop); |
| HOST_WIDE_INT val; |
| unsigned int precision; |
| signop sgn; |
| }; |
| |
| hwi_with_prec shwi (HOST_WIDE_INT, unsigned int); |
| hwi_with_prec uhwi (unsigned HOST_WIDE_INT, unsigned int); |
| |
| hwi_with_prec minus_one (unsigned int); |
| hwi_with_prec zero (unsigned int); |
| hwi_with_prec one (unsigned int); |
| hwi_with_prec two (unsigned int); |
| } |
| |
| inline wi::hwi_with_prec::hwi_with_prec (HOST_WIDE_INT v, unsigned int p, |
| signop s) |
| : val (v), precision (p), sgn (s) |
| { |
| } |
| |
| /* Return a signed integer that has value VAL and precision PRECISION. */ |
| inline wi::hwi_with_prec |
| wi::shwi (HOST_WIDE_INT val, unsigned int precision) |
| { |
| return hwi_with_prec (val, precision, SIGNED); |
| } |
| |
| /* Return an unsigned integer that has value VAL and precision PRECISION. */ |
| inline wi::hwi_with_prec |
| wi::uhwi (unsigned HOST_WIDE_INT val, unsigned int precision) |
| { |
| return hwi_with_prec (val, precision, UNSIGNED); |
| } |
| |
| /* Return a wide int of -1 with precision PRECISION. */ |
| inline wi::hwi_with_prec |
| wi::minus_one (unsigned int precision) |
| { |
| return wi::shwi (-1, precision); |
| } |
| |
| /* Return a wide int of 0 with precision PRECISION. */ |
| inline wi::hwi_with_prec |
| wi::zero (unsigned int precision) |
| { |
| return wi::shwi (0, precision); |
| } |
| |
| /* Return a wide int of 1 with precision PRECISION. */ |
| inline wi::hwi_with_prec |
| wi::one (unsigned int precision) |
| { |
| return wi::shwi (1, precision); |
| } |
| |
| /* Return a wide int of 2 with precision PRECISION. */ |
| inline wi::hwi_with_prec |
| wi::two (unsigned int precision) |
| { |
| return wi::shwi (2, precision); |
| } |
| |
| namespace wi |
| { |
| template <> |
| struct int_traits <wi::hwi_with_prec> |
| { |
| static const enum precision_type precision_type = VAR_PRECISION; |
| /* hwi_with_prec has an explicitly-given precision, rather than the |
| precision of HOST_WIDE_INT. */ |
| static const bool host_dependent_precision = false; |
| static const bool is_sign_extended = true; |
| static unsigned int get_precision (const wi::hwi_with_prec &); |
| static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, |
| const wi::hwi_with_prec &); |
| }; |
| } |
| |
| inline unsigned int |
| wi::int_traits <wi::hwi_with_prec>::get_precision (const wi::hwi_with_prec &x) |
| { |
| return x.precision; |
| } |
| |
| inline wi::storage_ref |
| wi::int_traits <wi::hwi_with_prec>:: |
| decompose (HOST_WIDE_INT *scratch, unsigned int precision, |
| const wi::hwi_with_prec &x) |
| { |
| gcc_checking_assert (precision == x.precision); |
| scratch[0] = x.val; |
| if (x.sgn == SIGNED || x.val >= 0 || precision <= HOST_BITS_PER_WIDE_INT) |
| return wi::storage_ref (scratch, 1, precision); |
| scratch[1] = 0; |
| return wi::storage_ref (scratch, 2, precision); |
| } |
| |
| /* Private functions for handling large cases out of line. They take |
| individual length and array parameters because that is cheaper for |
| the inline caller than constructing an object on the stack and |
| passing a reference to it. (Although many callers use wide_int_refs, |
| we generally want those to be removed by SRA.) */ |
| namespace wi |
| { |
| bool eq_p_large (const HOST_WIDE_INT *, unsigned int, |
| const HOST_WIDE_INT *, unsigned int, unsigned int); |
| bool lts_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int, |
| const HOST_WIDE_INT *, unsigned int); |
| bool ltu_p_large (const HOST_WIDE_INT *, unsigned int, unsigned int, |
| const HOST_WIDE_INT *, unsigned int); |
| int cmps_large (const HOST_WIDE_INT *, unsigned int, unsigned int, |
| const HOST_WIDE_INT *, unsigned int); |
| int cmpu_large (const HOST_WIDE_INT *, unsigned int, unsigned int, |
| const HOST_WIDE_INT *, unsigned int); |
| unsigned int sext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| unsigned int, |
| unsigned int, unsigned int); |
| unsigned int zext_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| unsigned int, |
| unsigned int, unsigned int); |
| unsigned int set_bit_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| unsigned int, unsigned int, unsigned int); |
| unsigned int lshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| unsigned int, unsigned int, unsigned int); |
| unsigned int lrshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| unsigned int, unsigned int, unsigned int, |
| unsigned int); |
| unsigned int arshift_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| unsigned int, unsigned int, unsigned int, |
| unsigned int); |
| unsigned int and_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, |
| const HOST_WIDE_INT *, unsigned int, unsigned int); |
| unsigned int and_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| unsigned int, const HOST_WIDE_INT *, |
| unsigned int, unsigned int); |
| unsigned int or_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, |
| const HOST_WIDE_INT *, unsigned int, unsigned int); |
| unsigned int or_not_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| unsigned int, const HOST_WIDE_INT *, |
| unsigned int, unsigned int); |
| unsigned int xor_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, |
| const HOST_WIDE_INT *, unsigned int, unsigned int); |
| unsigned int add_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, |
| const HOST_WIDE_INT *, unsigned int, unsigned int, |
| signop, bool *); |
