| /* Plugin for NVPTX execution. |
| |
| Copyright (C) 2013-2018 Free Software Foundation, Inc. |
| |
| Contributed by Mentor Embedded. |
| |
| This file is part of the GNU Offloading and Multi Processing Library |
| (libgomp). |
| |
| Libgomp is free software; you can redistribute it and/or modify it |
| under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| Libgomp is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS |
| FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* Nvidia PTX-specific parts of OpenACC support. The cuda driver |
| library appears to hold some implicit state, but the documentation |
| is not clear as to what that state might be. Or how one might |
| propagate it from one thread to another. */ |
| |
| #include "openacc.h" |
| #include "config.h" |
| #include "libgomp-plugin.h" |
| #include "oacc-plugin.h" |
| #include "gomp-constants.h" |
| |
| #include <pthread.h> |
| #include <cuda.h> |
| #include <stdbool.h> |
| #include <stdint.h> |
| #include <limits.h> |
| #include <string.h> |
| #include <stdio.h> |
| #include <unistd.h> |
| #include <assert.h> |
| #include <errno.h> |
| |
| #if PLUGIN_NVPTX_DYNAMIC |
| # include <dlfcn.h> |
| |
| # define CUDA_CALLS \ |
| CUDA_ONE_CALL (cuCtxCreate) \ |
| CUDA_ONE_CALL (cuCtxDestroy) \ |
| CUDA_ONE_CALL (cuCtxGetCurrent) \ |
| CUDA_ONE_CALL (cuCtxGetDevice) \ |
| CUDA_ONE_CALL (cuCtxPopCurrent) \ |
| CUDA_ONE_CALL (cuCtxPushCurrent) \ |
| CUDA_ONE_CALL (cuCtxSynchronize) \ |
| CUDA_ONE_CALL (cuDeviceGet) \ |
| CUDA_ONE_CALL (cuDeviceGetAttribute) \ |
| CUDA_ONE_CALL (cuDeviceGetCount) \ |
| CUDA_ONE_CALL (cuEventCreate) \ |
| CUDA_ONE_CALL (cuEventDestroy) \ |
| CUDA_ONE_CALL (cuEventElapsedTime) \ |
| CUDA_ONE_CALL (cuEventQuery) \ |
| CUDA_ONE_CALL (cuEventRecord) \ |
| CUDA_ONE_CALL (cuEventSynchronize) \ |
| CUDA_ONE_CALL (cuFuncGetAttribute) \ |
| CUDA_ONE_CALL (cuGetErrorString) \ |
| CUDA_ONE_CALL (cuInit) \ |
| CUDA_ONE_CALL (cuLaunchKernel) \ |
| CUDA_ONE_CALL (cuLinkAddData) \ |
| CUDA_ONE_CALL (cuLinkComplete) \ |
| CUDA_ONE_CALL (cuLinkCreate) \ |
| CUDA_ONE_CALL (cuLinkDestroy) \ |
| CUDA_ONE_CALL (cuMemAlloc) \ |
| CUDA_ONE_CALL (cuMemAllocHost) \ |
| CUDA_ONE_CALL (cuMemcpy) \ |
| CUDA_ONE_CALL (cuMemcpyDtoDAsync) \ |
| CUDA_ONE_CALL (cuMemcpyDtoH) \ |
| CUDA_ONE_CALL (cuMemcpyDtoHAsync) \ |
| CUDA_ONE_CALL (cuMemcpyHtoD) \ |
| CUDA_ONE_CALL (cuMemcpyHtoDAsync) \ |
| CUDA_ONE_CALL (cuMemFree) \ |
| CUDA_ONE_CALL (cuMemFreeHost) \ |
| CUDA_ONE_CALL (cuMemGetAddressRange) \ |
| CUDA_ONE_CALL (cuMemHostGetDevicePointer)\ |
| CUDA_ONE_CALL (cuModuleGetFunction) \ |
| CUDA_ONE_CALL (cuModuleGetGlobal) \ |
| CUDA_ONE_CALL (cuModuleLoad) \ |
| CUDA_ONE_CALL (cuModuleLoadData) \ |
| CUDA_ONE_CALL (cuModuleUnload) \ |
| CUDA_ONE_CALL (cuStreamCreate) \ |
| CUDA_ONE_CALL (cuStreamDestroy) \ |
| CUDA_ONE_CALL (cuStreamQuery) \ |
| CUDA_ONE_CALL (cuStreamSynchronize) \ |
| CUDA_ONE_CALL (cuStreamWaitEvent) |
| # define CUDA_ONE_CALL(call) \ |
| __typeof (call) *call; |
| struct cuda_lib_s { |
| CUDA_CALLS |
| } cuda_lib; |
| |
| /* -1 if init_cuda_lib has not been called yet, false |
| if it has been and failed, true if it has been and succeeded. */ |
| static signed char cuda_lib_inited = -1; |
| |
| /* Dynamically load the CUDA runtime library and initialize function |
| pointers, return false if unsuccessful, true if successful. */ |
| static bool |
| init_cuda_lib (void) |
| { |
| if (cuda_lib_inited != -1) |
| return cuda_lib_inited; |
| const char *cuda_runtime_lib = "libcuda.so.1"; |
| void *h = dlopen (cuda_runtime_lib, RTLD_LAZY); |
| cuda_lib_inited = false; |
| if (h == NULL) |
| return false; |
| # undef CUDA_ONE_CALL |
| # define CUDA_ONE_CALL(call) CUDA_ONE_CALL_1 (call) |
| # define CUDA_ONE_CALL_1(call) \ |
| cuda_lib.call = dlsym (h, #call); \ |
| if (cuda_lib.call == NULL) \ |
| return false; |
| CUDA_CALLS |
| cuda_lib_inited = true; |
| return true; |
| } |
| # undef CUDA_ONE_CALL |
| # undef CUDA_ONE_CALL_1 |
| # define CUDA_CALL_PREFIX cuda_lib. |
| #else |
| # define CUDA_CALL_PREFIX |
| # define init_cuda_lib() true |
| #endif |
| |
| /* Convenience macros for the frequently used CUDA library call and |
| error handling sequence as well as CUDA library calls that |
| do the error checking themselves or don't do it at all. */ |
| |
| #define CUDA_CALL_ERET(ERET, FN, ...) \ |
| do { \ |
| unsigned __r \ |
| = CUDA_CALL_PREFIX FN (__VA_ARGS__); \ |
| if (__r != CUDA_SUCCESS) \ |
| { \ |
| GOMP_PLUGIN_error (#FN " error: %s", \ |
| cuda_error (__r)); \ |
| return ERET; \ |
| } \ |
| } while (0) |
| |
| #define CUDA_CALL(FN, ...) \ |
| CUDA_CALL_ERET (false, FN, __VA_ARGS__) |
| |
| #define CUDA_CALL_ASSERT(FN, ...) \ |
| do { \ |
| unsigned __r \ |
| = CUDA_CALL_PREFIX FN (__VA_ARGS__); \ |
| if (__r != CUDA_SUCCESS) \ |
| { \ |
| GOMP_PLUGIN_fatal (#FN " error: %s", \ |
| cuda_error (__r)); \ |
| } \ |
| } while (0) |
| |
| #define CUDA_CALL_NOCHECK(FN, ...) \ |
| CUDA_CALL_PREFIX FN (__VA_ARGS__) |
| |
| static const char * |
| cuda_error (CUresult r) |
| { |
| #if CUDA_VERSION < 7000 |
| /* Specified in documentation and present in library from at least |
| 5.5. Not declared in header file prior to 7.0. */ |
| extern CUresult cuGetErrorString (CUresult, const char **); |
| #endif |
| const char *desc; |
| |
| r = CUDA_CALL_NOCHECK (cuGetErrorString, r, &desc); |
| if (r != CUDA_SUCCESS) |
| desc = "unknown cuda error"; |
| |
| return desc; |
| } |
| |
| static unsigned int instantiated_devices = 0; |
| static pthread_mutex_t ptx_dev_lock = PTHREAD_MUTEX_INITIALIZER; |
| |
| struct ptx_stream |
| { |
| CUstream stream; |
| pthread_t host_thread; |
| bool multithreaded; |
| |
| CUdeviceptr d; |
| void *h; |
| void *h_begin; |
| void *h_end; |
| void *h_next; |
| void *h_prev; |
| void *h_tail; |
| |
| struct ptx_stream *next; |
| }; |
| |
| /* Thread-specific data for PTX. */ |
| |
| struct nvptx_thread |
| { |
| struct ptx_stream *current_stream; |
| struct ptx_device *ptx_dev; |
| }; |
| |
| struct map |
| { |
| int async; |
| size_t size; |
| char mappings[0]; |
| }; |
| |
| static bool |
| map_init (struct ptx_stream *s) |
| { |
| int size = getpagesize (); |
| |
| assert (s); |
| assert (!s->d); |
| assert (!s->h); |
| |
| CUDA_CALL (cuMemAllocHost, &s->h, size); |
| CUDA_CALL (cuMemHostGetDevicePointer, &s->d, s->h, 0); |
| |
| assert (s->h); |
| |
| s->h_begin = s->h; |
| s->h_end = s->h_begin + size; |
| s->h_next = s->h_prev = s->h_tail = s->h_begin; |
| |
| assert (s->h_next); |
| assert (s->h_end); |
| return true; |
| } |
| |
| static bool |
| map_fini (struct ptx_stream *s) |
| { |
| CUDA_CALL (cuMemFreeHost, s->h); |
| return true; |
| } |
| |
| static void |
| map_pop (struct ptx_stream *s) |
| { |
| struct map *m; |
| |
| assert (s != NULL); |
| assert (s->h_next); |
| assert (s->h_prev); |
| assert (s->h_tail); |
| |
| m = s->h_tail; |
| |
| s->h_tail += m->size; |
| |
| if (s->h_tail >= s->h_end) |
| s->h_tail = s->h_begin + (int) (s->h_tail - s->h_end); |
| |
| if (s->h_next == s->h_tail) |
| s->h_prev = s->h_next; |
| |
| assert (s->h_next >= s->h_begin); |
| assert (s->h_tail >= s->h_begin); |
| assert (s->h_prev >= s->h_begin); |
| |
| assert (s->h_next <= s->h_end); |
| assert (s->h_tail <= s->h_end); |
| assert (s->h_prev <= s->h_end); |
| } |
| |
| static void |
| map_push (struct ptx_stream *s, int async, size_t size, void **h, void **d) |
| { |
| int left; |
| int offset; |
| struct map *m; |
| |
