;; Copyright (C) 2007-2018 Free Software Foundation, Inc. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

;; For the internal conditional math routines:

;; operand 0 is always the result ;; operand 1 is always the predicate ;; operand 2, 3, and sometimes 4 are the input values. ;; operand 4 or 5 is the floating point status register to use. ;; operand 5 or 6 is the rounding to do. (0 = single, 1 = double, 2 = none) ;; ;; addrf3_cond - F0 = F2 + F3 ;; subrf3_cond - F0 = F2 - F3 ;; mulrf3_cond - F0 = F2 * F3 ;; nmulrf3_cond - F0 = - (F2 * F3) ;; m1addrf4_cond - F0 = (F2 * F3) + F4 ;; m1subrf4_cond - F0 = (F2 * F3) - F4 ;; m2addrf4_cond - F0 = F2 + (F3 * F4) ;; m2subrf4_cond - F0 = F2 - (F3 * F4)

;; Basic plus/minus/mult operations

(define_insn “addrf3_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:CCI 1 “register_operand” “c,c”) (const_int 0)) (plus:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”)) (match_operand:RF 4 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 5 “const_int_operand” "")) (use (match_operand:SI 6 “const_int_operand” ""))] "" “(%1) fadd%R6.s%5 %0 = %F2, %F3” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

(define_insn “subrf3_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:CCI 1 “register_operand” “c,c”) (const_int 0)) (minus:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”)) (match_operand:RF 4 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 5 “const_int_operand” "")) (use (match_operand:SI 6 “const_int_operand” ""))] "" “(%1) fsub%R6.s%5 %0 = %F2, %F3” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

(define_insn “mulrf3_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:CCI 1 “register_operand” “c,c”) (const_int 0)) (mult:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”)) (match_operand:RF 4 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 5 “const_int_operand” "")) (use (match_operand:SI 6 “const_int_operand” ""))] "" “(%1) fmpy%R6.s%5 %0 = %F2, %F3” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

;; neg-mult operation

(define_insn “nmulrf3_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:CCI 1 “register_operand” “c,c”) (const_int 0)) (neg:RF (mult:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”))) (match_operand:RF 4 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 5 “const_int_operand” "")) (use (match_operand:SI 6 “const_int_operand” ""))] "" “(%1) fnmpy%R6.s%5 %0 = %F2, %F3” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

;; add-mult/sub-mult operations (mult as op1)

(define_insn “m1addrf4_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:CCI 1 “register_operand” “c,c”) (const_int 0)) (plus:RF (mult:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”)) (match_operand:RF 4 “fr_reg_or_fp01_operand” “fG,fG”)) (match_operand:RF 5 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 6 “const_int_operand” "")) (use (match_operand:SI 7 “const_int_operand” ""))] "" “(%1) fma%R7.s%6 %0 = %F2, %F3, %F4” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

(define_insn “m1subrf4_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:CCI 1 “register_operand” “c,c”) (const_int 0)) (minus:RF (mult:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”)) (match_operand:RF 4 “fr_reg_or_fp01_operand” “fG,fG”)) (match_operand:RF 5 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 6 “const_int_operand” "")) (use (match_operand:SI 7 “const_int_operand” ""))] "" “(%1) fms%R7.s%6 %0 = %F2, %F3, %F4” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

;; add-mult/sub-mult operations (mult as op2)

(define_insn “m2addrf4_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:CCI 1 “register_operand” “c,c”) (const_int 0)) (plus:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (mult:RF (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 4 “fr_reg_or_fp01_operand” “fG,fG”))) (match_operand:RF 5 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 6 “const_int_operand” "")) (use (match_operand:SI 7 “const_int_operand” ""))] "" “(%1) fma%R7.s%6 %0 = %F3, %F4, %F2” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

(define_insn “m2subrf4_cond” [(set (match_operand:RF 0 “fr_register_operand” “=f,f”) (if_then_else:RF (ne:RF (match_operand:CCI 1 “register_operand” “c,c”) (const_int 0)) (minus:RF (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG,fG”) (mult:RF (match_operand:RF 3 “fr_reg_or_fp01_operand” “fG,fG”) (match_operand:RF 4 “fr_reg_or_fp01_operand” “fG,fG”))) (match_operand:RF 5 “fr_reg_or_0_operand” “0,H”))) (use (match_operand:SI 6 “const_int_operand” "")) (use (match_operand:SI 7 “const_int_operand” ""))] "" “(%1) fnma%R7.s%6 %0 = %F3, %F4, %F2” [(set_attr “itanium_class” “fmac”) (set_attr “predicable” “no”)])

;; Conversions to/from RF and SF/DF/XF ;; These conversions should not generate any code but make it possible ;; for all the instructions used to implement floating point division ;; to be written for RFmode only and to not have to handle multiple ;; modes or to have to handle a register in more than one mode.

(define_mode_iterator SDX_F [SF DF XF])

(define_insn “extendrf2” [(set (match_operand:RF 0 “fr_register_operand” “=f”) (float_extend:RF (match_operand:SDX_F 1 “fr_reg_or_fp01_operand” “fG”)))] "" “#” [(set_attr “itanium_class” “fmisc”) (set_attr “predicable” “yes”)])

(define_split [(set (match_operand:RF 0 “fr_register_operand” "") (float_extend:RF (match_operand:SDX_F 1 “fr_reg_or_fp01_operand” "")))] “reload_completed” [(set (match_dup 0) (match_dup 2))] { if (operands[1] == CONST0_RTX (mode)) operands[2] = gen_rtx_REG (RFmode, FR_REG (0)); else if (operands[1] == CONST1_RTX (mode)) operands[2] = gen_rtx_REG (RFmode, FR_REG (1)); else operands[2] = gen_rtx_REG (RFmode, REGNO (operands[1])); })

(define_insn “truncrf2” [(set (match_operand:SDX_F 0 “fr_register_operand” “=f”) (float_truncate:SDX_F (match_operand:RF 1 “fr_reg_or_fp01_operand” “fG”)))] "" “#” [(set_attr “itanium_class” “fmisc”) (set_attr “predicable” “yes”)])

(define_split [(set (match_operand:SDX_F 0 “fr_register_operand” "") (float_truncate:SDX_F (match_operand:RF 1 “fr_reg_or_fp01_operand” "")))] “reload_completed” [(set (match_dup 0) (match_dup 2))] { if (operands[1] == CONST0_RTX (RFmode)) operands[2] = gen_rtx_REG (mode, FR_REG (0)); else if (operands[1] == CONST1_RTX (RFmode)) operands[2] = gen_rtx_REG (mode, FR_REG (1)); else operands[2] = gen_rtx_REG (mode, REGNO (operands[1])); })

;; Float to integer truncations using an alternative status register.