| unsigned int sub_large (HOST_WIDE_INT *, const HOST_WIDE_INT *, unsigned int, |
| const HOST_WIDE_INT *, unsigned int, unsigned int, |
| signop, bool *); |
| unsigned int mul_internal (HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| unsigned int, const HOST_WIDE_INT *, |
| unsigned int, unsigned int, signop, bool *, |
| bool); |
| unsigned int divmod_internal (HOST_WIDE_INT *, unsigned int *, |
| HOST_WIDE_INT *, const HOST_WIDE_INT *, |
| unsigned int, unsigned int, |
| const HOST_WIDE_INT *, |
| unsigned int, unsigned int, |
| signop, bool *); |
| } |
| |
| /* Return the number of bits that integer X can hold. */ |
| template <typename T> |
| inline unsigned int |
| wi::get_precision (const T &x) |
| { |
| return wi::int_traits <T>::get_precision (x); |
| } |
| |
| /* Return the number of bits that the result of a binary operation can |
| hold when the input operands are X and Y. */ |
| template <typename T1, typename T2> |
| inline unsigned int |
| wi::get_binary_precision (const T1 &x, const T2 &y) |
| { |
| return get_precision (wi::int_traits <WI_BINARY_RESULT (T1, T2)>:: |
| get_binary_result (x, y)); |
| } |
| |
| /* Copy the contents of Y to X, but keeping X's current precision. */ |
| template <typename T1, typename T2> |
| inline void |
| wi::copy (T1 &x, const T2 &y) |
| { |
| HOST_WIDE_INT *xval = x.write_val (); |
| const HOST_WIDE_INT *yval = y.get_val (); |
| unsigned int len = y.get_len (); |
| unsigned int i = 0; |
| do |
| xval[i] = yval[i]; |
| while (++i < len); |
| x.set_len (len, y.is_sign_extended); |
| } |
| |
| /* Return true if X fits in a HOST_WIDE_INT with no loss of precision. */ |
| template <typename T> |
| inline bool |
| wi::fits_shwi_p (const T &x) |
| { |
| WIDE_INT_REF_FOR (T) xi (x); |
| return xi.len == 1; |
| } |
| |
| /* Return true if X fits in an unsigned HOST_WIDE_INT with no loss of |
| precision. */ |
| template <typename T> |
| inline bool |
| wi::fits_uhwi_p (const T &x) |
| { |
| WIDE_INT_REF_FOR (T) xi (x); |
| if (xi.precision <= HOST_BITS_PER_WIDE_INT) |
| return true; |
| if (xi.len == 1) |
| return xi.slow () >= 0; |
| return xi.len == 2 && xi.uhigh () == 0; |
| } |
| |
| /* Return true if X is negative based on the interpretation of SGN. |
| For UNSIGNED, this is always false. */ |
| template <typename T> |
| inline bool |
| wi::neg_p (const T &x, signop sgn) |
| { |
| WIDE_INT_REF_FOR (T) xi (x); |
| if (sgn == UNSIGNED) |
| return false; |
| return xi.sign_mask () < 0; |
| } |
| |
| /* Return -1 if the top bit of X is set and 0 if the top bit is clear. */ |
| template <typename T> |
| inline HOST_WIDE_INT |
| wi::sign_mask (const T &x) |
| { |
| WIDE_INT_REF_FOR (T) xi (x); |
| return xi.sign_mask (); |
| } |
| |
| /* Return true if X == Y. X and Y must be binary-compatible. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::eq_p (const T1 &x, const T2 &y) |
| { |
| unsigned int precision = get_binary_precision (x, y); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| if (xi.is_sign_extended && yi.is_sign_extended) |
| { |
| /* This case reduces to array equality. */ |
| if (xi.len != yi.len) |
| return false; |
| unsigned int i = 0; |
| do |
| if (xi.val[i] != yi.val[i]) |
| return false; |
| while (++i != xi.len); |
| return true; |
| } |
| if (__builtin_expect (yi.len == 1, true)) |
| { |
| /* XI is only equal to YI if it too has a single HWI. */ |
| if (xi.len != 1) |
| return false; |
| /* Excess bits in xi.val[0] will be signs or zeros, so comparisons |
| with 0 are simple. */ |
| if (STATIC_CONSTANT_P (yi.val[0] == 0)) |
| return xi.val[0] == 0; |
| /* Otherwise flush out any excess bits first. */ |
| unsigned HOST_WIDE_INT diff = xi.val[0] ^ yi.val[0]; |
| int excess = HOST_BITS_PER_WIDE_INT - precision; |
| if (excess > 0) |
| diff <<= excess; |
| return diff == 0; |
| } |
| return eq_p_large (xi.val, xi.len, yi.val, yi.len, precision); |
| } |
| |
| /* Return true if X != Y. X and Y must be binary-compatible. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::ne_p (const T1 &x, const T2 &y) |
| { |
| return !eq_p (x, y); |
| } |
| |
| /* Return true if X < Y when both are treated as signed values. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::lts_p (const T1 &x, const T2 &y) |
| { |
| unsigned int precision = get_binary_precision (x, y); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| /* We optimize x < y, where y is 64 or fewer bits. */ |
| if (wi::fits_shwi_p (yi)) |
| { |
| /* Make lts_p (x, 0) as efficient as wi::neg_p (x). */ |
| if (STATIC_CONSTANT_P (yi.val[0] == 0)) |
| return neg_p (xi); |
| /* If x fits directly into a shwi, we can compare directly. */ |
| if (wi::fits_shwi_p (xi)) |
| return xi.to_shwi () < yi.to_shwi (); |
| /* If x doesn't fit and is negative, then it must be more |
| negative than any value in y, and hence smaller than y. */ |
| if (neg_p (xi)) |
| return true; |
| /* If x is positive, then it must be larger than any value in y, |
| and hence greater than y. */ |
| return false; |
| } |
| /* Optimize the opposite case, if it can be detected at compile time. */ |
| if (STATIC_CONSTANT_P (xi.len == 1)) |
| /* If YI is negative it is lower than the least HWI. |
| If YI is positive it is greater than the greatest HWI. */ |
| return !neg_p (yi); |
| return lts_p_large (xi.val, xi.len, precision, yi.val, yi.len); |
| } |
| |
| /* Return true if X < Y when both are treated as unsigned values. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::ltu_p (const T1 &x, const T2 &y) |