| assert (s != NULL); |
| |
| left = s->h_end - s->h_next; |
| size += sizeof (struct map); |
| |
| assert (s->h_prev); |
| assert (s->h_next); |
| |
| if (size >= left) |
| { |
| m = s->h_prev; |
| m->size += left; |
| s->h_next = s->h_begin; |
| |
| if (s->h_next + size > s->h_end) |
| GOMP_PLUGIN_fatal ("unable to push map"); |
| } |
| |
| assert (s->h_next); |
| |
| m = s->h_next; |
| m->async = async; |
| m->size = size; |
| |
| offset = (void *)&m->mappings[0] - s->h; |
| |
| *d = (void *)(s->d + offset); |
| *h = (void *)(s->h + offset); |
| |
| s->h_prev = s->h_next; |
| s->h_next += size; |
| |
| assert (s->h_prev); |
| assert (s->h_next); |
| |
| assert (s->h_next >= s->h_begin); |
| assert (s->h_tail >= s->h_begin); |
| assert (s->h_prev >= s->h_begin); |
| assert (s->h_next <= s->h_end); |
| assert (s->h_tail <= s->h_end); |
| assert (s->h_prev <= s->h_end); |
| |
| return; |
| } |
| |
| /* Target data function launch information. */ |
| |
| struct targ_fn_launch |
| { |
| const char *fn; |
| unsigned short dim[GOMP_DIM_MAX]; |
| }; |
| |
| /* Target PTX object information. */ |
| |
| struct targ_ptx_obj |
| { |
| const char *code; |
| size_t size; |
| }; |
| |
| /* Target data image information. */ |
| |
| typedef struct nvptx_tdata |
| { |
| const struct targ_ptx_obj *ptx_objs; |
| unsigned ptx_num; |
| |
| const char *const *var_names; |
| unsigned var_num; |
| |
| const struct targ_fn_launch *fn_descs; |
| unsigned fn_num; |
| } nvptx_tdata_t; |
| |
| /* Descriptor of a loaded function. */ |
| |
| struct targ_fn_descriptor |
| { |
| CUfunction fn; |
| const struct targ_fn_launch *launch; |
| int regs_per_thread; |
| int max_threads_per_block; |
| }; |
| |
| /* A loaded PTX image. */ |
| struct ptx_image_data |
| { |
| const void *target_data; |
| CUmodule module; |
| |
| struct targ_fn_descriptor *fns; /* Array of functions. */ |
| |
| struct ptx_image_data *next; |
| }; |
| |
| struct ptx_device |
| { |
| CUcontext ctx; |
| bool ctx_shared; |
| CUdevice dev; |
| struct ptx_stream *null_stream; |
| /* All non-null streams associated with this device (actually context), |
| either created implicitly or passed in from the user (via |
| acc_set_cuda_stream). */ |
| struct ptx_stream *active_streams; |
| struct { |
| struct ptx_stream **arr; |
| int size; |
| } async_streams; |
| /* A lock for use when manipulating the above stream list and array. */ |
| pthread_mutex_t stream_lock; |
| int ord; |
| bool overlap; |
| bool map; |
| bool concur; |
| bool mkern; |
| int mode; |
| int clock_khz; |
| int num_sms; |
| int regs_per_block; |
| int regs_per_sm; |
| |
| struct ptx_image_data *images; /* Images loaded on device. */ |
| pthread_mutex_t image_lock; /* Lock for above list. */ |
| |
| struct ptx_device *next; |
| }; |
| |
| enum ptx_event_type |
| { |
| PTX_EVT_MEM, |
| PTX_EVT_KNL, |
| PTX_EVT_SYNC, |
| PTX_EVT_ASYNC_CLEANUP |
| }; |
| |
| struct ptx_event |
| { |
| CUevent *evt; |
| int type; |
| void *addr; |
| int ord; |
| int val; |
| |
| struct ptx_event *next; |
| }; |
| |
| static pthread_mutex_t ptx_event_lock; |
| static struct ptx_event *ptx_events; |
| |
| static struct ptx_device **ptx_devices; |
| |
| static inline struct nvptx_thread * |
| nvptx_thread (void) |
| { |
| return (struct nvptx_thread *) GOMP_PLUGIN_acc_thread (); |
| } |
| |
| static bool |
| init_streams_for_device (struct ptx_device *ptx_dev, int concurrency) |
| { |
| int i; |
| struct ptx_stream *null_stream |
| = GOMP_PLUGIN_malloc (sizeof (struct ptx_stream)); |
| |
| null_stream->stream = NULL; |
| null_stream->host_thread = pthread_self (); |
| null_stream->multithreaded = true; |
| null_stream->d = (CUdeviceptr) NULL; |
| null_stream->h = NULL; |
| if (!map_init (null_stream)) |
| return false; |
| |
| ptx_dev->null_stream = null_stream; |
| ptx_dev->active_streams = NULL; |
| pthread_mutex_init (&ptx_dev->stream_lock, NULL); |
| |
| if (concurrency < 1) |
| concurrency = 1; |
| |
| /* This is just a guess -- make space for as many async streams as the |
| current device is capable of concurrently executing. This can grow |
| later as necessary. No streams are created yet. */ |
| ptx_dev->async_streams.arr |
| = GOMP_PLUGIN_malloc (concurrency * sizeof (struct ptx_stream *)); |
| ptx_dev->async_streams.size = concurrency; |
| |
| for (i = 0; i < concurrency; i++) |
| ptx_dev->async_streams.arr[i] = NULL; |
| |
| return true; |
| } |
| |
| static bool |
| fini_streams_for_device (struct ptx_device *ptx_dev) |
| { |
| free (ptx_dev->async_streams.arr); |
| |
| bool ret = true; |
| while (ptx_dev->active_streams != NULL) |
| { |
| struct ptx_stream *s = ptx_dev->active_streams; |
| ptx_dev->active_streams = ptx_dev->active_streams->next; |
| |
| ret &= map_fini (s); |
| |
| CUresult r = CUDA_CALL_NOCHECK (cuStreamDestroy, s->stream); |
| if (r != CUDA_SUCCESS) |
| { |
| GOMP_PLUGIN_error ("cuStreamDestroy error: %s", cuda_error (r)); |
| ret = false; |
| } |
| free (s); |
| } |
| |
| ret &= map_fini (ptx_dev->null_stream); |
| free (ptx_dev->null_stream); |
| return ret; |
| } |
| |
| /* Select a stream for (OpenACC-semantics) ASYNC argument for the current |
| thread THREAD (and also current device/context). If CREATE is true, create |
| the stream if it does not exist (or use EXISTING if it is non-NULL), and |
| associate the stream with the same thread argument. Returns stream to use |
| as result. */ |
| |
| static struct ptx_stream * |
| select_stream_for_async (int async, pthread_t thread, bool create, |
| CUstream existing) |
| { |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| /* Local copy of TLS variable. */ |
| struct ptx_device *ptx_dev = nvthd->ptx_dev; |
| struct ptx_stream *stream = NULL; |
| int orig_async = async; |
| |
| /* The special value acc_async_noval (-1) maps (for now) to an |
| implicitly-created stream, which is then handled the same as any other |
| numbered async stream. Other options are available, e.g. using the null |
| stream for anonymous async operations, or choosing an idle stream from an |
| active set. But, stick with this for now. */ |
| if (async > acc_async_sync) |
| async++; |
| |
| if (create) |
| pthread_mutex_lock (&ptx_dev->stream_lock); |
| |
| /* NOTE: AFAICT there's no particular need for acc_async_sync to map to the |
| null stream, and in fact better performance may be obtainable if it doesn't |
| (because the null stream enforces overly-strict synchronisation with |
| respect to other streams for legacy reasons, and that's probably not |
| needed with OpenACC). Maybe investigate later. */ |
| if (async == acc_async_sync) |
| stream = ptx_dev->null_stream; |
| else if (async >= 0 && async < ptx_dev->async_streams.size |
| && ptx_dev->async_streams.arr[async] && !(create && existing)) |
| stream = ptx_dev->async_streams.arr[async]; |
| else if (async >= 0 && create) |
| { |
| if (async >= ptx_dev->async_streams.size) |
| { |
| int i, newsize = ptx_dev->async_streams.size * 2; |
| |
| if (async >= newsize) |
| newsize = async + 1; |
| |
| ptx_dev->async_streams.arr |
| = GOMP_PLUGIN_realloc (ptx_dev->async_streams.arr, |
| newsize * sizeof (struct ptx_stream *)); |
| |
| for (i = ptx_dev->async_streams.size; i < newsize; i++) |
| ptx_dev->async_streams.arr[i] = NULL; |
| |
| ptx_dev->async_streams.size = newsize; |
| } |
| |
| /* Create a new stream on-demand if there isn't one already, or if we're |
| setting a particular async value to an existing (externally-provided) |
