;; Predicate definitions for IA-64. ;; Copyright (C) 2004-2018 Free Software Foundation, Inc. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

;; True if OP is a valid operand for the MEM of a CALL insn. (define_predicate “call_operand” (ior (match_code “symbol_ref”) (match_operand 0 “register_operand”)))

;; True if OP refers to any kind of symbol. ;; For roughly the same reasons that pmode_register_operand exists, this ;; predicate ignores its mode argument. (define_special_predicate “symbolic_operand” (match_code “symbol_ref,const,label_ref”))

;; True if OP is a SYMBOL_REF which refers to a function. (define_predicate “function_operand” (and (match_code “symbol_ref”) (match_test “SYMBOL_REF_FUNCTION_P (op)”)))

;; True if OP refers to a symbol in the sdata section. (define_predicate “sdata_symbolic_operand” (match_code “symbol_ref,const”) { HOST_WIDE_INT offset = 0, size = 0;

switch (GET_CODE (op)) { case CONST: op = XEXP (op, 0); if (GET_CODE (op) != PLUS || GET_CODE (XEXP (op, 0)) != SYMBOL_REF || GET_CODE (XEXP (op, 1)) != CONST_INT) return false; offset = INTVAL (XEXP (op, 1)); op = XEXP (op, 0); /* FALLTHRU */

case SYMBOL_REF:
  if (CONSTANT_POOL_ADDRESS_P (op))
{
  size = GET_MODE_SIZE (get_pool_mode (op));
  if (size > ia64_section_threshold)
    return false;
}
  else
{
  tree t;

  if (!SYMBOL_REF_LOCAL_P (op) || !SYMBOL_REF_SMALL_P (op))
    return false;

  /* Note that in addition to DECLs, we can get various forms
     of constants here.  */
  t = SYMBOL_REF_DECL (op);
  if (DECL_P (t))
    {
      /* Common symbol isn't placed in small data section.  */
      if (DECL_COMMON (t))
	return false;
      t = DECL_SIZE_UNIT (t);
    }
  else
    t = TYPE_SIZE_UNIT (TREE_TYPE (t));
  if (t && tree_fits_shwi_p (t))
    {
      size = tree_to_shwi (t);
      if (size < 0)
	size = 0;
    }
}

  /* Deny the stupid user trick of addressing outside the object.  Such
 things quickly result in GPREL22 relocation overflows.  Of course,
 they're also highly undefined.  From a pure pedant's point of view
 they deserve a slap on the wrist (such as provided by a relocation
 overflow), but that just leads to bugzilla noise.  */
  return (offset >= 0 && offset <= size);

default:
  gcc_unreachable ();
}

})

;; True if OP refers to a local symbol [+any offset]. ;; To be encoded as: ;; movl % = @gprel(symbol+offset) ;; add % = %, gp (define_predicate “local_symbolic_operand64” (match_code “symbol_ref,const”) { switch (GET_CODE (op)) { case CONST: op = XEXP (op, 0); if (GET_CODE (op) != PLUS || GET_CODE (XEXP (op, 0)) != SYMBOL_REF || GET_CODE (XEXP (op, 1)) != CONST_INT) return false; op = XEXP (op, 0); /* FALLTHRU */

case SYMBOL_REF:
return SYMBOL_REF_LOCAL_P (op);

default:
  gcc_unreachable ();
}

})

;; True if OP refers to a symbol in the small address area. (define_predicate “small_addr_symbolic_operand” (match_code “symbol_ref,const”) { switch (GET_CODE (op)) { case CONST: op = XEXP (op, 0); if (GET_CODE (op) != PLUS || GET_CODE (XEXP (op, 0)) != SYMBOL_REF || GET_CODE (XEXP (op, 1)) != CONST_INT) return false; op = XEXP (op, 0); /* FALLTHRU */

case SYMBOL_REF:
  return SYMBOL_REF_SMALL_ADDR_P (op);

default:
  gcc_unreachable ();
}

})

;; True if OP refers to a symbol with which we may use any offset. (define_predicate “any_offset_symbol_operand” (match_code “symbol_ref”) { if (TARGET_NO_PIC || TARGET_AUTO_PIC) return true; if (SYMBOL_REF_SMALL_ADDR_P (op)) return true; if (SYMBOL_REF_FUNCTION_P (op)) return false; if (sdata_symbolic_operand (op, mode)) return true; return false; })