| { |
| unsigned int precision = get_binary_precision (x, y); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| /* Optimize comparisons with constants. */ |
| if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0)) |
| return xi.len == 1 && xi.to_uhwi () < (unsigned HOST_WIDE_INT) yi.val[0]; |
| if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0)) |
| return yi.len != 1 || yi.to_uhwi () > (unsigned HOST_WIDE_INT) xi.val[0]; |
| /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended |
| for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both |
| values does not change the result. */ |
| if (__builtin_expect (xi.len + yi.len == 2, true)) |
| { |
| unsigned HOST_WIDE_INT xl = xi.to_uhwi (); |
| unsigned HOST_WIDE_INT yl = yi.to_uhwi (); |
| return xl < yl; |
| } |
| return ltu_p_large (xi.val, xi.len, precision, yi.val, yi.len); |
| } |
| |
| /* Return true if X < Y. Signedness of X and Y is indicated by SGN. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::lt_p (const T1 &x, const T2 &y, signop sgn) |
| { |
| if (sgn == SIGNED) |
| return lts_p (x, y); |
| else |
| return ltu_p (x, y); |
| } |
| |
| /* Return true if X <= Y when both are treated as signed values. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::les_p (const T1 &x, const T2 &y) |
| { |
| return !lts_p (y, x); |
| } |
| |
| /* Return true if X <= Y when both are treated as unsigned values. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::leu_p (const T1 &x, const T2 &y) |
| { |
| return !ltu_p (y, x); |
| } |
| |
| /* Return true if X <= Y. Signedness of X and Y is indicated by SGN. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::le_p (const T1 &x, const T2 &y, signop sgn) |
| { |
| if (sgn == SIGNED) |
| return les_p (x, y); |
| else |
| return leu_p (x, y); |
| } |
| |
| /* Return true if X > Y when both are treated as signed values. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::gts_p (const T1 &x, const T2 &y) |
| { |
| return lts_p (y, x); |
| } |
| |
| /* Return true if X > Y when both are treated as unsigned values. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::gtu_p (const T1 &x, const T2 &y) |
| { |
| return ltu_p (y, x); |
| } |
| |
| /* Return true if X > Y. Signedness of X and Y is indicated by SGN. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::gt_p (const T1 &x, const T2 &y, signop sgn) |
| { |
| if (sgn == SIGNED) |
| return gts_p (x, y); |
| else |
| return gtu_p (x, y); |
| } |
| |
| /* Return true if X >= Y when both are treated as signed values. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::ges_p (const T1 &x, const T2 &y) |
| { |
| return !lts_p (x, y); |
| } |
| |
| /* Return true if X >= Y when both are treated as unsigned values. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::geu_p (const T1 &x, const T2 &y) |
| { |
| return !ltu_p (x, y); |
| } |
| |
| /* Return true if X >= Y. Signedness of X and Y is indicated by SGN. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::ge_p (const T1 &x, const T2 &y, signop sgn) |
| { |
| if (sgn == SIGNED) |
| return ges_p (x, y); |
| else |
| return geu_p (x, y); |
| } |
| |
| /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y |
| as signed values. */ |
| template <typename T1, typename T2> |
| inline int |
| wi::cmps (const T1 &x, const T2 &y) |
| { |
| unsigned int precision = get_binary_precision (x, y); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| if (wi::fits_shwi_p (yi)) |
| { |
| /* Special case for comparisons with 0. */ |
| if (STATIC_CONSTANT_P (yi.val[0] == 0)) |
| return neg_p (xi) ? -1 : !(xi.len == 1 && xi.val[0] == 0); |
| /* If x fits into a signed HWI, we can compare directly. */ |
| if (wi::fits_shwi_p (xi)) |
| { |
| HOST_WIDE_INT xl = xi.to_shwi (); |
| HOST_WIDE_INT yl = yi.to_shwi (); |
| return xl < yl ? -1 : xl > yl; |
| } |
| /* If x doesn't fit and is negative, then it must be more |
| negative than any signed HWI, and hence smaller than y. */ |
| if (neg_p (xi)) |
| return -1; |
| /* If x is positive, then it must be larger than any signed HWI, |
| and hence greater than y. */ |
| return 1; |
| } |
| /* Optimize the opposite case, if it can be detected at compile time. */ |
| if (STATIC_CONSTANT_P (xi.len == 1)) |
| /* If YI is negative it is lower than the least HWI. |
| If YI is positive it is greater than the greatest HWI. */ |
| return neg_p (yi) ? 1 : -1; |
| return cmps_large (xi.val, xi.len, precision, yi.val, yi.len); |
| } |
| |
| /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Treat both X and Y |
| as unsigned values. */ |
| template <typename T1, typename T2> |
| inline int |
| wi::cmpu (const T1 &x, const T2 &y) |
| { |
| unsigned int precision = get_binary_precision (x, y); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| /* Optimize comparisons with constants. */ |
| if (STATIC_CONSTANT_P (yi.len == 1 && yi.val[0] >= 0)) |
| { |
| /* If XI doesn't fit in a HWI then it must be larger than YI. */ |
| if (xi.len != 1) |
| return 1; |
| /* Otherwise compare directly. */ |
| unsigned HOST_WIDE_INT xl = xi.to_uhwi (); |
| unsigned HOST_WIDE_INT yl = yi.val[0]; |
| return xl < yl ? -1 : xl > yl; |
| } |
| if (STATIC_CONSTANT_P (xi.len == 1 && xi.val[0] >= 0)) |
| { |
| /* If YI doesn't fit in a HWI then it must be larger than XI. */ |
| if (yi.len != 1) |
| return -1; |
| /* Otherwise compare directly. */ |