(define_insn “fix_truncrfdi2_alts” [(set (match_operand:DI 0 “fr_register_operand” “=f”) (fix:DI (match_operand:RF 1 “fr_register_operand” “f”))) (use (match_operand:SI 2 “const_int_operand” ""))] "" “fcvt.fx.trunc.s%2 %0 = %1” [(set_attr “itanium_class” “fcvtfx”)])

(define_insn “fixuns_truncrfdi2_alts” [(set (match_operand:DI 0 “fr_register_operand” “=f”) (unsigned_fix:DI (match_operand:RF 1 “fr_register_operand” “f”))) (use (match_operand:SI 2 “const_int_operand” ""))] "" “fcvt.fxu.trunc.s%2 %0 = %1” [(set_attr “itanium_class” “fcvtfx”)])

(define_insn “setf_exp_rf” [(set (match_operand:RF 0 “fr_register_operand” “=f”) (unspec:RF [(match_operand:DI 1 “register_operand” “r”)] UNSPEC_SETF_EXP))] "" “setf.exp %0 = %1” [(set_attr “itanium_class” “frfr”)])

;; Reciprocal approximation

(define_insn “recip_approx_rf” [(set (match_operand:RF 0 “fr_register_operand” “=f”) (unspec:RF [(match_operand:RF 1 “fr_reg_or_fp01_operand” “fG”) (match_operand:RF 2 “fr_reg_or_fp01_operand” “fG”)] UNSPEC_FR_RECIP_APPROX_RES)) (set (match_operand:CCI 3 “register_operand” “=c”) (unspec:CCI [(match_dup 1) (match_dup 2)] UNSPEC_FR_RECIP_APPROX)) (use (match_operand:SI 4 “const_int_operand” ""))] "" “frcpa.s%4 %0, %3 = %F1, %F2” [(set_attr “itanium_class” “fmisc”) (set_attr “predicable” “no”)])

;; Single precision floating point division

(define_expand “divsf3” [(set (match_operand:SF 0 “fr_register_operand” "") (div:SF (match_operand:SF 1 “fr_reg_or_fp01_operand” "") (match_operand:SF 2 “fr_reg_or_fp01_operand” "")))] “TARGET_INLINE_FLOAT_DIV” { rtx insn; if (TARGET_INLINE_FLOAT_DIV == INL_MIN_LAT) insn = gen_divsf3_internal_lat (operands[0], operands[1], operands[2]); else insn = gen_divsf3_internal_thr (operands[0], operands[1], operands[2]); emit_insn (insn); DONE; })

;; Single precision floating point division (maximum throughput algorithm).

(define_expand “divsf3_internal_thr” [(set (match_operand:SF 0 “fr_register_operand” "") (div:SF (match_operand:SF 1 “fr_reg_or_fp01_operand” "") (match_operand:SF 2 “fr_reg_or_fp01_operand” "")))] “TARGET_INLINE_FLOAT_DIV” { rtx y = gen_reg_rtx (RFmode); rtx a = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx y2 = gen_reg_rtx (RFmode); rtx q = gen_reg_rtx (RFmode); rtx r = gen_reg_rtx (RFmode); rtx q_res = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (CCImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_sgl = CONST0_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode);

/* Empty conversions to put inputs into RFmode. / emit_insn (gen_extendsfrf2 (a, operands[1])); emit_insn (gen_extendsfrf2 (b, operands[2])); / y = 1 / b / emit_insn (gen_recip_approx_rf (y, a, b, cond, status0)); / e = 1 - (b * y) / emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); / y1 = y + (y * e) / emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e, zero, status1, trunc_off)); / y2 = y + (y1 * e) / emit_insn (gen_m2addrf4_cond (y2, cond, y, y1, e, zero, status1, trunc_off)); / q = single(a * y2) / emit_insn (gen_mulrf3_cond (q, cond, a, y2, zero, status1, trunc_sgl)); / r = a - (q * b) / emit_insn (gen_m2subrf4_cond (r, cond, a, q, b, zero, status1, trunc_off)); / Q = single (q + (r * y2)) / emit_insn (gen_m2addrf4_cond (q_res, cond, q, r, y2, y, status0, trunc_sgl)); / Conversion back into SFmode. */ emit_insn (gen_truncrfsf2 (operands[0], q_res)); DONE; })

;; Single precision floating point division (minimum latency algorithm).

(define_expand “divsf3_internal_lat” [(set (match_operand:SF 0 “fr_register_operand” "") (div:SF (match_operand:SF 1 “fr_reg_or_fp01_operand” "") (match_operand:SF 2 “fr_reg_or_fp01_operand” "")))] “TARGET_INLINE_FLOAT_DIV” { rtx y = gen_reg_rtx (RFmode); rtx a = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx q = gen_reg_rtx (RFmode); rtx e1 = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx q1 = gen_reg_rtx (RFmode); rtx r = gen_reg_rtx (RFmode); rtx q_res = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (CCImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_sgl = CONST0_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode);

/* Empty conversions to put inputs into RFmode. / emit_insn (gen_extendsfrf2 (a, operands[1])); emit_insn (gen_extendsfrf2 (b, operands[2])); / y = 1 / b / emit_insn (gen_recip_approx_rf (y, a, b, cond, status0)); / q = a * y / emit_insn (gen_mulrf3_cond (q, cond, a, y, zero, status1, trunc_off)); / e = 1 - (b * y) / emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); / e1 = e + (e * e) / emit_insn (gen_m2addrf4_cond (e1, cond, e, e, e, zero, status1, trunc_off)); / q1 = single(q + (q * e1)) / emit_insn (gen_m2addrf4_cond (q1, cond, q, q, e1, zero, status1, trunc_sgl)); / y1 = y + (y * e1) / emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e1, zero, status1, trunc_off)); / r = a - (q1 * b) / emit_insn (gen_m2subrf4_cond (r, cond, a, q1, b, zero, status1, trunc_off)); / Q = single (q1 + (r * y1)) / emit_insn (gen_m2addrf4_cond (q_res, cond, q1, r, y1, y, status0, trunc_sgl)); / Conversion back into SFmode. */ emit_insn (gen_truncrfsf2 (operands[0], q_res)); DONE; })