| stream. */ |
| if (!ptx_dev->async_streams.arr[async] || existing) |
| { |
| CUresult r; |
| struct ptx_stream *s |
| = GOMP_PLUGIN_malloc (sizeof (struct ptx_stream)); |
| |
| if (existing) |
| s->stream = existing; |
| else |
| { |
| r = CUDA_CALL_NOCHECK (cuStreamCreate, &s->stream, |
| CU_STREAM_DEFAULT); |
| if (r != CUDA_SUCCESS) |
| { |
| pthread_mutex_unlock (&ptx_dev->stream_lock); |
| GOMP_PLUGIN_fatal ("cuStreamCreate error: %s", |
| cuda_error (r)); |
| } |
| } |
| |
| /* If CREATE is true, we're going to be queueing some work on this |
| stream. Associate it with the current host thread. */ |
| s->host_thread = thread; |
| s->multithreaded = false; |
| |
| s->d = (CUdeviceptr) NULL; |
| s->h = NULL; |
| if (!map_init (s)) |
| { |
| pthread_mutex_unlock (&ptx_dev->stream_lock); |
| GOMP_PLUGIN_fatal ("map_init fail"); |
| } |
| |
| s->next = ptx_dev->active_streams; |
| ptx_dev->active_streams = s; |
| ptx_dev->async_streams.arr[async] = s; |
| } |
| |
| stream = ptx_dev->async_streams.arr[async]; |
| } |
| else if (async < 0) |
| { |
| if (create) |
| pthread_mutex_unlock (&ptx_dev->stream_lock); |
| GOMP_PLUGIN_fatal ("bad async %d", async); |
| } |
| |
| if (create) |
| { |
| assert (stream != NULL); |
| |
| /* If we're trying to use the same stream from different threads |
| simultaneously, set stream->multithreaded to true. This affects the |
| behaviour of acc_async_test_all and acc_wait_all, which are supposed to |
| only wait for asynchronous launches from the same host thread they are |
| invoked on. If multiple threads use the same async value, we make note |
| of that here and fall back to testing/waiting for all threads in those |
| functions. */ |
| if (thread != stream->host_thread) |
| stream->multithreaded = true; |
| |
| pthread_mutex_unlock (&ptx_dev->stream_lock); |
| } |
| else if (stream && !stream->multithreaded |
| && !pthread_equal (stream->host_thread, thread)) |
| GOMP_PLUGIN_fatal ("async %d used on wrong thread", orig_async); |
| |
| return stream; |
| } |
| |
| /* Initialize the device. Return TRUE on success, else FALSE. PTX_DEV_LOCK |
| should be locked on entry and remains locked on exit. */ |
| |
| static bool |
| nvptx_init (void) |
| { |
| int ndevs; |
| |
| if (instantiated_devices != 0) |
| return true; |
| |
| ptx_events = NULL; |
| pthread_mutex_init (&ptx_event_lock, NULL); |
| |
| if (!init_cuda_lib ()) |
| return false; |
| |
| CUDA_CALL (cuInit, 0); |
| |
| CUDA_CALL (cuDeviceGetCount, &ndevs); |
| ptx_devices = GOMP_PLUGIN_malloc_cleared (sizeof (struct ptx_device *) |
| * ndevs); |
| return true; |
| } |
| |
| /* Select the N'th PTX device for the current host thread. The device must |
| have been previously opened before calling this function. */ |
| |
| static bool |
| nvptx_attach_host_thread_to_device (int n) |
| { |
| CUdevice dev; |
| CUresult r; |
| struct ptx_device *ptx_dev; |
| CUcontext thd_ctx; |
| |
| r = CUDA_CALL_NOCHECK (cuCtxGetDevice, &dev); |
| if (r != CUDA_SUCCESS && r != CUDA_ERROR_INVALID_CONTEXT) |
| { |
| GOMP_PLUGIN_error ("cuCtxGetDevice error: %s", cuda_error (r)); |
| return false; |
| } |
| |
| if (r != CUDA_ERROR_INVALID_CONTEXT && dev == n) |
| return true; |
| else |
| { |
| CUcontext old_ctx; |
| |
| ptx_dev = ptx_devices[n]; |
| if (!ptx_dev) |
| { |
| GOMP_PLUGIN_error ("device %d not found", n); |
| return false; |
| } |
| |
| CUDA_CALL (cuCtxGetCurrent, &thd_ctx); |
| |
| /* We don't necessarily have a current context (e.g. if it has been |
| destroyed. Pop it if we do though. */ |
| if (thd_ctx != NULL) |
| CUDA_CALL (cuCtxPopCurrent, &old_ctx); |
| |
| CUDA_CALL (cuCtxPushCurrent, ptx_dev->ctx); |
| } |
| return true; |
| } |
| |
| static struct ptx_device * |
| nvptx_open_device (int n) |
| { |
| struct ptx_device *ptx_dev; |
| CUdevice dev, ctx_dev; |
| CUresult r; |
| int async_engines, pi; |
| |
| CUDA_CALL_ERET (NULL, cuDeviceGet, &dev, n); |
| |
| ptx_dev = GOMP_PLUGIN_malloc (sizeof (struct ptx_device)); |
| |
| ptx_dev->ord = n; |
| ptx_dev->dev = dev; |
| ptx_dev->ctx_shared = false; |
| |
| r = CUDA_CALL_NOCHECK (cuCtxGetDevice, &ctx_dev); |
| if (r != CUDA_SUCCESS && r != CUDA_ERROR_INVALID_CONTEXT) |
| { |
| GOMP_PLUGIN_error ("cuCtxGetDevice error: %s", cuda_error (r)); |
| return NULL; |
| } |
| |
| if (r != CUDA_ERROR_INVALID_CONTEXT && ctx_dev != dev) |
| { |
| /* The current host thread has an active context for a different device. |
| Detach it. */ |
| CUcontext old_ctx; |
| CUDA_CALL_ERET (NULL, cuCtxPopCurrent, &old_ctx); |
| } |
| |
| CUDA_CALL_ERET (NULL, cuCtxGetCurrent, &ptx_dev->ctx); |
| |
| if (!ptx_dev->ctx) |
| CUDA_CALL_ERET (NULL, cuCtxCreate, &ptx_dev->ctx, CU_CTX_SCHED_AUTO, dev); |
| else |
| ptx_dev->ctx_shared = true; |
| |
| CUDA_CALL_ERET (NULL, cuDeviceGetAttribute, |
| &pi, CU_DEVICE_ATTRIBUTE_GPU_OVERLAP, dev); |
| ptx_dev->overlap = pi; |
| |
| CUDA_CALL_ERET (NULL, cuDeviceGetAttribute, |
| &pi, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, dev); |
| ptx_dev->map = pi; |
| |
| CUDA_CALL_ERET (NULL, cuDeviceGetAttribute, |
| &pi, CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS, dev); |
| ptx_dev->concur = pi; |
| |
| CUDA_CALL_ERET (NULL, cuDeviceGetAttribute, |
| &pi, CU_DEVICE_ATTRIBUTE_COMPUTE_MODE, dev); |
| ptx_dev->mode = pi; |
| |
| CUDA_CALL_ERET (NULL, cuDeviceGetAttribute, |
| &pi, CU_DEVICE_ATTRIBUTE_INTEGRATED, dev); |
| ptx_dev->mkern = pi; |
| |
| CUDA_CALL_ERET (NULL, cuDeviceGetAttribute, |
| &pi, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, dev); |
| ptx_dev->clock_khz = pi; |
| |
| CUDA_CALL_ERET (NULL, cuDeviceGetAttribute, |
| &pi, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, dev); |
| ptx_dev->num_sms = pi; |
| |
| CUDA_CALL_ERET (NULL, cuDeviceGetAttribute, |
| &pi, CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_BLOCK, dev); |
| ptx_dev->regs_per_block = pi; |
| |
| /* CU_DEVICE_ATTRIBUTE_MAX_REGISTERS_PER_MULTIPROCESSOR = 82 is defined only |
| in CUDA 6.0 and newer. */ |
| r = CUDA_CALL_NOCHECK (cuDeviceGetAttribute, &pi, 82, dev); |
| /* Fallback: use limit of registers per block, which is usually equal. */ |
| if (r == CUDA_ERROR_INVALID_VALUE) |
| pi = ptx_dev->regs_per_block; |
| else if (r != CUDA_SUCCESS) |
| { |
| GOMP_PLUGIN_error ("cuDeviceGetAttribute error: %s", cuda_error (r)); |
| return NULL; |
| } |
| ptx_dev->regs_per_sm = pi; |
| |
| CUDA_CALL_ERET (NULL, cuDeviceGetAttribute, |
| &pi, CU_DEVICE_ATTRIBUTE_WARP_SIZE, dev); |
| if (pi != 32) |
| { |
| GOMP_PLUGIN_error ("Only warp size 32 is supported"); |
| return NULL; |
| } |
| |
| r = CUDA_CALL_NOCHECK (cuDeviceGetAttribute, &async_engines, |
| CU_DEVICE_ATTRIBUTE_ASYNC_ENGINE_COUNT, dev); |
| if (r != CUDA_SUCCESS) |
| async_engines = 1; |
| |
| ptx_dev->images = NULL; |
| pthread_mutex_init (&ptx_dev->image_lock, NULL); |
| |
| if (!init_streams_for_device (ptx_dev, async_engines)) |
| return NULL; |
| |
| return ptx_dev; |
| } |
| |
| static bool |
| nvptx_close_device (struct ptx_device *ptx_dev) |
| { |
| if (!ptx_dev) |
| return true; |
| |
| if (!fini_streams_for_device (ptx_dev)) |
| return false; |
| |
| pthread_mutex_destroy (&ptx_dev->image_lock); |
| |
| if (!ptx_dev->ctx_shared) |
| CUDA_CALL (cuCtxDestroy, ptx_dev->ctx); |
| |
| free (ptx_dev); |
| return true; |
| } |
| |
| static int |
| nvptx_get_num_devices (void) |
| { |
| int n; |
| |
| /* PR libgomp/65099: Currently, we only support offloading in 64-bit |
| configurations. */ |