| unsigned HOST_WIDE_INT xl = xi.val[0]; |
| unsigned HOST_WIDE_INT yl = yi.to_uhwi (); |
| return xl < yl ? -1 : xl > yl; |
| } |
| /* Optimize the case of two HWIs. The HWIs are implicitly sign-extended |
| for precisions greater than HOST_BITS_WIDE_INT, but sign-extending both |
| values does not change the result. */ |
| if (__builtin_expect (xi.len + yi.len == 2, true)) |
| { |
| unsigned HOST_WIDE_INT xl = xi.to_uhwi (); |
| unsigned HOST_WIDE_INT yl = yi.to_uhwi (); |
| return xl < yl ? -1 : xl > yl; |
| } |
| return cmpu_large (xi.val, xi.len, precision, yi.val, yi.len); |
| } |
| |
| /* Return -1 if X < Y, 0 if X == Y and 1 if X > Y. Signedness of |
| X and Y indicated by SGN. */ |
| template <typename T1, typename T2> |
| inline int |
| wi::cmp (const T1 &x, const T2 &y, signop sgn) |
| { |
| if (sgn == SIGNED) |
| return cmps (x, y); |
| else |
| return cmpu (x, y); |
| } |
| |
| /* Return ~x. */ |
| template <typename T> |
| inline WI_UNARY_RESULT (T) |
| wi::bit_not (const T &x) |
| { |
| WI_UNARY_RESULT_VAR (result, val, T, x); |
| WIDE_INT_REF_FOR (T) xi (x, get_precision (result)); |
| for (unsigned int i = 0; i < xi.len; ++i) |
| val[i] = ~xi.val[i]; |
| result.set_len (xi.len); |
| return result; |
| } |
| |
| /* Return -x. */ |
| template <typename T> |
| inline WI_UNARY_RESULT (T) |
| wi::neg (const T &x) |
| { |
| return sub (0, x); |
| } |
| |
| /* Return -x. Indicate in *OVERFLOW if X is the minimum signed value. */ |
| template <typename T> |
| inline WI_UNARY_RESULT (T) |
| wi::neg (const T &x, bool *overflow) |
| { |
| *overflow = only_sign_bit_p (x); |
| return sub (0, x); |
| } |
| |
| /* Return the absolute value of x. */ |
| template <typename T> |
| inline WI_UNARY_RESULT (T) |
| wi::abs (const T &x) |
| { |
| return neg_p (x) ? neg (x) : WI_UNARY_RESULT (T) (x); |
| } |
| |
| /* Return the result of sign-extending the low OFFSET bits of X. */ |
| template <typename T> |
| inline WI_UNARY_RESULT (T) |
| wi::sext (const T &x, unsigned int offset) |
| { |
| WI_UNARY_RESULT_VAR (result, val, T, x); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T) xi (x, precision); |
| |
| if (offset <= HOST_BITS_PER_WIDE_INT) |
| { |
| val[0] = sext_hwi (xi.ulow (), offset); |
| result.set_len (1, true); |
| } |
| else |
| result.set_len (sext_large (val, xi.val, xi.len, precision, offset)); |
| return result; |
| } |
| |
| /* Return the result of zero-extending the low OFFSET bits of X. */ |
| template <typename T> |
| inline WI_UNARY_RESULT (T) |
| wi::zext (const T &x, unsigned int offset) |
| { |
| WI_UNARY_RESULT_VAR (result, val, T, x); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T) xi (x, precision); |
| |
| /* This is not just an optimization, it is actually required to |
| maintain canonization. */ |
| if (offset >= precision) |
| { |
| wi::copy (result, xi); |
| return result; |
| } |
| |
| /* In these cases we know that at least the top bit will be clear, |
| so no sign extension is necessary. */ |
| if (offset < HOST_BITS_PER_WIDE_INT) |
| { |
| val[0] = zext_hwi (xi.ulow (), offset); |
| result.set_len (1, true); |
| } |
| else |
| result.set_len (zext_large (val, xi.val, xi.len, precision, offset), true); |
| return result; |
| } |
| |
| /* Return the result of extending the low OFFSET bits of X according to |
| signedness SGN. */ |
| template <typename T> |
| inline WI_UNARY_RESULT (T) |
| wi::ext (const T &x, unsigned int offset, signop sgn) |
| { |
| return sgn == SIGNED ? sext (x, offset) : zext (x, offset); |
| } |
| |
| /* Return an integer that represents X | (1 << bit). */ |
| template <typename T> |
| inline WI_UNARY_RESULT (T) |
| wi::set_bit (const T &x, unsigned int bit) |
| { |
| WI_UNARY_RESULT_VAR (result, val, T, x); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T) xi (x, precision); |
| if (precision <= HOST_BITS_PER_WIDE_INT) |
| { |
| val[0] = xi.ulow () | (HOST_WIDE_INT_1U << bit); |
| result.set_len (1); |
| } |
| else |
| result.set_len (set_bit_large (val, xi.val, xi.len, precision, bit)); |
| return result; |
| } |
| |
| /* Return the mininum of X and Y, treating them both as having |
| signedness SGN. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::min (const T1 &x, const T2 &y, signop sgn) |
| { |
| WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y); |
| unsigned int precision = get_precision (result); |
| if (wi::le_p (x, y, sgn)) |
| wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision)); |
| else |
| wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision)); |
| return result; |
| } |
| |
| /* Return the minimum of X and Y, treating both as signed values. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::smin (const T1 &x, const T2 &y) |
| { |
| return wi::min (x, y, SIGNED); |
| } |
| |
| /* Return the minimum of X and Y, treating both as unsigned values. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::umin (const T1 &x, const T2 &y) |
| { |
| return wi::min (x, y, UNSIGNED); |
| } |
| |
| /* Return the maxinum of X and Y, treating them both as having |
| signedness SGN. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::max (const T1 &x, const T2 &y, signop sgn) |
| { |
| WI_BINARY_RESULT_VAR (result, val ATTRIBUTE_UNUSED, T1, x, T2, y); |
| unsigned int precision = get_precision (result); |
| if (wi::ge_p (x, y, sgn)) |
| wi::copy (result, WIDE_INT_REF_FOR (T1) (x, precision)); |
| else |