;; Double precision floating point division

(define_expand “divdf3” [(set (match_operand:DF 0 “fr_register_operand” "") (div:DF (match_operand:DF 1 “fr_reg_or_fp01_operand” "") (match_operand:DF 2 “fr_reg_or_fp01_operand” "")))] “TARGET_INLINE_FLOAT_DIV” { rtx insn; if (TARGET_INLINE_FLOAT_DIV == INL_MIN_LAT) insn = gen_divdf3_internal_lat (operands[0], operands[1], operands[2]); else insn = gen_divdf3_internal_thr (operands[0], operands[1], operands[2]); emit_insn (insn); DONE; })

;; Double precision floating point division (maximum throughput algorithm).

(define_expand “divdf3_internal_thr” [(set (match_operand:DF 0 “fr_register_operand” "") (div:DF (match_operand:DF 1 “fr_reg_or_fp01_operand” "") (match_operand:DF 2 “fr_reg_or_fp01_operand” "")))] “TARGET_INLINE_FLOAT_DIV” { rtx q_res = gen_reg_rtx (RFmode); rtx a = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx y = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx e1 = gen_reg_rtx (RFmode); rtx y2 = gen_reg_rtx (RFmode); rtx e2 = gen_reg_rtx (RFmode); rtx y3 = gen_reg_rtx (RFmode); rtx q = gen_reg_rtx (RFmode); rtx r = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (CCImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_dbl = CONST1_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode); /* Empty conversions to put inputs into RFmode / emit_insn (gen_extenddfrf2 (a, operands[1])); emit_insn (gen_extenddfrf2 (b, operands[2])); / y = 1 / b / emit_insn (gen_recip_approx_rf (y, a, b, cond, status0)); / e = 1 - (b * y) / emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); / y1 = y + (y * e) / emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e, zero, status1, trunc_off)); / e1 = e * e / emit_insn (gen_mulrf3_cond (e1, cond, e, e, zero, status1, trunc_off)); / y2 = y1 + (y1 * e1) / emit_insn (gen_m2addrf4_cond (y2, cond, y1, y1, e1, zero, status1, trunc_off)); / e2 = e1 * e1 / emit_insn (gen_mulrf3_cond (e2, cond, e1, e1, zero, status1, trunc_off)); / y3 = y2 + (y2 * e2) / emit_insn (gen_m2addrf4_cond (y3, cond, y2, y2, e2, zero, status1, trunc_off)); / q = double (a * y3) / emit_insn (gen_mulrf3_cond (q, cond, a, y3, zero, status1, trunc_dbl)); / r = a - (b * q) / emit_insn (gen_m2subrf4_cond (r, cond, a, b, q, zero, status1, trunc_off)); / Q = double (q + (r * y3)) / emit_insn (gen_m2addrf4_cond (q_res, cond, q, r, y3, y, status0, trunc_dbl)); / Conversion back into DFmode */ emit_insn (gen_truncrfdf2 (operands[0], q_res)); DONE; })

;; Double precision floating point division (minimum latency algorithm).

(define_expand “divdf3_internal_lat” [(set (match_operand:DF 0 “fr_register_operand” "") (div:DF (match_operand:DF 1 “fr_reg_or_fp01_operand” "") (match_operand:DF 2 “fr_reg_or_fp01_operand” "")))] “TARGET_INLINE_FLOAT_DIV” { rtx q_res = gen_reg_rtx (RFmode); rtx a = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx y = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx e1 = gen_reg_rtx (RFmode); rtx q1 = gen_reg_rtx (RFmode); rtx y2 = gen_reg_rtx (RFmode); rtx e2 = gen_reg_rtx (RFmode); rtx q2 = gen_reg_rtx (RFmode); rtx e3 = gen_reg_rtx (RFmode); rtx q = gen_reg_rtx (RFmode); rtx r1 = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (CCImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_dbl = CONST1_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode);

/* Empty conversions to put inputs into RFmode / emit_insn (gen_extenddfrf2 (a, operands[1])); emit_insn (gen_extenddfrf2 (b, operands[2])); / y = 1 / b / emit_insn (gen_recip_approx_rf (y, a, b, cond, status0)); / e = 1 - (b * y) / emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); / q = a * y / emit_insn (gen_mulrf3_cond (q, cond, a, y, zero, status1, trunc_off)); / e2 = e + (e * e) / emit_insn (gen_m2addrf4_cond (e2, cond, e, e, e, zero, status1, trunc_off)); / e1 = e * e / emit_insn (gen_mulrf3_cond (e1, cond, e, e, zero, status1, trunc_off)); / e3 = e + (e1 * e1) / emit_insn (gen_m2addrf4_cond (e3, cond, e, e1, e1, zero, status1, trunc_off)); / q1 = q + (q * e2) / emit_insn (gen_m2addrf4_cond (q1, cond, q, q, e2, zero, status1, trunc_off)); / y1 = y + (y * e2) / emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e2, zero, status1, trunc_off)); / q2 = double(q + (q1 * e3)) / emit_insn (gen_m2addrf4_cond (q2, cond, q, q1, e3, zero, status1, trunc_dbl)); / y2 = y + (y1 * e3) / emit_insn (gen_m2addrf4_cond (y2, cond, y, y1, e3, zero, status1, trunc_off)); / r1 = a - (b * q2) / emit_insn (gen_m2subrf4_cond (r1, cond, a, b, q2, zero, status1, trunc_off)); / Q = double (q2 + (r1 * y2)) / emit_insn (gen_m2addrf4_cond (q_res, cond, q2, r1, y2, y, status0, trunc_dbl)); / Conversion back into DFmode */ emit_insn (gen_truncrfdf2 (operands[0], q_res)); DONE; })

;; Extended precision floating point division.