| if (sizeof (void *) != 8) |
| { |
| GOMP_PLUGIN_debug (0, "Disabling nvptx offloading;" |
| " only 64-bit configurations are supported\n"); |
| return 0; |
| } |
| |
| /* This function will be called before the plugin has been initialized in |
| order to enumerate available devices, but CUDA API routines can't be used |
| until cuInit has been called. Just call it now (but don't yet do any |
| further initialization). */ |
| if (instantiated_devices == 0) |
| { |
| if (!init_cuda_lib ()) |
| return 0; |
| CUresult r = CUDA_CALL_NOCHECK (cuInit, 0); |
| /* This is not an error: e.g. we may have CUDA libraries installed but |
| no devices available. */ |
| if (r != CUDA_SUCCESS) |
| { |
| GOMP_PLUGIN_debug (0, "Disabling nvptx offloading; cuInit: %s\n", |
| cuda_error (r)); |
| return 0; |
| } |
| } |
| |
| CUDA_CALL_ERET (-1, cuDeviceGetCount, &n); |
| return n; |
| } |
| |
| static void |
| notify_var (const char *var_name, const char *env_var) |
| { |
| if (env_var == NULL) |
| GOMP_PLUGIN_debug (0, "%s: <Not defined>\n", var_name); |
| else |
| GOMP_PLUGIN_debug (0, "%s: '%s'\n", var_name, env_var); |
| } |
| |
| static bool |
| link_ptx (CUmodule *module, const struct targ_ptx_obj *ptx_objs, |
| unsigned num_objs) |
| { |
| CUjit_option opts[6]; |
| void *optvals[6]; |
| float elapsed = 0.0; |
| char elog[1024]; |
| char ilog[16384]; |
| CUlinkState linkstate; |
| CUresult r; |
| void *linkout; |
| size_t linkoutsize __attribute__ ((unused)); |
| |
| opts[0] = CU_JIT_WALL_TIME; |
| optvals[0] = &elapsed; |
| |
| opts[1] = CU_JIT_INFO_LOG_BUFFER; |
| optvals[1] = &ilog[0]; |
| |
| opts[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES; |
| optvals[2] = (void *) sizeof ilog; |
| |
| opts[3] = CU_JIT_ERROR_LOG_BUFFER; |
| optvals[3] = &elog[0]; |
| |
| opts[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES; |
| optvals[4] = (void *) sizeof elog; |
| |
| opts[5] = CU_JIT_LOG_VERBOSE; |
| optvals[5] = (void *) 1; |
| |
| CUDA_CALL (cuLinkCreate, 6, opts, optvals, &linkstate); |
| |
| for (; num_objs--; ptx_objs++) |
| { |
| /* cuLinkAddData's 'data' argument erroneously omits the const |
| qualifier. */ |
| GOMP_PLUGIN_debug (0, "Loading:\n---\n%s\n---\n", ptx_objs->code); |
| r = CUDA_CALL_NOCHECK (cuLinkAddData, linkstate, CU_JIT_INPUT_PTX, |
| (char *) ptx_objs->code, ptx_objs->size, |
| 0, 0, 0, 0); |
| if (r != CUDA_SUCCESS) |
| { |
| GOMP_PLUGIN_error ("Link error log %s\n", &elog[0]); |
| GOMP_PLUGIN_error ("cuLinkAddData (ptx_code) error: %s", |
| cuda_error (r)); |
| return false; |
| } |
| } |
| |
| GOMP_PLUGIN_debug (0, "Linking\n"); |
| r = CUDA_CALL_NOCHECK (cuLinkComplete, linkstate, &linkout, &linkoutsize); |
| |
| GOMP_PLUGIN_debug (0, "Link complete: %fms\n", elapsed); |
| GOMP_PLUGIN_debug (0, "Link log %s\n", &ilog[0]); |
| |
| if (r != CUDA_SUCCESS) |
| { |
| GOMP_PLUGIN_error ("cuLinkComplete error: %s", cuda_error (r)); |
| return false; |
| } |
| |
| CUDA_CALL (cuModuleLoadData, module, linkout); |
| CUDA_CALL (cuLinkDestroy, linkstate); |
| return true; |
| } |
| |
| static void |
| event_gc (bool memmap_lockable) |
| { |
| struct ptx_event *ptx_event = ptx_events; |
| struct ptx_event *async_cleanups = NULL; |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| |
| pthread_mutex_lock (&ptx_event_lock); |
| |
| while (ptx_event != NULL) |
| { |
| CUresult r; |
| struct ptx_event *e = ptx_event; |
| |
| ptx_event = ptx_event->next; |
| |
| if (e->ord != nvthd->ptx_dev->ord) |
| continue; |
| |
| r = CUDA_CALL_NOCHECK (cuEventQuery, *e->evt); |
| if (r == CUDA_SUCCESS) |
| { |
| bool append_async = false; |
| CUevent *te; |
| |
| te = e->evt; |
| |
| switch (e->type) |
| { |
| case PTX_EVT_MEM: |
| case PTX_EVT_SYNC: |
| break; |
| |
| case PTX_EVT_KNL: |
| map_pop (e->addr); |
| break; |
| |
| case PTX_EVT_ASYNC_CLEANUP: |
| { |
| /* The function gomp_plugin_async_unmap_vars needs to claim the |
| memory-map splay tree lock for the current device, so we |
| can't call it when one of our callers has already claimed |
| the lock. In that case, just delay the GC for this event |
| until later. */ |
| if (!memmap_lockable) |
| continue; |
| |
| append_async = true; |
| } |
| break; |
| } |
| |
| CUDA_CALL_NOCHECK (cuEventDestroy, *te); |
| free ((void *)te); |
| |
| /* Unlink 'e' from ptx_events list. */ |
| if (ptx_events == e) |
| ptx_events = ptx_events->next; |
| else |
| { |
| struct ptx_event *e_ = ptx_events; |
| while (e_->next != e) |
| e_ = e_->next; |
| e_->next = e_->next->next; |
| } |
| |
| if (append_async) |
| { |
| e->next = async_cleanups; |
| async_cleanups = e; |
| } |
| else |
| free (e); |
| } |
| } |
| |
| pthread_mutex_unlock (&ptx_event_lock); |
| |
| /* We have to do these here, after ptx_event_lock is released. */ |
| while (async_cleanups) |
| { |
| struct ptx_event *e = async_cleanups; |
| async_cleanups = async_cleanups->next; |
| |
| GOMP_PLUGIN_async_unmap_vars (e->addr, e->val); |
| free (e); |
| } |
| } |
| |
| static void |
| event_add (enum ptx_event_type type, CUevent *e, void *h, int val) |
| { |
| struct ptx_event *ptx_event; |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| |
| assert (type == PTX_EVT_MEM || type == PTX_EVT_KNL || type == PTX_EVT_SYNC |
| || type == PTX_EVT_ASYNC_CLEANUP); |
| |
| ptx_event = GOMP_PLUGIN_malloc (sizeof (struct ptx_event)); |
| ptx_event->type = type; |
| ptx_event->evt = e; |
| ptx_event->addr = h; |
| ptx_event->ord = nvthd->ptx_dev->ord; |
| ptx_event->val = val; |
| |
| pthread_mutex_lock (&ptx_event_lock); |
| |
| ptx_event->next = ptx_events; |
| ptx_events = ptx_event; |
| |
| pthread_mutex_unlock (&ptx_event_lock); |
| } |
| |
| static void |
| nvptx_exec (void (*fn), size_t mapnum, void **hostaddrs, void **devaddrs, |
| int async, unsigned *dims, void *targ_mem_desc) |
| { |
| struct targ_fn_descriptor *targ_fn = (struct targ_fn_descriptor *) fn; |
| CUfunction function; |
| CUresult r; |
| int i; |
| struct ptx_stream *dev_str; |
| void *kargs[1]; |
| void *hp, *dp; |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| const char *maybe_abort_msg = "(perhaps abort was called)"; |
| |
| function = targ_fn->fn; |
| |
| dev_str = select_stream_for_async (async, pthread_self (), false, NULL); |
| assert (dev_str == nvthd->current_stream); |
| |
| /* Initialize the launch dimensions. Typically this is constant, |
| provided by the device compiler, but we must permit runtime |
| values. */ |
| int seen_zero = 0; |
| for (i = 0; i != GOMP_DIM_MAX; i++) |
| { |
| if (targ_fn->launch->dim[i]) |
| dims[i] = targ_fn->launch->dim[i]; |
| if (!dims[i]) |
| seen_zero = 1; |
| } |
| |
| if (seen_zero) |
| { |
| /* See if the user provided GOMP_OPENACC_DIM environment |
| variable to specify runtime defaults. */ |
| static int default_dims[GOMP_DIM_MAX]; |
| |
| pthread_mutex_lock (&ptx_dev_lock); |
| if (!default_dims[0]) |
| { |
| const char *var_name = "GOMP_OPENACC_DIM"; |
| /* We only read the environment variable once. You can't |
| change it in the middle of execution. The syntax is |
| the same as for the -fopenacc-dim compilation option. */ |
| const char *env_var = getenv (var_name); |
| notify_var (var_name, env_var); |
| if (env_var) |
| { |
| const char *pos = env_var; |
| |
| for (i = 0; *pos && i != GOMP_DIM_MAX; i++) |
| { |
| if (i && *pos++ != ':') |
| break; |
| if (*pos != ':') |
| { |
| const char *eptr; |
| |
| errno = 0; |
| long val = strtol (pos, (char **)&eptr, 10); |