;; True if OP refers to a symbol with which we may use 14-bit aligned offsets. ;; False if OP refers to a symbol with which we may not use any offset at any ;; time. (define_predicate “aligned_offset_symbol_operand” (and (match_code “symbol_ref”) (match_test “! SYMBOL_REF_FUNCTION_P (op)”)))

;; True if OP refers to a symbol, and is appropriate for a GOT load. (define_predicate “got_symbolic_operand” (match_operand 0 “symbolic_operand” "") { HOST_WIDE_INT addend = 0;

switch (GET_CODE (op)) { case LABEL_REF: return true;

case CONST:
  /* Accept only (plus (symbol_ref) (const_int)).  */
  op = XEXP (op, 0);
  if (GET_CODE (op) != PLUS
  || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
      || GET_CODE (XEXP (op, 1)) != CONST_INT)
    return false;

  addend = INTVAL (XEXP (op, 1));
  op = XEXP (op, 0);
  /* FALLTHRU */

case SYMBOL_REF:
  /* These symbols shouldn't be used with got loads.  */
  if (SYMBOL_REF_SMALL_ADDR_P (op))
return false;
  if (SYMBOL_REF_TLS_MODEL (op) != 0)
return false;

  if (any_offset_symbol_operand (op, mode))
return true;

  /* The low 14 bits of the constant have been forced to zero
 so that we do not use up so many GOT entries.  Prevent cse
 from undoing this.  */
  if (aligned_offset_symbol_operand (op, mode))
return (addend & 0x3fff) == 0;

  return addend == 0;

default:
  gcc_unreachable ();
}

})

;; Return true if OP is a valid thread local storage symbolic operand. (define_predicate “tls_symbolic_operand” (match_code “symbol_ref,const”) { switch (GET_CODE (op)) { case SYMBOL_REF: return SYMBOL_REF_TLS_MODEL (op) != 0;

case CONST:
  op = XEXP (op, 0);
  if (GET_CODE (op) != PLUS
  || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
  || GET_CODE (XEXP (op, 1)) != CONST_INT)
return false;

  /* We only allow certain offsets for certain tls models.  */
  switch (SYMBOL_REF_TLS_MODEL (XEXP (op, 0)))
{
case TLS_MODEL_GLOBAL_DYNAMIC:
case TLS_MODEL_LOCAL_DYNAMIC:
  return false;

case TLS_MODEL_INITIAL_EXEC:
  return (INTVAL (XEXP (op, 1)) & 0x3fff) == 0;

case TLS_MODEL_LOCAL_EXEC:
  return true;

default:
  return false;
}

default:
  gcc_unreachable ();
}

})

;; Return true if OP is a local-dynamic thread local storage symbolic operand. (define_predicate “ld_tls_symbolic_operand” (and (match_code “symbol_ref”) (match_test “SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_LOCAL_DYNAMIC”)))

;; Return true if OP is an initial-exec thread local storage symbolic operand. (define_predicate “ie_tls_symbolic_operand” (match_code “symbol_ref,const”) { switch (GET_CODE (op)) { case CONST: op = XEXP (op, 0); if (GET_CODE (op) != PLUS || GET_CODE (XEXP (op, 0)) != SYMBOL_REF || GET_CODE (XEXP (op, 1)) != CONST_INT || (INTVAL (XEXP (op, 1)) & 0x3fff) != 0) return false; op = XEXP (op, 0); /* FALLTHRU */

case SYMBOL_REF:
  return SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_INITIAL_EXEC;

default:
  gcc_unreachable ();
}

})

;; Return true if OP is a local-exec thread local storage symbolic operand. (define_predicate “le_tls_symbolic_operand” (match_code “symbol_ref,const”) { switch (GET_CODE (op)) { case CONST: op = XEXP (op, 0); if (GET_CODE (op) != PLUS || GET_CODE (XEXP (op, 0)) != SYMBOL_REF || GET_CODE (XEXP (op, 1)) != CONST_INT) return false; op = XEXP (op, 0); /* FALLTHRU */

case SYMBOL_REF:
  return SYMBOL_REF_TLS_MODEL (op) == TLS_MODEL_LOCAL_EXEC;

default:
  gcc_unreachable ();
}

})

;; Like nonimmediate_operand, but don't allow MEMs that try to use a ;; POST_MODIFY with a REG as displacement. (define_predicate “destination_operand” (and (match_operand 0 “nonimmediate_operand”) (match_test “GET_CODE (op) != MEM || GET_CODE (XEXP (op, 0)) != POST_MODIFY || GET_CODE (XEXP (XEXP (XEXP (op, 0), 1), 1)) != REG”)))