(define_expand “divxf3” [(set (match_operand:XF 0 “fr_register_operand” "") (div:XF (match_operand:XF 1 “fr_reg_or_fp01_operand” "") (match_operand:XF 2 “fr_reg_or_fp01_operand” "")))] “TARGET_INLINE_FLOAT_DIV” { rtx q_res = gen_reg_rtx (RFmode); rtx a = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx y = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx e1 = gen_reg_rtx (RFmode); rtx q1 = gen_reg_rtx (RFmode); rtx y2 = gen_reg_rtx (RFmode); rtx e2 = gen_reg_rtx (RFmode); rtx y3 = gen_reg_rtx (RFmode); rtx e3 = gen_reg_rtx (RFmode); rtx e4 = gen_reg_rtx (RFmode); rtx q = gen_reg_rtx (RFmode); rtx r = gen_reg_rtx (RFmode); rtx r1 = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (CCImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode);

/* Empty conversions to put inputs into RFmode / emit_insn (gen_extendxfrf2 (a, operands[1])); emit_insn (gen_extendxfrf2 (b, operands[2])); / y = 1 / b / emit_insn (gen_recip_approx_rf (y, a, b, cond, status0)); / e = 1 - (b * y) / emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); / q = a * y / emit_insn (gen_mulrf3_cond (q, cond, a, y, zero, status1, trunc_off)); / e2 = e + (e * e) / emit_insn (gen_m2addrf4_cond (e2, cond, e, e, e, zero, status1, trunc_off)); / e1 = e * e / emit_insn (gen_mulrf3_cond (e1, cond, e, e, zero, status1, trunc_off)); / y1 = y + (y * e2) / emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e2, zero, status1, trunc_off)); / e3 = e + (e1 * e1) / emit_insn (gen_m2addrf4_cond (e3, cond, e, e1, e1, zero, status1, trunc_off)); / y2 = y + (y1 * e3) / emit_insn (gen_m2addrf4_cond (y2, cond, y, y1, e3, zero, status1, trunc_off)); / r = a - (b * q) / emit_insn (gen_m2subrf4_cond (r, cond, a, b, q, zero, status1, trunc_off)); / e4 = 1 - (b * y2) / emit_insn (gen_m2subrf4_cond (e4, cond, one, b, y2, zero, status1, trunc_off)); / q1 = q + (r * y2) / emit_insn (gen_m2addrf4_cond (q1, cond, q, r, y2, zero, status1, trunc_off)); / y3 = y2 + (y2 * e4) / emit_insn (gen_m2addrf4_cond (y3, cond, y2, y2, e4, zero, status1, trunc_off)); / r1 = a - (b * q1) / emit_insn (gen_m2subrf4_cond (r1, cond, a, b, q1, zero, status1, trunc_off)); / Q = q1 + (r1 * y3) / emit_insn (gen_m2addrf4_cond (q_res, cond, q1, r1, y3, y, status0, trunc_off)); / Conversion back into XFmode */ emit_insn (gen_truncrfxf2 (operands[0], q_res)); DONE; })

;; Integer division operations

(define_expand “divsi3” [(set (match_operand:SI 0 “register_operand” "") (div:SI (match_operand:SI 1 “general_operand” "") (match_operand:SI 2 “general_operand” "")))] “TARGET_INLINE_INT_DIV” { rtx op1_rf, op2_rf, op0_rf, op0_di;

op0_rf = gen_reg_rtx (RFmode); op0_di = gen_reg_rtx (DImode);

if (! register_operand (operands[1], SImode)) operands[1] = force_reg (SImode, operands[1]); op1_rf = gen_reg_rtx (RFmode); expand_float (op1_rf, operands[1], 0);

if (! register_operand (operands[2], SImode)) operands[2] = force_reg (SImode, operands[2]); op2_rf = gen_reg_rtx (RFmode); expand_float (op2_rf, operands[2], 0);

emit_insn (gen_cond_trap (EQ, operands[2], CONST0_RTX (SImode), CONST1_RTX (SImode)));

emit_insn (gen_divsi3_internal (op0_rf, op1_rf, op2_rf));

emit_insn (gen_fix_truncrfdi2_alts (op0_di, op0_rf, const1_rtx)); emit_move_insn (operands[0], gen_lowpart (SImode, op0_di)); DONE; })

(define_expand “modsi3” [(set (match_operand:SI 0 “register_operand” "") (mod:SI (match_operand:SI 1 “general_operand” "") (match_operand:SI 2 “general_operand” "")))] “TARGET_INLINE_INT_DIV” { rtx op2_neg, op1_di, div;

div = gen_reg_rtx (SImode); emit_insn (gen_divsi3 (div, operands[1], operands[2]));

op2_neg = expand_unop (SImode, neg_optab, operands[2], NULL_RTX, 0);

/* This is a trick to get us to reuse the value that we're sure to have already copied to the FP regs. */ op1_di = gen_reg_rtx (DImode); convert_move (op1_di, operands[1], 0);

emit_insn (gen_maddsi4 (operands[0], div, op2_neg, gen_lowpart (SImode, op1_di))); DONE; })

(define_expand “udivsi3” [(set (match_operand:SI 0 “register_operand” "") (udiv:SI (match_operand:SI 1 “general_operand” "") (match_operand:SI 2 “general_operand” "")))] “TARGET_INLINE_INT_DIV” { rtx op1_rf, op2_rf, op0_rf, op0_di;

op0_rf = gen_reg_rtx (RFmode); op0_di = gen_reg_rtx (DImode);

if (! register_operand (operands[1], SImode)) operands[1] = force_reg (SImode, operands[1]); op1_rf = gen_reg_rtx (RFmode); expand_float (op1_rf, operands[1], 1);

if (! register_operand (operands[2], SImode)) operands[2] = force_reg (SImode, operands[2]); op2_rf = gen_reg_rtx (RFmode); expand_float (op2_rf, operands[2], 1);

emit_insn (gen_cond_trap (EQ, operands[2], CONST0_RTX (SImode), CONST1_RTX (SImode)));

emit_insn (gen_divsi3_internal (op0_rf, op1_rf, op2_rf));

emit_insn (gen_fixuns_truncrfdi2_alts (op0_di, op0_rf, const1_rtx)); emit_move_insn (operands[0], gen_lowpart (SImode, op0_di)); DONE; })