| if (errno || val < 0 || (unsigned)val != val) |
| break; |
| default_dims[i] = (int)val; |
| pos = eptr; |
| } |
| } |
| } |
| |
| int warp_size, block_size, dev_size, cpu_size; |
| CUdevice dev = nvptx_thread()->ptx_dev->dev; |
| /* 32 is the default for known hardware. */ |
| int gang = 0, worker = 32, vector = 32; |
| CUdevice_attribute cu_tpb, cu_ws, cu_mpc, cu_tpm; |
| |
| cu_tpb = CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK; |
| cu_ws = CU_DEVICE_ATTRIBUTE_WARP_SIZE; |
| cu_mpc = CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT; |
| cu_tpm = CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_MULTIPROCESSOR; |
| |
| if (CUDA_CALL_NOCHECK (cuDeviceGetAttribute, &block_size, cu_tpb, |
| dev) == CUDA_SUCCESS |
| && CUDA_CALL_NOCHECK (cuDeviceGetAttribute, &warp_size, cu_ws, |
| dev) == CUDA_SUCCESS |
| && CUDA_CALL_NOCHECK (cuDeviceGetAttribute, &dev_size, cu_mpc, |
| dev) == CUDA_SUCCESS |
| && CUDA_CALL_NOCHECK (cuDeviceGetAttribute, &cpu_size, cu_tpm, |
| dev) == CUDA_SUCCESS) |
| { |
| GOMP_PLUGIN_debug (0, " warp_size=%d, block_size=%d," |
| " dev_size=%d, cpu_size=%d\n", |
| warp_size, block_size, dev_size, cpu_size); |
| gang = (cpu_size / block_size) * dev_size; |
| worker = block_size / warp_size; |
| vector = warp_size; |
| } |
| |
| /* There is no upper bound on the gang size. The best size |
| matches the hardware configuration. Logical gangs are |
| scheduled onto physical hardware. To maximize usage, we |
| should guess a large number. */ |
| if (default_dims[GOMP_DIM_GANG] < 1) |
| default_dims[GOMP_DIM_GANG] = gang ? gang : 1024; |
| /* The worker size must not exceed the hardware. */ |
| if (default_dims[GOMP_DIM_WORKER] < 1 |
| || (default_dims[GOMP_DIM_WORKER] > worker && gang)) |
| default_dims[GOMP_DIM_WORKER] = worker; |
| /* The vector size must exactly match the hardware. */ |
| if (default_dims[GOMP_DIM_VECTOR] < 1 |
| || (default_dims[GOMP_DIM_VECTOR] != vector && gang)) |
| default_dims[GOMP_DIM_VECTOR] = vector; |
| |
| GOMP_PLUGIN_debug (0, " default dimensions [%d,%d,%d]\n", |
| default_dims[GOMP_DIM_GANG], |
| default_dims[GOMP_DIM_WORKER], |
| default_dims[GOMP_DIM_VECTOR]); |
| } |
| pthread_mutex_unlock (&ptx_dev_lock); |
| |
| for (i = 0; i != GOMP_DIM_MAX; i++) |
| if (!dims[i]) |
| dims[i] = default_dims[i]; |
| } |
| |
| /* This reserves a chunk of a pre-allocated page of memory mapped on both |
| the host and the device. HP is a host pointer to the new chunk, and DP is |
| the corresponding device pointer. */ |
| map_push (dev_str, async, mapnum * sizeof (void *), &hp, &dp); |
| |
| GOMP_PLUGIN_debug (0, " %s: prepare mappings\n", __FUNCTION__); |
| |
| /* Copy the array of arguments to the mapped page. */ |
| for (i = 0; i < mapnum; i++) |
| ((void **) hp)[i] = devaddrs[i]; |
| |
| /* Copy the (device) pointers to arguments to the device (dp and hp might in |
| fact have the same value on a unified-memory system). */ |
| CUDA_CALL_ASSERT (cuMemcpy, (CUdeviceptr) dp, (CUdeviceptr) hp, |
| mapnum * sizeof (void *)); |
| GOMP_PLUGIN_debug (0, " %s: kernel %s: launch" |
| " gangs=%u, workers=%u, vectors=%u\n", |
| __FUNCTION__, targ_fn->launch->fn, dims[GOMP_DIM_GANG], |
| dims[GOMP_DIM_WORKER], dims[GOMP_DIM_VECTOR]); |
| |
| // OpenACC CUDA |
| // |
| // num_gangs nctaid.x |
| // num_workers ntid.y |
| // vector length ntid.x |
| |
| kargs[0] = &dp; |
| CUDA_CALL_ASSERT (cuLaunchKernel, function, |
| dims[GOMP_DIM_GANG], 1, 1, |
| dims[GOMP_DIM_VECTOR], dims[GOMP_DIM_WORKER], 1, |
| 0, dev_str->stream, kargs, 0); |
| |
| #ifndef DISABLE_ASYNC |
| if (async < acc_async_noval) |
| { |
| r = CUDA_CALL_NOCHECK (cuStreamSynchronize, dev_str->stream); |
| if (r == CUDA_ERROR_LAUNCH_FAILED) |
| GOMP_PLUGIN_fatal ("cuStreamSynchronize error: %s %s\n", cuda_error (r), |
| maybe_abort_msg); |
| else if (r != CUDA_SUCCESS) |
| GOMP_PLUGIN_fatal ("cuStreamSynchronize error: %s", cuda_error (r)); |
| } |
| else |
| { |
| CUevent *e; |
| |
| e = (CUevent *)GOMP_PLUGIN_malloc (sizeof (CUevent)); |
| |
| r = CUDA_CALL_NOCHECK (cuEventCreate, e, CU_EVENT_DISABLE_TIMING); |
| if (r == CUDA_ERROR_LAUNCH_FAILED) |
| GOMP_PLUGIN_fatal ("cuEventCreate error: %s %s\n", cuda_error (r), |
| maybe_abort_msg); |
| else if (r != CUDA_SUCCESS) |
| GOMP_PLUGIN_fatal ("cuEventCreate error: %s", cuda_error (r)); |
| |
| event_gc (true); |
| |
| CUDA_CALL_ASSERT (cuEventRecord, *e, dev_str->stream); |
| |
| event_add (PTX_EVT_KNL, e, (void *)dev_str, 0); |
| } |
| #else |
| r = CUDA_CALL_NOCHECK (cuCtxSynchronize, ); |
| if (r == CUDA_ERROR_LAUNCH_FAILED) |
| GOMP_PLUGIN_fatal ("cuCtxSynchronize error: %s %s\n", cuda_error (r), |
| maybe_abort_msg); |
| else if (r != CUDA_SUCCESS) |
| GOMP_PLUGIN_fatal ("cuCtxSynchronize error: %s", cuda_error (r)); |
| #endif |
| |
| GOMP_PLUGIN_debug (0, " %s: kernel %s: finished\n", __FUNCTION__, |
| targ_fn->launch->fn); |
| |
| #ifndef DISABLE_ASYNC |
| if (async < acc_async_noval) |
| #endif |
| map_pop (dev_str); |
| } |
| |
| void * openacc_get_current_cuda_context (void); |
| |
| static void * |
| nvptx_alloc (size_t s) |
| { |
| CUdeviceptr d; |
| |
| CUDA_CALL_ERET (NULL, cuMemAlloc, &d, s); |
| return (void *) d; |
| } |
| |
| static bool |
| nvptx_free (void *p) |
| { |
| CUdeviceptr pb; |
| size_t ps; |
| |
| CUDA_CALL (cuMemGetAddressRange, &pb, &ps, (CUdeviceptr) p); |
| if ((CUdeviceptr) p != pb) |
| { |
| GOMP_PLUGIN_error ("invalid device address"); |
| return false; |
| } |
| |
| CUDA_CALL (cuMemFree, (CUdeviceptr) p); |
| return true; |
| } |
| |
| |
| static bool |
| nvptx_host2dev (void *d, const void *h, size_t s) |
| { |
| CUdeviceptr pb; |
| size_t ps; |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| |
| if (!s) |
| return true; |
| if (!d) |
| { |
| GOMP_PLUGIN_error ("invalid device address"); |
| return false; |
| } |
| |
| CUDA_CALL (cuMemGetAddressRange, &pb, &ps, (CUdeviceptr) d); |
| |
| if (!pb) |
| { |
| GOMP_PLUGIN_error ("invalid device address"); |
| return false; |
| } |
| if (!h) |
| { |
| GOMP_PLUGIN_error ("invalid host address"); |
| return false; |
| } |
| if (d == h) |
| { |
| GOMP_PLUGIN_error ("invalid host or device address"); |
| return false; |
| } |
| if ((void *)(d + s) > (void *)(pb + ps)) |
| { |
| GOMP_PLUGIN_error ("invalid size"); |
| return false; |
| } |
| |
| #ifndef DISABLE_ASYNC |
| if (nvthd && nvthd->current_stream != nvthd->ptx_dev->null_stream) |
| { |
| CUevent *e = (CUevent *)GOMP_PLUGIN_malloc (sizeof (CUevent)); |
| CUDA_CALL (cuEventCreate, e, CU_EVENT_DISABLE_TIMING); |
| event_gc (false); |
| CUDA_CALL (cuMemcpyHtoDAsync, |
| (CUdeviceptr) d, h, s, nvthd->current_stream->stream); |
| CUDA_CALL (cuEventRecord, *e, nvthd->current_stream->stream); |
| event_add (PTX_EVT_MEM, e, (void *)h, 0); |
| } |
| else |
| #endif |
| CUDA_CALL (cuMemcpyHtoD, (CUdeviceptr) d, h, s); |
| |
| return true; |
| } |
| |
| static bool |
| nvptx_dev2host (void *h, const void *d, size_t s) |
| { |
| CUdeviceptr pb; |
| size_t ps; |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| |
| if (!s) |
| return true; |
| if (!d) |
| { |
| GOMP_PLUGIN_error ("invalid device address"); |
| return false; |
| } |
| |
| CUDA_CALL (cuMemGetAddressRange, &pb, &ps, (CUdeviceptr) d); |
| |
| if (!pb) |
| { |
| GOMP_PLUGIN_error ("invalid device address"); |
| return false; |
| } |
| if (!h) |
| { |
| GOMP_PLUGIN_error ("invalid host address"); |
| return false; |
| } |
| if (d == h) |
| { |
| GOMP_PLUGIN_error ("invalid host or device address"); |