;; Like destination_operand, but don't allow any post-increments. (define_predicate “not_postinc_destination_operand” (and (match_operand 0 “nonimmediate_operand”) (match_test “GET_CODE (op) != MEM || GET_RTX_CLASS (GET_CODE (XEXP (op, 0))) != RTX_AUTOINC”)))

;; Like memory_operand, but don't allow post-increments. (define_predicate “not_postinc_memory_operand” (and (match_operand 0 “memory_operand”) (match_test “GET_RTX_CLASS (GET_CODE (XEXP (op, 0))) != RTX_AUTOINC”)))

;; True if OP is a general operand, with some restrictions on symbols. (define_predicate “move_operand” (match_operand 0 “general_operand”) { switch (GET_CODE (op)) { case CONST: { HOST_WIDE_INT addend;

/* Accept only (plus (symbol_ref) (const_int)).  */
op = XEXP (op, 0);
if (GET_CODE (op) != PLUS
    || GET_CODE (XEXP (op, 0)) != SYMBOL_REF
        || GET_CODE (XEXP (op, 1)) != CONST_INT)
  return false;

addend = INTVAL (XEXP (op, 1));
op = XEXP (op, 0);

/* After reload, we want to allow any offset whatsoever.  This
   allows reload the opportunity to avoid spilling addresses to
   the stack, and instead simply substitute in the value from a
   REG_EQUIV.  We'll split this up again when splitting the insn.  */
if (reload_in_progress || reload_completed)
  return true;

/* Some symbol types we allow to use with any offset.  */
if (any_offset_symbol_operand (op, mode))
  return true;

/* Some symbol types we allow offsets with the low 14 bits of the
   constant forced to zero so that we do not use up so many GOT
   entries.  We want to prevent cse from undoing this.  */
if (aligned_offset_symbol_operand (op, mode))
  return (addend & 0x3fff) == 0;

/* The remaining symbol types may never be used with an offset.  */
return false;
  }

default:
  return true;
}

})

;; Like move_operand but don't allow post-increments. (define_predicate “not_postinc_move_operand” (and (match_operand 0 “move_operand”) (match_test “GET_CODE (op) != MEM || GET_RTX_CLASS (GET_CODE (XEXP (op, 0))) != RTX_AUTOINC”)))

;; True if OP is a register operand that is (or could be) a GR reg. (define_predicate “gr_register_operand” (match_operand 0 “register_operand”) { unsigned int regno; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op);

regno = REGNO (op); return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno)); })

;; True if OP is a register operand that is (or could be) an FR reg. (define_predicate “fr_register_operand” (match_operand 0 “register_operand”) { unsigned int regno; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op);

regno = REGNO (op); return (regno >= FIRST_PSEUDO_REGISTER || FR_REGNO_P (regno)); })

;; True if OP is a register operand that is (or could be) a GR/FR reg. (define_predicate “grfr_register_operand” (match_operand 0 “register_operand”) { unsigned int regno; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op);

regno = REGNO (op); return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno) || FR_REGNO_P (regno)); })

;; True if OP is a nonimmediate operand that is (or could be) a GR reg. (define_predicate “gr_nonimmediate_operand” (match_operand 0 “nonimmediate_operand”) { unsigned int regno;

if (GET_CODE (op) == MEM) return true; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op);

regno = REGNO (op); return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno)); })

;; True if OP is a nonimmediate operand that is (or could be) a FR reg. (define_predicate “fr_nonimmediate_operand” (match_operand 0 “nonimmediate_operand”) { unsigned int regno;

if (GET_CODE (op) == MEM) return true; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op);

regno = REGNO (op); return (regno >= FIRST_PSEUDO_REGISTER || FR_REGNO_P (regno)); })

;; True if OP is a nonimmediate operand that is (or could be) a GR/FR reg. (define_predicate “grfr_nonimmediate_operand” (match_operand 0 “nonimmediate_operand”) { unsigned int regno;

if (GET_CODE (op) == MEM) return true; if (GET_CODE (op) == SUBREG) op = SUBREG_REG (op);

regno = REGNO (op); return (regno >= FIRST_PSEUDO_REGISTER || GENERAL_REGNO_P (regno) || FR_REGNO_P (regno)); })