(define_expand “umodsi3” [(set (match_operand:SI 0 “register_operand” "") (umod:SI (match_operand:SI 1 “general_operand” "") (match_operand:SI 2 “general_operand” "")))] “TARGET_INLINE_INT_DIV” { rtx op2_neg, op1_di, div;

div = gen_reg_rtx (SImode); emit_insn (gen_udivsi3 (div, operands[1], operands[2]));

op2_neg = expand_unop (SImode, neg_optab, operands[2], NULL_RTX, 0);

/* This is a trick to get us to reuse the value that we're sure to have already copied to the FP regs. */ op1_di = gen_reg_rtx (DImode); convert_move (op1_di, operands[1], 1);

emit_insn (gen_maddsi4 (operands[0], div, op2_neg, gen_lowpart (SImode, op1_di))); DONE; })

(define_expand “divsi3_internal” [(set (match_operand:RF 0 “fr_register_operand” "") (float:RF (div:SI (match_operand:RF 1 “fr_register_operand” "") (match_operand:RF 2 “fr_register_operand” ""))))] “TARGET_INLINE_INT_DIV” { rtx a = operands[1]; rtx b = operands[2]; rtx y = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx e1 = gen_reg_rtx (RFmode); rtx q = gen_reg_rtx (RFmode); rtx q1 = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (CCImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status1 = CONST1_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode); rtx twon34_exp = gen_reg_rtx (DImode); rtx twon34 = gen_reg_rtx (RFmode);

/* Load cosntant 2**(-34) */ emit_move_insn (twon34_exp, GEN_INT (65501)); emit_insn (gen_setf_exp_rf (twon34, twon34_exp));

/* y = 1 / b / emit_insn (gen_recip_approx_rf (y, a, b, cond, status1)); / e = 1 - (b * y) / emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); / q = a * y / emit_insn (gen_mulrf3_cond (q, cond, a, y, zero, status1, trunc_off)); / q1 = q + (q * e) / emit_insn (gen_m2addrf4_cond (q1, cond, q, q, e, zero, status1, trunc_off)); / e1 = (2**-34) + (e * e) / emit_insn (gen_m2addrf4_cond (e1, cond, twon34, e, e, zero, status1, trunc_off)); / q2 = q1 + (e1 * q1) */ emit_insn (gen_m2addrf4_cond (operands[0], cond, q1, e1, q1, y, status1, trunc_off)); DONE; })

(define_expand “divdi3” [(set (match_operand:DI 0 “register_operand” "") (div:DI (match_operand:DI 1 “general_operand” "") (match_operand:DI 2 “general_operand” "")))] “TARGET_INLINE_INT_DIV” { rtx op1_rf, op2_rf, op0_rf;

op0_rf = gen_reg_rtx (RFmode);

if (! register_operand (operands[1], DImode)) operands[1] = force_reg (DImode, operands[1]); op1_rf = gen_reg_rtx (RFmode); expand_float (op1_rf, operands[1], 0);

if (! register_operand (operands[2], DImode)) operands[2] = force_reg (DImode, operands[2]); op2_rf = gen_reg_rtx (RFmode); expand_float (op2_rf, operands[2], 0);

emit_insn (gen_cond_trap (EQ, operands[2], CONST0_RTX (DImode), CONST1_RTX (DImode)));

if (TARGET_INLINE_INT_DIV == INL_MIN_LAT) emit_insn (gen_divdi3_internal_lat (op0_rf, op1_rf, op2_rf)); else emit_insn (gen_divdi3_internal_thr (op0_rf, op1_rf, op2_rf));

emit_insn (gen_fix_truncrfdi2_alts (operands[0], op0_rf, const1_rtx)); DONE; })

(define_expand “moddi3” [(set (match_operand:DI 0 “register_operand” "") (mod:SI (match_operand:DI 1 “general_operand” "") (match_operand:DI 2 “general_operand” "")))] “TARGET_INLINE_INT_DIV” { rtx op2_neg, div;

div = gen_reg_rtx (DImode); emit_insn (gen_divdi3 (div, operands[1], operands[2]));

op2_neg = expand_unop (DImode, neg_optab, operands[2], NULL_RTX, 0);

emit_insn (gen_madddi4 (operands[0], div, op2_neg, operands[1])); DONE; })

(define_expand “udivdi3” [(set (match_operand:DI 0 “register_operand” "") (udiv:DI (match_operand:DI 1 “general_operand” "") (match_operand:DI 2 “general_operand” "")))] “TARGET_INLINE_INT_DIV” { rtx op1_rf, op2_rf, op0_rf;

op0_rf = gen_reg_rtx (RFmode);

if (! register_operand (operands[1], DImode)) operands[1] = force_reg (DImode, operands[1]); op1_rf = gen_reg_rtx (RFmode); expand_float (op1_rf, operands[1], 1);

if (! register_operand (operands[2], DImode)) operands[2] = force_reg (DImode, operands[2]); op2_rf = gen_reg_rtx (RFmode); expand_float (op2_rf, operands[2], 1);

emit_insn (gen_cond_trap (EQ, operands[2], CONST0_RTX (DImode), CONST1_RTX (DImode)));

if (TARGET_INLINE_INT_DIV == INL_MIN_LAT) emit_insn (gen_divdi3_internal_lat (op0_rf, op1_rf, op2_rf)); else emit_insn (gen_divdi3_internal_thr (op0_rf, op1_rf, op2_rf));

emit_insn (gen_fixuns_truncrfdi2_alts (operands[0], op0_rf, const1_rtx)); DONE; })

(define_expand “umoddi3” [(set (match_operand:DI 0 “register_operand” "") (umod:DI (match_operand:DI 1 “general_operand” "") (match_operand:DI 2 “general_operand” "")))] “TARGET_INLINE_INT_DIV” { rtx op2_neg, div;

div = gen_reg_rtx (DImode); emit_insn (gen_udivdi3 (div, operands[1], operands[2]));

op2_neg = expand_unop (DImode, neg_optab, operands[2], NULL_RTX, 0);

emit_insn (gen_madddi4 (operands[0], div, op2_neg, operands[1])); DONE; })

(define_expand “divdi3_internal_lat” [(set (match_operand:RF 0 “fr_register_operand” "") (float:RF (div:DI (match_operand:RF 1 “fr_register_operand” "") (match_operand:RF 2 “fr_register_operand” ""))))] “TARGET_INLINE_INT_DIV” { rtx a = operands[1]; rtx b = operands[2]; rtx y = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx y2 = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx e1 = gen_reg_rtx (RFmode); rtx q = gen_reg_rtx (RFmode); rtx q1 = gen_reg_rtx (RFmode); rtx q2 = gen_reg_rtx (RFmode); rtx r = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (CCImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status1 = CONST1_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode);