| return false; |
| } |
| if ((void *)(d + s) > (void *)(pb + ps)) |
| { |
| GOMP_PLUGIN_error ("invalid size"); |
| return false; |
| } |
| |
| #ifndef DISABLE_ASYNC |
| if (nvthd && nvthd->current_stream != nvthd->ptx_dev->null_stream) |
| { |
| CUevent *e = (CUevent *) GOMP_PLUGIN_malloc (sizeof (CUevent)); |
| CUDA_CALL (cuEventCreate, e, CU_EVENT_DISABLE_TIMING); |
| event_gc (false); |
| CUDA_CALL (cuMemcpyDtoHAsync, |
| h, (CUdeviceptr) d, s, nvthd->current_stream->stream); |
| CUDA_CALL (cuEventRecord, *e, nvthd->current_stream->stream); |
| event_add (PTX_EVT_MEM, e, (void *)h, 0); |
| } |
| else |
| #endif |
| CUDA_CALL (cuMemcpyDtoH, h, (CUdeviceptr) d, s); |
| |
| return true; |
| } |
| |
| static void |
| nvptx_set_async (int async) |
| { |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| nvthd->current_stream |
| = select_stream_for_async (async, pthread_self (), true, NULL); |
| } |
| |
| static int |
| nvptx_async_test (int async) |
| { |
| CUresult r; |
| struct ptx_stream *s; |
| |
| s = select_stream_for_async (async, pthread_self (), false, NULL); |
| |
| if (!s) |
| GOMP_PLUGIN_fatal ("unknown async %d", async); |
| |
| r = CUDA_CALL_NOCHECK (cuStreamQuery, s->stream); |
| if (r == CUDA_SUCCESS) |
| { |
| /* The oacc-parallel.c:goacc_wait function calls this hook to determine |
| whether all work has completed on this stream, and if so omits the call |
| to the wait hook. If that happens, event_gc might not get called |
| (which prevents variables from getting unmapped and their associated |
| device storage freed), so call it here. */ |
| event_gc (true); |
| return 1; |
| } |
| else if (r == CUDA_ERROR_NOT_READY) |
| return 0; |
| |
| GOMP_PLUGIN_fatal ("cuStreamQuery error: %s", cuda_error (r)); |
| |
| return 0; |
| } |
| |
| static int |
| nvptx_async_test_all (void) |
| { |
| struct ptx_stream *s; |
| pthread_t self = pthread_self (); |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| |
| pthread_mutex_lock (&nvthd->ptx_dev->stream_lock); |
| |
| for (s = nvthd->ptx_dev->active_streams; s != NULL; s = s->next) |
| { |
| if ((s->multithreaded || pthread_equal (s->host_thread, self)) |
| && CUDA_CALL_NOCHECK (cuStreamQuery, |
| s->stream) == CUDA_ERROR_NOT_READY) |
| { |
| pthread_mutex_unlock (&nvthd->ptx_dev->stream_lock); |
| return 0; |
| } |
| } |
| |
| pthread_mutex_unlock (&nvthd->ptx_dev->stream_lock); |
| |
| event_gc (true); |
| |
| return 1; |
| } |
| |
| static void |
| nvptx_wait (int async) |
| { |
| struct ptx_stream *s; |
| |
| s = select_stream_for_async (async, pthread_self (), false, NULL); |
| if (!s) |
| GOMP_PLUGIN_fatal ("unknown async %d", async); |
| |
| CUDA_CALL_ASSERT (cuStreamSynchronize, s->stream); |
| |
| event_gc (true); |
| } |
| |
| static void |
| nvptx_wait_async (int async1, int async2) |
| { |
| CUevent *e; |
| struct ptx_stream *s1, *s2; |
| pthread_t self = pthread_self (); |
| |
| /* The stream that is waiting (rather than being waited for) doesn't |
| necessarily have to exist already. */ |
| s2 = select_stream_for_async (async2, self, true, NULL); |
| |
| s1 = select_stream_for_async (async1, self, false, NULL); |
| if (!s1) |
| GOMP_PLUGIN_fatal ("invalid async 1\n"); |
| |
| if (s1 == s2) |
| GOMP_PLUGIN_fatal ("identical parameters"); |
| |
| e = (CUevent *) GOMP_PLUGIN_malloc (sizeof (CUevent)); |
| |
| CUDA_CALL_ASSERT (cuEventCreate, e, CU_EVENT_DISABLE_TIMING); |
| |
| event_gc (true); |
| |
| CUDA_CALL_ASSERT (cuEventRecord, *e, s1->stream); |
| |
| event_add (PTX_EVT_SYNC, e, NULL, 0); |
| |
| CUDA_CALL_ASSERT (cuStreamWaitEvent, s2->stream, *e, 0); |
| } |
| |
| static void |
| nvptx_wait_all (void) |
| { |
| CUresult r; |
| struct ptx_stream *s; |
| pthread_t self = pthread_self (); |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| |
| pthread_mutex_lock (&nvthd->ptx_dev->stream_lock); |
| |
| /* Wait for active streams initiated by this thread (or by multiple threads) |
| to complete. */ |
| for (s = nvthd->ptx_dev->active_streams; s != NULL; s = s->next) |
| { |
| if (s->multithreaded || pthread_equal (s->host_thread, self)) |
| { |
| r = CUDA_CALL_NOCHECK (cuStreamQuery, s->stream); |
| if (r == CUDA_SUCCESS) |
| continue; |
| else if (r != CUDA_ERROR_NOT_READY) |
| GOMP_PLUGIN_fatal ("cuStreamQuery error: %s", cuda_error (r)); |
| |
| CUDA_CALL_ASSERT (cuStreamSynchronize, s->stream); |
| } |
| } |
| |
| pthread_mutex_unlock (&nvthd->ptx_dev->stream_lock); |
| |
| event_gc (true); |
| } |
| |
| static void |
| nvptx_wait_all_async (int async) |
| { |
| struct ptx_stream *waiting_stream, *other_stream; |
| CUevent *e; |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| pthread_t self = pthread_self (); |
| |
| /* The stream doing the waiting. This could be the first mention of the |
| stream, so create it if necessary. */ |
| waiting_stream |
| = select_stream_for_async (async, pthread_self (), true, NULL); |
| |
| /* Launches on the null stream already block on other streams in the |
| context. */ |
| if (!waiting_stream || waiting_stream == nvthd->ptx_dev->null_stream) |
| return; |
| |
| event_gc (true); |
| |
| pthread_mutex_lock (&nvthd->ptx_dev->stream_lock); |
| |
| for (other_stream = nvthd->ptx_dev->active_streams; |
| other_stream != NULL; |
| other_stream = other_stream->next) |
| { |
| if (!other_stream->multithreaded |
| && !pthread_equal (other_stream->host_thread, self)) |
| continue; |
| |
| e = (CUevent *) GOMP_PLUGIN_malloc (sizeof (CUevent)); |
| |
| CUDA_CALL_ASSERT (cuEventCreate, e, CU_EVENT_DISABLE_TIMING); |
| |
| /* Record an event on the waited-for stream. */ |
| CUDA_CALL_ASSERT (cuEventRecord, *e, other_stream->stream); |
| |
| event_add (PTX_EVT_SYNC, e, NULL, 0); |
| |
| CUDA_CALL_ASSERT (cuStreamWaitEvent, waiting_stream->stream, *e, 0); |
| } |
| |
| pthread_mutex_unlock (&nvthd->ptx_dev->stream_lock); |
| } |
| |
| static void * |
| nvptx_get_current_cuda_device (void) |
| { |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| |
| if (!nvthd || !nvthd->ptx_dev) |
| return NULL; |
| |
| return &nvthd->ptx_dev->dev; |
| } |
| |
| static void * |
| nvptx_get_current_cuda_context (void) |
| { |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| |
| if (!nvthd || !nvthd->ptx_dev) |
| return NULL; |
| |
| return nvthd->ptx_dev->ctx; |
| } |
| |
| static void * |
| nvptx_get_cuda_stream (int async) |
| { |
| struct ptx_stream *s; |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| |
| if (!nvthd || !nvthd->ptx_dev) |
| return NULL; |
| |
| s = select_stream_for_async (async, pthread_self (), false, NULL); |
| |
| return s ? s->stream : NULL; |
| } |
| |
| static int |
| nvptx_set_cuda_stream (int async, void *stream) |
| { |
| struct ptx_stream *oldstream; |
| pthread_t self = pthread_self (); |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| |
| if (async < 0) |
| GOMP_PLUGIN_fatal ("bad async %d", async); |
| |
| pthread_mutex_lock (&nvthd->ptx_dev->stream_lock); |
| |
| /* We have a list of active streams and an array mapping async values to |
| entries of that list. We need to take "ownership" of the passed-in stream, |
| and add it to our list, removing the previous entry also (if there was one) |
| in order to prevent resource leaks. Note the potential for surprise |
| here: maybe we should keep track of passed-in streams and leave it up to |
| the user to tidy those up, but that doesn't work for stream handles |
| returned from acc_get_cuda_stream above... */ |