;; True if OP is a GR register operand, or zero. (define_predicate “gr_reg_or_0_operand” (ior (match_operand 0 “gr_register_operand”) (and (match_code “const_int,const_double,const_vector”) (match_test “op == CONST0_RTX (GET_MODE (op))”))))

;; True if OP is a GR register operand, or a 5-bit immediate operand. (define_predicate “gr_reg_or_5bit_operand” (ior (match_operand 0 “gr_register_operand”) (and (match_code “const_int”) (match_test “INTVAL (op) >= 0 && INTVAL (op) < 32”))))

;; True if OP is a GR register operand, or a 6-bit immediate operand. (define_predicate “gr_reg_or_6bit_operand” (ior (match_operand 0 “gr_register_operand”) (and (match_code “const_int”) (match_test “satisfies_constraint_M (op)”))))

;; True if OP is a GR register operand, or an 8-bit immediate operand. (define_predicate “gr_reg_or_8bit_operand” (ior (match_operand 0 “gr_register_operand”) (and (match_code “const_int”) (match_test “satisfies_constraint_K (op)”))))

;; True if OP is a GR/FR register operand, or an 8-bit immediate operand. (define_predicate “grfr_reg_or_8bit_operand” (ior (match_operand 0 “grfr_register_operand”) (and (match_code “const_int”) (match_test “satisfies_constraint_K (op)”))))

;; True if OP is a register operand, or an 8-bit adjusted immediate operand. (define_predicate “gr_reg_or_8bit_adjusted_operand” (ior (match_operand 0 “gr_register_operand”) (and (match_code “const_int”) (match_test “satisfies_constraint_L (op)”))))

;; True if OP is a register operand, or is valid for both an 8-bit ;; immediate and an 8-bit adjusted immediate operand. This is necessary ;; because when we emit a compare, we don't know what the condition will be, ;; so we need the union of the immediates accepted by GT and LT. (define_predicate “gr_reg_or_8bit_and_adjusted_operand” (ior (match_operand 0 “gr_register_operand”) (and (match_code “const_int”) (match_test “satisfies_constraint_K (op) && satisfies_constraint_L (op)”))))

;; True if OP is a register operand, or a 14-bit immediate operand. (define_predicate “gr_reg_or_14bit_operand” (ior (match_operand 0 “gr_register_operand”) (and (match_code “const_int”) (match_test “satisfies_constraint_I (op)”))))

;; True if OP is a register operand, or a 22-bit immediate operand. (define_predicate “gr_reg_or_22bit_operand” (ior (match_operand 0 “gr_register_operand”) (and (match_code “const_int”) (match_test “satisfies_constraint_J (op)”))))

;; True if OP is a 7-bit immediate operand. (define_predicate “dshift_count_operand” (and (match_code “const_int”) (match_test “INTVAL (op) >= 0 && INTVAL (op) < 128”)))

;; True if OP is a 6-bit immediate operand. (define_predicate “shift_count_operand” (and (match_code “const_int”) (match_test “satisfies_constraint_M (op)”)))

;; True if OP-1 is a 6-bit immediate operand, used in extr instruction. (define_predicate “extr_len_operand” (and (match_code “const_int”) (match_test “satisfies_constraint_M (GEN_INT (INTVAL (op) - 1))”)))

;; True if OP is a 5-bit immediate operand. (define_predicate “shift_32bit_count_operand” (and (match_code “const_int”) (match_test “INTVAL (op) >= 0 && INTVAL (op) < 32”)))

;; True if OP is one of the immediate values 2, 4, 8, or 16. (define_predicate “shladd_operand” (and (match_code “const_int”) (match_test “INTVAL (op) == 2 || INTVAL (op) == 4 || INTVAL (op) == 8 || INTVAL (op) == 16”)))

;; True if OP is one of the immediate values 1, 2, 3, or 4. (define_predicate “shladd_log2_operand” (and (match_code “const_int”) (match_test “INTVAL (op) >= 1 && INTVAL (op) <= 4”)))

;; True if OP is one of the immediate values -16, -8, -4, -1, 1, 4, 8, 16. (define_predicate “fetchadd_operand” (and (match_code “const_int”) (match_test “INTVAL (op) == -16 || INTVAL (op) == -8 || INTVAL (op) == -4 || INTVAL (op) == -1 || INTVAL (op) == 1 || INTVAL (op) == 4 || INTVAL (op) == 8 || INTVAL (op) == 16”)))

;; True if OP is one of the immediate values 0, 7, 15, 16 (define_predicate “pmpyshr_operand” (and (match_code “const_int”) (match_test “INTVAL (op) == 0 || INTVAL (op) == 7 || INTVAL (op) == 15 || INTVAL (op) == 16”)))