/* y = 1 / b / emit_insn (gen_recip_approx_rf (y, a, b, cond, status1)); / e = 1 - (b * y) / emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); / q = a * y / emit_insn (gen_mulrf3_cond (q, cond, a, y, zero, status1, trunc_off)); / q1 = q + (q * e) / emit_insn (gen_m2addrf4_cond (q1, cond, q, q, e, zero, status1, trunc_off)); / e1 = e * e / emit_insn (gen_mulrf3_cond (e1, cond, e, e, zero, status1, trunc_off)); / q2 = q1 + (e1 * q1) / emit_insn (gen_m2addrf4_cond (q2, cond, q1, e1, q1, zero, status1, trunc_off)); / y1 = y + (y * e) / emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e, zero, status1, trunc_off)); / r = a - (b * q2) / emit_insn (gen_m2subrf4_cond (r, cond, a, b, q2, zero, status1, trunc_off)); / y2 = y1 + (y1 * e1) / emit_insn (gen_m2addrf4_cond (y2, cond, y1, y1, e1, zero, status1, trunc_off)); / q3 = q2 + (r * y2) */ emit_insn (gen_m2addrf4_cond (operands[0], cond, q2, r, y2, y, status1, trunc_off)); DONE; })

(define_expand “divdi3_internal_thr” [(set (match_operand:RF 0 “fr_register_operand” "") (float:RF (div:DI (match_operand:RF 1 “fr_register_operand” "") (match_operand:RF 2 “fr_register_operand” ""))))] “TARGET_INLINE_INT_DIV” { rtx a = operands[1]; rtx b = operands[2]; rtx y = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx y2 = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx e1 = gen_reg_rtx (RFmode); rtx q2 = gen_reg_rtx (RFmode); rtx r = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (CCImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx status1 = CONST1_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode);

/* y = 1 / b / emit_insn (gen_recip_approx_rf (y, a, b, cond, status1)); / e = 1 - (b * y) / emit_insn (gen_m2subrf4_cond (e, cond, one, b, y, zero, status1, trunc_off)); / y1 = y + (y * e) / emit_insn (gen_m2addrf4_cond (y1, cond, y, y, e, zero, status1, trunc_off)); / e1 = e * e / emit_insn (gen_mulrf3_cond (e1, cond, e, e, zero, status1, trunc_off)); / y2 = y1 + (y1 * e1) / emit_insn (gen_m2addrf4_cond (y2, cond, y1, y1, e1, zero, status1, trunc_off)); / q2 = y2 * a / emit_insn (gen_mulrf3_cond (q2, cond, y2, a, zero, status1, trunc_off)); / r = a - (b * q2) / emit_insn (gen_m2subrf4_cond (r, cond, a, b, q2, zero, status1, trunc_off)); / q3 = q2 + (r * y2) */ emit_insn (gen_m2addrf4_cond (operands[0], cond, q2, r, y2, y, status1, trunc_off)); DONE; })

;; SQRT operations

(define_insn “sqrt_approx_rf” [(set (match_operand:RF 0 “fr_register_operand” “=f”) (unspec:RF [(match_operand:RF 1 “fr_reg_or_fp01_operand” “fG”)] UNSPEC_FR_SQRT_RECIP_APPROX_RES)) (set (match_operand:CCI 2 “register_operand” “=c”) (unspec:CCI [(match_dup 1)] UNSPEC_FR_SQRT_RECIP_APPROX)) (use (match_operand:SI 3 “const_int_operand” ""))] "" “frsqrta.s%3 %0, %2 = %F1” [(set_attr “itanium_class” “fmisc”) (set_attr “predicable” “no”)])

(define_expand “sqrtsf2” [(set (match_operand:SF 0 “fr_register_operand” “=&f”) (sqrt:SF (match_operand:SF 1 “fr_reg_or_fp01_operand” “fG”)))] “TARGET_INLINE_SQRT” { rtx insn; if (TARGET_INLINE_SQRT == INL_MIN_LAT) insn = gen_sqrtsf2_internal_lat (operands[0], operands[1]); else insn = gen_sqrtsf2_internal_thr (operands[0], operands[1]); emit_insn (insn); DONE; })

(define_expand “sqrtsf2_internal_thr” [(set (match_operand:SF 0 “fr_register_operand” "") (sqrt:SF (match_operand:SF 1 “fr_register_operand” "")))] “TARGET_INLINE_SQRT” { rtx y = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx g = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx s = gen_reg_rtx (RFmode); rtx f = gen_reg_rtx (RFmode); rtx y1 = gen_reg_rtx (RFmode); rtx g1 = gen_reg_rtx (RFmode); rtx h = gen_reg_rtx (RFmode); rtx d = gen_reg_rtx (RFmode); rtx g2 = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (CCImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx c1 = ia64_dconst_0_5(); rtx c2 = ia64_dconst_0_375(); rtx reg_df_c1 = gen_reg_rtx (DFmode); rtx reg_df_c2 = gen_reg_rtx (DFmode); rtx reg_rf_c1 = gen_reg_rtx (RFmode); rtx reg_rf_c2 = gen_reg_rtx (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_sgl = CONST0_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode);