| |
| oldstream = select_stream_for_async (async, self, false, NULL); |
| |
| if (oldstream) |
| { |
| if (nvthd->ptx_dev->active_streams == oldstream) |
| nvthd->ptx_dev->active_streams = nvthd->ptx_dev->active_streams->next; |
| else |
| { |
| struct ptx_stream *s = nvthd->ptx_dev->active_streams; |
| while (s->next != oldstream) |
| s = s->next; |
| s->next = s->next->next; |
| } |
| |
| CUDA_CALL_ASSERT (cuStreamDestroy, oldstream->stream); |
| |
| if (!map_fini (oldstream)) |
| GOMP_PLUGIN_fatal ("error when freeing host memory"); |
| |
| free (oldstream); |
| } |
| |
| pthread_mutex_unlock (&nvthd->ptx_dev->stream_lock); |
| |
| (void) select_stream_for_async (async, self, true, (CUstream) stream); |
| |
| return 1; |
| } |
| |
| /* Plugin entry points. */ |
| |
| const char * |
| GOMP_OFFLOAD_get_name (void) |
| { |
| return "nvptx"; |
| } |
| |
| unsigned int |
| GOMP_OFFLOAD_get_caps (void) |
| { |
| return GOMP_OFFLOAD_CAP_OPENACC_200 | GOMP_OFFLOAD_CAP_OPENMP_400; |
| } |
| |
| int |
| GOMP_OFFLOAD_get_type (void) |
| { |
| return OFFLOAD_TARGET_TYPE_NVIDIA_PTX; |
| } |
| |
| int |
| GOMP_OFFLOAD_get_num_devices (void) |
| { |
| return nvptx_get_num_devices (); |
| } |
| |
| bool |
| GOMP_OFFLOAD_init_device (int n) |
| { |
| struct ptx_device *dev; |
| |
| pthread_mutex_lock (&ptx_dev_lock); |
| |
| if (!nvptx_init () || ptx_devices[n] != NULL) |
| { |
| pthread_mutex_unlock (&ptx_dev_lock); |
| return false; |
| } |
| |
| dev = nvptx_open_device (n); |
| if (dev) |
| { |
| ptx_devices[n] = dev; |
| instantiated_devices++; |
| } |
| |
| pthread_mutex_unlock (&ptx_dev_lock); |
| |
| return dev != NULL; |
| } |
| |
| bool |
| GOMP_OFFLOAD_fini_device (int n) |
| { |
| pthread_mutex_lock (&ptx_dev_lock); |
| |
| if (ptx_devices[n] != NULL) |
| { |
| if (!nvptx_attach_host_thread_to_device (n) |
| || !nvptx_close_device (ptx_devices[n])) |
| { |
| pthread_mutex_unlock (&ptx_dev_lock); |
| return false; |
| } |
| ptx_devices[n] = NULL; |
| instantiated_devices--; |
| } |
| |
| pthread_mutex_unlock (&ptx_dev_lock); |
| return true; |
| } |
| |
| /* Return the libgomp version number we're compatible with. There is |
| no requirement for cross-version compatibility. */ |
| |
| unsigned |
| GOMP_OFFLOAD_version (void) |
| { |
| return GOMP_VERSION; |
| } |
| |
| /* Initialize __nvptx_clocktick, if present in MODULE. */ |
| |
| static void |
| nvptx_set_clocktick (CUmodule module, struct ptx_device *dev) |
| { |
| CUdeviceptr dptr; |
| CUresult r = CUDA_CALL_NOCHECK (cuModuleGetGlobal, &dptr, NULL, |
| module, "__nvptx_clocktick"); |
| if (r == CUDA_ERROR_NOT_FOUND) |
| return; |
| if (r != CUDA_SUCCESS) |
| GOMP_PLUGIN_fatal ("cuModuleGetGlobal error: %s", cuda_error (r)); |
| double __nvptx_clocktick = 1e-3 / dev->clock_khz; |
| r = CUDA_CALL_NOCHECK (cuMemcpyHtoD, dptr, &__nvptx_clocktick, |
| sizeof (__nvptx_clocktick)); |
| if (r != CUDA_SUCCESS) |
| GOMP_PLUGIN_fatal ("cuMemcpyHtoD error: %s", cuda_error (r)); |
| } |
| |
| /* Load the (partial) program described by TARGET_DATA to device |
| number ORD. Allocate and return TARGET_TABLE. */ |
| |
| int |
| GOMP_OFFLOAD_load_image (int ord, unsigned version, const void *target_data, |
| struct addr_pair **target_table) |
| { |
| CUmodule module; |
| const char *const *var_names; |
| const struct targ_fn_launch *fn_descs; |
| unsigned int fn_entries, var_entries, i, j; |
| struct targ_fn_descriptor *targ_fns; |
| struct addr_pair *targ_tbl; |
| const nvptx_tdata_t *img_header = (const nvptx_tdata_t *) target_data; |
| struct ptx_image_data *new_image; |
| struct ptx_device *dev; |
| |
| if (GOMP_VERSION_DEV (version) > GOMP_VERSION_NVIDIA_PTX) |
| { |
| GOMP_PLUGIN_error ("Offload data incompatible with PTX plugin" |
| " (expected %u, received %u)", |
| GOMP_VERSION_NVIDIA_PTX, GOMP_VERSION_DEV (version)); |
| return -1; |
| } |
| |
| if (!nvptx_attach_host_thread_to_device (ord) |
| || !link_ptx (&module, img_header->ptx_objs, img_header->ptx_num)) |
| return -1; |
| |
| dev = ptx_devices[ord]; |
| |
| /* The mkoffload utility emits a struct of pointers/integers at the |
| start of each offload image. The array of kernel names and the |
| functions addresses form a one-to-one correspondence. */ |
| |
| var_entries = img_header->var_num; |
| var_names = img_header->var_names; |
| fn_entries = img_header->fn_num; |
| fn_descs = img_header->fn_descs; |
| |
| targ_tbl = GOMP_PLUGIN_malloc (sizeof (struct addr_pair) |
| * (fn_entries + var_entries)); |
| targ_fns = GOMP_PLUGIN_malloc (sizeof (struct targ_fn_descriptor) |
| * fn_entries); |
| |
| *target_table = targ_tbl; |
| |
| new_image = GOMP_PLUGIN_malloc (sizeof (struct ptx_image_data)); |
| new_image->target_data = target_data; |
| new_image->module = module; |
| new_image->fns = targ_fns; |
| |
| pthread_mutex_lock (&dev->image_lock); |
| new_image->next = dev->images; |
| dev->images = new_image; |
| pthread_mutex_unlock (&dev->image_lock); |
| |
| for (i = 0; i < fn_entries; i++, targ_fns++, targ_tbl++) |
| { |
| CUfunction function; |
| int nregs, mthrs; |
| |
| CUDA_CALL_ERET (-1, cuModuleGetFunction, &function, module, |
| fn_descs[i].fn); |
| CUDA_CALL_ERET (-1, cuFuncGetAttribute, &nregs, |
| CU_FUNC_ATTRIBUTE_NUM_REGS, function); |
| CUDA_CALL_ERET (-1, cuFuncGetAttribute, &mthrs, |
| CU_FUNC_ATTRIBUTE_MAX_THREADS_PER_BLOCK, function); |
| |
| targ_fns->fn = function; |
| targ_fns->launch = &fn_descs[i]; |
| targ_fns->regs_per_thread = nregs; |
| targ_fns->max_threads_per_block = mthrs; |
| |
| targ_tbl->start = (uintptr_t) targ_fns; |
| targ_tbl->end = targ_tbl->start + 1; |
| } |
| |
| for (j = 0; j < var_entries; j++, targ_tbl++) |
| { |
| CUdeviceptr var; |
| size_t bytes; |
| |
| CUDA_CALL_ERET (-1, cuModuleGetGlobal, |
| &var, &bytes, module, var_names[j]); |
| |
| targ_tbl->start = (uintptr_t) var; |
| targ_tbl->end = targ_tbl->start + bytes; |
| } |
| |
| nvptx_set_clocktick (module, dev); |
| |
| return fn_entries + var_entries; |
| } |
| |
| /* Unload the program described by TARGET_DATA. DEV_DATA is the |
| function descriptors allocated by G_O_load_image. */ |
| |
| bool |
| GOMP_OFFLOAD_unload_image (int ord, unsigned version, const void *target_data) |
| { |
| struct ptx_image_data *image, **prev_p; |
| struct ptx_device *dev = ptx_devices[ord]; |
| |
| if (GOMP_VERSION_DEV (version) > GOMP_VERSION_NVIDIA_PTX) |
| { |
| GOMP_PLUGIN_error ("Offload data incompatible with PTX plugin" |
| " (expected %u, received %u)", |
| GOMP_VERSION_NVIDIA_PTX, GOMP_VERSION_DEV (version)); |
| return false; |
| } |
| |
| bool ret = true; |
| pthread_mutex_lock (&dev->image_lock); |
| for (prev_p = &dev->images; (image = *prev_p) != 0; prev_p = &image->next) |
| if (image->target_data == target_data) |
| { |
| *prev_p = image->next; |
| if (CUDA_CALL_NOCHECK (cuModuleUnload, image->module) != CUDA_SUCCESS) |
| ret = false; |
| free (image->fns); |
| free (image); |
| break; |
| } |
| pthread_mutex_unlock (&dev->image_lock); |
| return ret; |
| } |
| |
| void * |
| GOMP_OFFLOAD_alloc (int ord, size_t size) |
| { |
| if (!nvptx_attach_host_thread_to_device (ord)) |
| return NULL; |
| return nvptx_alloc (size); |
| } |
| |
| bool |
| GOMP_OFFLOAD_free (int ord, void *ptr) |
| { |
| return (nvptx_attach_host_thread_to_device (ord) |
| && nvptx_free (ptr)); |
| } |
| |
| bool |
| GOMP_OFFLOAD_dev2host (int ord, void *dst, const void *src, size_t n) |
| { |
| return (nvptx_attach_host_thread_to_device (ord) |