;; True if OP is 0..3. (define_predicate “const_int_2bit_operand” (and (match_code “const_int”) (match_test “INTVAL (op) >= 0 && INTVAL (op) <= 3”)))

;; True if OP is a floating-point constant zero, one, or a register. (define_predicate “fr_reg_or_fp01_operand” (ior (match_operand 0 “fr_register_operand”) (and (match_code “const_double”) (match_test “satisfies_constraint_G (op)”))))

;; Like fr_reg_or_fp01_operand, but don't allow any SUBREGs. (define_predicate “xfreg_or_fp01_operand” (and (match_operand 0 “fr_reg_or_fp01_operand”) (not (match_code “subreg”))))

;; Like fr_reg_or_fp01_operand, but don't allow 0 if flag_signed_zero is set. ;; Using f0 as the second arg to fadd or fsub, or as the third arg to fma or ;; fms can cause a zero result to have the wrong sign. (define_predicate “fr_reg_or_signed_fp01_operand” (ior (match_operand 0 “fr_register_operand”) (and (match_code “const_double”) (match_test “satisfies_constraint_Z (op)”))))

;; Like fr_reg_or_signed_fp01_operand, but don't allow any SUBREGs. (define_predicate “xfreg_or_signed_fp01_operand” (and (match_operand 0 “fr_reg_or_signed_fp01_operand”) (not (match_code “subreg”))))

;; True if OP is a constant zero, or a register. (define_predicate “fr_reg_or_0_operand” (ior (match_operand 0 “fr_register_operand”) (and (match_code “const_double,const_vector”) (match_test “op == CONST0_RTX (GET_MODE (op))”))))

;; Return 1 if OP is a valid comparison operator for “cbranch” instructions. ;; If we're assuming that FP operations cannot generate user-visible traps, ;; then we can use the FP unordered-signaling instructions to implement the ;; FP unordered-quiet comparison predicates. (define_predicate “ia64_cbranch_operator” (if_then_else (match_test “flag_trapping_math”) (ior (match_operand 0 “ordered_comparison_operator”) (match_code “ordered,unordered”)) (and (match_operand 0 “comparison_operator”) (not (match_code “uneq,ltgt”)))))

;; True if this is a comparison operator, which accepts a normal 8-bit ;; signed immediate operand. (define_predicate “normal_comparison_operator” (match_code “eq,ne,gt,le,gtu,leu”))

;; True if this is a comparison operator, which accepts an adjusted 8-bit ;; signed immediate operand. (define_predicate “adjusted_comparison_operator” (match_code “lt,ge,ltu,geu”))

;; True if this is a signed inequality operator. (define_predicate “signed_inequality_operator” (match_code “ge,gt,le,lt”))

;; True if this operator is valid for predication. (define_predicate “predicate_operator” (match_code “eq,ne”))

;; True if this operator can be used in a conditional operation. (define_predicate “condop_operator” (match_code “plus,minus,ior,xor,and”))

;; These three are hardware registers that can only be addressed in ;; DImode. It's not strictly necessary to test mode == DImode here, ;; but it makes decent insurance against someone writing a ;; match_operand wrong.

;; True if this is the ar.lc register. (define_predicate “ar_lc_reg_operand” (and (match_code “reg”) (match_test “mode == DImode && REGNO (op) == AR_LC_REGNUM”)))

;; True if this is the ar.ccv register. (define_predicate “ar_ccv_reg_operand” (and (match_code “reg”) (match_test “mode == DImode && REGNO (op) == AR_CCV_REGNUM”)))

;; True if this is the ar.pfs register. (define_predicate “ar_pfs_reg_operand” (and (match_code “reg”) (match_test “mode == DImode && REGNO (op) == AR_PFS_REGNUM”)))

;; True if OP is valid as a base register in a reg + offset address. ;; ??? Should I copy the flag_omit_frame_pointer and cse_not_expected ;; checks from pa.c basereg_operand as well? Seems to be OK without them ;; in test runs. (define_predicate “basereg_operand” (match_operand 0 “register_operand”) { return REG_P (op) && REG_POINTER (op); })

;; True if this is the right-most vector element; for mux1 @brcst. (define_predicate “mux1_brcst_element” (and (match_code “const_int”) (match_test “INTVAL (op) == (TARGET_BIG_ENDIAN ? 7 : 0)”)))