| wi::copy (result, WIDE_INT_REF_FOR (T2) (y, precision)); |
| return result; |
| } |
| |
| /* Return the maximum of X and Y, treating both as signed values. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::smax (const T1 &x, const T2 &y) |
| { |
| return wi::max (x, y, SIGNED); |
| } |
| |
| /* Return the maximum of X and Y, treating both as unsigned values. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::umax (const T1 &x, const T2 &y) |
| { |
| return wi::max (x, y, UNSIGNED); |
| } |
| |
| /* Return X & Y. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::bit_and (const T1 &x, const T2 &y) |
| { |
| WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; |
| if (__builtin_expect (xi.len + yi.len == 2, true)) |
| { |
| val[0] = xi.ulow () & yi.ulow (); |
| result.set_len (1, is_sign_extended); |
| } |
| else |
| result.set_len (and_large (val, xi.val, xi.len, yi.val, yi.len, |
| precision), is_sign_extended); |
| return result; |
| } |
| |
| /* Return X & ~Y. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::bit_and_not (const T1 &x, const T2 &y) |
| { |
| WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; |
| if (__builtin_expect (xi.len + yi.len == 2, true)) |
| { |
| val[0] = xi.ulow () & ~yi.ulow (); |
| result.set_len (1, is_sign_extended); |
| } |
| else |
| result.set_len (and_not_large (val, xi.val, xi.len, yi.val, yi.len, |
| precision), is_sign_extended); |
| return result; |
| } |
| |
| /* Return X | Y. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::bit_or (const T1 &x, const T2 &y) |
| { |
| WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; |
| if (__builtin_expect (xi.len + yi.len == 2, true)) |
| { |
| val[0] = xi.ulow () | yi.ulow (); |
| result.set_len (1, is_sign_extended); |
| } |
| else |
| result.set_len (or_large (val, xi.val, xi.len, |
| yi.val, yi.len, precision), is_sign_extended); |
| return result; |
| } |
| |
| /* Return X | ~Y. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::bit_or_not (const T1 &x, const T2 &y) |
| { |
| WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; |
| if (__builtin_expect (xi.len + yi.len == 2, true)) |
| { |
| val[0] = xi.ulow () | ~yi.ulow (); |
| result.set_len (1, is_sign_extended); |
| } |
| else |
| result.set_len (or_not_large (val, xi.val, xi.len, yi.val, yi.len, |
| precision), is_sign_extended); |
| return result; |
| } |
| |
| /* Return X ^ Y. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::bit_xor (const T1 &x, const T2 &y) |
| { |
| WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| bool is_sign_extended = xi.is_sign_extended && yi.is_sign_extended; |
| if (__builtin_expect (xi.len + yi.len == 2, true)) |
| { |
| val[0] = xi.ulow () ^ yi.ulow (); |
| result.set_len (1, is_sign_extended); |
| } |
| else |
| result.set_len (xor_large (val, xi.val, xi.len, |
| yi.val, yi.len, precision), is_sign_extended); |
| return result; |
| } |
| |
| /* Return X + Y. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::add (const T1 &x, const T2 &y) |
| { |
| WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| if (precision <= HOST_BITS_PER_WIDE_INT) |
| { |
| val[0] = xi.ulow () + yi.ulow (); |
| result.set_len (1); |
| } |
| /* If the precision is known at compile time to be greater than |
| HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case |
| knowing that (a) all bits in those HWIs are significant and |
| (b) the result has room for at least two HWIs. This provides |
| a fast path for things like offset_int and widest_int. |
| |
| The STATIC_CONSTANT_P test prevents this path from being |
| used for wide_ints. wide_ints with precisions greater than |
| HOST_BITS_PER_WIDE_INT are relatively rare and there's not much |
| point handling them inline. */ |
| else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT) |
| && __builtin_expect (xi.len + yi.len == 2, true)) |
| { |
| unsigned HOST_WIDE_INT xl = xi.ulow (); |
| unsigned HOST_WIDE_INT yl = yi.ulow (); |
| unsigned HOST_WIDE_INT resultl = xl + yl; |
| val[0] = resultl; |
| val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1; |
| result.set_len (1 + (((resultl ^ xl) & (resultl ^ yl)) |
| >> (HOST_BITS_PER_WIDE_INT - 1))); |
| } |
| else |
| result.set_len (add_large (val, xi.val, xi.len, |
| yi.val, yi.len, precision, |
| UNSIGNED, 0)); |
| return result; |
| } |
| |
| /* Return X + Y. Treat X and Y as having the signednes given by SGN |
| and indicate in *OVERFLOW whether the operation overflowed. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::add (const T1 &x, const T2 &y, signop sgn, bool *overflow) |
| { |
| WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| if (precision <= HOST_BITS_PER_WIDE_INT) |
| { |
| unsigned HOST_WIDE_INT xl = xi.ulow (); |
| unsigned HOST_WIDE_INT yl = yi.ulow (); |
| unsigned HOST_WIDE_INT resultl = xl + yl; |
| if (sgn == SIGNED) |
| *overflow = (((resultl ^ xl) & (resultl ^ yl)) |
| >> (precision - 1)) & 1; |
| else |
| *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision)) |
| < (xl << (HOST_BITS_PER_WIDE_INT - precision))); |
| val[0] = resultl; |
| result.set_len (1); |
| } |
| else |
| result.set_len (add_large (val, xi.val, xi.len, |
| yi.val, yi.len, precision, |
| sgn, overflow)); |
| return result; |
| } |
| |
| /* Return X - Y. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::sub (const T1 &x, const T2 &y) |
| { |
| WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| if (precision <= HOST_BITS_PER_WIDE_INT) |