| && nvptx_dev2host (dst, src, n)); |
| } |
| |
| bool |
| GOMP_OFFLOAD_host2dev (int ord, void *dst, const void *src, size_t n) |
| { |
| return (nvptx_attach_host_thread_to_device (ord) |
| && nvptx_host2dev (dst, src, n)); |
| } |
| |
| bool |
| GOMP_OFFLOAD_dev2dev (int ord, void *dst, const void *src, size_t n) |
| { |
| struct ptx_device *ptx_dev = ptx_devices[ord]; |
| CUDA_CALL (cuMemcpyDtoDAsync, (CUdeviceptr) dst, (CUdeviceptr) src, n, |
| ptx_dev->null_stream->stream); |
| return true; |
| } |
| |
| void (*device_run) (int n, void *fn_ptr, void *vars) = NULL; |
| |
| void |
| GOMP_OFFLOAD_openacc_exec (void (*fn) (void *), size_t mapnum, |
| void **hostaddrs, void **devaddrs, |
| int async, unsigned *dims, void *targ_mem_desc) |
| { |
| nvptx_exec (fn, mapnum, hostaddrs, devaddrs, async, dims, targ_mem_desc); |
| } |
| |
| void |
| GOMP_OFFLOAD_openacc_register_async_cleanup (void *targ_mem_desc, int async) |
| { |
| struct nvptx_thread *nvthd = nvptx_thread (); |
| CUevent *e = (CUevent *) GOMP_PLUGIN_malloc (sizeof (CUevent)); |
| |
| CUDA_CALL_ASSERT (cuEventCreate, e, CU_EVENT_DISABLE_TIMING); |
| CUDA_CALL_ASSERT (cuEventRecord, *e, nvthd->current_stream->stream); |
| event_add (PTX_EVT_ASYNC_CLEANUP, e, targ_mem_desc, async); |
| } |
| |
| int |
| GOMP_OFFLOAD_openacc_async_test (int async) |
| { |
| return nvptx_async_test (async); |
| } |
| |
| int |
| GOMP_OFFLOAD_openacc_async_test_all (void) |
| { |
| return nvptx_async_test_all (); |
| } |
| |
| void |
| GOMP_OFFLOAD_openacc_async_wait (int async) |
| { |
| nvptx_wait (async); |
| } |
| |
| void |
| GOMP_OFFLOAD_openacc_async_wait_async (int async1, int async2) |
| { |
| nvptx_wait_async (async1, async2); |
| } |
| |
| void |
| GOMP_OFFLOAD_openacc_async_wait_all (void) |
| { |
| nvptx_wait_all (); |
| } |
| |
| void |
| GOMP_OFFLOAD_openacc_async_wait_all_async (int async) |
| { |
| nvptx_wait_all_async (async); |
| } |
| |
| void |
| GOMP_OFFLOAD_openacc_async_set_async (int async) |
| { |
| nvptx_set_async (async); |
| } |
| |
| void * |
| GOMP_OFFLOAD_openacc_create_thread_data (int ord) |
| { |
| struct ptx_device *ptx_dev; |
| struct nvptx_thread *nvthd |
| = GOMP_PLUGIN_malloc (sizeof (struct nvptx_thread)); |
| CUcontext thd_ctx; |
| |
| ptx_dev = ptx_devices[ord]; |
| |
| assert (ptx_dev); |
| |
| CUDA_CALL_ASSERT (cuCtxGetCurrent, &thd_ctx); |
| |
| assert (ptx_dev->ctx); |
| |
| if (!thd_ctx) |
| CUDA_CALL_ASSERT (cuCtxPushCurrent, ptx_dev->ctx); |
| |
| nvthd->current_stream = ptx_dev->null_stream; |
| nvthd->ptx_dev = ptx_dev; |
| |
| return (void *) nvthd; |
| } |
| |
| void |
| GOMP_OFFLOAD_openacc_destroy_thread_data (void *data) |
| { |
| free (data); |
| } |
| |
| void * |
| GOMP_OFFLOAD_openacc_cuda_get_current_device (void) |
| { |
| return nvptx_get_current_cuda_device (); |
| } |
| |
| void * |
| GOMP_OFFLOAD_openacc_cuda_get_current_context (void) |
| { |
| return nvptx_get_current_cuda_context (); |
| } |
| |
| /* NOTE: This returns a CUstream, not a ptx_stream pointer. */ |
| |
| void * |
| GOMP_OFFLOAD_openacc_cuda_get_stream (int async) |
| { |
| return nvptx_get_cuda_stream (async); |
| } |
| |
| /* NOTE: This takes a CUstream, not a ptx_stream pointer. */ |
| |
| int |
| GOMP_OFFLOAD_openacc_cuda_set_stream (int async, void *stream) |
| { |
| return nvptx_set_cuda_stream (async, stream); |
| } |
| |
| /* Adjust launch dimensions: pick good values for number of blocks and warps |
| and ensure that number of warps does not exceed CUDA limits as well as GCC's |
| own limits. */ |
| |
| static void |
| nvptx_adjust_launch_bounds (struct targ_fn_descriptor *fn, |
| struct ptx_device *ptx_dev, |
| int *teams_p, int *threads_p) |
| { |
| int max_warps_block = fn->max_threads_per_block / 32; |
| /* Maximum 32 warps per block is an implementation limit in NVPTX backend |
| and libgcc, which matches documented limit of all GPUs as of 2015. */ |
| if (max_warps_block > 32) |
| max_warps_block = 32; |
| if (*threads_p <= 0) |
| *threads_p = 8; |
| if (*threads_p > max_warps_block) |
| *threads_p = max_warps_block; |
| |
| int regs_per_block = fn->regs_per_thread * 32 * *threads_p; |
| /* This is an estimate of how many blocks the device can host simultaneously. |
| Actual limit, which may be lower, can be queried with "occupancy control" |
| driver interface (since CUDA 6.0). */ |
| int max_blocks = ptx_dev->regs_per_sm / regs_per_block * ptx_dev->num_sms; |
| if (*teams_p <= 0 || *teams_p > max_blocks) |
| *teams_p = max_blocks; |
| } |
| |
| /* Return the size of per-warp stacks (see gcc -msoft-stack) to use for OpenMP |
| target regions. */ |
| |
| static size_t |
| nvptx_stacks_size () |
| { |
| return 128 * 1024; |
| } |
| |
| /* Return contiguous storage for NUM stacks, each SIZE bytes. */ |
| |
| static void * |
| nvptx_stacks_alloc (size_t size, int num) |
| { |
| CUdeviceptr stacks; |
| CUresult r = CUDA_CALL_NOCHECK (cuMemAlloc, &stacks, size * num); |
| if (r != CUDA_SUCCESS) |
| GOMP_PLUGIN_fatal ("cuMemAlloc error: %s", cuda_error (r)); |
| return (void *) stacks; |
| } |
| |
| /* Release storage previously allocated by nvptx_stacks_alloc. */ |
| |
| static void |
| nvptx_stacks_free (void *p, int num) |
| { |
| CUresult r = CUDA_CALL_NOCHECK (cuMemFree, (CUdeviceptr) p); |
| if (r != CUDA_SUCCESS) |
| GOMP_PLUGIN_fatal ("cuMemFree error: %s", cuda_error (r)); |
| } |
| |
| void |
| GOMP_OFFLOAD_run (int ord, void *tgt_fn, void *tgt_vars, void **args) |
| { |
| CUfunction function = ((struct targ_fn_descriptor *) tgt_fn)->fn; |
| CUresult r; |
| struct ptx_device *ptx_dev = ptx_devices[ord]; |
| const char *maybe_abort_msg = "(perhaps abort was called)"; |
| int teams = 0, threads = 0; |
| |
| if (!args) |
| GOMP_PLUGIN_fatal ("No target arguments provided"); |
| while (*args) |
| { |
| intptr_t id = (intptr_t) *args++, val; |
| if (id & GOMP_TARGET_ARG_SUBSEQUENT_PARAM) |
| val = (intptr_t) *args++; |
| else |
| val = id >> GOMP_TARGET_ARG_VALUE_SHIFT; |
| if ((id & GOMP_TARGET_ARG_DEVICE_MASK) != GOMP_TARGET_ARG_DEVICE_ALL) |
| continue; |
| val = val > INT_MAX ? INT_MAX : val; |
| id &= GOMP_TARGET_ARG_ID_MASK; |
| if (id == GOMP_TARGET_ARG_NUM_TEAMS) |
| teams = val; |
| else if (id == GOMP_TARGET_ARG_THREAD_LIMIT) |
| threads = val; |
| } |
| nvptx_adjust_launch_bounds (tgt_fn, ptx_dev, &teams, &threads); |
| |
| size_t stack_size = nvptx_stacks_size (); |
| void *stacks = nvptx_stacks_alloc (stack_size, teams * threads); |
| void *fn_args[] = {tgt_vars, stacks, (void *) stack_size}; |
| size_t fn_args_size = sizeof fn_args; |
| void *config[] = { |
| CU_LAUNCH_PARAM_BUFFER_POINTER, fn_args, |
| CU_LAUNCH_PARAM_BUFFER_SIZE, &fn_args_size, |
| CU_LAUNCH_PARAM_END |
| }; |
| r = CUDA_CALL_NOCHECK (cuLaunchKernel, function, teams, 1, 1, |
| 32, threads, 1, 0, ptx_dev->null_stream->stream, |
| NULL, config); |
| if (r != CUDA_SUCCESS) |
| GOMP_PLUGIN_fatal ("cuLaunchKernel error: %s", cuda_error (r)); |
| |
| r = CUDA_CALL_NOCHECK (cuCtxSynchronize, ); |
| if (r == CUDA_ERROR_LAUNCH_FAILED) |
| GOMP_PLUGIN_fatal ("cuCtxSynchronize error: %s %s\n", cuda_error (r), |
| maybe_abort_msg); |
| else if (r != CUDA_SUCCESS) |
| GOMP_PLUGIN_fatal ("cuCtxSynchronize error: %s", cuda_error (r)); |
| nvptx_stacks_free (stacks, teams * threads); |
| } |
| |
| void |
| GOMP_OFFLOAD_async_run (int ord, void *tgt_fn, void *tgt_vars, void **args, |
| void *async_data) |
| { |
| GOMP_PLUGIN_fatal ("GOMP_OFFLOAD_async_run unimplemented"); |
| } |