/* Put needed constants into registers. / emit_insn (gen_movdf (reg_df_c1, c1)); emit_insn (gen_movdf (reg_df_c2, c2)); emit_insn (gen_extenddfrf2 (reg_rf_c1, reg_df_c1)); emit_insn (gen_extenddfrf2 (reg_rf_c2, reg_df_c2)); / Empty conversion to put input into RFmode. / emit_insn (gen_extendsfrf2 (b, operands[1])); / y = sqrt (1 / b) / emit_insn (gen_sqrt_approx_rf (y, b, cond, status0)); / g = b * y / emit_insn (gen_mulrf3_cond (g, cond, b, y, zero, status1, trunc_off)); / e = 1 - (g * y) / emit_insn (gen_m2subrf4_cond (e, cond, one, g, y, zero, status1, trunc_off)); / s = 0.5 + (0.375 * e) / emit_insn (gen_m2addrf4_cond (s, cond, reg_rf_c1, reg_rf_c2, e, zero, status1, trunc_off)); / f = y * e / emit_insn (gen_mulrf3_cond (f, cond, y, e, zero, status1, trunc_off)); / y1 = y + (f * s) / emit_insn (gen_m2addrf4_cond (y1, cond, y, f, s, zero, status1, trunc_off)); / g1 = single (b * y1) / emit_insn (gen_mulrf3_cond (g1, cond, b, y1, zero, status1, trunc_sgl)); / h = 0.5 * y1 / emit_insn (gen_mulrf3_cond (h, cond, reg_rf_c1, y1, zero, status1, trunc_off)); / d = b - g1 * g1 / emit_insn (gen_m2subrf4_cond (d, cond, b, g1, g1, zero, status1, trunc_off)); / g2 = single(g1 + (d * h)) / emit_insn (gen_m2addrf4_cond (g2, cond, g1, d, h, y, status0, trunc_sgl)); / Conversion back into SFmode. */ emit_insn (gen_truncrfsf2 (operands[0], g2)); DONE; })

(define_expand “sqrtsf2_internal_lat” [(set (match_operand:SF 0 “fr_register_operand” "") (sqrt:SF (match_operand:SF 1 “fr_register_operand” "")))] “TARGET_INLINE_SQRT” { rtx y = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx g = gen_reg_rtx (RFmode); rtx g1 = gen_reg_rtx (RFmode); rtx g2 = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx s = gen_reg_rtx (RFmode); rtx f = gen_reg_rtx (RFmode); rtx f1 = gen_reg_rtx (RFmode); rtx h = gen_reg_rtx (RFmode); rtx h1 = gen_reg_rtx (RFmode); rtx d = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (CCImode); rtx zero = CONST0_RTX (RFmode); rtx one = CONST1_RTX (RFmode); rtx c1 = ia64_dconst_0_5(); rtx c2 = ia64_dconst_0_375(); rtx reg_df_c1 = gen_reg_rtx (DFmode); rtx reg_df_c2 = gen_reg_rtx (DFmode); rtx reg_rf_c1 = gen_reg_rtx (RFmode); rtx reg_rf_c2 = gen_reg_rtx (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_sgl = CONST0_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode);

/* Put needed constants into registers. / emit_insn (gen_movdf (reg_df_c1, c1)); emit_insn (gen_movdf (reg_df_c2, c2)); emit_insn (gen_extenddfrf2 (reg_rf_c1, reg_df_c1)); emit_insn (gen_extenddfrf2 (reg_rf_c2, reg_df_c2)); / Empty conversion to put input into RFmode. / emit_insn (gen_extendsfrf2 (b, operands[1])); / y = sqrt (1 / b) / emit_insn (gen_sqrt_approx_rf (y, b, cond, status0)); / g = b * y / emit_insn (gen_mulrf3_cond (g, cond, b, y, zero, status1, trunc_off)); / e = 1 - (g * y) / emit_insn (gen_m2subrf4_cond (e, cond, one, g, y, zero, status1, trunc_off)); / h = 0.5 * y / emit_insn (gen_mulrf3_cond (h, cond, reg_rf_c1, y, zero, status1, trunc_off)); / s = 0.5 + (0.375 * e) / emit_insn (gen_m2addrf4_cond (s, cond, reg_rf_c1, reg_rf_c2, e, zero, status1, trunc_off)); / f = e * g / emit_insn (gen_mulrf3_cond (f, cond, e, g, zero, status1, trunc_off)); / g1 = single (g + (f * s)) / emit_insn (gen_m2addrf4_cond (g1, cond, g, f, s, zero, status1, trunc_sgl)); / f1 = e * h / emit_insn (gen_mulrf3_cond (f1, cond, e, h, zero, status1, trunc_off)); / d = b - g1 * g1 / emit_insn (gen_m2subrf4_cond (d, cond, b, g1, g1, zero, status1, trunc_off)); / h1 = h + (f1 * s) / emit_insn (gen_m2addrf4_cond (h1, cond, h, f1, s, zero, status1, trunc_off)); / g2 = single(g1 + (d * h1)) / emit_insn (gen_m2addrf4_cond (g2, cond, g1, d, h1, y, status0, trunc_sgl)); / Conversion back into SFmode. */ emit_insn (gen_truncrfsf2 (operands[0], g2)); DONE; })

(define_expand “sqrtdf2” [(set (match_operand:DF 0 “fr_register_operand” “=&f”) (sqrt:DF (match_operand:DF 1 “fr_reg_or_fp01_operand” “fG”)))] “TARGET_INLINE_SQRT” { rtx insn; #if 0 if (TARGET_INLINE_SQRT == INL_MIN_LAT) insn = gen_sqrtdf2_internal_lat (operands[0], operands[1]); else #endif insn = gen_sqrtdf2_internal_thr (operands[0], operands[1]); emit_insn (insn); DONE; })

(define_expand “sqrtdf2_internal_thr” [(set (match_operand:DF 0 “fr_register_operand” "") (sqrt:DF (match_operand:DF 1 “fr_register_operand” "")))] “TARGET_INLINE_SQRT” { rtx y = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx g = gen_reg_rtx (RFmode); rtx g1 = gen_reg_rtx (RFmode); rtx g2 = gen_reg_rtx (RFmode); rtx g3 = gen_reg_rtx (RFmode); rtx g4 = gen_reg_rtx (RFmode); rtx r = gen_reg_rtx (RFmode); rtx r1 = gen_reg_rtx (RFmode); rtx h = gen_reg_rtx (RFmode); rtx h1 = gen_reg_rtx (RFmode); rtx h2 = gen_reg_rtx (RFmode); rtx d = gen_reg_rtx (RFmode); rtx d1 = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (CCImode); rtx zero = CONST0_RTX (RFmode); rtx c1 = ia64_dconst_0_5(); rtx reg_df_c1 = gen_reg_rtx (DFmode); rtx reg_rf_c1 = gen_reg_rtx (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_dbl = CONST1_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode);