| { |
| val[0] = xi.ulow () - yi.ulow (); |
| result.set_len (1); |
| } |
| /* If the precision is known at compile time to be greater than |
| HOST_BITS_PER_WIDE_INT, we can optimize the single-HWI case |
| knowing that (a) all bits in those HWIs are significant and |
| (b) the result has room for at least two HWIs. This provides |
| a fast path for things like offset_int and widest_int. |
| |
| The STATIC_CONSTANT_P test prevents this path from being |
| used for wide_ints. wide_ints with precisions greater than |
| HOST_BITS_PER_WIDE_INT are relatively rare and there's not much |
| point handling them inline. */ |
| else if (STATIC_CONSTANT_P (precision > HOST_BITS_PER_WIDE_INT) |
| && __builtin_expect (xi.len + yi.len == 2, true)) |
| { |
| unsigned HOST_WIDE_INT xl = xi.ulow (); |
| unsigned HOST_WIDE_INT yl = yi.ulow (); |
| unsigned HOST_WIDE_INT resultl = xl - yl; |
| val[0] = resultl; |
| val[1] = (HOST_WIDE_INT) resultl < 0 ? 0 : -1; |
| result.set_len (1 + (((resultl ^ xl) & (xl ^ yl)) |
| >> (HOST_BITS_PER_WIDE_INT - 1))); |
| } |
| else |
| result.set_len (sub_large (val, xi.val, xi.len, |
| yi.val, yi.len, precision, |
| UNSIGNED, 0)); |
| return result; |
| } |
| |
| /* Return X - Y. Treat X and Y as having the signednes given by SGN |
| and indicate in *OVERFLOW whether the operation overflowed. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::sub (const T1 &x, const T2 &y, signop sgn, bool *overflow) |
| { |
| WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| if (precision <= HOST_BITS_PER_WIDE_INT) |
| { |
| unsigned HOST_WIDE_INT xl = xi.ulow (); |
| unsigned HOST_WIDE_INT yl = yi.ulow (); |
| unsigned HOST_WIDE_INT resultl = xl - yl; |
| if (sgn == SIGNED) |
| *overflow = (((xl ^ yl) & (resultl ^ xl)) >> (precision - 1)) & 1; |
| else |
| *overflow = ((resultl << (HOST_BITS_PER_WIDE_INT - precision)) |
| > (xl << (HOST_BITS_PER_WIDE_INT - precision))); |
| val[0] = resultl; |
| result.set_len (1); |
| } |
| else |
| result.set_len (sub_large (val, xi.val, xi.len, |
| yi.val, yi.len, precision, |
| sgn, overflow)); |
| return result; |
| } |
| |
| /* Return X * Y. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::mul (const T1 &x, const T2 &y) |
| { |
| WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| if (precision <= HOST_BITS_PER_WIDE_INT) |
| { |
| val[0] = xi.ulow () * yi.ulow (); |
| result.set_len (1); |
| } |
| else |
| result.set_len (mul_internal (val, xi.val, xi.len, yi.val, yi.len, |
| precision, UNSIGNED, 0, false)); |
| return result; |
| } |
| |
| /* Return X * Y. Treat X and Y as having the signednes given by SGN |
| and indicate in *OVERFLOW whether the operation overflowed. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::mul (const T1 &x, const T2 &y, signop sgn, bool *overflow) |
| { |
| WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| result.set_len (mul_internal (val, xi.val, xi.len, |
| yi.val, yi.len, precision, |
| sgn, overflow, false)); |
| return result; |
| } |
| |
| /* Return X * Y, treating both X and Y as signed values. Indicate in |
| *OVERFLOW whether the operation overflowed. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::smul (const T1 &x, const T2 &y, bool *overflow) |
| { |
| return mul (x, y, SIGNED, overflow); |
| } |
| |
| /* Return X * Y, treating both X and Y as unsigned values. Indicate in |
| *OVERFLOW whether the operation overflowed. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::umul (const T1 &x, const T2 &y, bool *overflow) |
| { |
| return mul (x, y, UNSIGNED, overflow); |
| } |
| |
| /* Perform a widening multiplication of X and Y, extending the values |
| according to SGN, and return the high part of the result. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::mul_high (const T1 &x, const T2 &y, signop sgn) |
| { |
| WI_BINARY_RESULT_VAR (result, val, T1, x, T2, y); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y, precision); |
| result.set_len (mul_internal (val, xi.val, xi.len, |
| yi.val, yi.len, precision, |
| sgn, 0, true)); |
| return result; |
| } |
| |
| /* Return X / Y, rouding towards 0. Treat X and Y as having the |
| signedness given by SGN. Indicate in *OVERFLOW if the result |
| overflows. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::div_trunc (const T1 &x, const T2 &y, signop sgn, bool *overflow) |
| { |
| WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| unsigned int precision = get_precision (quotient); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y); |
| |
| quotient.set_len (divmod_internal (quotient_val, 0, 0, xi.val, xi.len, |
| precision, |
| yi.val, yi.len, yi.precision, |
| sgn, overflow)); |
| return quotient; |
| } |
| |
| /* Return X / Y, rouding towards 0. Treat X and Y as signed values. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::sdiv_trunc (const T1 &x, const T2 &y) |
| { |
| return div_trunc (x, y, SIGNED); |
| } |
| |
| /* Return X / Y, rouding towards 0. Treat X and Y as unsigned values. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::udiv_trunc (const T1 &x, const T2 &y) |
| { |
| return div_trunc (x, y, UNSIGNED); |
| } |
| |
| /* Return X / Y, rouding towards -inf. Treat X and Y as having the |
| signedness given by SGN. Indicate in *OVERFLOW if the result |
| overflows. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::div_floor (const T1 &x, const T2 &y, signop sgn, bool *overflow) |
| { |
| WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| unsigned int precision = get_precision (quotient); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y); |
| |
| unsigned int remainder_len; |
| quotient.set_len (divmod_internal (quotient_val, |
| &remainder_len, remainder_val, |
| xi.val, xi.len, precision, |
| yi.val, yi.len, yi.precision, sgn, |
| overflow)); |
| remainder.set_len (remainder_len); |
| if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0) |
| return quotient - 1; |
| return quotient; |
| } |
| |
| /* Return X / Y, rouding towards -inf. Treat X and Y as signed values. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::sdiv_floor (const T1 &x, const T2 &y) |
| { |
| return div_floor (x, y, SIGNED); |
| } |
| |
| /* Return X / Y, rouding towards -inf. Treat X and Y as unsigned values. */ |
| /* ??? Why do we have both this and udiv_trunc. Aren't they the same? */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::udiv_floor (const T1 &x, const T2 &y) |
| { |
| return div_floor (x, y, UNSIGNED); |
| } |
| |
| /* Return X / Y, rouding towards +inf. Treat X and Y as having the |
| signedness given by SGN. Indicate in *OVERFLOW if the result |
| overflows. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::div_ceil (const T1 &x, const T2 &y, signop sgn, bool *overflow) |
| { |
| WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| unsigned int precision = get_precision (quotient); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y); |
| |
| unsigned int remainder_len; |
| quotient.set_len (divmod_internal (quotient_val, |
| &remainder_len, remainder_val, |
| xi.val, xi.len, precision, |
| yi.val, yi.len, yi.precision, sgn, |
| overflow)); |
| remainder.set_len (remainder_len); |
| if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0) |
| return quotient + 1; |
| return quotient; |
| } |
| |
| /* Return X / Y, rouding towards nearest with ties away from zero. |
| Treat X and Y as having the signedness given by SGN. Indicate |
| in *OVERFLOW if the result overflows. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::div_round (const T1 &x, const T2 &y, signop sgn, bool *overflow) |
| { |
| WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| unsigned int precision = get_precision (quotient); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y); |
| |
| unsigned int remainder_len; |
| quotient.set_len (divmod_internal (quotient_val, |
| &remainder_len, remainder_val, |
| xi.val, xi.len, precision, |
| yi.val, yi.len, yi.precision, sgn, |
| overflow)); |
| remainder.set_len (remainder_len); |
| |
| if (remainder != 0) |
| { |
| if (sgn == SIGNED) |
| { |
| WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder); |
| if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder))) |
| { |
| if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn)) |
| return quotient - 1; |
| else |
| return quotient + 1; |
| } |
| } |
| else |
| { |
| if (wi::geu_p (remainder, wi::sub (y, remainder))) |
| return quotient + 1; |
| } |
| } |
| return quotient; |
| } |
| |
| /* Return X / Y, rouding towards 0. Treat X and Y as having the |
| signedness given by SGN. Store the remainder in *REMAINDER_PTR. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::divmod_trunc (const T1 &x, const T2 &y, signop sgn, |
| WI_BINARY_RESULT (T1, T2) *remainder_ptr) |
| { |
| WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| unsigned int precision = get_precision (quotient); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y); |
| |
| unsigned int remainder_len; |
| quotient.set_len (divmod_internal (quotient_val, |
| &remainder_len, remainder_val, |
| xi.val, xi.len, precision, |
| yi.val, yi.len, yi.precision, sgn, 0)); |
| remainder.set_len (remainder_len); |
| |
| *remainder_ptr = remainder; |
| return quotient; |
| } |
| |
| /* Compute the greatest common divisor of two numbers A and B using |
| Euclid's algorithm. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::gcd (const T1 &a, const T2 &b, signop sgn) |
| { |
| T1 x, y, z; |
| |
| x = wi::abs (a); |
| y = wi::abs (b); |
| |
| while (gt_p (x, 0, sgn)) |
| { |
| z = mod_trunc (y, x, sgn); |
| y = x; |
| x = z; |
| } |
| |
| return y; |
| } |
| |
| /* Compute X / Y, rouding towards 0, and return the remainder. |
| Treat X and Y as having the signedness given by SGN. Indicate |
| in *OVERFLOW if the division overflows. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::mod_trunc (const T1 &x, const T2 &y, signop sgn, bool *overflow) |
| { |
| WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| unsigned int precision = get_precision (remainder); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y); |
| |
| unsigned int remainder_len; |
| divmod_internal (0, &remainder_len, remainder_val, |
| xi.val, xi.len, precision, |
| yi.val, yi.len, yi.precision, sgn, overflow); |
| remainder.set_len (remainder_len); |
| |
| return remainder; |
| } |
| |
| /* Compute X / Y, rouding towards 0, and return the remainder. |
| Treat X and Y as signed values. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::smod_trunc (const T1 &x, const T2 &y) |
| { |
| return mod_trunc (x, y, SIGNED); |
| } |
| |
| /* Compute X / Y, rouding towards 0, and return the remainder. |
| Treat X and Y as unsigned values. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::umod_trunc (const T1 &x, const T2 &y) |
| { |
| return mod_trunc (x, y, UNSIGNED); |
| } |
| |
| /* Compute X / Y, rouding towards -inf, and return the remainder. |
| Treat X and Y as having the signedness given by SGN. Indicate |
| in *OVERFLOW if the division overflows. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::mod_floor (const T1 &x, const T2 &y, signop sgn, bool *overflow) |
| { |
| WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| unsigned int precision = get_precision (quotient); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y); |
| |
| unsigned int remainder_len; |
| quotient.set_len (divmod_internal (quotient_val, |
| &remainder_len, remainder_val, |
| xi.val, xi.len, precision, |
| yi.val, yi.len, yi.precision, sgn, |
| overflow)); |
| remainder.set_len (remainder_len); |
| |
| if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn) && remainder != 0) |
| return remainder + y; |
| return remainder; |
| } |
| |
| /* Compute X / Y, rouding towards -inf, and return the remainder. |
| Treat X and Y as unsigned values. */ |
| /* ??? Why do we have both this and umod_trunc. Aren't they the same? */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::umod_floor (const T1 &x, const T2 &y) |
| { |
| return mod_floor (x, y, UNSIGNED); |
| } |
| |
| /* Compute X / Y, rouding towards +inf, and return the remainder. |
| Treat X and Y as having the signedness given by SGN. Indicate |
| in *OVERFLOW if the division overflows. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::mod_ceil (const T1 &x, const T2 &y, signop sgn, bool *overflow) |
| { |
| WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| unsigned int precision = get_precision (quotient); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y); |
| |
| unsigned int remainder_len; |
| quotient.set_len (divmod_internal (quotient_val, |
| &remainder_len, remainder_val, |
| xi.val, xi.len, precision, |
| yi.val, yi.len, yi.precision, sgn, |
| overflow)); |
| remainder.set_len (remainder_len); |
| |
| if (wi::neg_p (x, sgn) == wi::neg_p (y, sgn) && remainder != 0) |
| return remainder - y; |
| return remainder; |
| } |
| |
| /* Compute X / Y, rouding towards nearest with ties away from zero, |
| and return the remainder. Treat X and Y as having the signedness |
| given by SGN. Indicate in *OVERFLOW if the division overflows. */ |
| template <typename T1, typename T2> |
| inline WI_BINARY_RESULT (T1, T2) |
| wi::mod_round (const T1 &x, const T2 &y, signop sgn, bool *overflow) |
| { |
| WI_BINARY_RESULT_VAR (quotient, quotient_val, T1, x, T2, y); |
| WI_BINARY_RESULT_VAR (remainder, remainder_val, T1, x, T2, y); |
| unsigned int precision = get_precision (quotient); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y); |
| |
| unsigned int remainder_len; |
| quotient.set_len (divmod_internal (quotient_val, |
| &remainder_len, remainder_val, |
| xi.val, xi.len, precision, |
| yi.val, yi.len, yi.precision, sgn, |
| overflow)); |
| remainder.set_len (remainder_len); |
| |
| if (remainder != 0) |
| { |
| if (sgn == SIGNED) |
| { |
| WI_BINARY_RESULT (T1, T2) abs_remainder = wi::abs (remainder); |
| if (wi::geu_p (abs_remainder, wi::sub (wi::abs (y), abs_remainder))) |
| { |
| if (wi::neg_p (x, sgn) != wi::neg_p (y, sgn)) |
| return remainder + y; |
| else |
| return remainder - y; |
| } |
| } |
| else |
| { |
| if (wi::geu_p (remainder, wi::sub (y, remainder))) |
| return remainder - y; |
| } |
| } |
| return remainder; |
| } |
| |
| /* Return true if X is a multiple of Y. Treat X and Y as having the |
| signedness given by SGN. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn) |
| { |
| return wi::mod_trunc (x, y, sgn) == 0; |
| } |
| |
| /* Return true if X is a multiple of Y, storing X / Y in *RES if so. |
| Treat X and Y as having the signedness given by SGN. */ |
| template <typename T1, typename T2> |
| inline bool |
| wi::multiple_of_p (const T1 &x, const T2 &y, signop sgn, |
| WI_BINARY_RESULT (T1, T2) *res) |
| { |
| WI_BINARY_RESULT (T1, T2) remainder; |
| WI_BINARY_RESULT (T1, T2) quotient |
| = divmod_trunc (x, y, sgn, &remainder); |
| if (remainder == 0) |
| { |
| *res = quotient; |
| return true; |
| } |
| return false; |
| } |
| |
| /* Return X << Y. Return 0 if Y is greater than or equal to |
| the precision of X. */ |
| template <typename T1, typename T2> |
| inline WI_UNARY_RESULT (T1) |
| wi::lshift (const T1 &x, const T2 &y) |
| { |
| WI_UNARY_RESULT_VAR (result, val, T1, x); |
| unsigned int precision = get_precision (result); |
| WIDE_INT_REF_FOR (T1) xi (x, precision); |
| WIDE_INT_REF_FOR (T2) yi (y); |
| /* Handle the simple cases quickly. */ |
| if (geu_p (yi, precision)) |
| { |
| val[0] = 0; |
| result.set_len (1); |
| } |
| else |
| { |
| unsigned int shift = yi.to_uhwi (); |
| /* For fixed-precision integers like offset_int and widest_int, |
| handle the case where the shift value is constant and the |
| result is a single nonnegative HWI (meaning that we don't |
| need to worry about val[1]). This is particularly common |
| for converting a byte count to a bit count. |
| |
| For variable-precision integers like wide_int, handle HWI |
| and sub-HWI integers inline. */ |
| if (STATIC_CONSTANT_P (xi.precision > HOST_BITS_PER_WIDE_INT) |
| ? (STATIC_CONSTANT_P (shift < HOST_BITS_PER_WIDE_INT - 1) |
| && xi.len == 1 |
| && xi.val[0] <= (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) |
| HOST_WIDE_INT_MAX >> shift)) |
| : precision <= HOST_BITS_PER_WIDE_INT) |
| { |
| val[0] = xi.ulow () << shift; |
| result<
|