/* Put needed constants into registers. / emit_insn (gen_movdf (reg_df_c1, c1)); emit_insn (gen_extenddfrf2 (reg_rf_c1, reg_df_c1)); / Empty conversion to put input into RFmode. / emit_insn (gen_extenddfrf2 (b, operands[1])); / y = sqrt (1 / b) / emit_insn (gen_sqrt_approx_rf (y, b, cond, status0)); / g = b * y / emit_insn (gen_mulrf3_cond (g, cond, b, y, zero, status1, trunc_off)); / h = 0.5 * y / emit_insn (gen_mulrf3_cond (h, cond, reg_rf_c1, y, zero, status1, trunc_off)); / r = 0.5 - (g * h) / emit_insn (gen_m2subrf4_cond (r, cond, reg_rf_c1, g, h, zero, status1, trunc_off)); / g1 = g + (g * r) / emit_insn (gen_m2addrf4_cond (g1, cond, g, g, r, zero, status1, trunc_off)); / h1 = h + (h * r) / emit_insn (gen_m2addrf4_cond (h1, cond, h, h, r, zero, status1, trunc_off)); / r1 = 0.5 - (g1 * h1) / emit_insn (gen_m2subrf4_cond (r1, cond, reg_rf_c1, g1, h1, zero, status1, trunc_off)); / g2 = g1 + (g1 * r1) / emit_insn (gen_m2addrf4_cond (g2, cond, g1, g1, r1, zero, status1, trunc_off)); / h2 = h1 + (h1 * r1) / emit_insn (gen_m2addrf4_cond (h2, cond, h1, h1, r1, zero, status1, trunc_off)); / d = b - (g2 * g2) / emit_insn (gen_m2subrf4_cond (d, cond, b, g2, g2, zero, status1, trunc_off)); / g3 = g2 + (d * h2) / emit_insn (gen_m2addrf4_cond (g3, cond, g2, d, h2, zero, status1, trunc_off)); / d1 = b - (g3 * g3) / emit_insn (gen_m2subrf4_cond (d1, cond, b, g3, g3, zero, status1, trunc_off)); / g4 = g3 + (d1 * h2) / emit_insn (gen_m2addrf4_cond (g4, cond, g3, d1, h2, y, status1, trunc_dbl)); / Conversion back into SFmode. */ emit_insn (gen_truncrfdf2 (operands[0], g4)); DONE; })

(define_expand “sqrtxf2” [(set (match_operand:XF 0 “fr_register_operand” "") (sqrt:XF (match_operand:XF 1 “fr_register_operand” "")))] “TARGET_INLINE_SQRT” { rtx y = gen_reg_rtx (RFmode); rtx b = gen_reg_rtx (RFmode); rtx g = gen_reg_rtx (RFmode); rtx g1 = gen_reg_rtx (RFmode); rtx g2 = gen_reg_rtx (RFmode); rtx g3 = gen_reg_rtx (RFmode); rtx g4 = gen_reg_rtx (RFmode); rtx e = gen_reg_rtx (RFmode); rtx e1 = gen_reg_rtx (RFmode); rtx e2 = gen_reg_rtx (RFmode); rtx h = gen_reg_rtx (RFmode); rtx h1 = gen_reg_rtx (RFmode); rtx h2 = gen_reg_rtx (RFmode); rtx h3 = gen_reg_rtx (RFmode); rtx d = gen_reg_rtx (RFmode); rtx d1 = gen_reg_rtx (RFmode); rtx cond = gen_reg_rtx (CCImode); rtx zero = CONST0_RTX (RFmode); rtx c1 = ia64_dconst_0_5(); rtx reg_df_c1 = gen_reg_rtx (DFmode); rtx reg_rf_c1 = gen_reg_rtx (RFmode); rtx status0 = CONST0_RTX (SImode); rtx status1 = CONST1_RTX (SImode); rtx trunc_off = CONST2_RTX (SImode);

/* Put needed constants into registers. / emit_insn (gen_movdf (reg_df_c1, c1)); emit_insn (gen_extenddfrf2 (reg_rf_c1, reg_df_c1)); / Empty conversion to put input into RFmode. / emit_insn (gen_extendxfrf2 (b, operands[1])); / y = sqrt (1 / b) / emit_insn (gen_sqrt_approx_rf (y, b, cond, status0)); / g = b * y / emit_insn (gen_mulrf3_cond (g, cond, b, y, zero, status1, trunc_off)); / h = 0.5 * y / emit_insn (gen_mulrf3_cond (h, cond, reg_rf_c1, y, zero, status1, trunc_off)); / e = 0.5 - (g * h) / emit_insn (gen_m2subrf4_cond (e, cond, reg_rf_c1, g, h, zero, status1, trunc_off)); / g1 = g + (g * e) / emit_insn (gen_m2addrf4_cond (g1, cond, g, g, e, zero, status1, trunc_off)); / h1 = h + (h * e) / emit_insn (gen_m2addrf4_cond (h1, cond, h, h, e, zero, status1, trunc_off)); / e1 = 0.5 - (g1 * h1) / emit_insn (gen_m2subrf4_cond (e1, cond, reg_rf_c1, g1, h1, zero, status1, trunc_off)); / g2 = g1 + (g1 * e1) / emit_insn (gen_m2addrf4_cond (g2, cond, g1, g1, e1, zero, status1, trunc_off)); / h2 = h1 + (h1 * e1) / emit_insn (gen_m2addrf4_cond (h2, cond, h1, h1, e1, zero, status1, trunc_off)); / d = b - (g2 * g2) / emit_insn (gen_m2subrf4_cond (d, cond, b, g2, g2, zero, status1, trunc_off)); / e2 = 0.5 - (g2 * h2) / emit_insn (gen_m2subrf4_cond (e2, cond, reg_rf_c1, g2, h2, zero, status1, trunc_off)); / g3 = g2 + (d * h2) / emit_insn (gen_m2addrf4_cond (g3, cond, g2, d, h2, zero, status1, trunc_off)); / h3 = h2 + (e2 * h2) / emit_insn (gen_m2addrf4_cond (h3, cond, h2, e2, h2, zero, status1, trunc_off)); / d1 = b - (g3 * g3) / emit_insn (gen_m2subrf4_cond (d1, cond, b, g3, g3, zero, status1, trunc_off)); / g4 = g3 + (d1 * h3) / emit_insn (gen_m2addrf4_cond (g4, cond, g3, d1, h3, y, status1, trunc_off)); / Conversion back into SFmode. */ emit_insn (gen_truncrfxf2 (operands[0], g4)); DONE; })